A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets
The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves...
Saved in:
Published in | The Visual computer Vol. 38; no. 8; pp. 2939 - 2970 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities, often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep multimodal learning for the computer vision community by exploring how to generate deep models that consider the integration and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and provide insights and directions for future research. |
---|---|
AbstractList | The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities, often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep multimodal learning for the computer vision community by exploring how to generate deep models that consider the integration and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and provide insights and directions for future research. The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities, often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep multimodal learning for the computer vision community by exploring how to generate deep models that consider the integration and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and provide insights and directions for future research.The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities, often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep multimodal learning for the computer vision community by exploring how to generate deep models that consider the integration and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and provide insights and directions for future research. |
Author | Knani, Raja Hamdaoui, Fayçal Mtibaa, Abdellatif Bayoudh, Khaled |
Author_xml | – sequence: 1 givenname: Khaled orcidid: 0000-0002-1148-4800 surname: Bayoudh fullname: Bayoudh, Khaled email: khaled.isimm@gmail.com organization: Electrical Department, National Engineering School of Monastir (ENIM), Laboratory of Electronics and Micro-electronics (LR99ES30), Faculty of Sciences of Monastir (FSM), University of Monastir – sequence: 2 givenname: Raja surname: Knani fullname: Knani, Raja organization: Physics Department, Laboratory of Electronics and Micro-electronics (LR99ES30), Faculty of Sciences of Monastir (FSM), University of Monastir – sequence: 3 givenname: Fayçal surname: Hamdaoui fullname: Hamdaoui, Fayçal organization: Electrical Department, National Engineering School of Monastir (ENIM), Laboratory of Control, Electrical Systems and Environment (LASEE), National Engineering School of Monastir, University of Monastir – sequence: 4 givenname: Abdellatif surname: Mtibaa fullname: Mtibaa, Abdellatif organization: Electrical Department, National Engineering School of Monastir (ENIM), Laboratory of Electronics and Micro-electronics (LR99ES30), Faculty of Sciences of Monastir (FSM), University of Monastir |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34131356$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctuFDEQtFAQ2QR-gAOyxIUDA37Mw-YQKYp4SZG4wNnyeNqLI4892J6V8vd4d0OAHHKwWq2uKld3naGTEAMg9JKSd5SQ4X0mhA-0Iezw-r4ZnqANbTlrGKfdCdoQOoiGDUKeorOcb0jth1Y-Q6e8pZzyrt8ge4nzmnZwi2PAE8CC59UXN8dJe-xBp-DCFtuYsInzshZIeOeyi-ED1tNOBwP5LS4JwlSrXhbvjC51vO_ChCdddIaSn6OnVvsML-7qOfrx6eP3qy_N9bfPX68urxvTtaQ0gslRM9bKwVJRl9MMBJFWjBPVIycjjGy0HbV2YtIMrGKosC1wAxXJR8nP0cVRd1nHGSYDoSTt1ZLcrNOtitqp_yfB_VTbuFOCSkYpqwJv7gRS_LVCLmp22YD3OkBcs2JdW4_KZU8r9PUD6E1cU6jrKSartb5jZC_46l9H91b-RFAB7AgwKeacwN5DKFH7nNUxZ1UzVoec1VBJ4gHJuHI4fN3K-cep_EjN9Z-whfTX9iOs390TvWY |
CitedBy_id | crossref_primary_10_3390_electronics14010125 crossref_primary_10_1007_s00371_024_03373_8 crossref_primary_10_1038_s41598_024_51329_8 crossref_primary_10_1002_widm_1488 crossref_primary_10_1007_s00371_024_03355_w crossref_primary_10_1007_s00371_023_03126_z crossref_primary_10_1007_s11432_023_3853_y crossref_primary_10_17671_gazibtd_1549034 crossref_primary_10_1016_j_compbiomed_2024_108709 crossref_primary_10_1016_j_engappai_2024_108550 crossref_primary_10_1038_s42256_023_00670_0 crossref_primary_10_1007_s00371_022_02416_2 crossref_primary_10_1007_s11633_022_1398_0 crossref_primary_10_3390_s23052381 crossref_primary_10_2196_40589 crossref_primary_10_1007_s00371_021_02350_9 crossref_primary_10_1109_ACCESS_2023_3323574 crossref_primary_10_1007_s00371_024_03324_3 crossref_primary_10_1016_j_ndteint_2024_103205 crossref_primary_10_1109_ACCESS_2024_3462543 crossref_primary_10_1109_ACCESS_2023_3287090 crossref_primary_10_1016_j_procir_2023_02_034 crossref_primary_10_3390_info15040215 crossref_primary_10_1007_s40747_025_01827_7 crossref_primary_10_1007_s00371_023_03011_9 crossref_primary_10_1007_s11042_023_18027_5 crossref_primary_10_1007_s00371_022_02443_z crossref_primary_10_1007_s00500_021_06576_6 crossref_primary_10_1007_s00371_023_02827_9 crossref_primary_10_1016_j_inffus_2023_102217 crossref_primary_10_3390_ai3020019 crossref_primary_10_1007_s00371_021_02386_x crossref_primary_10_3390_s22207962 crossref_primary_10_3390_s23125597 crossref_primary_10_1007_s00371_022_02599_8 crossref_primary_10_1007_s00371_023_02891_1 crossref_primary_10_1007_s00371_022_02511_4 crossref_primary_10_1109_TIM_2024_3480227 crossref_primary_10_1142_S2811032322500047 crossref_primary_10_1038_s42256_023_00785_4 crossref_primary_10_1016_j_neucom_2024_129131 crossref_primary_10_3389_fdata_2023_1227189 crossref_primary_10_3390_s23010184 crossref_primary_10_1038_s41575_022_00701_y crossref_primary_10_5582_bst_2024_01312 crossref_primary_10_3390_electronics10243165 crossref_primary_10_3390_technologies12020015 crossref_primary_10_1016_j_autcon_2024_105696 crossref_primary_10_1016_j_clon_2021_12_002 crossref_primary_10_1109_TPAMI_2024_3420239 crossref_primary_10_1007_s11042_024_19800_w crossref_primary_10_1038_s41598_023_41463_0 crossref_primary_10_1007_s11760_024_03126_z crossref_primary_10_3390_make6030074 crossref_primary_10_1109_ACCESS_2024_3463969 crossref_primary_10_1080_0951192X_2023_2257623 crossref_primary_10_1016_j_cie_2024_110074 crossref_primary_10_1016_j_aei_2024_102678 crossref_primary_10_1002_smtd_202301021 crossref_primary_10_3390_s24072286 crossref_primary_10_1007_s11042_023_15555_y crossref_primary_10_1109_ACCESS_2021_3131733 crossref_primary_10_1109_ACCESS_2022_3209825 crossref_primary_10_18267_j_aip_202 crossref_primary_10_1016_j_eswa_2024_125025 crossref_primary_10_1007_s00371_023_03176_3 crossref_primary_10_3390_electronics14061124 crossref_primary_10_1109_TCSVT_2023_3322470 crossref_primary_10_3390_electronics13234721 crossref_primary_10_3390_info14050253 crossref_primary_10_1080_00305316_2024_2361081 crossref_primary_10_1109_ACCESS_2024_3423323 crossref_primary_10_1142_S0129065723500193 crossref_primary_10_1016_j_asoc_2024_111553 crossref_primary_10_1177_14780771241286614 crossref_primary_10_3390_systems11010044 crossref_primary_10_1016_j_imavis_2024_105060 crossref_primary_10_1007_s11042_024_20081_6 crossref_primary_10_1360_SSI_2022_0226 crossref_primary_10_3390_app12031286 crossref_primary_10_3390_s24206691 crossref_primary_10_1038_s42256_023_00624_6 crossref_primary_10_3390_ijgi11060351 crossref_primary_10_1109_TGRS_2025_3539535 crossref_primary_10_1007_s12559_022_10019_1 crossref_primary_10_54455_MCN2504 crossref_primary_10_3390_s22186816 crossref_primary_10_21015_vtse_v12i2_1734 crossref_primary_10_1080_23311886_2024_2376309 crossref_primary_10_1007_s00371_024_03311_8 crossref_primary_10_1007_s11467_023_1373_4 crossref_primary_10_1016_j_ecoinf_2024_102950 crossref_primary_10_1063_5_0091135 crossref_primary_10_3389_fpls_2023_1094142 crossref_primary_10_12791_KSBEC_2024_33_4_352 crossref_primary_10_32604_csse_2023_034543 crossref_primary_10_1155_2022_1653452 crossref_primary_10_1016_j_knosys_2024_111938 crossref_primary_10_1016_j_compag_2024_108938 crossref_primary_10_1109_ACCESS_2023_3243854 crossref_primary_10_1007_s00371_023_03096_2 crossref_primary_10_1007_s00371_024_03596_9 crossref_primary_10_1080_21642583_2025_2467083 crossref_primary_10_3389_fonc_2022_984021 crossref_primary_10_1109_ACCESS_2024_3401179 crossref_primary_10_1109_TMM_2024_3521830 crossref_primary_10_1186_s13040_024_00367_z crossref_primary_10_1007_s00371_023_02886_y crossref_primary_10_21202_jdtl_2024_42 |
Cites_doi | 10.1109/ACCESS.2020.2997255 10.1109/CVPR.2017.632 10.1016/j.patrec.2018.10.002 10.1109/ACCESS.2019.2939201 10.1109/ICCV.2019.00518 10.1162/neco.1997.9.8.1735 10.1016/j.cviu.2021.103255 10.1007/978-3-642-70911-1_20 10.1109/ICASSP.2019.8682377 10.1109/ICCV.2017.322 10.1109/CVPRW50498.2020.00486 10.1609/aaai.v34i03.5649 10.1109/JRPROC.1960.287598 10.1109/TIP.2020.2975980 10.1109/CVPR.2018.00008 10.1109/ACCESS.2020.3016780 10.1007/s00371-018-1566-y 10.1007/s00371-021-02064-y 10.1007/978-3-030-16272-6_11 10.1007/s00371-020-01864-y 10.1007/978-3-319-46448-0_2 10.1007/s41095-020-0199-z 10.1109/CVPR.2018.00143 10.1109/CVPR.2019.01275 10.1109/CVPR.2018.00581 10.1109/CVPR.2016.91 10.1016/0004-3702(81)90024-2 10.1109/ICCV.2019.00680 10.1007/s11263-019-01189-x 10.3390/s19040866 10.1109/CVPR.2017.106 10.1109/CVPR.2019.00209 10.1109/CVPR.2018.00387 10.1145/3065386 10.1016/j.neucom.2015.09.116 10.1016/j.neucom.2014.11.078 10.1007/s00371-020-01833-5 10.1109/CVPR42600.2020.01164 10.1007/978-3-030-01219-9_11 10.1109/CVPR.2019.00647 10.1109/CCHI.2019.8901921 10.1109/IMCEC.2016.7867471 10.1109/ICCV.2015.169 10.1109/CVPR.2019.00126 10.1109/IROS.2011.6048835 10.18653/v1/P17-2031 10.1007/s00371-020-02015-z 10.18653/v1/P18-1209 10.1109/wicom.2011.6040028 10.1007/s11263-013-0620-5 10.1109/ICCV.2017.450 10.1109/ICCV.2019.00368 10.1109/5.18626 10.1609/aaai.v33i01.33014822 10.1109/CVPR42600.2020.01034 10.1007/s00371-020-01848-y 10.1007/978-3-030-00919-9_23 10.1109/JPROC.2015.2460697 10.1109/CVPR.2018.00419 10.1038/s41598-019-50835-4 10.1016/j.neucom.2019.10.025 10.1007/s13735-017-0141-z 10.1109/ACCESS.2019.2916887 10.1167/16.12.326 10.1109/TPAMI.2019.2909895 10.24963/ijcai.2020/124 10.1109/CVPR.2015.7299135 10.1007/978-3-319-10602-1_30 10.1007/s00371-019-01775-7 10.1016/j.neucom.2019.11.023 10.1016/j.patcog.2019.05.032 10.1007/s00371-019-01661-2 10.1109/JBHI.2018.2867619 10.1109/ICCVW.2011.6130298 10.1109/CVPR42600.2020.00999 10.1109/TRO.2017.2705103 10.1007/s10462-020-09825-6 10.1109/CVPR.2016.438 10.1109/TMM.2015.2477042 10.1007/s11119-020-09709-3 10.1007/s00371-020-01982-7 10.1007/s00371-020-01986-3 10.1109/TCOM.1980.1094577 10.1109/CVPR.2016.541 10.1023/B:VISI.0000013087.49260.fb 10.1016/j.sigpro.2015.01.001 10.1109/ICCV.2019.00604 10.1007/s00371-020-01843-3 10.1007/s00371-021-02061-1 10.1109/BTAS.2015.7358754 10.1109/ICCV.2015.314 10.1109/ICIP.2019.8803528 10.1007/s00371-019-01714-6 10.1109/ICCV.2019.00751 10.1109/CVPR.2014.81 10.1109/ICCV.2015.141 10.1109/ICIP.2019.8802922 10.1109/ICCV.2019.00245 10.1007/s00371-018-1612-9 10.3390/rs11040446 10.1007/s10489-020-01801-5 10.3390/s18093040 10.1007/s00371-020-01854-0 10.1109/MSP.2017.2738401 10.1109/MSP.2017.2765202 10.1109/CVPR.2019.00210 10.1109/CVPR.2018.00572 10.1109/TPAMI.2013.50 10.3390/electronics9010085 10.1007/978-3-319-29451-3_54 10.1016/j.procs.2017.03.069 10.1155/2013/425740 10.1007/s13246-020-00957-1 10.1109/TMM.2017.2774007 10.1016/j.trc.2018.02.012 10.1109/ACCESS.2020.2975640 10.1007/s00530-019-00645-5 10.1016/B978-0-12-816385-6.00005-2 10.1109/ICCV.2019.00273 10.1109/CVPR.2019.01281 10.1007/s00371-019-01705-7 10.1109/CVPR.2019.00660 10.1145/2897824.2925954 10.1109/FG47880.2020.00038 10.1109/IJCNN.2000.857823 10.1016/j.neucom.2020.01.085 10.1109/ACCESS.2019.2962554 10.1109/CVPR.2019.00358 10.1016/j.patcog.2016.09.039 10.1109/TNNLS.2014.2330900 10.1007/s11042-018-5856-1 10.1007/s00371-020-01821-9 10.1109/IV48863.2021.9575718 10.1109/ICCV.2019.00855 10.1609/aaai.v33i01.33018901 10.1007/s00371-019-01786-4 10.1109/WCNC.2017.7925709 10.1007/s00371-019-01787-3 10.1038/s41598-019-38914-y 10.1145/3161174 10.1109/ACCESS.2019.2902507 10.3115/v1/P15-2139 10.1109/CVPRW.2019.00158 10.1109/ACCESS.2018.2830661 10.1038/nature14539 10.1109/IROS.2011.6094649 10.1162/NECO_a_00801 10.1007/978-3-030-32962-4_18 10.1007/978-3-030-58604-1_7 10.1007/s00371-019-01774-8 10.1109/ICCVW.2017.360 10.1007/s10916-020-01562-1 10.3390/jimaging5010005 10.1007/s11263-019-01247-4 10.1186/s13640-018-0371-x 10.1007/s00371-018-1609-4 10.1007/978-3-662-44415-3_16 10.1109/IGARSS.2019.8898605 10.1109/INTELCIS.2017.8260032 10.1109/ICCV.2017.324 10.1016/j.csl.2020.101093 10.1007/978-3-030-32583-1_12 10.1109/JSEN.2020.3015781 10.1109/CVPR.2019.00511 10.1109/ACCESS.2019.2907071 10.1007/s00371-019-01720-8 10.1109/ICCV.2015.301 10.1109/TPAMI.2016.2577031 10.1007/s00371-020-01957-8 10.1016/j.patrec.2017.09.038 10.1162/0899766042321814 10.1109/CVPR.2019.00679 10.1109/TMM.2017.2742704 10.1038/323533a0 10.1109/CVPR.2018.00644 10.1016/j.eswa.2019.113114 10.7551/mitpress/3717.003.0017 10.1109/TIV.2019.2938110 10.1109/CVPR.2015.7298965 10.1109/CVPR.2019.00072 10.1002/rob.21918 10.1109/CVPR.2016.442 10.1023/A:1007379606734 10.1186/s10033-018-0275-9 10.1007/s11263-018-1133-z 10.1007/978-981-10-8530-7_8 10.1109/ICRA.2014.6906903 10.1109/WACV45572.2020.9093438 10.1109/CVPR.2016.10 10.3390/s19204494 10.1007/s00371-020-01934-1 10.1109/5.726791 10.1007/978-981-13-1132-1_5 10.1109/CVPR42600.2020.01088 10.1023/A:1007425814087 10.1109/ICRA.2011.5980382 10.1109/CVPR.2017.759 10.1007/978-3-319-10605-2_54 10.1016/j.neucom.2018.11.004 10.1162/neco.2006.18.7.1527 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. Copyright Springer Nature B.V. Aug 2022 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. – notice: Copyright Springer Nature B.V. Aug 2022 |
DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s00371-021-02166-7 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Advanced Technologies & Aerospace Collection PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 2970 |
ExternalDocumentID | PMC8192112 34131356 10_1007_s00371_021_02166_7 |
Genre | Journal Article |
GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PHGZT PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM ABRTQ NPM PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c540t-829ba22497f18037a2e809f8bd1ab30beb2bf51ffd29c7218018f4e3cea2e3b93 |
IEDL.DBID | BENPR |
ISSN | 0178-2789 |
IngestDate | Thu Aug 21 18:19:34 EDT 2025 Fri Jul 11 16:38:13 EDT 2025 Fri Jul 25 20:28:43 EDT 2025 Mon Jul 21 06:07:23 EDT 2025 Tue Jul 01 05:11:44 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Thu Apr 10 07:49:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Datasets Deep learning Computer vision Applications Sensory modalities Multimodal learning |
Language | English |
License | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-829ba22497f18037a2e809f8bd1ab30beb2bf51ffd29c7218018f4e3cea2e3b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1148-4800 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8192112 |
PMID | 34131356 |
PQID | 2918065202 |
PQPubID | 2043737 |
PageCount | 32 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192112 proquest_miscellaneous_2541783961 proquest_journals_2918065202 pubmed_primary_34131356 crossref_primary_10_1007_s00371_021_02166_7 crossref_citationtrail_10_1007_s00371_021_02166_7 springer_journals_10_1007_s00371_021_02166_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationTitleAlternate | Vis Comput |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | LR Rabiner (2166_CR44) 1989; 77 DJ Butler (2166_CR64) 2012; 2012 Y Jang (2166_CR129) 2019; 127 S Tu (2166_CR187) 2020; 21 F Aiolli (2166_CR42) 2015; 169 W Guo (2166_CR35) 2019; 7 A Sano (2166_CR222) 2019; 23 Y Guo (2166_CR28) 2018; 7 K Bayoudh (2166_CR238) 2020; 43 L Wei (2166_CR131) 2020 P Sangkloy (2166_CR101) 2016; 35 A Metzger (2166_CR147) 2019; 9 2166_CR11 EJ Shamwell (2166_CR199) 2019 2166_CR10 2166_CR191 K Bayoudh (2166_CR198) 2020 2166_CR196 S Liu (2166_CR151) 2019; 19 2166_CR194 2166_CR18 2166_CR17 2166_CR16 2166_CR186 J Kim (2166_CR210) 2020; 8 2166_CR14 2166_CR22 2166_CR181 G Rohith (2166_CR226) 2020 2166_CR20 Z Kandylakis (2166_CR195) 2019; 11 2166_CR185 O Guclu (2166_CR148) 2020; 36 P Zarbakhsh (2166_CR123) 2020; 36 2166_CR29 2166_CR176 2166_CR27 2166_CR175 2166_CR26 2166_CR25 2166_CR24 2166_CR23 K Ščupáková (2166_CR165) 2019; 9 L Liu (2166_CR84) 2020; 128 S Zhang (2166_CR240) 2020; 36 DR Hardoon (2166_CR202) 2004; 16 S Dargan (2166_CR92) 2020; 143 M Gönen (2166_CR41) 2011; 12 R Caruana (2166_CR110) 1997; 28 2166_CR200 2166_CR204 MY Abbass (2166_CR178) 2020 GE Hinton (2166_CR15) 2006; 18 2166_CR207 2166_CR205 YB Michael (2166_CR190) 2019 L Jiao (2166_CR67) 2019; 7 Y Guo (2166_CR179) 2016; 187 Q Luo (2166_CR184) 2020; 378 S Grigorescu (2166_CR146) 2020; 37 H Wen (2166_CR43) 2017; 63 M Gao (2166_CR216) 2019; 7 A Rangesh (2166_CR83) 2019; 4 H Basly (2166_CR241) 2021 N Srivastava (2166_CR206) 2014; 15 A Dilawari (2166_CR68) 2019; 7 X Yang (2166_CR201) 2019; 1 C Ding (2166_CR51) 2015; 17 X Liu (2166_CR177) 2019; 35 T Zhou (2166_CR242) 2021 WG Hatcher (2166_CR180) 2018; 6 F Rosenblatt (2166_CR8) 1960; 48 X Huang (2166_CR234) 2021; 37 2166_CR77 2166_CR76 2166_CR75 2166_CR74 2166_CR72 G Bhatt (2166_CR208) 2019; 95 S Pouyanfar (2166_CR182) 2018; 51 2166_CR122 2166_CR243 2166_CR121 2166_CR120 2166_CR127 2166_CR126 A Asvadi (2166_CR192) 2018; 115 2166_CR79 2166_CR125 Y Lecun (2166_CR21) 1998; 86 2166_CR78 2166_CR124 2166_CR128 P Viola (2166_CR49) 2004; 57 R Singh (2166_CR218) 2020; 26 2166_CR88 2166_CR87 2166_CR85 G Lian (2166_CR157) 2020; 36 2166_CR82 2166_CR81 2166_CR233 2166_CR111 AH Abdulnabi (2166_CR219) 2018; 20 2166_CR232 2166_CR231 Y Bengio (2166_CR2) 2013; 35 2166_CR230 S Zhang (2166_CR239) 2020; 36 2166_CR116 2166_CR237 2166_CR115 2166_CR236 2166_CR114 2166_CR89 2166_CR119 2166_CR118 2166_CR117 Y Liu (2166_CR135) 2020; 29 2166_CR91 S Escalera (2166_CR96) 2016; 17 2166_CR90 S Hashemi Hosseinabad (2166_CR143) 2020 2166_CR99 2166_CR98 2166_CR97 T Ma (2166_CR225) 2020 2166_CR94 C Zou (2166_CR95) 2019; 127 2166_CR100 L Wang (2166_CR158) 2020; 36 D Zhao (2166_CR220) 2019; 329 Z Ghahramani (2166_CR45) 1997; 29 2166_CR104 2166_CR103 T Mahmud (2166_CR193) 2020 2166_CR102 2166_CR223 2166_CR109 2166_CR108 2166_CR229 X Zhang (2166_CR138) 2020 X Li (2166_CR221) 2018; 77 B Ammour (2166_CR93) 2020; 9 D Ramachandram (2166_CR34) 2017; 34 DE Rumelhart (2166_CR12) 1986; 323 R Mur-Artal (2166_CR152) 2016 FS Bashiri (2166_CR166) 2019; 5 M He (2166_CR150) 2020; 36 J Van Brummelen (2166_CR149) 2018; 89 2166_CR211 L Shao (2166_CR70) 2015; 26 MY Abbass (2166_CR139) 2020 2166_CR215 S Hochreiter (2166_CR13) 1997; 9 2166_CR214 2166_CR213 2166_CR212 2166_CR217 JR Uijlings (2166_CR80) 2013; 104 2166_CR33 2166_CR170 2166_CR32 2166_CR31 S Palaskar (2166_CR113) 2020; 64 2166_CR30 2166_CR174 2166_CR173 2166_CR172 2166_CR171 2166_CR167 Y Liu (2166_CR209) 2016; 120 2166_CR39 2166_CR38 2166_CR37 S Liu (2166_CR189) 2020; 59 Y LeCun (2166_CR4) 2015; 521 2166_CR168 Y Peng (2166_CR112) 2017; 20 W Wang (2166_CR130) 2019; 10 H Song (2166_CR224) 2020 A Krizhevsky (2166_CR7) 2017; 60 J Li (2166_CR188) 2017; 107 2166_CR40 JH Koo (2166_CR73) 2018; 18 2166_CR163 2166_CR162 2166_CR161 2166_CR160 P Xi (2166_CR140) 2020; 36 2166_CR156 2166_CR155 2166_CR154 D Lahat (2166_CR36) 2015; 103 2166_CR153 S-Y Guan (2166_CR169) 2018; 31 2166_CR48 X Wang (2166_CR107) 2020; 1 2166_CR47 2166_CR159 G Duan (2166_CR54) 2011; 22 Z Wang (2166_CR164) 2020; 8 Y Linde (2166_CR46) 1980; 28 2166_CR55 2166_CR53 W Wang (2166_CR66) 2020; 8 2166_CR52 2166_CR50 X Fan (2166_CR228) 2020 2166_CR145 2166_CR144 2166_CR142 Z Liu (2166_CR235) 2020 2166_CR59 2166_CR58 2166_CR57 F Shi (2166_CR105) 2020; 1 X Jia (2166_CR227) 2021 2166_CR56 KC Santosh (2166_CR106) 2020; 44 A Creswell (2166_CR19) 2018; 35 N Srivastava (2166_CR71) 2014; 15 X Lan (2166_CR197) 2020; 130 G Ciaparrone (2166_CR86) 2020; 381 S Chandar (2166_CR203) 2016; 28 BKP Horn (2166_CR65) 1981; 17 2166_CR63 2166_CR62 2166_CR141 2166_CR61 2166_CR60 T Hascoet (2166_CR132) 2019; 2019 2166_CR5 2166_CR134 2166_CR6 2166_CR133 2166_CR3 2166_CR1 T Ophoff (2166_CR183) 2019; 19 2166_CR69 2166_CR137 2166_CR136 2166_CR9 |
References_xml | – ident: 2166_CR161 – volume: 8 start-page: 104933 year: 2020 ident: 2166_CR210 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997255 – ident: 2166_CR18 doi: 10.1109/CVPR.2017.632 – volume: 17 start-page: 1 year: 2016 ident: 2166_CR96 publication-title: J. Mach. Learn. Res. – volume: 130 start-page: 12 year: 2020 ident: 2166_CR197 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2018.10.002 – volume: 7 start-page: 128837 year: 2019 ident: 2166_CR67 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 – ident: 2166_CR142 doi: 10.1109/ICCV.2019.00518 – volume: 9 start-page: 1735 year: 1997 ident: 2166_CR13 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 2166_CR119 doi: 10.1016/j.cviu.2021.103255 – ident: 2166_CR9 doi: 10.1007/978-3-642-70911-1_20 – ident: 2166_CR37 – ident: 2166_CR175 doi: 10.1109/ICASSP.2019.8682377 – ident: 2166_CR30 doi: 10.1109/ICCV.2017.322 – ident: 2166_CR116 doi: 10.1109/CVPRW50498.2020.00486 – ident: 2166_CR137 doi: 10.1609/aaai.v34i03.5649 – volume: 48 start-page: 301 year: 1960 ident: 2166_CR8 publication-title: Proc. IRE doi: 10.1109/JRPROC.1960.287598 – volume: 51 start-page: 92:1 year: 2018 ident: 2166_CR182 publication-title: ACM Comput. Surv. – ident: 2166_CR108 – volume: 29 start-page: 4788 year: 2020 ident: 2166_CR135 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2975980 – ident: 2166_CR89 doi: 10.1109/CVPR.2018.00008 – ident: 2166_CR145 doi: 10.1109/ACCESS.2020.3016780 – volume: 35 start-page: 445 year: 2019 ident: 2166_CR177 publication-title: Vis. Comput. doi: 10.1007/s00371-018-1566-y – year: 2021 ident: 2166_CR241 publication-title: Vis. Comput. doi: 10.1007/s00371-021-02064-y – ident: 2166_CR32 doi: 10.1007/978-3-030-16272-6_11 – ident: 2166_CR215 doi: 10.1007/s00371-020-01864-y – ident: 2166_CR78 doi: 10.1007/978-3-319-46448-0_2 – year: 2021 ident: 2166_CR242 publication-title: Comp. Vis. Med. doi: 10.1007/s41095-020-0199-z – ident: 2166_CR50 – ident: 2166_CR229 doi: 10.1109/CVPR.2018.00143 – ident: 2166_CR52 doi: 10.1109/CVPR.2019.01275 – ident: 2166_CR136 doi: 10.1109/CVPR.2018.00581 – volume: 1 start-page: 2020 year: 2020 ident: 2166_CR105 publication-title: IEEE Rev. Biomed. Eng. – ident: 2166_CR25 doi: 10.1109/CVPR.2016.91 – volume: 17 start-page: 185 year: 1981 ident: 2166_CR65 publication-title: Artif. Intell. doi: 10.1016/0004-3702(81)90024-2 – ident: 2166_CR133 doi: 10.1109/ICCV.2019.00680 – volume: 127 start-page: 1385 year: 2019 ident: 2166_CR129 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01189-x – volume: 19 start-page: 866 year: 2019 ident: 2166_CR183 publication-title: Sensors doi: 10.3390/s19040866 – ident: 2166_CR77 doi: 10.1109/CVPR.2017.106 – ident: 2166_CR125 doi: 10.1109/CVPR.2019.00209 – ident: 2166_CR87 doi: 10.1109/CVPR.2018.00387 – volume-title: Multimodal Scene Understanding year: 2019 ident: 2166_CR190 – volume: 60 start-page: 84 year: 2017 ident: 2166_CR7 publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 187 start-page: 27 year: 2016 ident: 2166_CR179 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 169 start-page: 215 year: 2015 ident: 2166_CR42 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.078 – year: 2020 ident: 2166_CR139 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01833-5 – ident: 2166_CR155 doi: 10.1109/CVPR42600.2020.01164 – ident: 2166_CR230 doi: 10.1007/978-3-030-01219-9_11 – ident: 2166_CR90 doi: 10.1109/CVPR.2019.00647 – ident: 2166_CR72 – ident: 2166_CR185 doi: 10.1109/CCHI.2019.8901921 – ident: 2166_CR10 doi: 10.1109/IMCEC.2016.7867471 – volume: 22 start-page: 471 year: 2011 ident: 2166_CR54 publication-title: Content-based image retrieval research. Phys. Proc. – ident: 2166_CR75 doi: 10.1109/ICCV.2015.169 – ident: 2166_CR200 doi: 10.1109/CVPR.2019.00126 – ident: 2166_CR60 doi: 10.1109/IROS.2011.6048835 – ident: 2166_CR114 doi: 10.18653/v1/P17-2031 – volume: 2012 start-page: 611 year: 2012 ident: 2166_CR64 publication-title: Comput. Vis. ECCV – year: 2020 ident: 2166_CR228 publication-title: Vis. Comput. doi: 10.1007/s00371-020-02015-z – ident: 2166_CR39 doi: 10.18653/v1/P18-1209 – ident: 2166_CR40 doi: 10.1109/wicom.2011.6040028 – volume: 104 start-page: 154 year: 2013 ident: 2166_CR80 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – ident: 2166_CR233 doi: 10.1109/ICCV.2017.450 – ident: 2166_CR134 doi: 10.1109/ICCV.2019.00368 – volume: 77 start-page: 257 year: 1989 ident: 2166_CR44 publication-title: Proc. IEEE doi: 10.1109/5.18626 – ident: 2166_CR109 doi: 10.1609/aaai.v33i01.33014822 – ident: 2166_CR237 doi: 10.1109/CVPR42600.2020.01034 – year: 2020 ident: 2166_CR178 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01848-y – ident: 2166_CR144 doi: 10.1007/978-3-030-00919-9_23 – volume: 103 start-page: 1449 issue: 9 year: 2015 ident: 2166_CR36 publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2460697 – ident: 2166_CR204 doi: 10.1109/CVPR.2018.00419 – volume: 9 start-page: 14383 year: 2019 ident: 2166_CR147 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50835-4 – volume: 378 start-page: 364 year: 2020 ident: 2166_CR184 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.025 – volume: 7 start-page: 87 year: 2018 ident: 2166_CR28 publication-title: Int. J. Multimed. Infom. Retr. doi: 10.1007/s13735-017-0141-z – ident: 2166_CR1 – ident: 2166_CR47 – volume: 7 start-page: 63373 year: 2019 ident: 2166_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916887 – ident: 2166_CR156 doi: 10.1167/16.12.326 – ident: 2166_CR99 – year: 2019 ident: 2166_CR199 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2909895 – ident: 2166_CR118 doi: 10.24963/ijcai.2020/124 – ident: 2166_CR102 doi: 10.1109/CVPR.2015.7299135 – ident: 2166_CR91 doi: 10.1007/978-3-319-10602-1_30 – volume: 36 start-page: 1869 year: 2020 ident: 2166_CR140 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01775-7 – ident: 2166_CR124 – volume: 381 start-page: 61 year: 2020 ident: 2166_CR86 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.023 – volume: 1 start-page: 2020 year: 2020 ident: 2166_CR107 publication-title: IEEE Commun. Surv. Tutorials – volume: 95 start-page: 12 year: 2019 ident: 2166_CR208 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.05.032 – volume: 36 start-page: 799 year: 2020 ident: 2166_CR157 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01661-2 – ident: 2166_CR162 – volume: 23 start-page: 1607 year: 2019 ident: 2166_CR222 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2867619 – ident: 2166_CR59 doi: 10.1109/ICCVW.2011.6130298 – ident: 2166_CR127 doi: 10.1109/CVPR42600.2020.00999 – year: 2016 ident: 2166_CR152 publication-title: Stereo RGB-D Cameras doi: 10.1109/TRO.2017.2705103 – ident: 2166_CR20 doi: 10.1007/s10462-020-09825-6 – ident: 2166_CR63 doi: 10.1109/CVPR.2016.438 – volume: 17 start-page: 2049 year: 2015 ident: 2166_CR51 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2015.2477042 – volume: 21 start-page: 1072 year: 2020 ident: 2166_CR187 publication-title: Precision Agric. doi: 10.1007/s11119-020-09709-3 – volume: 37 start-page: 95 year: 2021 ident: 2166_CR234 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01982-7 – volume: 15 start-page: 2949 year: 2014 ident: 2166_CR206 publication-title: J. Mach. Learn. Res. – year: 2020 ident: 2166_CR224 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01986-3 – ident: 2166_CR205 – volume: 28 start-page: 84 year: 1980 ident: 2166_CR46 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1980.1094577 – ident: 2166_CR163 – ident: 2166_CR100 doi: 10.1109/CVPR.2016.541 – volume: 57 start-page: 137 year: 2004 ident: 2166_CR49 publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000013087.49260.fb – volume: 59 start-page: 053103 year: 2020 ident: 2166_CR189 publication-title: OE – volume: 120 start-page: 761 year: 2016 ident: 2166_CR209 publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.01.001 – ident: 2166_CR159 doi: 10.1109/ICCV.2019.00604 – year: 2020 ident: 2166_CR225 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01843-3 – volume: 1 start-page: 2019 year: 2019 ident: 2166_CR201 publication-title: IEEE Trans. Knowl. Data Eng. – year: 2021 ident: 2166_CR227 publication-title: Vis. Comput. doi: 10.1007/s00371-021-02061-1 – ident: 2166_CR48 doi: 10.1109/BTAS.2015.7358754 – ident: 2166_CR22 doi: 10.1109/ICCV.2015.314 – ident: 2166_CR196 doi: 10.1109/ICIP.2019.8803528 – volume: 36 start-page: 1053 year: 2020 ident: 2166_CR150 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01714-6 – ident: 2166_CR128 doi: 10.1109/ICCV.2019.00751 – ident: 2166_CR74 doi: 10.1109/CVPR.2014.81 – ident: 2166_CR94 doi: 10.1109/ICCV.2015.141 – ident: 2166_CR168 – ident: 2166_CR53 doi: 10.1109/ICIP.2019.8802922 – ident: 2166_CR194 doi: 10.1109/ICCV.2019.00245 – volume: 36 start-page: 305 year: 2020 ident: 2166_CR239 publication-title: Vis. Comput. doi: 10.1007/s00371-018-1612-9 – volume: 11 start-page: 446 year: 2019 ident: 2166_CR195 publication-title: Remote Sens. doi: 10.3390/rs11040446 – year: 2020 ident: 2166_CR198 publication-title: Appl. Intell. doi: 10.1007/s10489-020-01801-5 – volume: 18 start-page: 3040 year: 2018 ident: 2166_CR73 publication-title: Sensors doi: 10.3390/s18093040 – ident: 2166_CR117 – year: 2020 ident: 2166_CR138 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01854-0 – volume: 34 start-page: 96 year: 2017 ident: 2166_CR34 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2738401 – volume: 35 start-page: 53 year: 2018 ident: 2166_CR19 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2765202 – ident: 2166_CR126 doi: 10.1109/CVPR.2019.00210 – ident: 2166_CR14 doi: 10.1109/CVPR.2018.00572 – volume: 35 start-page: 1798 year: 2013 ident: 2166_CR2 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 9 start-page: 85 year: 2020 ident: 2166_CR93 publication-title: Electronics doi: 10.3390/electronics9010085 – ident: 2166_CR232 – ident: 2166_CR81 – volume: 12 start-page: 2211 year: 2011 ident: 2166_CR41 publication-title: J. Mach. Learn. Res. – ident: 2166_CR97 doi: 10.1007/978-3-319-29451-3_54 – volume: 107 start-page: 135 year: 2017 ident: 2166_CR188 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2017.03.069 – ident: 2166_CR11 doi: 10.1155/2013/425740 – volume: 43 start-page: 1415 year: 2020 ident: 2166_CR238 publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00957-1 – ident: 2166_CR57 – volume: 20 start-page: 1656 year: 2018 ident: 2166_CR219 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2774007 – volume: 89 start-page: 384 year: 2018 ident: 2166_CR149 publication-title: Transp. Res. C Emerg. Technol. doi: 10.1016/j.trc.2018.02.012 – volume: 8 start-page: 36776 year: 2020 ident: 2166_CR66 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975640 – volume: 26 start-page: 313 year: 2020 ident: 2166_CR218 publication-title: Multimed. Syst. doi: 10.1007/s00530-019-00645-5 – ident: 2166_CR82 doi: 10.1016/B978-0-12-816385-6.00005-2 – ident: 2166_CR174 doi: 10.1109/ICCV.2019.00273 – ident: 2166_CR121 doi: 10.1109/CVPR.2019.01281 – volume: 36 start-page: 951 year: 2020 ident: 2166_CR123 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01705-7 – ident: 2166_CR103 doi: 10.1109/CVPR.2019.00660 – volume: 35 start-page: 119:1 year: 2016 ident: 2166_CR101 publication-title: ACM Trans. Graph. doi: 10.1145/2897824.2925954 – ident: 2166_CR170 doi: 10.1109/FG47880.2020.00038 – volume: 15 start-page: 2949 issue: 1 year: 2014 ident: 2166_CR71 publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 13:1 year: 2019 ident: 2166_CR130 publication-title: ACM Trans. Intell. Syst. Technol. – ident: 2166_CR16 – ident: 2166_CR5 doi: 10.1109/IJCNN.2000.857823 – ident: 2166_CR181 doi: 10.1016/j.neucom.2020.01.085 – volume: 8 start-page: 2847 year: 2020 ident: 2166_CR164 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962554 – ident: 2166_CR172 doi: 10.1109/CVPR.2019.00358 – volume: 63 start-page: 601 year: 2017 ident: 2166_CR43 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.039 – volume: 26 start-page: 1019 year: 2015 ident: 2166_CR70 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2330900 – volume: 77 start-page: 29847 year: 2018 ident: 2166_CR221 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-5856-1 – year: 2020 ident: 2166_CR235 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01821-9 – ident: 2166_CR191 doi: 10.1109/IV48863.2021.9575718 – ident: 2166_CR173 doi: 10.1109/ICCV.2019.00855 – ident: 2166_CR17 doi: 10.1609/aaai.v33i01.33018901 – ident: 2166_CR24 – year: 2020 ident: 2166_CR143 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01786-4 – ident: 2166_CR212 doi: 10.1109/WCNC.2017.7925709 – year: 2020 ident: 2166_CR131 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01787-3 – volume: 9 start-page: 2915 year: 2019 ident: 2166_CR165 publication-title: Sci. Rep. doi: 10.1038/s41598-019-38914-y – ident: 2166_CR33 doi: 10.1145/3161174 – volume: 7 start-page: 29253 year: 2019 ident: 2166_CR68 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902507 – ident: 2166_CR122 – ident: 2166_CR111 doi: 10.3115/v1/P15-2139 – ident: 2166_CR186 doi: 10.1109/CVPRW.2019.00158 – ident: 2166_CR69 – volume: 6 start-page: 24411 year: 2018 ident: 2166_CR180 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2830661 – volume: 521 start-page: 436 year: 2015 ident: 2166_CR4 publication-title: Nature doi: 10.1038/nature14539 – ident: 2166_CR27 – ident: 2166_CR58 doi: 10.1109/IROS.2011.6094649 – volume: 28 start-page: 257 year: 2016 ident: 2166_CR203 publication-title: Neural Comput. doi: 10.1162/NECO_a_00801 – ident: 2166_CR104 doi: 10.1007/978-3-030-32962-4_18 – ident: 2166_CR120 doi: 10.1007/978-3-030-58604-1_7 – volume: 36 start-page: 1797 year: 2020 ident: 2166_CR240 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01774-8 – ident: 2166_CR98 doi: 10.1109/ICCVW.2017.360 – volume: 44 start-page: 93 year: 2020 ident: 2166_CR106 publication-title: J. Med. Syst. doi: 10.1007/s10916-020-01562-1 – ident: 2166_CR171 – volume: 5 start-page: 5 year: 2019 ident: 2166_CR166 publication-title: J. Imag. doi: 10.3390/jimaging5010005 – ident: 2166_CR62 – volume: 128 start-page: 261 year: 2020 ident: 2166_CR84 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01247-4 – volume: 2019 start-page: 13 year: 2019 ident: 2166_CR132 publication-title: J. Image Video Proc. doi: 10.1186/s13640-018-0371-x – volume: 36 start-page: 317 year: 2020 ident: 2166_CR158 publication-title: Vis. Comput. doi: 10.1007/s00371-018-1609-4 – ident: 2166_CR207 – ident: 2166_CR85 – ident: 2166_CR38 doi: 10.1007/978-3-662-44415-3_16 – ident: 2166_CR231 doi: 10.1109/IGARSS.2019.8898605 – ident: 2166_CR6 doi: 10.1109/INTELCIS.2017.8260032 – ident: 2166_CR79 doi: 10.1109/ICCV.2017.324 – volume: 64 start-page: 101093 year: 2020 ident: 2166_CR113 publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2020.101093 – ident: 2166_CR243 doi: 10.1007/978-3-030-32583-1_12 – year: 2020 ident: 2166_CR193 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3015781 – ident: 2166_CR31 doi: 10.1109/CVPR.2019.00511 – volume: 7 start-page: 43110 year: 2019 ident: 2166_CR216 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907071 – volume: 36 start-page: 1271 year: 2020 ident: 2166_CR148 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01720-8 – ident: 2166_CR213 doi: 10.1109/ICCV.2015.301 – ident: 2166_CR76 doi: 10.1109/TPAMI.2016.2577031 – year: 2020 ident: 2166_CR226 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01957-8 – volume: 115 start-page: 20 year: 2018 ident: 2166_CR192 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.09.038 – volume: 16 start-page: 2639 year: 2004 ident: 2166_CR202 publication-title: Neural Comput. doi: 10.1162/0899766042321814 – ident: 2166_CR88 doi: 10.1109/CVPR.2019.00679 – volume: 20 start-page: 405 issue: 2 year: 2017 ident: 2166_CR112 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2742704 – ident: 2166_CR214 – volume: 323 start-page: 533 year: 1986 ident: 2166_CR12 publication-title: Nature doi: 10.1038/323533a0 – ident: 2166_CR26 doi: 10.1109/CVPR.2018.00644 – ident: 2166_CR115 – volume: 143 start-page: 113114 year: 2020 ident: 2166_CR92 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113114 – ident: 2166_CR23 doi: 10.7551/mitpress/3717.003.0017 – volume: 4 start-page: 588 year: 2019 ident: 2166_CR83 publication-title: IEEE Trans. Intelli. Veh. doi: 10.1109/TIV.2019.2938110 – ident: 2166_CR29 doi: 10.1109/CVPR.2015.7298965 – ident: 2166_CR167 doi: 10.1109/CVPR.2019.00072 – volume: 37 start-page: 362 year: 2020 ident: 2166_CR146 publication-title: J. Field Robot. doi: 10.1002/rob.21918 – ident: 2166_CR3 – ident: 2166_CR61 doi: 10.1109/CVPR.2016.442 – volume: 28 start-page: 41 issue: 1 year: 1997 ident: 2166_CR110 publication-title: Mach. Learn. doi: 10.1023/A:1007379606734 – volume: 31 start-page: 76 year: 2018 ident: 2166_CR169 publication-title: Chin. J. Mech. Eng. doi: 10.1186/s10033-018-0275-9 – volume: 127 start-page: 143 year: 2019 ident: 2166_CR95 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1133-z – ident: 2166_CR223 doi: 10.1007/978-981-10-8530-7_8 – ident: 2166_CR56 doi: 10.1109/ICRA.2014.6906903 – ident: 2166_CR141 doi: 10.1109/WACV45572.2020.9093438 – ident: 2166_CR236 doi: 10.1109/CVPR.2016.10 – volume: 19 start-page: 4494 year: 2019 ident: 2166_CR151 publication-title: Sensors doi: 10.3390/s19204494 – ident: 2166_CR217 doi: 10.1007/s00371-020-01934-1 – volume: 86 start-page: 2278 year: 1998 ident: 2166_CR21 publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 2166_CR211 doi: 10.1007/978-981-13-1132-1_5 – ident: 2166_CR154 – ident: 2166_CR176 doi: 10.1109/CVPR42600.2020.01088 – volume: 29 start-page: 245 year: 1997 ident: 2166_CR45 publication-title: Mach. Learn. doi: 10.1023/A:1007425814087 – ident: 2166_CR55 doi: 10.1109/ICRA.2011.5980382 – ident: 2166_CR160 doi: 10.1109/CVPR.2017.759 – ident: 2166_CR153 doi: 10.1007/978-3-319-10605-2_54 – volume: 329 start-page: 476 year: 2019 ident: 2166_CR220 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.004 – volume: 18 start-page: 1527 year: 2006 ident: 2166_CR15 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 |
SSID | ssj0017749 |
Score | 2.6546772 |
Snippet | The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2939 |
SubjectTerms | Algorithms Artificial Intelligence Big Data Computer Graphics Computer Science Computer vision Data transmission Datasets Deep learning Image Processing and Computer Vision Intelligent systems Machine learning Natural language processing Sensors Survey Trends Unstructured data Voice recognition |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTg-1FfRPDmFkzSV7wtooigJxe8laZJVNDuYruC_95JNq2uL_DQQ-k0aTOTzAzzzQzAUWHTIRVlyAERhRFTWShjHoUaD8I4LWJmXPeG65vkchBd3cV3PimsbtHubUjSndRdspurLhdaSAFeSRKmszAfW98dpXjA-l3sAA0aZ_RS9I9snqdPlfl5jGl19M3G_A6V_BIvdWroYgWWvP1I-hOGr8KMrtZgue3NQPxWXYPFT4UG18H0ST1-edVvZFgRpfWIOCDh81DhWL5xxD1B-5WU7UiTpPNT4kECdY80Dj7bI59j3nhXKWJhprVu6g0YXJzfnl2GvsNCWKKl1oQZE7JAJS5SQzNcmoLp7ESYTCpaSH4i0e2WJqbGKCZK9BVRnWUm0rzUSMml4JswVw0rvQ2E61Sga0hlkZaRSiKZZUoUmqP_xU3KeQC0Xei89OXHbReMp7wrnOyYkyNjcsecPA3guHtnNCm-8Sf1Xsu_3G_EOmeC2tAxikkAh91j3EI2LlJUejhGmjhCWeEioQFsTdjdTWeVPOVxEkA6JQgdgS3PPf2kenxwZbpdqTmK8_Zakfn4rN__Yud_5LuwwGxChoMk7sFc8zLW-2gmNfLA7Yp35jQIIw priority: 102 providerName: Springer Nature |
Title | A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets |
URI | https://link.springer.com/article/10.1007/s00371-021-02166-7 https://www.ncbi.nlm.nih.gov/pubmed/34131356 https://www.proquest.com/docview/2918065202 https://www.proquest.com/docview/2541783961 https://pubmed.ncbi.nlm.nih.gov/PMC8192112 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Nb9Mw9ImtFzig8R0YlZG40YjZTmKbCypTuwnEhBCVximKY3sgQVKWFGn_nmfXzdZN7JBD4mc59rPfh98XwOvKh0MayhADKkszZmSqc56lFglhLqqcuVC94fNJcbzIPp7mp_HCrYtulRuaGAi1aWt_R_6WKeptgKirv1_-SX3VKG9djSU0dmCEJFii8jX6MDv58nWwI6BwEwRgirqSj_mMYTMheC5kq0u9iwI-RZGKbdZ0Q9686TZ5zXYaWNJ8D-5HWZJM18h_AHds8xDuXckw-AjclHSr87_2grQNMdYuSfAg_N0a7BgrRpwRFFxJHcs7kHW0-TsSvQO6CemD3-yEXDV241tjiPcv7WzfPYbFfPbt8DiNpRXSGkW0PpVM6Qq5txIOl5WLill5oJzUhlaaH2jUt7XLqXOGqRqVRORj0mWW1xYhuVb8Cew2bWOfAeFWKNQJqa5EnZki01IaVVmOihd3gvME6GZVyzrmHfflL36VQ8bkgIkSsVAGTJQigTdDn-U668at0PsbZJXxBHbl5X5J4NXQjGfHG0SqxrYrhMkz3BhcFTSBp2vcDsN57k55XiQgtrA-APi83Nstzc8fIT93yDFHcdzJZn9c_tb_Z_H89lm8gLvMR14E38N92O3PV_YlykO9HsOOnB-NYTQ9-v5pNo5HAL8u2PQfuYsJuQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEG9CCxgJTqxF_UgcIyFUAcuWPk6t1FuIYweQINk22Vb9U_xGxs6jXSp66yGHyHYSe8bjmczMNwCvcp8OaRlHCmhJJbcpNbGQ1KEgjFUe8zJUb9jdS2YH8uthfLgCf4ZcGB9WOcjEIKhtXfh_5G-5Zt4HiLb6h_kR9VWjvHd1KKHRscW2OztFk615v_UJ6fua8-nn_Y8z2lcVoAVqJy1NuTY5HlxalfhEoXLu0g1dpsay3IgNg6amKWNWlpbrAu0jFOFpKZ0oHPYUxoMvoci_IYXQfkel0y-j1wJVqaBuM7TMfIZpn6QTUvUCNh71ARF4JQlVywfhJe32cpDmP57acABO78KdXnMlmx2r3YMVV92H2xfwDB9AuUmaxfGJOyN1RaxzcxLiFX_XFgf29Sm-E1STSdEXkyBdbvs70sciNBPShijdCbnoWse7yhIfzdq4tnkIB9ey5I9gtaor9wSIcEqjBcpMrgppE2nS1OrcCTTzRKmEiIANq5oVPcq5L7bxKxvxmQMlMqRCFiiRqQjejGPmHcbHlb3XB2Jl_X5vsnPujODl2Iw71btf8srVC-wTS2QM5BoWweOOtuPrvC7BRJxEoJaoPnbwKODLLdXPHwENPCDaMXzvZOCP88_6_yyeXj2LF3Bztr-7k-1s7W2vwS3ucz5C1OM6rLbHC_cMNbHWPA_sT-Dbde-3v3pHQkY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xkKbtgQGDka0MT-JtjVrb-fLeqo2q40t7oBJvURzbbBKkFUmR-O93dj7Wjg2JhzxEudiJ7-y70939DuAos-WQijLkgAj8gKnElyEPfI0HYRhnITOue8P5RTSZBidX4dVSFb_Ldm9DknVNg0VpKqrBXJlBV_jmkOZ8m16AVxT58QvYwOOYWrmeslEXR0DjxhnAFH0lW_PZlM38e4xV1fTI3nycNvlX7NSppPEWbDa2JBnVzN-GNV3swJu2TwNptu0OvF4CHXwLZkTKxd29fiCzgiit58QlFd7OFI7VNJG4JmjLkrwdqS5A_0KahIGyTyqXStsny_FvvCsUsSmnpa7KXZiOjy-_Tvym24Kfo9VW-QkTMkOFLmJDE1yajOlkKEwiFc0kH0p0waUJqTGKiRz9RlRtiQk0zzVScin4HqwXs0LvA-E6FugmUpnFeaCiQCaJEpnm6ItxE3PuAW0XOs0bKHLbEeMm7UCUHXNSZEzqmJPGHnzu3pnXQBxPUvda_qXNpixTJqgNI7Mh8-BT9xi3k42RZIWeLZAmDFBWuIioB-9qdnfTWYVPeRh5EK8IQkdgobpXnxS_fjrIbgc7R3Hefisyfz7r_3_x_nnkh_Dyx7dxevb94vQDvGK2TsNlKvZgvbpb6AO0nir50W2Q37ByD1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+deep+multimodal+learning+for+computer+vision%3A+advances%2C+trends%2C+applications%2C+and+datasets&rft.jtitle=The+Visual+computer&rft.au=Bayoudh%2C+Khaled&rft.au=Knani%2C+Raja&rft.au=Hamdaoui%2C+Fay%C3%A7al&rft.au=Mtibaa%2C+Abdellatif&rft.date=2022-08-01&rft.issn=0178-2789&rft.volume=38&rft.issue=8&rft.spage=2939&rft_id=info:doi/10.1007%2Fs00371-021-02166-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |