AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning

Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyl...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 7697
Main Authors Charoenkwan, Phasit, Ahmed, Saeed, Nantasenamat, Chanin, Quinn, Julian M. W., Moni, Mohammad Ali, Lio’, Pietro, Shoombuatong, Watshara
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.05.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal m number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at http://pmlabstack.pythonanywhere.com/AMYPred-FRL . It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins.
AbstractList Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal m number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at http://pmlabstack.pythonanywhere.com/AMYPred-FRL . It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins.
Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal m number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at http://pmlabstack.pythonanywhere.com/AMYPred-FRL . It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins.
Abstract Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal m number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at http://pmlabstack.pythonanywhere.com/AMYPred-FRL . It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins.
ArticleNumber 7697
Author Shoombuatong, Watshara
Moni, Mohammad Ali
Ahmed, Saeed
Lio’, Pietro
Nantasenamat, Chanin
Charoenkwan, Phasit
Quinn, Julian M. W.
Author_xml – sequence: 1
  givenname: Phasit
  surname: Charoenkwan
  fullname: Charoenkwan, Phasit
  organization: Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University
– sequence: 2
  givenname: Saeed
  surname: Ahmed
  fullname: Ahmed, Saeed
  organization: Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University
– sequence: 3
  givenname: Chanin
  surname: Nantasenamat
  fullname: Nantasenamat, Chanin
  organization: Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University
– sequence: 4
  givenname: Julian M. W.
  surname: Quinn
  fullname: Quinn, Julian M. W.
  organization: Bone Biology Division, Garvan Institute of Medical Research
– sequence: 5
  givenname: Mohammad Ali
  surname: Moni
  fullname: Moni, Mohammad Ali
  organization: Artificial Intelligence and Digital Health Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland
– sequence: 6
  givenname: Pietro
  surname: Lio’
  fullname: Lio’, Pietro
  organization: Department of Computer Science and Technology, University of Cambridge
– sequence: 7
  givenname: Watshara
  surname: Shoombuatong
  fullname: Shoombuatong, Watshara
  email: watshara.sho@mahidol.ac.th
  organization: Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35546347$$D View this record in MEDLINE/PubMed
BookMark eNp9kjtvFDEUhUcoiDzIH6BAlmhoBvx-NEhRREikRSAEBZXl8dzZeDVrL_ZMpM2vx9kNIaHAja17v3Psa53j5iCmCE3ziuB3BDP9vnAijG4xpS0h2qj29llzRDEXLWWUHjw6HzanpaxwXYIaTsyL5pAJwSXj6qiZzj7__Jqhby--LVAoyKGYbmBEbrPJyflrNKSMnPdzdhOgTSWDn0KKKA3IrbdjCn2tpglCLKjbormEuEQDuGnOgDJURYE4uZ1mBJdj7b9sng9uLHB6v580Py4-fj-_bBdfPl2dny1aLzieWi0wox0VTHKhKPRcCcU6hrWRgzQD67jqnJRYc4K5caJjmvI6NhhFiJQdO2mu9r59ciu7yWHt8tYmF-yukPLSujwFP4IlgkOnemk4DByY08oDkF4CH6TyA61eH_Zem7lbQ-_rUNmNT0yfdmK4tst0Yw02QmFVDd7eG-T0a4Yy2XUoHsbRRUhzsVRKrrQ0FFf0zT_oKs051q-6oyjRmHJdKbqnfE6lZBgeHkOwvcuI3WfE1ozYXUbsbRW9fjzGg-RPIirA9kCprbiE_Pfu_9j-Btf0yZg
CitedBy_id crossref_primary_10_1080_07391102_2024_2329777
crossref_primary_10_3390_info14120636
crossref_primary_10_1016_j_ab_2024_115546
crossref_primary_10_1038_s41598_024_57457_5
crossref_primary_10_1080_07391102_2024_2329298
crossref_primary_10_1016_j_ijbiomac_2024_130128
crossref_primary_10_1021_acs_jcim_3c02035
crossref_primary_10_1080_07391102_2024_2318482
crossref_primary_10_1109_ACCESS_2023_3321100
crossref_primary_10_1038_s41598_024_55160_z
crossref_primary_10_1016_j_asoc_2023_111100
crossref_primary_10_1002_slct_202204629
crossref_primary_10_1038_s41598_023_50393_w
crossref_primary_10_1080_07391102_2024_2321510
crossref_primary_10_1007_s11259_023_10210_1
crossref_primary_10_1016_j_cvdhj_2023_12_001
crossref_primary_10_1109_ACCESS_2023_3268523
crossref_primary_10_1073_pnas_2321512121
crossref_primary_10_1186_s12859_023_05463_1
crossref_primary_10_1016_j_chemolab_2022_104623
crossref_primary_10_1080_13506129_2023_2226299
crossref_primary_10_1371_journal_pone_0290538
crossref_primary_10_1186_s12859_023_05421_x
crossref_primary_10_3390_a17060247
crossref_primary_10_1093_nar_gkae382
crossref_primary_10_1007_s12539_024_00628_9
crossref_primary_10_1016_j_compbiomed_2023_107238
crossref_primary_10_1186_s13321_023_00721_z
crossref_primary_10_1016_j_compbiolchem_2023_107853
crossref_primary_10_1016_j_ijbiomac_2023_124228
crossref_primary_10_1093_bioadv_vbac087
Cites_doi 10.1080/13506129.2020.1715363
10.1093/bib/bbab240
10.1016/j.chemolab.2020.104175
10.1110/ps.051471205
10.1093/protein/9.1.27
10.1093/bioinformatics/btu167
10.1093/bioinformatics/bty943
10.1073/pnas.92.19.8700
10.1016/j.jtbi.2010.12.024
10.1093/bioinformatics/btaa160
10.3390/cells9020353
10.1093/nar/gkl305
10.1073/pnas.252340199
10.1002/psc.3199
10.1021/acs.jproteome.0c00590
10.1371/journal.pone.0017331
10.1093/bioinformatics/btz912
10.1186/1471-2105-8-65
10.1007/s10822-020-00323-z
10.3390/ijms22168958
10.1093/bib/bby124
10.1016/j.chemolab.2014.12.011
10.1007/s00726-006-0439-2
10.1093/bioinformatics/btz246
10.1002/med.21658
10.1146/annurev.biochem.75.101304.123901
10.1093/bioinformatics/bty140
10.1038/nmeth.1432
10.1155/2020/8845133
10.1093/bib/bbz088
10.1182/blood-2009-07-230722
10.3390/ijms19072071
10.1074/jbc.M401932200
10.1093/bioinformatics/btv042
10.1089/omi.2015.0095
10.1093/nar/gku399
10.3390/ijms20225743
10.4161/pri.2.3.7488
10.1038/s41598-021-03293-w
10.1016/j.ygeno.2020.09.065
10.1093/bioinformatics/bty827
10.1093/bib/bbab172
10.1016/j.cell.2012.02.022
10.1186/1471-2105-15-54
10.1093/bib/bbaa049
10.1038/nbt1012
10.3390/ijms222313124
10.1038/s41598-021-82513-9
10.1073/pnas.96.20.11211
10.1006/jsbi.2000.4221
10.1073/pnas.96.7.3590
10.1016/j.jmb.2020.11.006
10.1121/1.4865840
10.1007/978-3-319-56850-8_1
10.1093/bioinformatics/bty451
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-11897-z
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 7697
ExternalDocumentID oai_doaj_org_article_154eb7d694ef4e3a87cee1d6e4f67cf2
10_1038_s41598_022_11897_z
35546347
Genre Journal Article
GrantInformation_xml – fundername: Information Technology Service Center (ITSC) of Chiang Mai University
– fundername: College of Arts, Media and Technology, Chiang Mai University
– fundername: Mahidol University
– fundername: Chiang Mai University
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
AFPKN
ACUHS
ID FETCH-LOGICAL-c540t-85032b25364572ed47573b30896f69f3b47ba660841049a5b3824204e971166b3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Dec 17 15:37:31 EST 2024
Tue Sep 17 21:25:52 EDT 2024
Wed Dec 04 13:35:19 EST 2024
Sat Nov 09 13:08:35 EST 2024
Fri Dec 06 04:24:03 EST 2024
Wed Oct 16 00:41:20 EDT 2024
Fri Oct 11 20:53:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-85032b25364572ed47573b30896f69f3b47ba660841049a5b3824204e971166b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095707/
PMID 35546347
PQID 2662180248
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_154eb7d694ef4e3a87cee1d6e4f67cf2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9095707
proquest_miscellaneous_2664786920
proquest_journals_2662180248
crossref_primary_10_1038_s41598_022_11897_z
pubmed_primary_35546347
springer_journals_10_1038_s41598_022_11897_z
PublicationCentury 2000
PublicationDate 2022-05-11
PublicationDateYYYYMMDD 2022-05-11
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – sequence: 0
  name: Nature Portfolio
– name: Nature Publishing Group UK
– name: Nature Publishing Group
References Azadpour, McKay, Smith (CR49) 2014; 135
Wei, Zhou, Su, Zou (CR44) 2019; 35
Li, Deng, Ding, Chen, Lin (CR26) 2015; 141
Charoenkwan, Kanthawong, Schaduangrat, Yana, Shoombuatong (CR29) 2020; 9
Charoenkwan, Kanthawong, Nantasenamat, Hasan, Shoombuatong (CR28) 2020; 19
Xiao, Cao, Zhu, Xu (CR38) 2015; 31
Rao, Zhou, Zhang, Su, Wei (CR43) 2020; 21
Conchillo-Solé, de Groot, Avilés, Vendrell, Daura, Ventura (CR9) 2007; 8
Thangakani, Kumar, Nagarajan, Velmurugan, Gromiha (CR15) 2014; 30
Tomii, Kanehisa (CR57) 1996; 9
Prabakaran, Rawat, Kumar, Gromiha (CR19) 2021; 22
Li (CR54) 2021; 22
Vrana, Gamez, Madden, Theis, Bergen, Dogan (CR4) 2009; 114
Dubchak, Muchnik, Holbrook, Kim (CR36) 1995; 92
Gasior, Kotulska (CR17) 2014; 15
Tartaglia, Cavalli, Pellarin, Caflisch (CR14) 2005; 14
Charoenkwan, Nantasenamat, Hasan, Moni, Lio, Shoombuatong (CR32) 2021; 22
Niu, Li, Wang, Han (CR20) 2018; 19
Chiti (CR6) 1999; 96
Charoenkwan, Chotpatiwetchkul, Lee, Nantasenamat, Shoombuatong (CR31) 2021; 11
Orlando, Silva, Macedo-Ribeiro, Raimondi, Vranken (CR10) 2020; 36
Wei, Zhou, Chen, Song, Su (CR42) 2018; 34
Eisenberg, Jucker (CR3) 2012; 148
Lopez De La Paz (CR8) 2002; 99
Maurer-Stroh (CR12) 2010; 7
Li, Lin, Han, Jiang, Chen, Chen (CR35) 2006; 34
Su, Hu, Zou, Manavalan, Wei (CR50) 2020; 21
Dao (CR24) 2019; 35
Chiti, Dobson (CR2) 2006; 75
Qiang, Zhou, Ye, Du, Su, Wei (CR41) 2020; 21
Schaduangrat, Nantasenamat, Prachayasittikul, Shoombuatong (CR48) 2019; 20
Fernandez-Escamilla, Rousseau, Schymkowitz, Serrano (CR13) 2004; 22
Walsh, Seno, Tosatto, Trovato (CR18) 2014; 42
Charoenkwan, Nantasenamat, Hasan, Shoombuatong (CR34) 2020; 34
Prabakaran, Rawat, Kumar, Gromiha (CR16) 2021; 433
Hasan, Schaduangrat, Basith, Lee, Shoombuatong, Manavalan (CR45) 2020; 36
Rambaran, Serpell (CR1) 2008; 2
Charoenkwan, Chiangjong, Nantasenamat, Hasan, Manavalan, Shoombuatong (CR46) 2021; 22
Feng (CR25) 2019; 35
CR53
CR52
Wang (CR59) 2020; 207
Chen (CR37) 2018; 34
Chen (CR40) 2018; 1
Saravanan, Gautham (CR58) 2015; 19
Charoenkwan, Chiangjong, Lee, Nantasenamat, Hasan, Shoombuatong (CR27) 2021; 11
Bhasin, Raghava (CR56) 2004; 279
Palato (CR11) 2019; 25
Basith, Manavalan, Hwan Shin, Lee (CR51) 2020; 40
Lee, Chen, Hung, Ou (CR60) 2011; 6
Chou (CR30) 2011; 273
Sipe, Cohen (CR5) 2000; 130
Pedregosa (CR47) 2011; 12
Rawat, Prabakaran, Sakthivel, Mary Thangakani, Kumar, Gromiha (CR55) 2020; 27
CR23
West, Wang, Patterson, Mancias, Beasley, Hecht (CR7) 1999; 96
Shen, Chou (CR39) 2007; 32
Charoenkwan, Nantasenamat, Hasan, Moni, Manavalan, Shoombuatong (CR33) 2021; 22
Charoenkwan, Kanthawong, Nantasenamat, Hasan, Shoombuatong (CR21) 2021; 113
Li, Zhang, Teng, Liu (CR22) 2020; 2020
R Prabakaran (11897_CR16) 2021; 433
F Li (11897_CR54) 2021; 22
P Rawat (11897_CR55) 2020; 27
JA Vrana (11897_CR4) 2009; 114
L Wei (11897_CR44) 2019; 35
P Charoenkwan (11897_CR46) 2021; 22
F Chiti (11897_CR2) 2006; 75
H-B Shen (11897_CR39) 2007; 32
G Orlando (11897_CR10) 2020; 36
RN Rambaran (11897_CR1) 2008; 2
P Charoenkwan (11897_CR31) 2021; 11
P Gasior (11897_CR17) 2014; 15
P Charoenkwan (11897_CR32) 2021; 22
Z-R Li (11897_CR35) 2006; 34
K Tomii (11897_CR57) 1996; 9
V Saravanan (11897_CR58) 2015; 19
F-Y Dao (11897_CR24) 2019; 35
P Charoenkwan (11897_CR27) 2021; 11
M Lopez De La Paz (11897_CR8) 2002; 99
P Charoenkwan (11897_CR28) 2020; 19
Z Chen (11897_CR40) 2018; 1
AM Thangakani (11897_CR15) 2014; 30
11897_CR23
GG Tartaglia (11897_CR14) 2005; 14
F Chiti (11897_CR6) 1999; 96
T-Y Lee (11897_CR60) 2011; 6
W-C Li (11897_CR26) 2015; 141
P Charoenkwan (11897_CR33) 2021; 22
MM Hasan (11897_CR45) 2020; 36
I Dubchak (11897_CR36) 1995; 92
R Prabakaran (11897_CR19) 2021; 22
M Niu (11897_CR20) 2018; 19
S Basith (11897_CR51) 2020; 40
O Conchillo-Solé (11897_CR9) 2007; 8
LM Palato (11897_CR11) 2019; 25
I Walsh (11897_CR18) 2014; 42
Z Chen (11897_CR37) 2018; 34
11897_CR52
Y Li (11897_CR22) 2020; 2020
M Azadpour (11897_CR49) 2014; 135
11897_CR53
N Xiao (11897_CR38) 2015; 31
R Su (11897_CR50) 2020; 21
JD Sipe (11897_CR5) 2000; 130
P Charoenkwan (11897_CR29) 2020; 9
B Rao (11897_CR43) 2020; 21
A-M Fernandez-Escamilla (11897_CR13) 2004; 22
X Qiang (11897_CR41) 2020; 21
M Wang (11897_CR59) 2020; 207
F Pedregosa (11897_CR47) 2011; 12
C-Q Feng (11897_CR25) 2019; 35
L Wei (11897_CR42) 2018; 34
M Bhasin (11897_CR56) 2004; 279
K-C Chou (11897_CR30) 2011; 273
S Maurer-Stroh (11897_CR12) 2010; 7
P Charoenkwan (11897_CR34) 2020; 34
D Eisenberg (11897_CR3) 2012; 148
P Charoenkwan (11897_CR21) 2021; 113
N Schaduangrat (11897_CR48) 2019; 20
MW West (11897_CR7) 1999; 96
References_xml – volume: 27
  start-page: 128
  issue: 2
  year: 2020
  end-page: 133
  ident: CR55
  article-title: CPAD 2.0: A repository of curated experimental data on aggregating proteins and peptides
  publication-title: Amyloid
  doi: 10.1080/13506129.2020.1715363
  contributor:
    fullname: Gromiha
– volume: 22
  issue: 6
  year: 2021
  ident: CR19
  article-title: Evaluation of in silico tools for the prediction of protein and peptide aggregation on diverse datasets
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab240
  contributor:
    fullname: Gromiha
– volume: 207
  year: 2020
  ident: CR59
  article-title: DeepMal: Accurate prediction of protein malonylation sites by deep neural networks
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104175
  contributor:
    fullname: Wang
– volume: 14
  start-page: 2723
  issue: 10
  year: 2005
  end-page: 2734
  ident: CR14
  article-title: Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences
  publication-title: Protein Sci.
  doi: 10.1110/ps.051471205
  contributor:
    fullname: Caflisch
– volume: 9
  start-page: 27
  issue: 1
  year: 1996
  end-page: 36
  ident: CR57
  article-title: Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/9.1.27
  contributor:
    fullname: Kanehisa
– volume: 30
  start-page: 1983
  issue: 14
  year: 2014
  end-page: 1990
  ident: CR15
  article-title: GAP: Towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu167
  contributor:
    fullname: Gromiha
– volume: 35
  start-page: 2075
  issue: 12
  year: 2019
  end-page: 2083
  ident: CR24
  article-title: Identify origin of replication in using two-step feature selection technique
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty943
  contributor:
    fullname: Dao
– volume: 92
  start-page: 8700
  issue: 19
  year: 1995
  end-page: 8704
  ident: CR36
  article-title: Prediction of protein folding class using global description of amino acid sequence
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.92.19.8700
  contributor:
    fullname: Kim
– volume: 273
  start-page: 236
  issue: 1
  year: 2011
  end-page: 247
  ident: CR30
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.12.024
  contributor:
    fullname: Chou
– volume: 36
  start-page: 3350
  issue: 11
  year: 2020
  end-page: 3356
  ident: CR45
  article-title: HLPpred-Fuse: Improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa160
  contributor:
    fullname: Manavalan
– volume: 9
  start-page: 353
  issue: 2
  year: 2020
  ident: CR29
  article-title: PVPred-SCM: Improved prediction and analysis of phage virion proteins using a scoring card method
  publication-title: Cells
  doi: 10.3390/cells9020353
  contributor:
    fullname: Shoombuatong
– volume: 34
  start-page: W32
  issue: suppl 2
  year: 2006
  end-page: W37
  ident: CR35
  article-title: PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl305
  contributor:
    fullname: Chen
– volume: 99
  start-page: 16052
  issue: 25
  year: 2002
  end-page: 16057
  ident: CR8
  article-title: De novo designed peptide-based amyloid fibrils
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.252340199
  contributor:
    fullname: Lopez De La Paz
– volume: 25
  issue: 8
  year: 2019
  ident: CR11
  article-title: Amyloidogenicity of naturally occurring full-length animal IAPP variants
  publication-title: J. Pept. Sci.
  doi: 10.1002/psc.3199
  contributor:
    fullname: Palato
– volume: 19
  start-page: 4125
  issue: 10
  year: 2020
  end-page: 4136
  ident: CR28
  article-title: iDPPIV-SCM: A sequence-based predictor for identifying and analyzing dipeptidyl peptidase IV (DPP-IV) inhibitory peptides using a scoring card method
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.0c00590
  contributor:
    fullname: Shoombuatong
– volume: 6
  issue: 3
  year: 2011
  ident: CR60
  article-title: Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017331
  contributor:
    fullname: Ou
– volume: 36
  start-page: 2076
  issue: 7
  year: 2020
  end-page: 2081
  ident: CR10
  article-title: Accurate prediction of protein beta-aggregation with generalized statistical potentials
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz912
  contributor:
    fullname: Vranken
– volume: 8
  start-page: 1
  issue: 1
  year: 2007
  end-page: 17
  ident: CR9
  article-title: AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-8-65
  contributor:
    fullname: Ventura
– volume: 34
  start-page: 1105
  issue: 10
  year: 2020
  end-page: 1116
  ident: CR34
  article-title: Meta-iPVP: A sequence-based meta-predictor for improving the prediction of phage virion proteins using effective feature representation
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-020-00323-z
  contributor:
    fullname: Shoombuatong
– volume: 22
  start-page: 8958
  issue: 16
  year: 2021
  ident: CR32
  article-title: iBitter-fuse: A novel sequence-based bitter peptide predictor by fusing multi-view features
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22168958
  contributor:
    fullname: Shoombuatong
– volume: 21
  start-page: 408
  issue: 2
  year: 2020
  end-page: 420
  ident: CR50
  article-title: Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bby124
  contributor:
    fullname: Wei
– volume: 141
  start-page: 100
  year: 2015
  end-page: 106
  ident: CR26
  article-title: iORI-PseKNC: A predictor for identifying origin of replication with pseudo k-tuple nucleotide composition
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.12.011
  contributor:
    fullname: Lin
– volume: 32
  start-page: 483
  issue: 4
  year: 2007
  end-page: 488
  ident: CR39
  article-title: Using ensemble classifier to identify membrane protein types
  publication-title: Amino Acids
  doi: 10.1007/s00726-006-0439-2
  contributor:
    fullname: Chou
– volume: 35
  start-page: 4272
  issue: 21
  year: 2019
  end-page: 4280
  ident: CR44
  article-title: PEPred-Suite: Improved and robust prediction of therapeutic peptides using adaptive feature representation learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz246
  contributor:
    fullname: Zou
– volume: 40
  start-page: 1276
  issue: 4
  year: 2020
  end-page: 1314
  ident: CR51
  article-title: Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.21658
  contributor:
    fullname: Lee
– volume: 75
  start-page: 333
  year: 2006
  end-page: 366
  ident: CR2
  article-title: Protein misfolding, functional amyloid, and human disease
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.75.101304.123901
  contributor:
    fullname: Dobson
– volume: 34
  start-page: 2499
  issue: 14
  year: 2018
  end-page: 2502
  ident: CR37
  article-title: iFeature: A python package and web server for features extraction and selection from protein and peptide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty140
  contributor:
    fullname: Chen
– volume: 7
  start-page: 237
  issue: 3
  year: 2010
  end-page: 242
  ident: CR12
  article-title: Exploring the sequence determinants of amyloid structure using position-specific scoring matrices
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1432
  contributor:
    fullname: Maurer-Stroh
– volume: 2020
  year: 2020
  ident: CR22
  article-title: Predamyl-mlp: Prediction of amyloid proteins using multilayer perceptron
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2020/8845133
  contributor:
    fullname: Liu
– volume: 21
  start-page: 1846
  issue: 5
  year: 2020
  end-page: 1855
  ident: CR43
  article-title: ACPred-Fuse: Fusing multi-view information improves the prediction of anticancer peptides
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz088
  contributor:
    fullname: Wei
– volume: 114
  start-page: 4957
  issue: 24
  year: 2009
  end-page: 4959
  ident: CR4
  article-title: Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens
  publication-title: Blood
  doi: 10.1182/blood-2009-07-230722
  contributor:
    fullname: Dogan
– volume: 19
  start-page: 2071
  issue: 7
  year: 2018
  ident: CR20
  article-title: RFAmyloid: A web server for predicting amyloid proteins
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19072071
  contributor:
    fullname: Han
– volume: 279
  start-page: 23262
  issue: 22
  year: 2004
  end-page: 23266
  ident: CR56
  article-title: Classification of nuclear receptors based on amino acid composition and dipeptide composition
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401932200
  contributor:
    fullname: Raghava
– volume: 31
  start-page: 1857
  issue: 11
  year: 2015
  end-page: 1859
  ident: CR38
  article-title: protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv042
  contributor:
    fullname: Xu
– volume: 19
  start-page: 648
  issue: 10
  year: 2015
  end-page: 658
  ident: CR58
  article-title: Harnessing computational biology for exact linear B-cell epitope prediction: A novel amino acid composition-based feature descriptor
  publication-title: OMICS
  doi: 10.1089/omi.2015.0095
  contributor:
    fullname: Gautham
– volume: 42
  start-page: W301
  issue: W1
  year: 2014
  end-page: W307
  ident: CR18
  article-title: PASTA 2.0: An improved server for protein aggregation prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku399
  contributor:
    fullname: Trovato
– volume: 21
  start-page: 11
  issue: 1
  year: 2020
  end-page: 23
  ident: CR41
  article-title: CPPred-FL: A sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning
  publication-title: Brief. Bioinform.
  contributor:
    fullname: Wei
– ident: CR53
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR47
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– volume: 20
  start-page: 5743
  issue: 22
  year: 2019
  ident: CR48
  article-title: Meta-iAVP: A sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20225743
  contributor:
    fullname: Shoombuatong
– volume: 2
  start-page: 112
  issue: 3
  year: 2008
  end-page: 117
  ident: CR1
  article-title: Amyloid fibrils: Abnormal protein assembly
  publication-title: Prion
  doi: 10.4161/pri.2.3.7488
  contributor:
    fullname: Serpell
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 15
  ident: CR31
  article-title: A novel sequence-based predictor for identifying and characterizing thermophilic proteins using estimated propensity scores of dipeptides
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03293-w
  contributor:
    fullname: Shoombuatong
– volume: 113
  start-page: 689
  issue: 1
  year: 2021
  end-page: 698
  ident: CR21
  article-title: iAMY-SCM: Improved prediction and analysis of amyloid proteins using a scoring card method with propensity scores of dipeptides
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.09.065
  contributor:
    fullname: Shoombuatong
– volume: 35
  start-page: 1469
  issue: 9
  year: 2019
  end-page: 1477
  ident: CR25
  article-title: iTerm-PseKNC: A sequence-based tool for predicting bacterial transcriptional terminators
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty827
  contributor:
    fullname: Feng
– volume: 22
  start-page: 172
  issue: 6
  year: 2021
  ident: CR46
  article-title: StackIL6: A stacking ensemble model for improving the prediction of IL-6 inducing peptides
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab172
  contributor:
    fullname: Shoombuatong
– ident: CR23
– volume: 148
  start-page: 1188
  issue: 6
  year: 2012
  end-page: 1203
  ident: CR3
  article-title: The amyloid state of proteins in human diseases
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.022
  contributor:
    fullname: Jucker
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  end-page: 8
  ident: CR17
  article-title: FISH Amyloid—A new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of aminoacids
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-15-54
  contributor:
    fullname: Kotulska
– volume: 22
  start-page: 2126
  issue: 2
  year: 2021
  end-page: 2140
  ident: CR54
  article-title: Computational prediction and interpretation of both general and specific types of promoters in by exploiting a stacked ensemble-learning framework
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa049
  contributor:
    fullname: Li
– volume: 22
  start-page: 1302
  issue: 10
  year: 2004
  end-page: 1306
  ident: CR13
  article-title: Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1012
  contributor:
    fullname: Serrano
– volume: 22
  start-page: 13124
  issue: 23
  year: 2021
  ident: CR33
  article-title: UMPred-FRL: A new approach for accurate prediction of umami peptides using feature representation learning
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222313124
  contributor:
    fullname: Shoombuatong
– ident: CR52
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 13
  ident: CR27
  article-title: Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82513-9
  contributor:
    fullname: Shoombuatong
– volume: 96
  start-page: 11211
  issue: 20
  year: 1999
  end-page: 11216
  ident: CR7
  article-title: De novo amyloid proteins from designed combinatorial libraries
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.20.11211
  contributor:
    fullname: Hecht
– volume: 34
  start-page: 4007
  issue: 23
  year: 2018
  end-page: 4016
  ident: CR42
  article-title: ACPred-FL: A sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides
  publication-title: Bioinformatics
  contributor:
    fullname: Su
– volume: 130
  start-page: 88
  issue: 2–3
  year: 2000
  end-page: 98
  ident: CR5
  article-title: Review: History of the amyloid fibril
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2000.4221
  contributor:
    fullname: Cohen
– volume: 96
  start-page: 3590
  issue: 7
  year: 1999
  end-page: 3594
  ident: CR6
  article-title: Designing conditions for in vitro formation of amyloid protofilaments and fibrils
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.7.3590
  contributor:
    fullname: Chiti
– volume: 433
  issue: 11
  year: 2021
  ident: CR16
  article-title: ANuPP: A versatile tool to predict aggregation nucleating regions in peptides and proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.11.006
  contributor:
    fullname: Gromiha
– volume: 1
  start-page: 4
  year: 2018
  ident: CR40
  article-title: iFeature: A python package and web server for features extraction and selection from protein and peptide sequences
  publication-title: Bioinformatics
  contributor:
    fullname: Chen
– volume: 135
  start-page: EL140
  issue: 3
  year: 2014
  end-page: EL146
  ident: CR49
  article-title: Estimating confidence intervals for information transfer analysis of confusion matrices
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4865840
  contributor:
    fullname: Smith
– volume: 20
  start-page: 5743
  issue: 22
  year: 2019
  ident: 11897_CR48
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20225743
  contributor:
    fullname: N Schaduangrat
– volume: 148
  start-page: 1188
  issue: 6
  year: 2012
  ident: 11897_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.022
  contributor:
    fullname: D Eisenberg
– volume: 22
  start-page: 172
  issue: 6
  year: 2021
  ident: 11897_CR46
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab172
  contributor:
    fullname: P Charoenkwan
– volume: 21
  start-page: 1846
  issue: 5
  year: 2020
  ident: 11897_CR43
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz088
  contributor:
    fullname: B Rao
– volume: 35
  start-page: 2075
  issue: 12
  year: 2019
  ident: 11897_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty943
  contributor:
    fullname: F-Y Dao
– volume: 96
  start-page: 3590
  issue: 7
  year: 1999
  ident: 11897_CR6
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.7.3590
  contributor:
    fullname: F Chiti
– volume: 21
  start-page: 408
  issue: 2
  year: 2020
  ident: 11897_CR50
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bby124
  contributor:
    fullname: R Su
– volume: 6
  issue: 3
  year: 2011
  ident: 11897_CR60
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017331
  contributor:
    fullname: T-Y Lee
– volume: 32
  start-page: 483
  issue: 4
  year: 2007
  ident: 11897_CR39
  publication-title: Amino Acids
  doi: 10.1007/s00726-006-0439-2
  contributor:
    fullname: H-B Shen
– volume: 7
  start-page: 237
  issue: 3
  year: 2010
  ident: 11897_CR12
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1432
  contributor:
    fullname: S Maurer-Stroh
– volume: 22
  issue: 6
  year: 2021
  ident: 11897_CR19
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab240
  contributor:
    fullname: R Prabakaran
– volume: 14
  start-page: 2723
  issue: 10
  year: 2005
  ident: 11897_CR14
  publication-title: Protein Sci.
  doi: 10.1110/ps.051471205
  contributor:
    fullname: GG Tartaglia
– volume: 273
  start-page: 236
  issue: 1
  year: 2011
  ident: 11897_CR30
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.12.024
  contributor:
    fullname: K-C Chou
– volume: 92
  start-page: 8700
  issue: 19
  year: 1995
  ident: 11897_CR36
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.92.19.8700
  contributor:
    fullname: I Dubchak
– volume: 35
  start-page: 4272
  issue: 21
  year: 2019
  ident: 11897_CR44
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz246
  contributor:
    fullname: L Wei
– volume: 22
  start-page: 8958
  issue: 16
  year: 2021
  ident: 11897_CR32
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22168958
  contributor:
    fullname: P Charoenkwan
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 11897_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82513-9
  contributor:
    fullname: P Charoenkwan
– volume: 114
  start-page: 4957
  issue: 24
  year: 2009
  ident: 11897_CR4
  publication-title: Blood
  doi: 10.1182/blood-2009-07-230722
  contributor:
    fullname: JA Vrana
– volume: 34
  start-page: W32
  issue: suppl 2
  year: 2006
  ident: 11897_CR35
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl305
  contributor:
    fullname: Z-R Li
– volume: 433
  issue: 11
  year: 2021
  ident: 11897_CR16
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.11.006
  contributor:
    fullname: R Prabakaran
– volume: 22
  start-page: 2126
  issue: 2
  year: 2021
  ident: 11897_CR54
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa049
  contributor:
    fullname: F Li
– volume: 25
  issue: 8
  year: 2019
  ident: 11897_CR11
  publication-title: J. Pept. Sci.
  doi: 10.1002/psc.3199
  contributor:
    fullname: LM Palato
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  ident: 11897_CR17
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-15-54
  contributor:
    fullname: P Gasior
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 11897_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03293-w
  contributor:
    fullname: P Charoenkwan
– volume: 36
  start-page: 2076
  issue: 7
  year: 2020
  ident: 11897_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz912
  contributor:
    fullname: G Orlando
– volume: 9
  start-page: 353
  issue: 2
  year: 2020
  ident: 11897_CR29
  publication-title: Cells
  doi: 10.3390/cells9020353
  contributor:
    fullname: P Charoenkwan
– volume: 2
  start-page: 112
  issue: 3
  year: 2008
  ident: 11897_CR1
  publication-title: Prion
  doi: 10.4161/pri.2.3.7488
  contributor:
    fullname: RN Rambaran
– ident: 11897_CR52
  doi: 10.1007/978-3-319-56850-8_1
– volume: 279
  start-page: 23262
  issue: 22
  year: 2004
  ident: 11897_CR56
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401932200
  contributor:
    fullname: M Bhasin
– volume: 34
  start-page: 2499
  issue: 14
  year: 2018
  ident: 11897_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty140
  contributor:
    fullname: Z Chen
– ident: 11897_CR53
– volume: 36
  start-page: 3350
  issue: 11
  year: 2020
  ident: 11897_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa160
  contributor:
    fullname: MM Hasan
– volume: 40
  start-page: 1276
  issue: 4
  year: 2020
  ident: 11897_CR51
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.21658
  contributor:
    fullname: S Basith
– volume: 22
  start-page: 13124
  issue: 23
  year: 2021
  ident: 11897_CR33
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222313124
  contributor:
    fullname: P Charoenkwan
– volume: 141
  start-page: 100
  year: 2015
  ident: 11897_CR26
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.12.011
  contributor:
    fullname: W-C Li
– volume: 42
  start-page: W301
  issue: W1
  year: 2014
  ident: 11897_CR18
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku399
  contributor:
    fullname: I Walsh
– volume: 99
  start-page: 16052
  issue: 25
  year: 2002
  ident: 11897_CR8
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.252340199
  contributor:
    fullname: M Lopez De La Paz
– volume: 9
  start-page: 27
  issue: 1
  year: 1996
  ident: 11897_CR57
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/9.1.27
  contributor:
    fullname: K Tomii
– volume: 207
  year: 2020
  ident: 11897_CR59
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104175
  contributor:
    fullname: M Wang
– volume: 34
  start-page: 1105
  issue: 10
  year: 2020
  ident: 11897_CR34
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-020-00323-z
  contributor:
    fullname: P Charoenkwan
– volume: 19
  start-page: 4125
  issue: 10
  year: 2020
  ident: 11897_CR28
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.0c00590
  contributor:
    fullname: P Charoenkwan
– volume: 27
  start-page: 128
  issue: 2
  year: 2020
  ident: 11897_CR55
  publication-title: Amyloid
  doi: 10.1080/13506129.2020.1715363
  contributor:
    fullname: P Rawat
– volume: 1
  start-page: 4
  year: 2018
  ident: 11897_CR40
  publication-title: Bioinformatics
  contributor:
    fullname: Z Chen
– volume: 75
  start-page: 333
  year: 2006
  ident: 11897_CR2
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.75.101304.123901
  contributor:
    fullname: F Chiti
– volume: 135
  start-page: EL140
  issue: 3
  year: 2014
  ident: 11897_CR49
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4865840
  contributor:
    fullname: M Azadpour
– volume: 35
  start-page: 1469
  issue: 9
  year: 2019
  ident: 11897_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty827
  contributor:
    fullname: C-Q Feng
– volume: 12
  start-page: 2825
  year: 2011
  ident: 11897_CR47
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: F Pedregosa
– ident: 11897_CR23
– volume: 2020
  year: 2020
  ident: 11897_CR22
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2020/8845133
  contributor:
    fullname: Y Li
– volume: 21
  start-page: 11
  issue: 1
  year: 2020
  ident: 11897_CR41
  publication-title: Brief. Bioinform.
  contributor:
    fullname: X Qiang
– volume: 19
  start-page: 648
  issue: 10
  year: 2015
  ident: 11897_CR58
  publication-title: OMICS
  doi: 10.1089/omi.2015.0095
  contributor:
    fullname: V Saravanan
– volume: 130
  start-page: 88
  issue: 2–3
  year: 2000
  ident: 11897_CR5
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2000.4221
  contributor:
    fullname: JD Sipe
– volume: 30
  start-page: 1983
  issue: 14
  year: 2014
  ident: 11897_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu167
  contributor:
    fullname: AM Thangakani
– volume: 113
  start-page: 689
  issue: 1
  year: 2021
  ident: 11897_CR21
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.09.065
  contributor:
    fullname: P Charoenkwan
– volume: 19
  start-page: 2071
  issue: 7
  year: 2018
  ident: 11897_CR20
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19072071
  contributor:
    fullname: M Niu
– volume: 22
  start-page: 1302
  issue: 10
  year: 2004
  ident: 11897_CR13
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1012
  contributor:
    fullname: A-M Fernandez-Escamilla
– volume: 8
  start-page: 1
  issue: 1
  year: 2007
  ident: 11897_CR9
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-8-65
  contributor:
    fullname: O Conchillo-Solé
– volume: 31
  start-page: 1857
  issue: 11
  year: 2015
  ident: 11897_CR38
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv042
  contributor:
    fullname: N Xiao
– volume: 34
  start-page: 4007
  issue: 23
  year: 2018
  ident: 11897_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty451
  contributor:
    fullname: L Wei
– volume: 96
  start-page: 11211
  issue: 20
  year: 1999
  ident: 11897_CR7
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.20.11211
  contributor:
    fullname: MW West
SSID ssj0000529419
Score 2.5473704
Snippet Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently...
Abstract Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7697
SubjectTerms 631/114
631/114/1305
631/114/2397
Aggregates
Algorithms
Alzheimer's disease
Amyloidogenic Proteins
Bioinformatics
Computational Biology - methods
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2
Humanities and Social Sciences
Humans
Machine Learning
Movement disorders
multidisciplinary
Neurodegenerative diseases
Parkinson's disease
Proteins
Science
Science (multidisciplinary)
Support Vector Machine
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SEHwR765WieCbLs0m2Vweq3goYkXEQn0KyW5SD-ieci5C--udSXaPPV7wxddNFoaZSeYLM_MNIc8tQFrWRXBeZXkto5G18Vhi5b210mqfNPYOH79XRyfy7Wl7emXUF9aEFXrgorgDCPEx6F5ZGZOMwhsN13rTqyiT0l0qty_jVx5ThdWbW9nYsUuGCXOwgkiF3WTw9gJMbXV9uROJMmH_n1Dm78WSv2RMcyCa3SI3RwRJD4vkt8m1ONwh18tMyYu7ZH14_PnDMvb17OM7Ol9RT4fF9_iVTuThFFAq9V23QY4Ier7ERA0ahy4S9d_g-T7vaSZvmA8rGi4oFsaf0RQzASjNHJhTv9JAx5kTZ_fIyezNp9dH9Thaoe4Aoq1r0zLBA28xCal57KVutQiCGauSskkEqYNXihkJzzXr2yAMxHImo9VNo1QQ98nesBjiQ0KNiiYFQAFwU8peWsMDjpHRnWB4xE1FXkxqdueFQcPlzLcwrhjFgVFcNoq7rMgrtMR2J7Jf5w_gE270Cfcvn6jI_mRHNx7JlQMkwpHuToJEz7bLcJgwQ-KHuNjkPVIb8FpWkQfF7FtJEJgpIXVF9I5D7Ii6uzLMv2TCbgs4VjP48-XkOj_F-rsqHv0PVTwmNzj6PPLNNvtkb73cxCcAo9bhaT4xPwD1Ghmo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpe86TYsKvbUmtiXrcSpJyRJKE0JoID0JyZa3C629Xe8Gkl_fGVnesH1dLRlkz4zmk2bmG0LeaoC0WeVBeYUuUu4VT5XFFCtrteZa2kZi7fDJqTi-4J8uy8t44dbHtMpxTwwbdd1VeEe-D46kQLYyrj4sfqbYNQqjq7GFxl2yU-RMqQnZOTw6PTvf3LJgHIvnOlbLZEzt9-CxsKoMzmCArbVMb7Y8UiDu_xva_DNp8rfIaXBI04fkQUSS9GAQ_SNyx7ePyb2ht-T1E7I6OPl6tvR1Oj3_TOc9tbTtrvx3OpKIU0Cr1FbVGrki6GKJARsUEu0aan_AMX5e00DiMG976q4pJsjPaOMDESgNXJhj3VJLY--J2VNyMT368vE4jS0W0gqg2ipVZcYKV5QYjJSFr7ksJXMsU1o0QjfMcemsEJnicGzTtnRMgU_PuNcyz4Vw7BmZtF3rXxCqhFeNAzQAOyavuVaFw3YysmIZmrpKyLvxN5vFwKRhQgScKTMIxYBQTBCKuUnIIUpiMxNZsMODbjkz0agMwD_vZC009w33zCoJLj-vheeNkFVTJGRvlKOJptmbW0VKyJvNMBgVRkps67t1mMOlAu3NEvJ8EPtmJQjQBOMyIXJLIbaWuj3Szr8F4m4NeFZm8Ob7UXVul_XvX7H7_694Se4XqM3IKJvvkclqufavACit3OtoDb8At-ERMg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3di9QwEA_niXIv4udZPSWCb1ptkzQfDyKnuBziiogL51NI2nRdONtzP8S9v96ZtF1d3XttGhgyM5nfMJnfEPLUAKTNygDGKw1LRdAi1Q6fWDlnjDDK1Qp7h8cf5clEvD8tTvfIMO6oP8DFztQO50lN5mcvfv1YvwaHf9W1jOuXCwhC2CgGaRXAZaPSiyvkKoPIiE-8xj3c77i-mRG56Xtndm89INcxBEuOA1f-ClWR0X8XDP3_NeU_JdUYqUY3yY0eYtLjziZukb3Q3CbXuqGT6ztkeTz--mkeqnT0-QOdLaijTfsznNGBXZwCjKWuLFdIIkHP51jJQe3RtqbuO-T3s4pGdodZs6B-TfHl_JTWITKE0kiSOTQ0NbQfSjG9Syajd1_enqT97IW0BAy3THWRceZZgVVKxUIlVKG455k2spam5l4o76TMtIB8zrjCcw3BPhPBqDyX0vN7ZL9pm3CfUC2Drj3ABLhKRSWMZh7nzKiSZ3gH6IQ8G47ZnncUGzaWxrm2nX4s6MdG_diLhLxBTWz-RHrs-KGdT23vbRZwYfCqkkaEWgTutAIskFcyiFqqsmYJORr0aAeTswBVGPLhCZDoyWYZvA1LKK4J7Sr-I5QGs84SctipfSPJYDYJUVsGsSXq9koz-xYZvQ0AXZXBzueD6fwR6_KjeHCpCA_JAUObRpbZ_IjsL-er8AjA09I_jh7xGypaEy0
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1di9UwEA26Ivgiftt1lQi-abFt0kzyuF68LOKKiAvrU0jaZL2gvcv9EHZ__c6k7ZXq-uBrk0DomemcdDJnGHtlkNIWTUDjVabKZdAy146uWDlnjDTgIlDt8PEndXQiP5zWp4NMDtXCTPL3Qr9dY4ChIjA8MiEVNpBf3mS3MAYDWfNMzXb_UyhjJUsz1MVcv3QSe5JE_3W88u_rkX_kSFPomd9jdwfOyA97kO-zG6F7wG73XSQvHrLN4fG3z6vQ5vMvH_lizR3vlr_CDz7KhXPkpdw1zZZUIfj5ilIzBAdfRu5-4oF90fIk17Do1txfcLoKf8ZjSJKfPKlejhVKHR-6TJw9Yifz919nR_nQTCFvkJRtcl0XovJVTWlHqEIroQbhRaGNispE4SV4p1ShJR7QjKu90Bi9CxkMlKVSXjxme92yC08Z1yro6DHu47dRttLoylPjGGhEQU6tM_Z6fM32vNfMsCnXLbTtQbEIik2g2MuMvSMkdjNJ7zo9QDOwg_tYJHrBQ6uMDFEG4TRgcC9bFWRU0MQqYwcjjnZwwrVF7lGRwJ3EHb3cDaP7UE7EdWG5TXMkaLTTImNPeth3OyEqpoSEjMHEICZbnY50i-9Jotsgc4UCV74ZTef3tv79Kvb_b_ozdqci6yYt2fKA7W1W2_AcKdLGv0i-cQUSrQlU
  priority: 102
  providerName: Springer Nature
Title AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning
URI https://link.springer.com/article/10.1038/s41598-022-11897-z
https://www.ncbi.nlm.nih.gov/pubmed/35546347
https://www.proquest.com/docview/2662180248
https://search.proquest.com/docview/2664786920
https://pubmed.ncbi.nlm.nih.gov/PMC9095707
https://doaj.org/article/154eb7d694ef4e3a87cee1d6e4f67cf2
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6SlJZcQt9Vmpot9NYqlrWrfRwTExNKHUxowD2JXWnlCmLJ-FFIfn1nV5Ib93HpxWBL4EHzjedbz8w3AB8UUtooswheruKQWclCqV2LldZKMSV0Idzs8PiKX96wz9NkugdJNwvjm_YzU55Wt_PTqvzueysX86zf9Yn1J-OhQl4gItHfh31Mvw-O6I2gd6zYQLUDMhGV_RUmKTdIhscupNNKhPeH8MTlWU7dVpUH-cjL9v-Na_7ZMvlb3dSno9FTOGp5JDlr7H0Ge7Z6Do-bzZJ3L2B9Nv42Wdo8HF1_IeWKaFLVP-wt6STECXJVorNs45QiyGLpyjXORaQuiJ7jIb7MiZdwKKsVMXfEtcfPSGG9DCjxSpjd1FJF2s0Ts5dwM7r4OrwM2wULYYZEbR3KJKKxiRNXihSxzZlIBDU0kooXXBXUMGE055FkeGhTOjFUYkaPmFViMODc0FdwUNWVfQNEcisLg1wAfy9ZzpSMjVsmIzIauUCXAXzsHnO6aHQ0Ul__pjJt_JOif1Lvn_Q-gHPnie2dTgPbf1AvZ2mLhBTJnzUi54rZglmqpcCEP8i5ZQUXWREHcNL5MW0Dc5UiH4md6B1Di95vL2NIuTqJrmy98fcwIRG7UQCvG7dvLelgE4DYAcSOqbtXEMVetrtFbQCfOuj8Muvfj-L4v7_oLRzGDvNOanZwAgfr5ca-Qwa1Nj2Mm6nowaPzi6vJNb4b8mHP_xuBr2Mmez6ifgL89R4E
link.rule.ids 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,51576,53791,53793,73745,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKwQXxJtAASNxg6hJ7PhxQi3qaoHdVVW1UjlZduIsK0Gy7AOp_fXMOMlWy-saO5KTmfF89sx8Q8gbDZA2KTwor9BZzL3isbKYYmWt1lxLW0msHZ5Mxeicf7rIL7oLt1WXVtnviWGjLpsC78gPwJFkyFbG1fvFjxi7RmF0tWuhcZPsIXN6PiB7R8fTk9PtLQvGsXiqu2qZhKmDFXgsrCqDMxhgay3jqx2PFIj7_4Y2_0ya_C1yGhzS8B652yFJetiK_j654esH5FbbW_LyIVkfTr6cLH0ZD0_HdL6iltbNT_-N9iTiFNAqtUWxQa4IulhiwAaFRJuK2u9wjJ-XNJA4zOsVdZcUE-RntPKBCJQGLsy-bqmmXe-J2SNyPjw--zCKuxYLcQFQbR2rPGGZy3IMRsrMl1zmkjmWKC0qoSvmuHRWiERxOLZpmzumwKcn3GuZpkI49pgM6qb2TwlVwqvKARqAHZOXXKvMYTsZWbAETV1F5G3_m82iZdIwIQLOlGmFYkAoJgjFXEXkCCWxnYks2OFBs5yZzqgMwD_vZCk09xX3zCoJLj8theeVkEWVRWS_l6PpTHNlrhUpIq-3w2BUGCmxtW82YQ6XCrQ3iciTVuzblSBAE4zLiMgdhdhZ6u5IPf8aiLs14FmZwJvvetW5Xta_f8Wz_3_FK3J7dDYZm_HH6efn5E6Gmo3ssuk-GayXG_8CQNPavews4xefgBQa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4gXxDeBAUbiDaImseuPJ7TBqgFbVU1MGk-WnTil0paUfiBtfz13rtOpfL3GjuTk7nw_--5-R8gbDZA2Kz0or9BFyr3iqbKYYmWt1lxLW0usHT4eicNT_vlscBbznxYxrbLbE8NGXbUl3pH3wZEUyFbGVb-OaRHjj8P3sx8pdpDCSGtsp3GT7IBXzIoe2dk_GI1PNjcuGNPiuY6VMxlT_QV4L6wwg_MY4Gwt06st7xRI_P-GPP9MoPwtihqc0_AeuRtRJd1bq8F9csM3D8itdZ_Jy4dkuXf8bTz3VTo8OaLTBbW0aX_6c9oRilNArtSW5Qp5I-hsjsEbFBhta2ov4Eg_rWggdJg2C-ouKSbLT2jtAykoDbyYXQ1TQ2Mfiskjcjo8-PrhMI3tFtISYNsyVYOMFa4YYGBSFr7iciCZY5nSoha6Zo5LZ4XIFIcjnLYDxxT494x7LfNcCMcek17TNv4poUp4VTtABrB78oprVThsLSNLlqHZq4S87X6zma1ZNUyIhjNl1kIxIBQThGKuErKPktjMREbs8KCdT0w0MANQ0DtZCc19zT2zSoL7zyvheS1kWRcJ2e3kaKKZLsy1UiXk9WYYDAyjJrbx7SrM4VKBJmcJebIW-2YlCNYE4zIhckshtpa6PdJMvwcSbw3YVmbw5rtOda6X9e9f8ez_X_GK3AajMEefRl-ekzsFKjYSzea7pLecr_wLwE9L9zIaxi-VNhhH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMYPred-FRL+is+a+novel+approach+for+accurate+prediction+of+amyloid+proteins+by+using+feature+representation+learning&rft.jtitle=Scientific+reports&rft.au=Charoenkwan%2C+Phasit&rft.au=Ahmed%2C+Saeed&rft.au=Nantasenamat%2C+Chanin&rft.au=Quinn%2C+Julian+M+W&rft.date=2022-05-11&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=7697&rft_id=info:doi/10.1038%2Fs41598-022-11897-z&rft_id=info%3Apmid%2F35546347&rft.externalDocID=35546347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon