AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning
Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyl...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; p. 7697 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.05.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal
m
number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at
http://pmlabstack.pythonanywhere.com/AMYPred-FRL
. It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins. |
---|---|
AbstractList | Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal
m
number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at
http://pmlabstack.pythonanywhere.com/AMYPred-FRL
. It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins. Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal m number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at http://pmlabstack.pythonanywhere.com/AMYPred-FRL . It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins. Abstract Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal m number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at http://pmlabstack.pythonanywhere.com/AMYPred-FRL . It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins. |
ArticleNumber | 7697 |
Author | Shoombuatong, Watshara Moni, Mohammad Ali Ahmed, Saeed Lio’, Pietro Nantasenamat, Chanin Charoenkwan, Phasit Quinn, Julian M. W. |
Author_xml | – sequence: 1 givenname: Phasit surname: Charoenkwan fullname: Charoenkwan, Phasit organization: Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University – sequence: 2 givenname: Saeed surname: Ahmed fullname: Ahmed, Saeed organization: Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University – sequence: 3 givenname: Chanin surname: Nantasenamat fullname: Nantasenamat, Chanin organization: Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University – sequence: 4 givenname: Julian M. W. surname: Quinn fullname: Quinn, Julian M. W. organization: Bone Biology Division, Garvan Institute of Medical Research – sequence: 5 givenname: Mohammad Ali surname: Moni fullname: Moni, Mohammad Ali organization: Artificial Intelligence and Digital Health Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland – sequence: 6 givenname: Pietro surname: Lio’ fullname: Lio’, Pietro organization: Department of Computer Science and Technology, University of Cambridge – sequence: 7 givenname: Watshara surname: Shoombuatong fullname: Shoombuatong, Watshara email: watshara.sho@mahidol.ac.th organization: Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35546347$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kjtvFDEUhUcoiDzIH6BAlmhoBvx-NEhRREikRSAEBZXl8dzZeDVrL_ZMpM2vx9kNIaHAja17v3Psa53j5iCmCE3ziuB3BDP9vnAijG4xpS0h2qj29llzRDEXLWWUHjw6HzanpaxwXYIaTsyL5pAJwSXj6qiZzj7__Jqhby--LVAoyKGYbmBEbrPJyflrNKSMnPdzdhOgTSWDn0KKKA3IrbdjCn2tpglCLKjbormEuEQDuGnOgDJURYE4uZ1mBJdj7b9sng9uLHB6v580Py4-fj-_bBdfPl2dny1aLzieWi0wox0VTHKhKPRcCcU6hrWRgzQD67jqnJRYc4K5caJjmvI6NhhFiJQdO2mu9r59ciu7yWHt8tYmF-yukPLSujwFP4IlgkOnemk4DByY08oDkF4CH6TyA61eH_Zem7lbQ-_rUNmNT0yfdmK4tst0Yw02QmFVDd7eG-T0a4Yy2XUoHsbRRUhzsVRKrrQ0FFf0zT_oKs051q-6oyjRmHJdKbqnfE6lZBgeHkOwvcuI3WfE1ozYXUbsbRW9fjzGg-RPIirA9kCprbiE_Pfu_9j-Btf0yZg |
CitedBy_id | crossref_primary_10_1080_07391102_2024_2329777 crossref_primary_10_3390_info14120636 crossref_primary_10_1016_j_ab_2024_115546 crossref_primary_10_1038_s41598_024_57457_5 crossref_primary_10_1080_07391102_2024_2329298 crossref_primary_10_1016_j_ijbiomac_2024_130128 crossref_primary_10_1021_acs_jcim_3c02035 crossref_primary_10_1080_07391102_2024_2318482 crossref_primary_10_1109_ACCESS_2023_3321100 crossref_primary_10_1038_s41598_024_55160_z crossref_primary_10_1016_j_asoc_2023_111100 crossref_primary_10_1002_slct_202204629 crossref_primary_10_1038_s41598_023_50393_w crossref_primary_10_1080_07391102_2024_2321510 crossref_primary_10_1007_s11259_023_10210_1 crossref_primary_10_1016_j_cvdhj_2023_12_001 crossref_primary_10_1109_ACCESS_2023_3268523 crossref_primary_10_1073_pnas_2321512121 crossref_primary_10_1186_s12859_023_05463_1 crossref_primary_10_1016_j_chemolab_2022_104623 crossref_primary_10_1080_13506129_2023_2226299 crossref_primary_10_1371_journal_pone_0290538 crossref_primary_10_1186_s12859_023_05421_x crossref_primary_10_3390_a17060247 crossref_primary_10_1093_nar_gkae382 crossref_primary_10_1007_s12539_024_00628_9 crossref_primary_10_1016_j_compbiomed_2023_107238 crossref_primary_10_1186_s13321_023_00721_z crossref_primary_10_1016_j_compbiolchem_2023_107853 crossref_primary_10_1016_j_ijbiomac_2023_124228 crossref_primary_10_1093_bioadv_vbac087 |
Cites_doi | 10.1080/13506129.2020.1715363 10.1093/bib/bbab240 10.1016/j.chemolab.2020.104175 10.1110/ps.051471205 10.1093/protein/9.1.27 10.1093/bioinformatics/btu167 10.1093/bioinformatics/bty943 10.1073/pnas.92.19.8700 10.1016/j.jtbi.2010.12.024 10.1093/bioinformatics/btaa160 10.3390/cells9020353 10.1093/nar/gkl305 10.1073/pnas.252340199 10.1002/psc.3199 10.1021/acs.jproteome.0c00590 10.1371/journal.pone.0017331 10.1093/bioinformatics/btz912 10.1186/1471-2105-8-65 10.1007/s10822-020-00323-z 10.3390/ijms22168958 10.1093/bib/bby124 10.1016/j.chemolab.2014.12.011 10.1007/s00726-006-0439-2 10.1093/bioinformatics/btz246 10.1002/med.21658 10.1146/annurev.biochem.75.101304.123901 10.1093/bioinformatics/bty140 10.1038/nmeth.1432 10.1155/2020/8845133 10.1093/bib/bbz088 10.1182/blood-2009-07-230722 10.3390/ijms19072071 10.1074/jbc.M401932200 10.1093/bioinformatics/btv042 10.1089/omi.2015.0095 10.1093/nar/gku399 10.3390/ijms20225743 10.4161/pri.2.3.7488 10.1038/s41598-021-03293-w 10.1016/j.ygeno.2020.09.065 10.1093/bioinformatics/bty827 10.1093/bib/bbab172 10.1016/j.cell.2012.02.022 10.1186/1471-2105-15-54 10.1093/bib/bbaa049 10.1038/nbt1012 10.3390/ijms222313124 10.1038/s41598-021-82513-9 10.1073/pnas.96.20.11211 10.1006/jsbi.2000.4221 10.1073/pnas.96.7.3590 10.1016/j.jmb.2020.11.006 10.1121/1.4865840 10.1007/978-3-319-56850-8_1 10.1093/bioinformatics/bty451 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-11897-z |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database (ProQuest) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 7697 |
ExternalDocumentID | oai_doaj_org_article_154eb7d694ef4e3a87cee1d6e4f67cf2 10_1038_s41598_022_11897_z 35546347 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Information Technology Service Center (ITSC) of Chiang Mai University – fundername: College of Arts, Media and Technology, Chiang Mai University – fundername: Mahidol University – fundername: Chiang Mai University – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM AFPKN ACUHS |
ID | FETCH-LOGICAL-c540t-85032b25364572ed47573b30896f69f3b47ba660841049a5b3824204e971166b3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Dec 17 15:37:31 EST 2024 Tue Sep 17 21:25:52 EDT 2024 Wed Dec 04 13:35:19 EST 2024 Sat Nov 09 13:08:35 EST 2024 Fri Dec 06 04:24:03 EST 2024 Wed Oct 16 00:41:20 EDT 2024 Fri Oct 11 20:53:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-85032b25364572ed47573b30896f69f3b47ba660841049a5b3824204e971166b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095707/ |
PMID | 35546347 |
PQID | 2662180248 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_154eb7d694ef4e3a87cee1d6e4f67cf2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9095707 proquest_miscellaneous_2664786920 proquest_journals_2662180248 crossref_primary_10_1038_s41598_022_11897_z pubmed_primary_35546347 springer_journals_10_1038_s41598_022_11897_z |
PublicationCentury | 2000 |
PublicationDate | 2022-05-11 |
PublicationDateYYYYMMDD | 2022-05-11 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – sequence: 0 name: Nature Portfolio – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Azadpour, McKay, Smith (CR49) 2014; 135 Wei, Zhou, Su, Zou (CR44) 2019; 35 Li, Deng, Ding, Chen, Lin (CR26) 2015; 141 Charoenkwan, Kanthawong, Schaduangrat, Yana, Shoombuatong (CR29) 2020; 9 Charoenkwan, Kanthawong, Nantasenamat, Hasan, Shoombuatong (CR28) 2020; 19 Xiao, Cao, Zhu, Xu (CR38) 2015; 31 Rao, Zhou, Zhang, Su, Wei (CR43) 2020; 21 Conchillo-Solé, de Groot, Avilés, Vendrell, Daura, Ventura (CR9) 2007; 8 Thangakani, Kumar, Nagarajan, Velmurugan, Gromiha (CR15) 2014; 30 Tomii, Kanehisa (CR57) 1996; 9 Prabakaran, Rawat, Kumar, Gromiha (CR19) 2021; 22 Li (CR54) 2021; 22 Vrana, Gamez, Madden, Theis, Bergen, Dogan (CR4) 2009; 114 Dubchak, Muchnik, Holbrook, Kim (CR36) 1995; 92 Gasior, Kotulska (CR17) 2014; 15 Tartaglia, Cavalli, Pellarin, Caflisch (CR14) 2005; 14 Charoenkwan, Nantasenamat, Hasan, Moni, Lio, Shoombuatong (CR32) 2021; 22 Niu, Li, Wang, Han (CR20) 2018; 19 Chiti (CR6) 1999; 96 Charoenkwan, Chotpatiwetchkul, Lee, Nantasenamat, Shoombuatong (CR31) 2021; 11 Orlando, Silva, Macedo-Ribeiro, Raimondi, Vranken (CR10) 2020; 36 Wei, Zhou, Chen, Song, Su (CR42) 2018; 34 Eisenberg, Jucker (CR3) 2012; 148 Lopez De La Paz (CR8) 2002; 99 Maurer-Stroh (CR12) 2010; 7 Li, Lin, Han, Jiang, Chen, Chen (CR35) 2006; 34 Su, Hu, Zou, Manavalan, Wei (CR50) 2020; 21 Dao (CR24) 2019; 35 Chiti, Dobson (CR2) 2006; 75 Qiang, Zhou, Ye, Du, Su, Wei (CR41) 2020; 21 Schaduangrat, Nantasenamat, Prachayasittikul, Shoombuatong (CR48) 2019; 20 Fernandez-Escamilla, Rousseau, Schymkowitz, Serrano (CR13) 2004; 22 Walsh, Seno, Tosatto, Trovato (CR18) 2014; 42 Charoenkwan, Nantasenamat, Hasan, Shoombuatong (CR34) 2020; 34 Prabakaran, Rawat, Kumar, Gromiha (CR16) 2021; 433 Hasan, Schaduangrat, Basith, Lee, Shoombuatong, Manavalan (CR45) 2020; 36 Rambaran, Serpell (CR1) 2008; 2 Charoenkwan, Chiangjong, Nantasenamat, Hasan, Manavalan, Shoombuatong (CR46) 2021; 22 Feng (CR25) 2019; 35 CR53 CR52 Wang (CR59) 2020; 207 Chen (CR37) 2018; 34 Chen (CR40) 2018; 1 Saravanan, Gautham (CR58) 2015; 19 Charoenkwan, Chiangjong, Lee, Nantasenamat, Hasan, Shoombuatong (CR27) 2021; 11 Bhasin, Raghava (CR56) 2004; 279 Palato (CR11) 2019; 25 Basith, Manavalan, Hwan Shin, Lee (CR51) 2020; 40 Lee, Chen, Hung, Ou (CR60) 2011; 6 Chou (CR30) 2011; 273 Sipe, Cohen (CR5) 2000; 130 Pedregosa (CR47) 2011; 12 Rawat, Prabakaran, Sakthivel, Mary Thangakani, Kumar, Gromiha (CR55) 2020; 27 CR23 West, Wang, Patterson, Mancias, Beasley, Hecht (CR7) 1999; 96 Shen, Chou (CR39) 2007; 32 Charoenkwan, Nantasenamat, Hasan, Moni, Manavalan, Shoombuatong (CR33) 2021; 22 Charoenkwan, Kanthawong, Nantasenamat, Hasan, Shoombuatong (CR21) 2021; 113 Li, Zhang, Teng, Liu (CR22) 2020; 2020 R Prabakaran (11897_CR16) 2021; 433 F Li (11897_CR54) 2021; 22 P Rawat (11897_CR55) 2020; 27 JA Vrana (11897_CR4) 2009; 114 L Wei (11897_CR44) 2019; 35 P Charoenkwan (11897_CR46) 2021; 22 F Chiti (11897_CR2) 2006; 75 H-B Shen (11897_CR39) 2007; 32 G Orlando (11897_CR10) 2020; 36 RN Rambaran (11897_CR1) 2008; 2 P Charoenkwan (11897_CR31) 2021; 11 P Gasior (11897_CR17) 2014; 15 P Charoenkwan (11897_CR32) 2021; 22 Z-R Li (11897_CR35) 2006; 34 K Tomii (11897_CR57) 1996; 9 V Saravanan (11897_CR58) 2015; 19 F-Y Dao (11897_CR24) 2019; 35 P Charoenkwan (11897_CR27) 2021; 11 M Lopez De La Paz (11897_CR8) 2002; 99 P Charoenkwan (11897_CR28) 2020; 19 Z Chen (11897_CR40) 2018; 1 AM Thangakani (11897_CR15) 2014; 30 11897_CR23 GG Tartaglia (11897_CR14) 2005; 14 F Chiti (11897_CR6) 1999; 96 T-Y Lee (11897_CR60) 2011; 6 W-C Li (11897_CR26) 2015; 141 P Charoenkwan (11897_CR33) 2021; 22 MM Hasan (11897_CR45) 2020; 36 I Dubchak (11897_CR36) 1995; 92 R Prabakaran (11897_CR19) 2021; 22 M Niu (11897_CR20) 2018; 19 S Basith (11897_CR51) 2020; 40 O Conchillo-Solé (11897_CR9) 2007; 8 LM Palato (11897_CR11) 2019; 25 I Walsh (11897_CR18) 2014; 42 Z Chen (11897_CR37) 2018; 34 11897_CR52 Y Li (11897_CR22) 2020; 2020 M Azadpour (11897_CR49) 2014; 135 11897_CR53 N Xiao (11897_CR38) 2015; 31 R Su (11897_CR50) 2020; 21 JD Sipe (11897_CR5) 2000; 130 P Charoenkwan (11897_CR29) 2020; 9 B Rao (11897_CR43) 2020; 21 A-M Fernandez-Escamilla (11897_CR13) 2004; 22 X Qiang (11897_CR41) 2020; 21 M Wang (11897_CR59) 2020; 207 F Pedregosa (11897_CR47) 2011; 12 C-Q Feng (11897_CR25) 2019; 35 L Wei (11897_CR42) 2018; 34 M Bhasin (11897_CR56) 2004; 279 K-C Chou (11897_CR30) 2011; 273 S Maurer-Stroh (11897_CR12) 2010; 7 P Charoenkwan (11897_CR34) 2020; 34 D Eisenberg (11897_CR3) 2012; 148 P Charoenkwan (11897_CR21) 2021; 113 N Schaduangrat (11897_CR48) 2019; 20 MW West (11897_CR7) 1999; 96 |
References_xml | – volume: 27 start-page: 128 issue: 2 year: 2020 end-page: 133 ident: CR55 article-title: CPAD 2.0: A repository of curated experimental data on aggregating proteins and peptides publication-title: Amyloid doi: 10.1080/13506129.2020.1715363 contributor: fullname: Gromiha – volume: 22 issue: 6 year: 2021 ident: CR19 article-title: Evaluation of in silico tools for the prediction of protein and peptide aggregation on diverse datasets publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab240 contributor: fullname: Gromiha – volume: 207 year: 2020 ident: CR59 article-title: DeepMal: Accurate prediction of protein malonylation sites by deep neural networks publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104175 contributor: fullname: Wang – volume: 14 start-page: 2723 issue: 10 year: 2005 end-page: 2734 ident: CR14 article-title: Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences publication-title: Protein Sci. doi: 10.1110/ps.051471205 contributor: fullname: Caflisch – volume: 9 start-page: 27 issue: 1 year: 1996 end-page: 36 ident: CR57 article-title: Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/9.1.27 contributor: fullname: Kanehisa – volume: 30 start-page: 1983 issue: 14 year: 2014 end-page: 1990 ident: CR15 article-title: GAP: Towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu167 contributor: fullname: Gromiha – volume: 35 start-page: 2075 issue: 12 year: 2019 end-page: 2083 ident: CR24 article-title: Identify origin of replication in using two-step feature selection technique publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty943 contributor: fullname: Dao – volume: 92 start-page: 8700 issue: 19 year: 1995 end-page: 8704 ident: CR36 article-title: Prediction of protein folding class using global description of amino acid sequence publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.92.19.8700 contributor: fullname: Kim – volume: 273 start-page: 236 issue: 1 year: 2011 end-page: 247 ident: CR30 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.12.024 contributor: fullname: Chou – volume: 36 start-page: 3350 issue: 11 year: 2020 end-page: 3356 ident: CR45 article-title: HLPpred-Fuse: Improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa160 contributor: fullname: Manavalan – volume: 9 start-page: 353 issue: 2 year: 2020 ident: CR29 article-title: PVPred-SCM: Improved prediction and analysis of phage virion proteins using a scoring card method publication-title: Cells doi: 10.3390/cells9020353 contributor: fullname: Shoombuatong – volume: 34 start-page: W32 issue: suppl 2 year: 2006 end-page: W37 ident: CR35 article-title: PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl305 contributor: fullname: Chen – volume: 99 start-page: 16052 issue: 25 year: 2002 end-page: 16057 ident: CR8 article-title: De novo designed peptide-based amyloid fibrils publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.252340199 contributor: fullname: Lopez De La Paz – volume: 25 issue: 8 year: 2019 ident: CR11 article-title: Amyloidogenicity of naturally occurring full-length animal IAPP variants publication-title: J. Pept. Sci. doi: 10.1002/psc.3199 contributor: fullname: Palato – volume: 19 start-page: 4125 issue: 10 year: 2020 end-page: 4136 ident: CR28 article-title: iDPPIV-SCM: A sequence-based predictor for identifying and analyzing dipeptidyl peptidase IV (DPP-IV) inhibitory peptides using a scoring card method publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.0c00590 contributor: fullname: Shoombuatong – volume: 6 issue: 3 year: 2011 ident: CR60 article-title: Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites publication-title: PLoS One doi: 10.1371/journal.pone.0017331 contributor: fullname: Ou – volume: 36 start-page: 2076 issue: 7 year: 2020 end-page: 2081 ident: CR10 article-title: Accurate prediction of protein beta-aggregation with generalized statistical potentials publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz912 contributor: fullname: Vranken – volume: 8 start-page: 1 issue: 1 year: 2007 end-page: 17 ident: CR9 article-title: AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides publication-title: BMC Bioinform. doi: 10.1186/1471-2105-8-65 contributor: fullname: Ventura – volume: 34 start-page: 1105 issue: 10 year: 2020 end-page: 1116 ident: CR34 article-title: Meta-iPVP: A sequence-based meta-predictor for improving the prediction of phage virion proteins using effective feature representation publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-020-00323-z contributor: fullname: Shoombuatong – volume: 22 start-page: 8958 issue: 16 year: 2021 ident: CR32 article-title: iBitter-fuse: A novel sequence-based bitter peptide predictor by fusing multi-view features publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22168958 contributor: fullname: Shoombuatong – volume: 21 start-page: 408 issue: 2 year: 2020 end-page: 420 ident: CR50 article-title: Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools publication-title: Brief. Bioinform. doi: 10.1093/bib/bby124 contributor: fullname: Wei – volume: 141 start-page: 100 year: 2015 end-page: 106 ident: CR26 article-title: iORI-PseKNC: A predictor for identifying origin of replication with pseudo k-tuple nucleotide composition publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.12.011 contributor: fullname: Lin – volume: 32 start-page: 483 issue: 4 year: 2007 end-page: 488 ident: CR39 article-title: Using ensemble classifier to identify membrane protein types publication-title: Amino Acids doi: 10.1007/s00726-006-0439-2 contributor: fullname: Chou – volume: 35 start-page: 4272 issue: 21 year: 2019 end-page: 4280 ident: CR44 article-title: PEPred-Suite: Improved and robust prediction of therapeutic peptides using adaptive feature representation learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz246 contributor: fullname: Zou – volume: 40 start-page: 1276 issue: 4 year: 2020 end-page: 1314 ident: CR51 article-title: Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening publication-title: Med. Res. Rev. doi: 10.1002/med.21658 contributor: fullname: Lee – volume: 75 start-page: 333 year: 2006 end-page: 366 ident: CR2 article-title: Protein misfolding, functional amyloid, and human disease publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.75.101304.123901 contributor: fullname: Dobson – volume: 34 start-page: 2499 issue: 14 year: 2018 end-page: 2502 ident: CR37 article-title: iFeature: A python package and web server for features extraction and selection from protein and peptide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty140 contributor: fullname: Chen – volume: 7 start-page: 237 issue: 3 year: 2010 end-page: 242 ident: CR12 article-title: Exploring the sequence determinants of amyloid structure using position-specific scoring matrices publication-title: Nat. Methods doi: 10.1038/nmeth.1432 contributor: fullname: Maurer-Stroh – volume: 2020 year: 2020 ident: CR22 article-title: Predamyl-mlp: Prediction of amyloid proteins using multilayer perceptron publication-title: Comput. Math. Methods Med. doi: 10.1155/2020/8845133 contributor: fullname: Liu – volume: 21 start-page: 1846 issue: 5 year: 2020 end-page: 1855 ident: CR43 article-title: ACPred-Fuse: Fusing multi-view information improves the prediction of anticancer peptides publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz088 contributor: fullname: Wei – volume: 114 start-page: 4957 issue: 24 year: 2009 end-page: 4959 ident: CR4 article-title: Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens publication-title: Blood doi: 10.1182/blood-2009-07-230722 contributor: fullname: Dogan – volume: 19 start-page: 2071 issue: 7 year: 2018 ident: CR20 article-title: RFAmyloid: A web server for predicting amyloid proteins publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19072071 contributor: fullname: Han – volume: 279 start-page: 23262 issue: 22 year: 2004 end-page: 23266 ident: CR56 article-title: Classification of nuclear receptors based on amino acid composition and dipeptide composition publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401932200 contributor: fullname: Raghava – volume: 31 start-page: 1857 issue: 11 year: 2015 end-page: 1859 ident: CR38 article-title: protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv042 contributor: fullname: Xu – volume: 19 start-page: 648 issue: 10 year: 2015 end-page: 658 ident: CR58 article-title: Harnessing computational biology for exact linear B-cell epitope prediction: A novel amino acid composition-based feature descriptor publication-title: OMICS doi: 10.1089/omi.2015.0095 contributor: fullname: Gautham – volume: 42 start-page: W301 issue: W1 year: 2014 end-page: W307 ident: CR18 article-title: PASTA 2.0: An improved server for protein aggregation prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku399 contributor: fullname: Trovato – volume: 21 start-page: 11 issue: 1 year: 2020 end-page: 23 ident: CR41 article-title: CPPred-FL: A sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning publication-title: Brief. Bioinform. contributor: fullname: Wei – ident: CR53 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR47 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – volume: 20 start-page: 5743 issue: 22 year: 2019 ident: CR48 article-title: Meta-iAVP: A sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20225743 contributor: fullname: Shoombuatong – volume: 2 start-page: 112 issue: 3 year: 2008 end-page: 117 ident: CR1 article-title: Amyloid fibrils: Abnormal protein assembly publication-title: Prion doi: 10.4161/pri.2.3.7488 contributor: fullname: Serpell – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 15 ident: CR31 article-title: A novel sequence-based predictor for identifying and characterizing thermophilic proteins using estimated propensity scores of dipeptides publication-title: Sci. Rep. doi: 10.1038/s41598-021-03293-w contributor: fullname: Shoombuatong – volume: 113 start-page: 689 issue: 1 year: 2021 end-page: 698 ident: CR21 article-title: iAMY-SCM: Improved prediction and analysis of amyloid proteins using a scoring card method with propensity scores of dipeptides publication-title: Genomics doi: 10.1016/j.ygeno.2020.09.065 contributor: fullname: Shoombuatong – volume: 35 start-page: 1469 issue: 9 year: 2019 end-page: 1477 ident: CR25 article-title: iTerm-PseKNC: A sequence-based tool for predicting bacterial transcriptional terminators publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty827 contributor: fullname: Feng – volume: 22 start-page: 172 issue: 6 year: 2021 ident: CR46 article-title: StackIL6: A stacking ensemble model for improving the prediction of IL-6 inducing peptides publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab172 contributor: fullname: Shoombuatong – ident: CR23 – volume: 148 start-page: 1188 issue: 6 year: 2012 end-page: 1203 ident: CR3 article-title: The amyloid state of proteins in human diseases publication-title: Cell doi: 10.1016/j.cell.2012.02.022 contributor: fullname: Jucker – volume: 15 start-page: 1 issue: 1 year: 2014 end-page: 8 ident: CR17 article-title: FISH Amyloid—A new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of aminoacids publication-title: BMC Bioinform. doi: 10.1186/1471-2105-15-54 contributor: fullname: Kotulska – volume: 22 start-page: 2126 issue: 2 year: 2021 end-page: 2140 ident: CR54 article-title: Computational prediction and interpretation of both general and specific types of promoters in by exploiting a stacked ensemble-learning framework publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa049 contributor: fullname: Li – volume: 22 start-page: 1302 issue: 10 year: 2004 end-page: 1306 ident: CR13 article-title: Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins publication-title: Nat. Biotechnol. doi: 10.1038/nbt1012 contributor: fullname: Serrano – volume: 22 start-page: 13124 issue: 23 year: 2021 ident: CR33 article-title: UMPred-FRL: A new approach for accurate prediction of umami peptides using feature representation learning publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222313124 contributor: fullname: Shoombuatong – ident: CR52 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 13 ident: CR27 article-title: Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method publication-title: Sci. Rep. doi: 10.1038/s41598-021-82513-9 contributor: fullname: Shoombuatong – volume: 96 start-page: 11211 issue: 20 year: 1999 end-page: 11216 ident: CR7 article-title: De novo amyloid proteins from designed combinatorial libraries publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.20.11211 contributor: fullname: Hecht – volume: 34 start-page: 4007 issue: 23 year: 2018 end-page: 4016 ident: CR42 article-title: ACPred-FL: A sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides publication-title: Bioinformatics contributor: fullname: Su – volume: 130 start-page: 88 issue: 2–3 year: 2000 end-page: 98 ident: CR5 article-title: Review: History of the amyloid fibril publication-title: J. Struct. Biol. doi: 10.1006/jsbi.2000.4221 contributor: fullname: Cohen – volume: 96 start-page: 3590 issue: 7 year: 1999 end-page: 3594 ident: CR6 article-title: Designing conditions for in vitro formation of amyloid protofilaments and fibrils publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.7.3590 contributor: fullname: Chiti – volume: 433 issue: 11 year: 2021 ident: CR16 article-title: ANuPP: A versatile tool to predict aggregation nucleating regions in peptides and proteins publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.11.006 contributor: fullname: Gromiha – volume: 1 start-page: 4 year: 2018 ident: CR40 article-title: iFeature: A python package and web server for features extraction and selection from protein and peptide sequences publication-title: Bioinformatics contributor: fullname: Chen – volume: 135 start-page: EL140 issue: 3 year: 2014 end-page: EL146 ident: CR49 article-title: Estimating confidence intervals for information transfer analysis of confusion matrices publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4865840 contributor: fullname: Smith – volume: 20 start-page: 5743 issue: 22 year: 2019 ident: 11897_CR48 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20225743 contributor: fullname: N Schaduangrat – volume: 148 start-page: 1188 issue: 6 year: 2012 ident: 11897_CR3 publication-title: Cell doi: 10.1016/j.cell.2012.02.022 contributor: fullname: D Eisenberg – volume: 22 start-page: 172 issue: 6 year: 2021 ident: 11897_CR46 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab172 contributor: fullname: P Charoenkwan – volume: 21 start-page: 1846 issue: 5 year: 2020 ident: 11897_CR43 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz088 contributor: fullname: B Rao – volume: 35 start-page: 2075 issue: 12 year: 2019 ident: 11897_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty943 contributor: fullname: F-Y Dao – volume: 96 start-page: 3590 issue: 7 year: 1999 ident: 11897_CR6 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.7.3590 contributor: fullname: F Chiti – volume: 21 start-page: 408 issue: 2 year: 2020 ident: 11897_CR50 publication-title: Brief. Bioinform. doi: 10.1093/bib/bby124 contributor: fullname: R Su – volume: 6 issue: 3 year: 2011 ident: 11897_CR60 publication-title: PLoS One doi: 10.1371/journal.pone.0017331 contributor: fullname: T-Y Lee – volume: 32 start-page: 483 issue: 4 year: 2007 ident: 11897_CR39 publication-title: Amino Acids doi: 10.1007/s00726-006-0439-2 contributor: fullname: H-B Shen – volume: 7 start-page: 237 issue: 3 year: 2010 ident: 11897_CR12 publication-title: Nat. Methods doi: 10.1038/nmeth.1432 contributor: fullname: S Maurer-Stroh – volume: 22 issue: 6 year: 2021 ident: 11897_CR19 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab240 contributor: fullname: R Prabakaran – volume: 14 start-page: 2723 issue: 10 year: 2005 ident: 11897_CR14 publication-title: Protein Sci. doi: 10.1110/ps.051471205 contributor: fullname: GG Tartaglia – volume: 273 start-page: 236 issue: 1 year: 2011 ident: 11897_CR30 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.12.024 contributor: fullname: K-C Chou – volume: 92 start-page: 8700 issue: 19 year: 1995 ident: 11897_CR36 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.92.19.8700 contributor: fullname: I Dubchak – volume: 35 start-page: 4272 issue: 21 year: 2019 ident: 11897_CR44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz246 contributor: fullname: L Wei – volume: 22 start-page: 8958 issue: 16 year: 2021 ident: 11897_CR32 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22168958 contributor: fullname: P Charoenkwan – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 11897_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-021-82513-9 contributor: fullname: P Charoenkwan – volume: 114 start-page: 4957 issue: 24 year: 2009 ident: 11897_CR4 publication-title: Blood doi: 10.1182/blood-2009-07-230722 contributor: fullname: JA Vrana – volume: 34 start-page: W32 issue: suppl 2 year: 2006 ident: 11897_CR35 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl305 contributor: fullname: Z-R Li – volume: 433 issue: 11 year: 2021 ident: 11897_CR16 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.11.006 contributor: fullname: R Prabakaran – volume: 22 start-page: 2126 issue: 2 year: 2021 ident: 11897_CR54 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa049 contributor: fullname: F Li – volume: 25 issue: 8 year: 2019 ident: 11897_CR11 publication-title: J. Pept. Sci. doi: 10.1002/psc.3199 contributor: fullname: LM Palato – volume: 15 start-page: 1 issue: 1 year: 2014 ident: 11897_CR17 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-15-54 contributor: fullname: P Gasior – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 11897_CR31 publication-title: Sci. Rep. doi: 10.1038/s41598-021-03293-w contributor: fullname: P Charoenkwan – volume: 36 start-page: 2076 issue: 7 year: 2020 ident: 11897_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz912 contributor: fullname: G Orlando – volume: 9 start-page: 353 issue: 2 year: 2020 ident: 11897_CR29 publication-title: Cells doi: 10.3390/cells9020353 contributor: fullname: P Charoenkwan – volume: 2 start-page: 112 issue: 3 year: 2008 ident: 11897_CR1 publication-title: Prion doi: 10.4161/pri.2.3.7488 contributor: fullname: RN Rambaran – ident: 11897_CR52 doi: 10.1007/978-3-319-56850-8_1 – volume: 279 start-page: 23262 issue: 22 year: 2004 ident: 11897_CR56 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401932200 contributor: fullname: M Bhasin – volume: 34 start-page: 2499 issue: 14 year: 2018 ident: 11897_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty140 contributor: fullname: Z Chen – ident: 11897_CR53 – volume: 36 start-page: 3350 issue: 11 year: 2020 ident: 11897_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa160 contributor: fullname: MM Hasan – volume: 40 start-page: 1276 issue: 4 year: 2020 ident: 11897_CR51 publication-title: Med. Res. Rev. doi: 10.1002/med.21658 contributor: fullname: S Basith – volume: 22 start-page: 13124 issue: 23 year: 2021 ident: 11897_CR33 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222313124 contributor: fullname: P Charoenkwan – volume: 141 start-page: 100 year: 2015 ident: 11897_CR26 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.12.011 contributor: fullname: W-C Li – volume: 42 start-page: W301 issue: W1 year: 2014 ident: 11897_CR18 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku399 contributor: fullname: I Walsh – volume: 99 start-page: 16052 issue: 25 year: 2002 ident: 11897_CR8 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.252340199 contributor: fullname: M Lopez De La Paz – volume: 9 start-page: 27 issue: 1 year: 1996 ident: 11897_CR57 publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/9.1.27 contributor: fullname: K Tomii – volume: 207 year: 2020 ident: 11897_CR59 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104175 contributor: fullname: M Wang – volume: 34 start-page: 1105 issue: 10 year: 2020 ident: 11897_CR34 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-020-00323-z contributor: fullname: P Charoenkwan – volume: 19 start-page: 4125 issue: 10 year: 2020 ident: 11897_CR28 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.0c00590 contributor: fullname: P Charoenkwan – volume: 27 start-page: 128 issue: 2 year: 2020 ident: 11897_CR55 publication-title: Amyloid doi: 10.1080/13506129.2020.1715363 contributor: fullname: P Rawat – volume: 1 start-page: 4 year: 2018 ident: 11897_CR40 publication-title: Bioinformatics contributor: fullname: Z Chen – volume: 75 start-page: 333 year: 2006 ident: 11897_CR2 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.75.101304.123901 contributor: fullname: F Chiti – volume: 135 start-page: EL140 issue: 3 year: 2014 ident: 11897_CR49 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4865840 contributor: fullname: M Azadpour – volume: 35 start-page: 1469 issue: 9 year: 2019 ident: 11897_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty827 contributor: fullname: C-Q Feng – volume: 12 start-page: 2825 year: 2011 ident: 11897_CR47 publication-title: J. Mach. Learn. Res. contributor: fullname: F Pedregosa – ident: 11897_CR23 – volume: 2020 year: 2020 ident: 11897_CR22 publication-title: Comput. Math. Methods Med. doi: 10.1155/2020/8845133 contributor: fullname: Y Li – volume: 21 start-page: 11 issue: 1 year: 2020 ident: 11897_CR41 publication-title: Brief. Bioinform. contributor: fullname: X Qiang – volume: 19 start-page: 648 issue: 10 year: 2015 ident: 11897_CR58 publication-title: OMICS doi: 10.1089/omi.2015.0095 contributor: fullname: V Saravanan – volume: 130 start-page: 88 issue: 2–3 year: 2000 ident: 11897_CR5 publication-title: J. Struct. Biol. doi: 10.1006/jsbi.2000.4221 contributor: fullname: JD Sipe – volume: 30 start-page: 1983 issue: 14 year: 2014 ident: 11897_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu167 contributor: fullname: AM Thangakani – volume: 113 start-page: 689 issue: 1 year: 2021 ident: 11897_CR21 publication-title: Genomics doi: 10.1016/j.ygeno.2020.09.065 contributor: fullname: P Charoenkwan – volume: 19 start-page: 2071 issue: 7 year: 2018 ident: 11897_CR20 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19072071 contributor: fullname: M Niu – volume: 22 start-page: 1302 issue: 10 year: 2004 ident: 11897_CR13 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1012 contributor: fullname: A-M Fernandez-Escamilla – volume: 8 start-page: 1 issue: 1 year: 2007 ident: 11897_CR9 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-8-65 contributor: fullname: O Conchillo-Solé – volume: 31 start-page: 1857 issue: 11 year: 2015 ident: 11897_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv042 contributor: fullname: N Xiao – volume: 34 start-page: 4007 issue: 23 year: 2018 ident: 11897_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty451 contributor: fullname: L Wei – volume: 96 start-page: 11211 issue: 20 year: 1999 ident: 11897_CR7 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.20.11211 contributor: fullname: MW West |
SSID | ssj0000529419 |
Score | 2.5473704 |
Snippet | Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently... Abstract Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 7697 |
SubjectTerms | 631/114 631/114/1305 631/114/2397 Aggregates Algorithms Alzheimer's disease Amyloidogenic Proteins Bioinformatics Computational Biology - methods Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 Humanities and Social Sciences Humans Machine Learning Movement disorders multidisciplinary Neurodegenerative diseases Parkinson's disease Proteins Science Science (multidisciplinary) Support Vector Machine |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SEHwR765WieCbLs0m2Vweq3goYkXEQn0KyW5SD-ieci5C--udSXaPPV7wxddNFoaZSeYLM_MNIc8tQFrWRXBeZXkto5G18Vhi5b210mqfNPYOH79XRyfy7Wl7emXUF9aEFXrgorgDCPEx6F5ZGZOMwhsN13rTqyiT0l0qty_jVx5ThdWbW9nYsUuGCXOwgkiF3WTw9gJMbXV9uROJMmH_n1Dm78WSv2RMcyCa3SI3RwRJD4vkt8m1ONwh18tMyYu7ZH14_PnDMvb17OM7Ol9RT4fF9_iVTuThFFAq9V23QY4Ier7ERA0ahy4S9d_g-T7vaSZvmA8rGi4oFsaf0RQzASjNHJhTv9JAx5kTZ_fIyezNp9dH9Thaoe4Aoq1r0zLBA28xCal57KVutQiCGauSskkEqYNXihkJzzXr2yAMxHImo9VNo1QQ98nesBjiQ0KNiiYFQAFwU8peWsMDjpHRnWB4xE1FXkxqdueFQcPlzLcwrhjFgVFcNoq7rMgrtMR2J7Jf5w_gE270Cfcvn6jI_mRHNx7JlQMkwpHuToJEz7bLcJgwQ-KHuNjkPVIb8FpWkQfF7FtJEJgpIXVF9I5D7Ii6uzLMv2TCbgs4VjP48-XkOj_F-rsqHv0PVTwmNzj6PPLNNvtkb73cxCcAo9bhaT4xPwD1Ghmo priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpe86TYsKvbUmtiXrcSpJyRJKE0JoID0JyZa3C629Xe8Gkl_fGVnesH1dLRlkz4zmk2bmG0LeaoC0WeVBeYUuUu4VT5XFFCtrteZa2kZi7fDJqTi-4J8uy8t44dbHtMpxTwwbdd1VeEe-D46kQLYyrj4sfqbYNQqjq7GFxl2yU-RMqQnZOTw6PTvf3LJgHIvnOlbLZEzt9-CxsKoMzmCArbVMb7Y8UiDu_xva_DNp8rfIaXBI04fkQUSS9GAQ_SNyx7ePyb2ht-T1E7I6OPl6tvR1Oj3_TOc9tbTtrvx3OpKIU0Cr1FbVGrki6GKJARsUEu0aan_AMX5e00DiMG976q4pJsjPaOMDESgNXJhj3VJLY--J2VNyMT368vE4jS0W0gqg2ipVZcYKV5QYjJSFr7ksJXMsU1o0QjfMcemsEJnicGzTtnRMgU_PuNcyz4Vw7BmZtF3rXxCqhFeNAzQAOyavuVaFw3YysmIZmrpKyLvxN5vFwKRhQgScKTMIxYBQTBCKuUnIIUpiMxNZsMODbjkz0agMwD_vZC009w33zCoJLj-vheeNkFVTJGRvlKOJptmbW0VKyJvNMBgVRkps67t1mMOlAu3NEvJ8EPtmJQjQBOMyIXJLIbaWuj3Szr8F4m4NeFZm8Ob7UXVul_XvX7H7_694Se4XqM3IKJvvkclqufavACit3OtoDb8At-ERMg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3di9QwEA_niXIv4udZPSWCb1ptkzQfDyKnuBziiogL51NI2nRdONtzP8S9v96ZtF1d3XttGhgyM5nfMJnfEPLUAKTNygDGKw1LRdAi1Q6fWDlnjDDK1Qp7h8cf5clEvD8tTvfIMO6oP8DFztQO50lN5mcvfv1YvwaHf9W1jOuXCwhC2CgGaRXAZaPSiyvkKoPIiE-8xj3c77i-mRG56Xtndm89INcxBEuOA1f-ClWR0X8XDP3_NeU_JdUYqUY3yY0eYtLjziZukb3Q3CbXuqGT6ztkeTz--mkeqnT0-QOdLaijTfsznNGBXZwCjKWuLFdIIkHP51jJQe3RtqbuO-T3s4pGdodZs6B-TfHl_JTWITKE0kiSOTQ0NbQfSjG9Syajd1_enqT97IW0BAy3THWRceZZgVVKxUIlVKG455k2spam5l4o76TMtIB8zrjCcw3BPhPBqDyX0vN7ZL9pm3CfUC2Drj3ABLhKRSWMZh7nzKiSZ3gH6IQ8G47ZnncUGzaWxrm2nX4s6MdG_diLhLxBTWz-RHrs-KGdT23vbRZwYfCqkkaEWgTutAIskFcyiFqqsmYJORr0aAeTswBVGPLhCZDoyWYZvA1LKK4J7Sr-I5QGs84SctipfSPJYDYJUVsGsSXq9koz-xYZvQ0AXZXBzueD6fwR6_KjeHCpCA_JAUObRpbZ_IjsL-er8AjA09I_jh7xGypaEy0 priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1di9UwEA26Ivgiftt1lQi-abFt0kzyuF68LOKKiAvrU0jaZL2gvcv9EHZ__c6k7ZXq-uBrk0DomemcdDJnGHtlkNIWTUDjVabKZdAy146uWDlnjDTgIlDt8PEndXQiP5zWp4NMDtXCTPL3Qr9dY4ChIjA8MiEVNpBf3mS3MAYDWfNMzXb_UyhjJUsz1MVcv3QSe5JE_3W88u_rkX_kSFPomd9jdwfOyA97kO-zG6F7wG73XSQvHrLN4fG3z6vQ5vMvH_lizR3vlr_CDz7KhXPkpdw1zZZUIfj5ilIzBAdfRu5-4oF90fIk17Do1txfcLoKf8ZjSJKfPKlejhVKHR-6TJw9Yifz919nR_nQTCFvkJRtcl0XovJVTWlHqEIroQbhRaGNispE4SV4p1ShJR7QjKu90Bi9CxkMlKVSXjxme92yC08Z1yro6DHu47dRttLoylPjGGhEQU6tM_Z6fM32vNfMsCnXLbTtQbEIik2g2MuMvSMkdjNJ7zo9QDOwg_tYJHrBQ6uMDFEG4TRgcC9bFWRU0MQqYwcjjnZwwrVF7lGRwJ3EHb3cDaP7UE7EdWG5TXMkaLTTImNPeth3OyEqpoSEjMHEICZbnY50i-9Jotsgc4UCV74ZTef3tv79Kvb_b_ozdqci6yYt2fKA7W1W2_AcKdLGv0i-cQUSrQlU priority: 102 providerName: Springer Nature |
Title | AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning |
URI | https://link.springer.com/article/10.1038/s41598-022-11897-z https://www.ncbi.nlm.nih.gov/pubmed/35546347 https://www.proquest.com/docview/2662180248 https://search.proquest.com/docview/2664786920 https://pubmed.ncbi.nlm.nih.gov/PMC9095707 https://doaj.org/article/154eb7d694ef4e3a87cee1d6e4f67cf2 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6SlJZcQt9Vmpot9NYqlrWrfRwTExNKHUxowD2JXWnlCmLJ-FFIfn1nV5Ib93HpxWBL4EHzjedbz8w3AB8UUtooswheruKQWclCqV2LldZKMSV0Idzs8PiKX96wz9NkugdJNwvjm_YzU55Wt_PTqvzueysX86zf9Yn1J-OhQl4gItHfh31Mvw-O6I2gd6zYQLUDMhGV_RUmKTdIhscupNNKhPeH8MTlWU7dVpUH-cjL9v-Na_7ZMvlb3dSno9FTOGp5JDlr7H0Ge7Z6Do-bzZJ3L2B9Nv42Wdo8HF1_IeWKaFLVP-wt6STECXJVorNs45QiyGLpyjXORaQuiJ7jIb7MiZdwKKsVMXfEtcfPSGG9DCjxSpjd1FJF2s0Ts5dwM7r4OrwM2wULYYZEbR3KJKKxiRNXihSxzZlIBDU0kooXXBXUMGE055FkeGhTOjFUYkaPmFViMODc0FdwUNWVfQNEcisLg1wAfy9ZzpSMjVsmIzIauUCXAXzsHnO6aHQ0Ul__pjJt_JOif1Lvn_Q-gHPnie2dTgPbf1AvZ2mLhBTJnzUi54rZglmqpcCEP8i5ZQUXWREHcNL5MW0Dc5UiH4md6B1Di95vL2NIuTqJrmy98fcwIRG7UQCvG7dvLelgE4DYAcSOqbtXEMVetrtFbQCfOuj8Muvfj-L4v7_oLRzGDvNOanZwAgfr5ca-Qwa1Nj2Mm6nowaPzi6vJNb4b8mHP_xuBr2Mmez6ifgL89R4E |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,51576,53791,53793,73745,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKwQXxJtAASNxg6hJ7PhxQi3qaoHdVVW1UjlZduIsK0Gy7AOp_fXMOMlWy-saO5KTmfF89sx8Q8gbDZA2KTwor9BZzL3isbKYYmWt1lxLW0msHZ5Mxeicf7rIL7oLt1WXVtnviWGjLpsC78gPwJFkyFbG1fvFjxi7RmF0tWuhcZPsIXN6PiB7R8fTk9PtLQvGsXiqu2qZhKmDFXgsrCqDMxhgay3jqx2PFIj7_4Y2_0ya_C1yGhzS8B652yFJetiK_j654esH5FbbW_LyIVkfTr6cLH0ZD0_HdL6iltbNT_-N9iTiFNAqtUWxQa4IulhiwAaFRJuK2u9wjJ-XNJA4zOsVdZcUE-RntPKBCJQGLsy-bqmmXe-J2SNyPjw--zCKuxYLcQFQbR2rPGGZy3IMRsrMl1zmkjmWKC0qoSvmuHRWiERxOLZpmzumwKcn3GuZpkI49pgM6qb2TwlVwqvKARqAHZOXXKvMYTsZWbAETV1F5G3_m82iZdIwIQLOlGmFYkAoJgjFXEXkCCWxnYks2OFBs5yZzqgMwD_vZCk09xX3zCoJLj8theeVkEWVRWS_l6PpTHNlrhUpIq-3w2BUGCmxtW82YQ6XCrQ3iciTVuzblSBAE4zLiMgdhdhZ6u5IPf8aiLs14FmZwJvvetW5Xta_f8Wz_3_FK3J7dDYZm_HH6efn5E6Gmo3ssuk-GayXG_8CQNPavews4xefgBQa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4gXxDeBAUbiDaImseuPJ7TBqgFbVU1MGk-WnTil0paUfiBtfz13rtOpfL3GjuTk7nw_--5-R8gbDZA2Kz0or9BFyr3iqbKYYmWt1lxLW0usHT4eicNT_vlscBbznxYxrbLbE8NGXbUl3pH3wZEUyFbGVb-OaRHjj8P3sx8pdpDCSGtsp3GT7IBXzIoe2dk_GI1PNjcuGNPiuY6VMxlT_QV4L6wwg_MY4Gwt06st7xRI_P-GPP9MoPwtihqc0_AeuRtRJd1bq8F9csM3D8itdZ_Jy4dkuXf8bTz3VTo8OaLTBbW0aX_6c9oRilNArtSW5Qp5I-hsjsEbFBhta2ov4Eg_rWggdJg2C-ouKSbLT2jtAykoDbyYXQ1TQ2Mfiskjcjo8-PrhMI3tFtISYNsyVYOMFa4YYGBSFr7iciCZY5nSoha6Zo5LZ4XIFIcjnLYDxxT494x7LfNcCMcek17TNv4poUp4VTtABrB78oprVThsLSNLlqHZq4S87X6zma1ZNUyIhjNl1kIxIBQThGKuErKPktjMREbs8KCdT0w0MANQ0DtZCc19zT2zSoL7zyvheS1kWRcJ2e3kaKKZLsy1UiXk9WYYDAyjJrbx7SrM4VKBJmcJebIW-2YlCNYE4zIhckshtpa6PdJMvwcSbw3YVmbw5rtOda6X9e9f8ez_X_GK3AajMEefRl-ekzsFKjYSzea7pLecr_wLwE9L9zIaxi-VNhhH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMYPred-FRL+is+a+novel+approach+for+accurate+prediction+of+amyloid+proteins+by+using+feature+representation+learning&rft.jtitle=Scientific+reports&rft.au=Charoenkwan%2C+Phasit&rft.au=Ahmed%2C+Saeed&rft.au=Nantasenamat%2C+Chanin&rft.au=Quinn%2C+Julian+M+W&rft.date=2022-05-11&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=7697&rft_id=info:doi/10.1038%2Fs41598-022-11897-z&rft_id=info%3Apmid%2F35546347&rft.externalDocID=35546347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |