Traffic flow digital twin generation for highway scenario based on radar-camera paired fusion
Autonomous driving is gradually moving from single-vehicle intelligence to internet of vehicles, where traffic participants can share the traffic flow information perceived by each other. When the sensing technology is combined with the internet of vehicles, a sensor network all over the road can pr...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 642 - 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.01.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autonomous driving is gradually moving from single-vehicle intelligence to internet of vehicles, where traffic participants can share the traffic flow information perceived by each other. When the sensing technology is combined with the internet of vehicles, a sensor network all over the road can provide a large-scale of traffic flow data, thus providing a basis for building a traffic digital twin model. The digital twin can enable the traffic system not only to use past and present information, but also to predict traffic conditions, providing more effective optimization for autonomous driving and intelligent transportation, so as to make long-term rational planning of the overall traffic state and enhance the level of traffic intelligence. The current mainstream traffic sensors, namely radar and camera, have their own advantages, and the fusion of these two sensors can provide more accurate traffic flow data for the generation of digital twin model. In this paper, an end-to-end digital twin system implementation approach is proposed for highway scenarios. Starting from a paired radar-camera sensing system, a single-site radar-camera fusion framework is proposed, and then using the definition of a unified coordinate system, the traffic flow data between multiple sites is combined to form a dynamic real-time traffic flow digital twin model. The effectiveness of the digital twin building is verified based on the real-world traffic data. |
---|---|
AbstractList | Autonomous driving is gradually moving from single-vehicle intelligence to internet of vehicles, where traffic participants can share the traffic flow information perceived by each other. When the sensing technology is combined with the internet of vehicles, a sensor network all over the road can provide a large-scale of traffic flow data, thus providing a basis for building a traffic digital twin model. The digital twin can enable the traffic system not only to use past and present information, but also to predict traffic conditions, providing more effective optimization for autonomous driving and intelligent transportation, so as to make long-term rational planning of the overall traffic state and enhance the level of traffic intelligence. The current mainstream traffic sensors, namely radar and camera, have their own advantages, and the fusion of these two sensors can provide more accurate traffic flow data for the generation of digital twin model. In this paper, an end-to-end digital twin system implementation approach is proposed for highway scenarios. Starting from a paired radar-camera sensing system, a single-site radar-camera fusion framework is proposed, and then using the definition of a unified coordinate system, the traffic flow data between multiple sites is combined to form a dynamic real-time traffic flow digital twin model. The effectiveness of the digital twin building is verified based on the real-world traffic data. Autonomous driving is gradually moving from single-vehicle intelligence to internet of vehicles, where traffic participants can share the traffic flow information perceived by each other. When the sensing technology is combined with the internet of vehicles, a sensor network all over the road can provide a large-scale of traffic flow data, thus providing a basis for building a traffic digital twin model. The digital twin can enable the traffic system not only to use past and present information, but also to predict traffic conditions, providing more effective optimization for autonomous driving and intelligent transportation, so as to make long-term rational planning of the overall traffic state and enhance the level of traffic intelligence. The current mainstream traffic sensors, namely radar and camera, have their own advantages, and the fusion of these two sensors can provide more accurate traffic flow data for the generation of digital twin model. In this paper, an end-to-end digital twin system implementation approach is proposed for highway scenarios. Starting from a paired radar-camera sensing system, a single-site radar-camera fusion framework is proposed, and then using the definition of a unified coordinate system, the traffic flow data between multiple sites is combined to form a dynamic real-time traffic flow digital twin model. The effectiveness of the digital twin building is verified based on the real-world traffic data.Autonomous driving is gradually moving from single-vehicle intelligence to internet of vehicles, where traffic participants can share the traffic flow information perceived by each other. When the sensing technology is combined with the internet of vehicles, a sensor network all over the road can provide a large-scale of traffic flow data, thus providing a basis for building a traffic digital twin model. The digital twin can enable the traffic system not only to use past and present information, but also to predict traffic conditions, providing more effective optimization for autonomous driving and intelligent transportation, so as to make long-term rational planning of the overall traffic state and enhance the level of traffic intelligence. The current mainstream traffic sensors, namely radar and camera, have their own advantages, and the fusion of these two sensors can provide more accurate traffic flow data for the generation of digital twin model. In this paper, an end-to-end digital twin system implementation approach is proposed for highway scenarios. Starting from a paired radar-camera sensing system, a single-site radar-camera fusion framework is proposed, and then using the definition of a unified coordinate system, the traffic flow data between multiple sites is combined to form a dynamic real-time traffic flow digital twin model. The effectiveness of the digital twin building is verified based on the real-world traffic data. Abstract Autonomous driving is gradually moving from single-vehicle intelligence to internet of vehicles, where traffic participants can share the traffic flow information perceived by each other. When the sensing technology is combined with the internet of vehicles, a sensor network all over the road can provide a large-scale of traffic flow data, thus providing a basis for building a traffic digital twin model. The digital twin can enable the traffic system not only to use past and present information, but also to predict traffic conditions, providing more effective optimization for autonomous driving and intelligent transportation, so as to make long-term rational planning of the overall traffic state and enhance the level of traffic intelligence. The current mainstream traffic sensors, namely radar and camera, have their own advantages, and the fusion of these two sensors can provide more accurate traffic flow data for the generation of digital twin model. In this paper, an end-to-end digital twin system implementation approach is proposed for highway scenarios. Starting from a paired radar-camera sensing system, a single-site radar-camera fusion framework is proposed, and then using the definition of a unified coordinate system, the traffic flow data between multiple sites is combined to form a dynamic real-time traffic flow digital twin model. The effectiveness of the digital twin building is verified based on the real-world traffic data. |
ArticleNumber | 642 |
Author | Zhang, Weichuan Li, Yanbing |
Author_xml | – sequence: 1 givenname: Yanbing orcidid: 0000-0003-3564-6111 surname: Li fullname: Li, Yanbing email: ybli1@bjtu.edu.cn organization: School of Electronic and Information Engineering, Beijing Jiaotong University – sequence: 2 givenname: Weichuan surname: Zhang fullname: Zhang, Weichuan organization: Institute for Integrated and Intelligent Systems, Griffith University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36635372$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQFSWlSdP8gR6KoZdenOrTsi6FEvoRCPSSHosY25JXi9faSnaW5Nd3Nk6aj0N0kRi993gzb96SgzGOjpD3jJ4yKurPWTJl6pJyUXJdmaq8eUWOOJWq5ILzg0fvQ3KS85riUdxIZt6QQ1FVQgnNj8ifywTeh7bwQ9wVXejDBEMx7cJY9G50CaYQx8LHVKxCv9rBdZFbN0IKsWggu67A3wQdpLKFDcKLLYSEZT9nJL4jrz0M2Z3c3cfk9_dvl2c_y4tfP87Pvl6UrZJ0Kmvead_SpmuM40orIbxgjfFaGfCceSNB6kY5bNYxRyUVba1kx6rKiBZAiWNyvuh2EdZ2m8IG0rWNEOxtIabeQppCOzgLEmpKtZNNx2WjFThfU6kdQCUliqLWl0VrOzcb12G3U4LhiejTnzGsbB-vrKmFZlWNAp_uBFL8O7s82U3AoQ0DjC7O2WJcSmupqEDox2fQdZzTiKPao6Rh0tQaUR8eO_pv5T5FBNQLoE0x5-S8bTHGfXJoMAyWUbvfGbvsjMUx2tudsTdI5c-o9-ovksRCyggee5cebL_A-gdyONTg |
CitedBy_id | crossref_primary_10_3390_land14010083 crossref_primary_10_55186_2413046X_2024_9_6_279 crossref_primary_10_1016_j_adhoc_2024_103613 crossref_primary_10_3390_ijgi12100424 crossref_primary_10_1002_for_3213 crossref_primary_10_1088_1361_665X_ada596 crossref_primary_10_1038_s41598_024_71620_y crossref_primary_10_3390_app14199109 crossref_primary_10_1108_ECAM_08_2024_1024 crossref_primary_10_1049_2024_5556238 |
Cites_doi | 10.1016/j.automatica.2004.01.014 10.1109/JSTSP.2021.3063666 10.1109/TITS.2022.3160932 10.1109/TIM.2022.3154001 10.1109/IEEESTD.2009.5226540 10.1109/TII.2018.2854901 10.1109/ICCSCE.2011.6190524 10.1109/TVT.2019.2906509 10.1007/s11263-021-01513-4 10.1109/CC.2014.6969789 10.1109/TPAMI.2006.153 10.1109/TIP.2005.863021 10.1109/TITS.2016.2533542 10.1109/ACCESS.2021.3083503 10.1109/JPROC.2019.2961937 10.1109/MFI.2008.4648063 10.1109/TII.2021.3083596 10.1109/7.7186 10.1109/ICECube53880.2021.9628341 10.1109/MSP.2019.2911722 10.1109/ACCESS.2019.2962554 10.1109/TITS.2020.3023957 10.23919/ICIF.2018.8455850 10.1109/CVPR.2016.91 10.1109/ICNP52444.2021.9651970 10.1109/LSENS.2022.3213529 10.1109/TITS.2014.2342875 10.1155/2008/246309 10.1109/MCOMSTD.001.2000069 10.1109/MSP.2020.2978507 10.1109/MCOMSTD.011.2100004 10.1109/TPAMI.2011.248 10.1109/TPAMI.2010.46 10.1109/7.766925 10.1109/ICIF.2002.1021176 10.23919/ICCAS.2017.8204375 10.1109/TITS.2021.3125358 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-27696-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_a4a8007e4bd24b75aef8047eaa64454d PMC9837168 36635372 10_1038_s41598_023_27696_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: the Fundamental Research Funds for the Central Universities 2022RC008 – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-82d7fc0bdb9e257533f31b9f759af21f94a47b5e023e1e0403c854d16693caa53 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:11 EDT 2025 Thu Aug 21 18:38:40 EDT 2025 Mon Jul 21 11:10:49 EDT 2025 Sat Aug 23 13:25:23 EDT 2025 Thu Jan 02 22:53:25 EST 2025 Tue Jul 01 00:55:45 EDT 2025 Thu Apr 24 22:55:38 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-82d7fc0bdb9e257533f31b9f759af21f94a47b5e023e1e0403c854d16693caa53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3564-6111 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-27696-z |
PMID | 36635372 |
PQID | 2764914987 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4a8007e4bd24b75aef8047eaa64454d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9837168 proquest_miscellaneous_2765774503 proquest_journals_2764914987 pubmed_primary_36635372 crossref_citationtrail_10_1038_s41598_023_27696_z crossref_primary_10_1038_s41598_023_27696_z springer_journals_10_1038_s41598_023_27696_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-12 |
PublicationDateYYYYMMDD | 2023-01-12 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Ghorai, P., Eskandarian, A., Kim, Y.-K. & Mehr, G. State estimation and motion prediction of vehicles and vulnerable road users for cooperative autonomous driving: A survey. IEEE Trans. Intell. Transp. Syst. 1–20, https://doi.org/10.1109/TITS.2022.3160932 (2022). ChenL-WHoY-FCentimeter-grade metropolitan positioning for lane-level intelligent transportation systems based on the internet of vehiclesIEEE Trans. Ind. Inform.2019151474148510.1109/TII.2018.2854901 BagheriH5G NR-V2X: Toward connected and cooperative autonomous drivingIEEE Commun. Stand. Mag.20215485410.1109/MCOMSTD.001.2000069 RoeckerJMcGillemCComparison of two-sensor tracking methods based on state vector fusion and measurement fusionIEEE Trans. Aerosp. Electron. Syst.1988244474491988ITAES..24..447R10.1109/7.7186 BernardinKStiefelhagenREvaluating multiple object tracking performance: The CLEAR MOT metricsEURASIP J. Image Video Process.2008200811010.1155/2008/246309 WangXXuLSunHXinJZhengNOn-road vehicle detection and tracking using mmw radar and monovision fusionIEEE Trans. Intell. Transp. Syst.2016172075208410.1109/TITS.2016.2533542 LiuPYuGWangZZhouBChenPObject classification based on enhanced evidence theory: Radar-vision fusion approach for roadside applicationIEEE Trans. Instrum. Meas.20227111210.1109/TIM.2022.3154001 IEEE standard for inertial systems terminology. IEEE Std1559–2009, 1–40. https://doi.org/10.1109/IEEESTD.2009.5226540 (2009). MyronenkoASongXPoint set registration: Coherent point driftIEEE Trans. Pattern Anal. Mach. Intell.2010322262227510.1109/TPAMI.2010.46 Matzka, S. & Altendorfer, R. A comparison of track-to-track fusion algorithms for automotive sensor fusion. In 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 189–194, https://doi.org/10.1109/MFI.2008.4648063 (2008). SunSPetropuluAPPoorHVMIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challengesIEEE Signal Process. Mag.2020379811710.1109/MSP.2020.2978507 Bouain, M., Berdjag, D., Fakhfakh, N. & Atitallah, R. B. Multi-sensor fusion for obstacle detection and recognition: A belief-based approach. In 2018 21st International Conference on Information Fusion (FUSION), 1217–1224, https://doi.org/10.23919/ICIF.2018.8455850 (2018). Omar, S. & Winberg, S. Multisensor data fusion: Target tracking with a doppler radar and an electro-optic camera. In 2011 IEEE International Conference on Control System, Computing and Engineering, 210–215, https://doi.org/10.1109/ICCSCE.2011.6190524 (2011). Li, I. & Georganas, J. Multi-target multi-platform sensor registration in geodetic coordinates. In Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002., vol. 1, 366–373 (IEEE, 2002). AlmeaibedSAl-RubayeSTsourdosAAvdelidisNPDigital twin analysis to promote safety and security in autonomous vehiclesIEEE Commun. Stand. Mag.20215404610.1109/MCOMSTD.011.2100004 YangFWangSLiJLiuZSunQAn overview of internet of vehiclesChina Commun.2014111152014OptCo.330....1Y10.1109/CC.2014.6969789 Maier-HeinLConvergent iterative closest-point algorithm to accomodate anisotropic and inhomogenous localization errorIEEE Trans. Pattern Anal. Mach. Intell.2011341520153210.1109/TPAMI.2011.248 SenguptaAChengLCaoSRobust multiobject tracking using mmwave radar-camera sensor fusionIEEE Sens. Lett.202261410.1109/LSENS.2022.3213529 Lee, S., Jung, Y., Park, Y.-H. & Kim, S.-W. Design of V2X-based vehicular contents centric networks for autonomous driving. IEEE Trans. Intell. Transp. Syst. 1–12, https://doi.org/10.1109/TITS.2021.3125358 (2021). HakobyanGYangBHigh-performance automotive radar: A review of signal processing algorithms and modulation schemesIEEE Signal Process. Mag.20193632442019ISPM...36E..32H10.1109/MSP.2019.2911722 ZhangYWangCWangXZengWLiuWFairmot: On the fairness of detection and re-identification in multiple object trackingInt. J. Comput. Vis.20211293069308710.1007/s11263-021-01513-4 ZhouHXuWChenJWangWEvolutionary V2X technologies toward the internet of vehicles: Challenges and opportunitiesProc. IEEE202010830832310.1109/JPROC.2019.2961937 ThombreSSensors and AI techniques for situational awareness in autonomous ships: A reviewIEEE Trans. Intell. Transp. Syst.202223648310.1109/TITS.2020.3023957 Du, H., Leng, S., He, J. & Zhou, L. Digital twin based trajectory prediction for platoons of connected intelligent vehicles. In 2021 IEEE 29th International Conference on Network Protocols, 1–6, https://doi.org/10.1109/ICNP52444.2021.9651970 (2021). LiuTDuSLiangCZhangBFengRA novel multi-sensor fusion based object detection and recognition algorithm for intelligent assisted drivingIEEE Access20219815648157410.1109/ACCESS.2021.3083503 ZhouYLeungHBlanchetteMSensor alignment with earth-centered earth-fixed (ECEF) coordinate systemIEEE Trans. Aerosp. Electron. Syst.1999354104181999ITAES..35..410Z10.1109/7.766925 Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In IEEE Conference on Computer Vision and Pattern Recognition, 779–788, https://doi.org/10.1109/CVPR.2016.91 (2016). GuoK-YHoareEGJastehDShengX-QGashinovaMRoad edge recognition using the stripe Hough transform from millimeter-wave radar imagesIEEE Trans. Intell. Transp. Syst.20151682583310.1109/TITS.2014.2342875 DengRDiBSongLCooperative collision avoidance for overtaking maneuvers in cellular V2X-based autonomous drivingIEEE Trans. Veh. Technol.2019684434444610.1109/TVT.2019.2906509 SunS-LDengZ-LMulti-sensor optimal information fusion Kalman filterAutomatica20044010171023215150910.1016/j.automatica.2004.01.0141075.93037 EngelsFAutomotive radar signal processing: Research directions and practical challengesIEEE J. Sel. Top. Signal Process.2021158658782021ISTSP..15..865E10.1109/JSTSP.2021.3063666 WangZWuYNiuQMulti-sensor fusion in automated driving: A surveyIEEE Access202082847286810.1109/ACCESS.2019.2962554 HuCDigital twin-assisted real-time traffic data prediction method for 5G-enabled internet of vehiclesIEEE Trans. Ind. Inform.2022182811281910.1109/TII.2021.3083596 Niaz, A. et al. Autonomous driving test method based on digital twin: A survey. In 2021 International Conference on Computing, Electronic and Electrical Engineering, 1–7, https://doi.org/10.1109/ICECube53880.2021.9628341 (2021). AggarwalNKarlWLine detection in images through regularized Hough transformIEEE Trans. Image Process.2006155825912006ITIP...15..582A10.1109/TIP.2005.863021 KannalaJBrandtSA generic camera model and calibration method for conventional, wide-angle, and fish-eye lensesIEEE Trans. Pattern Anal. Mach. Intell.2006281335134010.1109/TPAMI.2006.153 Kim, K.-E., Lee, C.-J., Pae, D.-S. & Lim, M.-T. Sensor fusion for vehicle tracking with camera and radar sensor. In 2017 17th International Conference on Control, Automation and Systems (ICCAS), 1075–1077, https://doi.org/10.23919/ICCAS.2017.8204375 (2017). T Liu (27696_CR17) 2021; 9 P Liu (27696_CR16) 2022; 71 L-W Chen (27696_CR11) 2019; 15 A Sengupta (27696_CR21) 2022; 6 S Thombre (27696_CR34) 2022; 23 27696_CR19 H Zhou (27696_CR5) 2020; 108 27696_CR18 F Engels (27696_CR22) 2021; 15 G Hakobyan (27696_CR12) 2019; 36 S Sun (27696_CR23) 2020; 37 K Bernardin (27696_CR37) 2008; 2008 27696_CR14 K-Y Guo (27696_CR33) 2015; 16 27696_CR20 N Aggarwal (27696_CR32) 2006; 15 A Myronenko (27696_CR31) 2010; 32 C Hu (27696_CR8) 2022; 18 Y Zhou (27696_CR27) 1999; 35 27696_CR9 27696_CR28 27696_CR1 27696_CR29 S-L Sun (27696_CR36) 2004; 40 27696_CR3 F Yang (27696_CR6) 2014; 11 27696_CR25 27696_CR7 Z Wang (27696_CR13) 2020; 8 J Kannala (27696_CR24) 2006; 28 X Wang (27696_CR15) 2016; 17 L Maier-Hein (27696_CR30) 2011; 34 Y Zhang (27696_CR26) 2021; 129 J Roecker (27696_CR35) 1988; 24 H Bagheri (27696_CR2) 2021; 5 S Almeaibed (27696_CR10) 2021; 5 R Deng (27696_CR4) 2019; 68 |
References_xml | – reference: SenguptaAChengLCaoSRobust multiobject tracking using mmwave radar-camera sensor fusionIEEE Sens. Lett.202261410.1109/LSENS.2022.3213529 – reference: HakobyanGYangBHigh-performance automotive radar: A review of signal processing algorithms and modulation schemesIEEE Signal Process. Mag.20193632442019ISPM...36E..32H10.1109/MSP.2019.2911722 – reference: WangZWuYNiuQMulti-sensor fusion in automated driving: A surveyIEEE Access202082847286810.1109/ACCESS.2019.2962554 – reference: LiuPYuGWangZZhouBChenPObject classification based on enhanced evidence theory: Radar-vision fusion approach for roadside applicationIEEE Trans. Instrum. Meas.20227111210.1109/TIM.2022.3154001 – reference: BernardinKStiefelhagenREvaluating multiple object tracking performance: The CLEAR MOT metricsEURASIP J. Image Video Process.2008200811010.1155/2008/246309 – reference: Kim, K.-E., Lee, C.-J., Pae, D.-S. & Lim, M.-T. Sensor fusion for vehicle tracking with camera and radar sensor. In 2017 17th International Conference on Control, Automation and Systems (ICCAS), 1075–1077, https://doi.org/10.23919/ICCAS.2017.8204375 (2017). – reference: ZhangYWangCWangXZengWLiuWFairmot: On the fairness of detection and re-identification in multiple object trackingInt. J. Comput. Vis.20211293069308710.1007/s11263-021-01513-4 – reference: ThombreSSensors and AI techniques for situational awareness in autonomous ships: A reviewIEEE Trans. Intell. Transp. Syst.202223648310.1109/TITS.2020.3023957 – reference: DengRDiBSongLCooperative collision avoidance for overtaking maneuvers in cellular V2X-based autonomous drivingIEEE Trans. Veh. Technol.2019684434444610.1109/TVT.2019.2906509 – reference: AggarwalNKarlWLine detection in images through regularized Hough transformIEEE Trans. Image Process.2006155825912006ITIP...15..582A10.1109/TIP.2005.863021 – reference: GuoK-YHoareEGJastehDShengX-QGashinovaMRoad edge recognition using the stripe Hough transform from millimeter-wave radar imagesIEEE Trans. Intell. Transp. Syst.20151682583310.1109/TITS.2014.2342875 – reference: LiuTDuSLiangCZhangBFengRA novel multi-sensor fusion based object detection and recognition algorithm for intelligent assisted drivingIEEE Access20219815648157410.1109/ACCESS.2021.3083503 – reference: Maier-HeinLConvergent iterative closest-point algorithm to accomodate anisotropic and inhomogenous localization errorIEEE Trans. Pattern Anal. Mach. Intell.2011341520153210.1109/TPAMI.2011.248 – reference: SunS-LDengZ-LMulti-sensor optimal information fusion Kalman filterAutomatica20044010171023215150910.1016/j.automatica.2004.01.0141075.93037 – reference: KannalaJBrandtSA generic camera model and calibration method for conventional, wide-angle, and fish-eye lensesIEEE Trans. Pattern Anal. Mach. Intell.2006281335134010.1109/TPAMI.2006.153 – reference: Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In IEEE Conference on Computer Vision and Pattern Recognition, 779–788, https://doi.org/10.1109/CVPR.2016.91 (2016). – reference: ZhouHXuWChenJWangWEvolutionary V2X technologies toward the internet of vehicles: Challenges and opportunitiesProc. IEEE202010830832310.1109/JPROC.2019.2961937 – reference: Lee, S., Jung, Y., Park, Y.-H. & Kim, S.-W. Design of V2X-based vehicular contents centric networks for autonomous driving. IEEE Trans. Intell. Transp. Syst. 1–12, https://doi.org/10.1109/TITS.2021.3125358 (2021). – reference: Bouain, M., Berdjag, D., Fakhfakh, N. & Atitallah, R. B. Multi-sensor fusion for obstacle detection and recognition: A belief-based approach. In 2018 21st International Conference on Information Fusion (FUSION), 1217–1224, https://doi.org/10.23919/ICIF.2018.8455850 (2018). – reference: ZhouYLeungHBlanchetteMSensor alignment with earth-centered earth-fixed (ECEF) coordinate systemIEEE Trans. Aerosp. Electron. Syst.1999354104181999ITAES..35..410Z10.1109/7.766925 – reference: Li, I. & Georganas, J. Multi-target multi-platform sensor registration in geodetic coordinates. In Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002., vol. 1, 366–373 (IEEE, 2002). – reference: BagheriH5G NR-V2X: Toward connected and cooperative autonomous drivingIEEE Commun. Stand. Mag.20215485410.1109/MCOMSTD.001.2000069 – reference: Matzka, S. & Altendorfer, R. A comparison of track-to-track fusion algorithms for automotive sensor fusion. In 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 189–194, https://doi.org/10.1109/MFI.2008.4648063 (2008). – reference: HuCDigital twin-assisted real-time traffic data prediction method for 5G-enabled internet of vehiclesIEEE Trans. Ind. Inform.2022182811281910.1109/TII.2021.3083596 – reference: Omar, S. & Winberg, S. Multisensor data fusion: Target tracking with a doppler radar and an electro-optic camera. In 2011 IEEE International Conference on Control System, Computing and Engineering, 210–215, https://doi.org/10.1109/ICCSCE.2011.6190524 (2011). – reference: WangXXuLSunHXinJZhengNOn-road vehicle detection and tracking using mmw radar and monovision fusionIEEE Trans. Intell. Transp. Syst.2016172075208410.1109/TITS.2016.2533542 – reference: Du, H., Leng, S., He, J. & Zhou, L. Digital twin based trajectory prediction for platoons of connected intelligent vehicles. In 2021 IEEE 29th International Conference on Network Protocols, 1–6, https://doi.org/10.1109/ICNP52444.2021.9651970 (2021). – reference: EngelsFAutomotive radar signal processing: Research directions and practical challengesIEEE J. Sel. Top. Signal Process.2021158658782021ISTSP..15..865E10.1109/JSTSP.2021.3063666 – reference: AlmeaibedSAl-RubayeSTsourdosAAvdelidisNPDigital twin analysis to promote safety and security in autonomous vehiclesIEEE Commun. Stand. Mag.20215404610.1109/MCOMSTD.011.2100004 – reference: MyronenkoASongXPoint set registration: Coherent point driftIEEE Trans. Pattern Anal. Mach. Intell.2010322262227510.1109/TPAMI.2010.46 – reference: ChenL-WHoY-FCentimeter-grade metropolitan positioning for lane-level intelligent transportation systems based on the internet of vehiclesIEEE Trans. Ind. Inform.2019151474148510.1109/TII.2018.2854901 – reference: RoeckerJMcGillemCComparison of two-sensor tracking methods based on state vector fusion and measurement fusionIEEE Trans. Aerosp. Electron. Syst.1988244474491988ITAES..24..447R10.1109/7.7186 – reference: YangFWangSLiJLiuZSunQAn overview of internet of vehiclesChina Commun.2014111152014OptCo.330....1Y10.1109/CC.2014.6969789 – reference: Ghorai, P., Eskandarian, A., Kim, Y.-K. & Mehr, G. State estimation and motion prediction of vehicles and vulnerable road users for cooperative autonomous driving: A survey. IEEE Trans. Intell. Transp. Syst. 1–20, https://doi.org/10.1109/TITS.2022.3160932 (2022). – reference: Niaz, A. et al. Autonomous driving test method based on digital twin: A survey. In 2021 International Conference on Computing, Electronic and Electrical Engineering, 1–7, https://doi.org/10.1109/ICECube53880.2021.9628341 (2021). – reference: IEEE standard for inertial systems terminology. IEEE Std1559–2009, 1–40. https://doi.org/10.1109/IEEESTD.2009.5226540 (2009). – reference: SunSPetropuluAPPoorHVMIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challengesIEEE Signal Process. Mag.2020379811710.1109/MSP.2020.2978507 – volume: 40 start-page: 1017 year: 2004 ident: 27696_CR36 publication-title: Automatica doi: 10.1016/j.automatica.2004.01.014 – volume: 15 start-page: 865 year: 2021 ident: 27696_CR22 publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2021.3063666 – ident: 27696_CR3 doi: 10.1109/TITS.2022.3160932 – volume: 71 start-page: 1 year: 2022 ident: 27696_CR16 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3154001 – ident: 27696_CR29 doi: 10.1109/IEEESTD.2009.5226540 – volume: 15 start-page: 1474 year: 2019 ident: 27696_CR11 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2854901 – ident: 27696_CR19 doi: 10.1109/ICCSCE.2011.6190524 – volume: 68 start-page: 4434 year: 2019 ident: 27696_CR4 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2906509 – volume: 129 start-page: 3069 year: 2021 ident: 27696_CR26 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-021-01513-4 – volume: 11 start-page: 1 year: 2014 ident: 27696_CR6 publication-title: China Commun. doi: 10.1109/CC.2014.6969789 – volume: 28 start-page: 1335 year: 2006 ident: 27696_CR24 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.153 – volume: 15 start-page: 582 year: 2006 ident: 27696_CR32 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.863021 – volume: 17 start-page: 2075 year: 2016 ident: 27696_CR15 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2533542 – volume: 9 start-page: 81564 year: 2021 ident: 27696_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083503 – volume: 108 start-page: 308 year: 2020 ident: 27696_CR5 publication-title: Proc. IEEE doi: 10.1109/JPROC.2019.2961937 – ident: 27696_CR18 doi: 10.1109/MFI.2008.4648063 – volume: 18 start-page: 2811 year: 2022 ident: 27696_CR8 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3083596 – volume: 24 start-page: 447 year: 1988 ident: 27696_CR35 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.7186 – ident: 27696_CR9 doi: 10.1109/ICECube53880.2021.9628341 – volume: 36 start-page: 32 year: 2019 ident: 27696_CR12 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2911722 – volume: 8 start-page: 2847 year: 2020 ident: 27696_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962554 – volume: 23 start-page: 64 year: 2022 ident: 27696_CR34 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3023957 – ident: 27696_CR14 doi: 10.23919/ICIF.2018.8455850 – ident: 27696_CR25 doi: 10.1109/CVPR.2016.91 – ident: 27696_CR7 doi: 10.1109/ICNP52444.2021.9651970 – volume: 6 start-page: 1 year: 2022 ident: 27696_CR21 publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2022.3213529 – volume: 16 start-page: 825 year: 2015 ident: 27696_CR33 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2342875 – volume: 2008 start-page: 1 year: 2008 ident: 27696_CR37 publication-title: EURASIP J. Image Video Process. doi: 10.1155/2008/246309 – volume: 5 start-page: 48 year: 2021 ident: 27696_CR2 publication-title: IEEE Commun. Stand. Mag. doi: 10.1109/MCOMSTD.001.2000069 – volume: 37 start-page: 98 year: 2020 ident: 27696_CR23 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.2978507 – volume: 5 start-page: 40 year: 2021 ident: 27696_CR10 publication-title: IEEE Commun. Stand. Mag. doi: 10.1109/MCOMSTD.011.2100004 – volume: 34 start-page: 1520 year: 2011 ident: 27696_CR30 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.248 – volume: 32 start-page: 2262 year: 2010 ident: 27696_CR31 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.46 – volume: 35 start-page: 410 year: 1999 ident: 27696_CR27 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.766925 – ident: 27696_CR28 doi: 10.1109/ICIF.2002.1021176 – ident: 27696_CR20 doi: 10.23919/ICCAS.2017.8204375 – ident: 27696_CR1 doi: 10.1109/TITS.2021.3125358 |
SSID | ssj0000529419 |
Score | 2.4415529 |
Snippet | Autonomous driving is gradually moving from single-vehicle intelligence to internet of vehicles, where traffic participants can share the traffic flow... Abstract Autonomous driving is gradually moving from single-vehicle intelligence to internet of vehicles, where traffic participants can share the traffic flow... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 642 |
SubjectTerms | 639/166 639/166/987 Cameras Digital twins Humanities and Social Sciences Intelligence multidisciplinary Radar Science Science (multidisciplinary) Sensors Traffic flow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5SEHwR706tEsE3DZ3cJsljFUsR9MlCXyScTJK6UGbLdpfS_vqeZGbXrtcXXycZEs4l5zu5fIeQNzbw2AWRWRYhMhWEZqCDYjYZY4IFCbVKxOcv3dGx-nSiT26V-ip3wkZ64FFw-6AAMY1JKkShgtGQsm2VSQAYybWKZfXFmHcrmRpZvYVT3E2vZFpp9y8wUpXXZEIyYTrXseutSFQJ-3-HMn-9LPnTiWkNRIcPyP0JQdKDceYPyZ00PCJ3x5qSV4_JN4w-hRaC5rP5JY2z01IVhC4vZwM9rRTTRRMUoSqtTMVwRQufE2bMc1oiWqTYuoAIC9ZD2bCi54CrYqR5VfbVnpDjw49fPxyxqYYC6xGLLZkV0eS-DTG4hN6J4C5LHlw22kEWPDsFygSdUC6JJ_Ro2VuUKu86J3sALZ-SnWE-pOeEQuAiOICQDKYVVtnehSRTiBllnW3fEL6Wp-8ngvFS5-LM14Nuaf2oA49j-aoDf92Qt5t_zkd6jb_2fl_UtOlZqLHrBzQYPxmM_5fBNGRvrWQ_-etFGUA5TBatacjrTTN6Wjk-gSHNV7WPRrCsW9mQZ6NNbGYiC3CTRjTEbFnL1lS3W4bZ98rm7azEnNU25N3arn5M68-i2P0fonhB7oniEC1nXOyRneVilV4ixlqGV9WdbgBJyiQ6 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t1AQUbiBlYT24ntEwJEVSHBiUp7QdY4tpeVqmTZh6r21zN2sqmWR6-xk9ieGc_nmeQbQt5oV_nG8cgid55Jx2sGtZNMB6WU0yAgV4n4-q05PZNfZvVsDLitx88qd3ti3qh936YY-TFXjTQI57V6v_zFUtWolF0dS2jcJncSdVnSajVTU4wlZbFkZcZ_ZUqhj9for9I_ZVwwfKBp2NWeP8q0_f_Cmn9_MvlH3jS7o5MH5P6II-mHQfAPya3QPSJ3h8qSl4_JD_RBiRyCxvP-gvrFPNUGoZuLRUfnmWg6yYMiYKWZrxguaWJ1wnNzT5Nf8xRbV-BhxVpIYSu6BNwbPY3bFF17Qs5OPn__dMrGSgqsRUS2YZp7FdvSeWcC2ihCvCgqZ6KqDUReRSNBKlcHXJdQBbRr0epa-qppjGgBavGUHHR9Fw4JBVdxZwBcUHi40FK3xgURnI-41lG3Bal262nbkWY8Vbs4tzndLbQdZGDxXTbLwF4V5O10z3Ig2bix98ckpqlnIsjOF_rV3I72ZkECQmEVpPNcOlVDiLqUKgAgAMSpFeRoJ2Q7Wu3aXutYQV5PzWhvKYkCXei3uU-NkLkuRUGeDToxjUQk-CYUL4ja05a9oe63dIufmdPbaIEnV12Qdzu9uh7W_5fi-c2zeEHu8aTqZcUqfkQONqtteIkYauNeZUP5DSd9G3Y priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA61RfBFvHe0SgTfNDiTyyR5XMVSFvRFC32R4WSSrAtlpmx3Ke2v9yQzO7JaBV8nCcmcS86X23cIeWNc5WvHI4vceSYdVwyUk8wErbUzICBnifj8pT45lfMzdbZH-PYtTL60nykt8zS9vR32_hIDTXoMxgXjurY1u7lDDhJVO9r2wWw2_zqfdlbS2ZWs7PhCphTmlsY7USiT9d-GMP-8KPnbaWkOQscPyP0RPdLZMN6HZC90j8jdIZ_k9WPyHSNPooSg8by_on65SBlB6Ppq2dFFppdOWqAIU2lmKYZrmriccLXc0xTNPMXSFXhYsRbSZhW9AJwRPY2btKf2hJwef_r28YSN-RNYizhszQz3Oral884G9EwEdlFUzkatLEReRStBaqcCyiVUAb1ZtEZJX9W1FS2AEk_Jftd34ZBQcBV3FsAFjUsKI01rXRDB-YiyjqYtSLWVZ9OO5OIpx8V5kw-5hWkGHTTYV5N10NwU5O3U5mKg1vhn7Q9JTVPNRIudP_SrRTOaSQMSEADrIJ3n0mkFIZpS6gCAsA9_rSBHWyU3o69epg6kxYWi0QV5PRWjl6WjE-hCv8l1FAJlVYqCPBtsYhqJSKBNaF4QvWMtO0PdLemWPzKTtzUC16umIO-2dvVrWH8XxfP_q_6C3OPJ9MuKVfyI7K9Xm_ASkdTavRpd5ycWQRsj priority: 102 providerName: Springer Nature |
Title | Traffic flow digital twin generation for highway scenario based on radar-camera paired fusion |
URI | https://link.springer.com/article/10.1038/s41598-023-27696-z https://www.ncbi.nlm.nih.gov/pubmed/36635372 https://www.proquest.com/docview/2764914987 https://www.proquest.com/docview/2765774503 https://pubmed.ncbi.nlm.nih.gov/PMC9837168 https://doaj.org/article/a4a8007e4bd24b75aef8047eaa64454d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD70wkZfyq6dty5osLfNWyzJlvQwRhpaSqBlbAvkZRjJlrJAcLo0oU1__Y5kOyNbuieDJGP5XHy-I1nfAXgrTVJmhrrYUVPG3NA01qnhsbRCCCM106FKxMVldj7kg1E62oG23FEjwOutqZ2vJzWcTz_c_lp9Rof_VB8Zlx-vMQj5g2KUxVRkKovvdmEfI5PwFQ0uGrhfc31TxRPVnJ3ZfusBPGQ-CjNBN0JVYPTfBkP__Zvyry3VEKnOHsFhAzFJr7aJx7BjqyfwoC46uXoKPzA8ed4I4qazG1JOxr5sCFncTCoyDhzUXlUEsSwJVMZ6RTzhE6bUM-JDXkmwd65LPY8L7Ve0yJXGz2ZJ3NIvvD2D4dnp9_553BRZiAsEa4tY0lK4omtKoyy6L6I_xxKjnEiVdjRximsuTGpRRDax6PKskCkvkyxTrNA6Zc9hr5pV9gUQbRJqlNbGCsw7JJeFMpZZUzoUu5NFBEkrz7xoGMh9IYxpHnbCmcxrdeT4rDyoI7-L4N36nquaf-O_o0-8mtYjPXd2aJjNx3njirnmGlGysNyUlBuRautklwurNWJDfLUIjlsl5609-gdwhdmkFBG8WXejK_r9FV3Z2TKMSRFNp10WwVFtE-uZtDYVgdiwlo2pbvZUk5-B7ltJhkmtjOB9a1d_pnW_KF7eO4VXcEC9wXeTOKHHsLeYL-1rRFYL04FdMRId2O_1Bt8GeD05vfzyFVv7Wb8TVis6waF-A9VAJI4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuBAkaCE1hNbCe2Dwjxqrb0cWqlvaBgx_ayUpUs-9Bq-6P4jYydZKvl0VuvsaPYnvHMN554PoReSZPZwlBPPDWWcENzonPDiXRCCCM105El4vikGJzxr8N8uIV-9Xdhwm-VvU2Mhto2VTgj36Oi4ArgvBTvJz9JYI0K2dWeQqNVi0O3WkLINnt38Bnk-5rS_S-nnwakYxUgFaCTOZHUCl-lxhrlQF8B7niWGeVFrrSnmVdcc2FyB87MZQ50nFUy5zYrCsUqrQNLBJj8G-B40xDsiaFYn-mErBnPVHc3J2Vybwb-Mdxho4zABFRBLjb8X6QJ-Be2_fsXzT_ytNH97d9Fdzrcij-0inYPbbn6PrrZMlmuHqBv4PNCMQrsz5sltuNR4CLB8-W4xqNY2DrIHwNAxrE-sl7hUEUK4vQGBz9qMbROtdVTUulwTIYnGmyxxX4RTvMeorNrWeNHaLtuareDsDYZNUpr4wQEM5LLShnHnLEe1trLKkFZv55l1ZU1D-wa52VMrzNZtjIo4VtllEF5kaA363cmbVGPK3t_DGJa9wwFueODZjoqu_1daq4BegvHjaXciFw7L1MunNYAOGFqCdrthVx2VmJWXup0gl6um2F_h6SNrl2ziH1ygOh5yhL0uNWJ9UhYgItM0ASJDW3ZGOpmSz3-EWuIK8kgUpYJetvr1eWw_r8UT66exQt0a3B6fFQeHZwcPkW3aVD7NCMZ3UXb8-nCPQP8NjfP46bB6Pt179LfBH5XrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVCAuiDcLBYwEJ7Cya3vX3gNClDZqKUQVolIvyLXXdohU7YY8FKU_jV_HeB-pwqO3XmOvYnu-mfnssWcQeiVNYjNDPfHUWMINTYlODSfSCSGM1EzXVSK-DLODE_7pND3dQr-6tzDhWmVnE2tDbasinJH3qch4DnReir5vr0Uc7w3eT36SUEEqRFq7choNRI7cagnbt9m7wz2Q9WtKB_vfPh6QtsIAKYCpzImkVvgiNtbkDrAL1MezxORepLn2NPE511yY1IFjc4kDvLNCptwmWZazQutQMQLM_7YIu6Ie2t7dHx5_XZ_whBgaT_L2pU7MZH8G3jK8aKOMwHTyjFxseMO6aMC_mO7fFzb_iNrWznBwB91uWSz-0MDuLtpy5T10o6lrubqPvoMHDKkpsD-vltiOR6EyCZ4vxyUe1WmuAxow0GVcZ0vWKxxySsGuvcLBq1oMrVNt9ZQUOhya4YkGy2yxX4SzvQfo5FpW-SHqlVXpHiOsTUJNrrVxArY2kssiN445Yz2stZdFhJJuPVXRJjkPtTbOVR1sZ1I1MlDwX6qWgbqI0Jv1N5MmxceVvXeDmNY9Q3ru-odqOlKttivNNRBx4bixlBuRaudlzIXTGugnTC1CO52QVWszZuoS4RF6uW4GbQ8hHF26alH3SYGwpzGL0KMGE-uRsEAemaAREhto2RjqZks5_lFnFM8lg32zjNDbDleXw_r_Ujy5ehYv0E3QUPX5cHj0FN2iAfVxQhK6g3rz6cI9AzI3N89brcHo7LoV9TftT11I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+flow+digital+twin+generation+for+highway+scenario+based+on+radar-camera+paired+fusion&rft.jtitle=Scientific+reports&rft.au=Li%2C+Yanbing&rft.au=Zhang%2C+Weichuan&rft.date=2023-01-12&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=642&rft_id=info:doi/10.1038%2Fs41598-023-27696-z&rft_id=info%3Apmid%2F36635372&rft.externalDocID=36635372 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |