A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets

The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 38; no. 8; pp. 2939 - 2970
Main Authors Bayoudh, Khaled, Knani, Raja, Hamdaoui, Fayçal, Mtibaa, Abdellatif
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities, often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep multimodal learning for the computer vision community by exploring how to generate deep models that consider the integration and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and provide insights and directions for future research.
AbstractList The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities, often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep multimodal learning for the computer vision community by exploring how to generate deep models that consider the integration and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and provide insights and directions for future research.
The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities, often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep multimodal learning for the computer vision community by exploring how to generate deep models that consider the integration and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and provide insights and directions for future research.The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities, often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep multimodal learning for the computer vision community by exploring how to generate deep models that consider the integration and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and provide insights and directions for future research.
Author Knani, Raja
Hamdaoui, Fayçal
Mtibaa, Abdellatif
Bayoudh, Khaled
Author_xml – sequence: 1
  givenname: Khaled
  orcidid: 0000-0002-1148-4800
  surname: Bayoudh
  fullname: Bayoudh, Khaled
  email: khaled.isimm@gmail.com
  organization: Electrical Department, National Engineering School of Monastir (ENIM), Laboratory of Electronics and Micro-electronics (LR99ES30), Faculty of Sciences of Monastir (FSM), University of Monastir
– sequence: 2
  givenname: Raja
  surname: Knani
  fullname: Knani, Raja
  organization: Physics Department, Laboratory of Electronics and Micro-electronics (LR99ES30), Faculty of Sciences of Monastir (FSM), University of Monastir
– sequence: 3
  givenname: Fayçal
  surname: Hamdaoui
  fullname: Hamdaoui, Fayçal
  organization: Electrical Department, National Engineering School of Monastir (ENIM), Laboratory of Control, Electrical Systems and Environment (LASEE), National Engineering School of Monastir, University of Monastir
– sequence: 4
  givenname: Abdellatif
  surname: Mtibaa
  fullname: Mtibaa, Abdellatif
  organization: Electrical Department, National Engineering School of Monastir (ENIM), Laboratory of Electronics and Micro-electronics (LR99ES30), Faculty of Sciences of Monastir (FSM), University of Monastir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34131356$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtFAQ2QR-gAOyxIUDA37Mw-YQKYp4SZG4wNnyeNqLI4892J6V8vd4d0OAHHKwWq2uKld3naGTEAMg9JKSd5SQ4X0mhA-0Iezw-r4ZnqANbTlrGKfdCdoQOoiGDUKeorOcb0jth1Y-Q6e8pZzyrt8ge4nzmnZwi2PAE8CC59UXN8dJe-xBp-DCFtuYsInzshZIeOeyi-ED1tNOBwP5LS4JwlSrXhbvjC51vO_ChCdddIaSn6OnVvsML-7qOfrx6eP3qy_N9bfPX68urxvTtaQ0gslRM9bKwVJRl9MMBJFWjBPVIycjjGy0HbV2YtIMrGKosC1wAxXJR8nP0cVRd1nHGSYDoSTt1ZLcrNOtitqp_yfB_VTbuFOCSkYpqwJv7gRS_LVCLmp22YD3OkBcs2JdW4_KZU8r9PUD6E1cU6jrKSartb5jZC_46l9H91b-RFAB7AgwKeacwN5DKFH7nNUxZ1UzVoec1VBJ4gHJuHI4fN3K-cep_EjN9Z-whfTX9iOs390TvWY
CitedBy_id crossref_primary_10_3390_electronics14010125
crossref_primary_10_1007_s00371_024_03373_8
crossref_primary_10_1038_s41598_024_51329_8
crossref_primary_10_1002_widm_1488
crossref_primary_10_1007_s00371_024_03355_w
crossref_primary_10_1007_s00371_023_03126_z
crossref_primary_10_1007_s11432_023_3853_y
crossref_primary_10_17671_gazibtd_1549034
crossref_primary_10_1016_j_compbiomed_2024_108709
crossref_primary_10_1016_j_engappai_2024_108550
crossref_primary_10_1038_s42256_023_00670_0
crossref_primary_10_1007_s00371_022_02416_2
crossref_primary_10_1007_s11633_022_1398_0
crossref_primary_10_3390_s23052381
crossref_primary_10_2196_40589
crossref_primary_10_1007_s00371_021_02350_9
crossref_primary_10_1109_ACCESS_2023_3323574
crossref_primary_10_1007_s00371_024_03324_3
crossref_primary_10_1016_j_ndteint_2024_103205
crossref_primary_10_1109_ACCESS_2024_3462543
crossref_primary_10_1109_ACCESS_2023_3287090
crossref_primary_10_1016_j_procir_2023_02_034
crossref_primary_10_3390_info15040215
crossref_primary_10_1007_s40747_025_01827_7
crossref_primary_10_1007_s00371_023_03011_9
crossref_primary_10_1007_s11042_023_18027_5
crossref_primary_10_1007_s00371_022_02443_z
crossref_primary_10_1007_s00500_021_06576_6
crossref_primary_10_1007_s00371_023_02827_9
crossref_primary_10_1016_j_inffus_2023_102217
crossref_primary_10_3390_ai3020019
crossref_primary_10_1007_s00371_021_02386_x
crossref_primary_10_3390_s22207962
crossref_primary_10_3390_s23125597
crossref_primary_10_1007_s00371_022_02599_8
crossref_primary_10_1007_s00371_023_02891_1
crossref_primary_10_1007_s00371_022_02511_4
crossref_primary_10_1109_TIM_2024_3480227
crossref_primary_10_1142_S2811032322500047
crossref_primary_10_1038_s42256_023_00785_4
crossref_primary_10_1016_j_neucom_2024_129131
crossref_primary_10_3389_fdata_2023_1227189
crossref_primary_10_3390_s23010184
crossref_primary_10_1038_s41575_022_00701_y
crossref_primary_10_5582_bst_2024_01312
crossref_primary_10_3390_electronics10243165
crossref_primary_10_3390_technologies12020015
crossref_primary_10_1016_j_autcon_2024_105696
crossref_primary_10_1016_j_clon_2021_12_002
crossref_primary_10_1109_TPAMI_2024_3420239
crossref_primary_10_1007_s11042_024_19800_w
crossref_primary_10_1038_s41598_023_41463_0
crossref_primary_10_1007_s11760_024_03126_z
crossref_primary_10_3390_make6030074
crossref_primary_10_1109_ACCESS_2024_3463969
crossref_primary_10_1080_0951192X_2023_2257623
crossref_primary_10_1016_j_cie_2024_110074
crossref_primary_10_1016_j_aei_2024_102678
crossref_primary_10_1002_smtd_202301021
crossref_primary_10_3390_s24072286
crossref_primary_10_1007_s11042_023_15555_y
crossref_primary_10_1109_ACCESS_2021_3131733
crossref_primary_10_1109_ACCESS_2022_3209825
crossref_primary_10_18267_j_aip_202
crossref_primary_10_1016_j_eswa_2024_125025
crossref_primary_10_1007_s00371_023_03176_3
crossref_primary_10_3390_electronics14061124
crossref_primary_10_1109_TCSVT_2023_3322470
crossref_primary_10_3390_electronics13234721
crossref_primary_10_3390_info14050253
crossref_primary_10_1080_00305316_2024_2361081
crossref_primary_10_1109_ACCESS_2024_3423323
crossref_primary_10_1142_S0129065723500193
crossref_primary_10_1016_j_asoc_2024_111553
crossref_primary_10_1177_14780771241286614
crossref_primary_10_3390_systems11010044
crossref_primary_10_1016_j_imavis_2024_105060
crossref_primary_10_1007_s11042_024_20081_6
crossref_primary_10_1360_SSI_2022_0226
crossref_primary_10_3390_app12031286
crossref_primary_10_3390_s24206691
crossref_primary_10_1038_s42256_023_00624_6
crossref_primary_10_3390_ijgi11060351
crossref_primary_10_1109_TGRS_2025_3539535
crossref_primary_10_1007_s12559_022_10019_1
crossref_primary_10_54455_MCN2504
crossref_primary_10_3390_s22186816
crossref_primary_10_21015_vtse_v12i2_1734
crossref_primary_10_1080_23311886_2024_2376309
crossref_primary_10_1007_s00371_024_03311_8
crossref_primary_10_1007_s11467_023_1373_4
crossref_primary_10_1016_j_ecoinf_2024_102950
crossref_primary_10_1063_5_0091135
crossref_primary_10_3389_fpls_2023_1094142
crossref_primary_10_12791_KSBEC_2024_33_4_352
crossref_primary_10_32604_csse_2023_034543
crossref_primary_10_1155_2022_1653452
crossref_primary_10_1016_j_knosys_2024_111938
crossref_primary_10_1016_j_compag_2024_108938
crossref_primary_10_1109_ACCESS_2023_3243854
crossref_primary_10_1007_s00371_023_03096_2
crossref_primary_10_1007_s00371_024_03596_9
crossref_primary_10_1080_21642583_2025_2467083
crossref_primary_10_3389_fonc_2022_984021
crossref_primary_10_1109_ACCESS_2024_3401179
crossref_primary_10_1109_TMM_2024_3521830
crossref_primary_10_1186_s13040_024_00367_z
crossref_primary_10_1007_s00371_023_02886_y
crossref_primary_10_21202_jdtl_2024_42
Cites_doi 10.1109/ACCESS.2020.2997255
10.1109/CVPR.2017.632
10.1016/j.patrec.2018.10.002
10.1109/ACCESS.2019.2939201
10.1109/ICCV.2019.00518
10.1162/neco.1997.9.8.1735
10.1016/j.cviu.2021.103255
10.1007/978-3-642-70911-1_20
10.1109/ICASSP.2019.8682377
10.1109/ICCV.2017.322
10.1109/CVPRW50498.2020.00486
10.1609/aaai.v34i03.5649
10.1109/JRPROC.1960.287598
10.1109/TIP.2020.2975980
10.1109/CVPR.2018.00008
10.1109/ACCESS.2020.3016780
10.1007/s00371-018-1566-y
10.1007/s00371-021-02064-y
10.1007/978-3-030-16272-6_11
10.1007/s00371-020-01864-y
10.1007/978-3-319-46448-0_2
10.1007/s41095-020-0199-z
10.1109/CVPR.2018.00143
10.1109/CVPR.2019.01275
10.1109/CVPR.2018.00581
10.1109/CVPR.2016.91
10.1016/0004-3702(81)90024-2
10.1109/ICCV.2019.00680
10.1007/s11263-019-01189-x
10.3390/s19040866
10.1109/CVPR.2017.106
10.1109/CVPR.2019.00209
10.1109/CVPR.2018.00387
10.1145/3065386
10.1016/j.neucom.2015.09.116
10.1016/j.neucom.2014.11.078
10.1007/s00371-020-01833-5
10.1109/CVPR42600.2020.01164
10.1007/978-3-030-01219-9_11
10.1109/CVPR.2019.00647
10.1109/CCHI.2019.8901921
10.1109/IMCEC.2016.7867471
10.1109/ICCV.2015.169
10.1109/CVPR.2019.00126
10.1109/IROS.2011.6048835
10.18653/v1/P17-2031
10.1007/s00371-020-02015-z
10.18653/v1/P18-1209
10.1109/wicom.2011.6040028
10.1007/s11263-013-0620-5
10.1109/ICCV.2017.450
10.1109/ICCV.2019.00368
10.1109/5.18626
10.1609/aaai.v33i01.33014822
10.1109/CVPR42600.2020.01034
10.1007/s00371-020-01848-y
10.1007/978-3-030-00919-9_23
10.1109/JPROC.2015.2460697
10.1109/CVPR.2018.00419
10.1038/s41598-019-50835-4
10.1016/j.neucom.2019.10.025
10.1007/s13735-017-0141-z
10.1109/ACCESS.2019.2916887
10.1167/16.12.326
10.1109/TPAMI.2019.2909895
10.24963/ijcai.2020/124
10.1109/CVPR.2015.7299135
10.1007/978-3-319-10602-1_30
10.1007/s00371-019-01775-7
10.1016/j.neucom.2019.11.023
10.1016/j.patcog.2019.05.032
10.1007/s00371-019-01661-2
10.1109/JBHI.2018.2867619
10.1109/ICCVW.2011.6130298
10.1109/CVPR42600.2020.00999
10.1109/TRO.2017.2705103
10.1007/s10462-020-09825-6
10.1109/CVPR.2016.438
10.1109/TMM.2015.2477042
10.1007/s11119-020-09709-3
10.1007/s00371-020-01982-7
10.1007/s00371-020-01986-3
10.1109/TCOM.1980.1094577
10.1109/CVPR.2016.541
10.1023/B:VISI.0000013087.49260.fb
10.1016/j.sigpro.2015.01.001
10.1109/ICCV.2019.00604
10.1007/s00371-020-01843-3
10.1007/s00371-021-02061-1
10.1109/BTAS.2015.7358754
10.1109/ICCV.2015.314
10.1109/ICIP.2019.8803528
10.1007/s00371-019-01714-6
10.1109/ICCV.2019.00751
10.1109/CVPR.2014.81
10.1109/ICCV.2015.141
10.1109/ICIP.2019.8802922
10.1109/ICCV.2019.00245
10.1007/s00371-018-1612-9
10.3390/rs11040446
10.1007/s10489-020-01801-5
10.3390/s18093040
10.1007/s00371-020-01854-0
10.1109/MSP.2017.2738401
10.1109/MSP.2017.2765202
10.1109/CVPR.2019.00210
10.1109/CVPR.2018.00572
10.1109/TPAMI.2013.50
10.3390/electronics9010085
10.1007/978-3-319-29451-3_54
10.1016/j.procs.2017.03.069
10.1155/2013/425740
10.1007/s13246-020-00957-1
10.1109/TMM.2017.2774007
10.1016/j.trc.2018.02.012
10.1109/ACCESS.2020.2975640
10.1007/s00530-019-00645-5
10.1016/B978-0-12-816385-6.00005-2
10.1109/ICCV.2019.00273
10.1109/CVPR.2019.01281
10.1007/s00371-019-01705-7
10.1109/CVPR.2019.00660
10.1145/2897824.2925954
10.1109/FG47880.2020.00038
10.1109/IJCNN.2000.857823
10.1016/j.neucom.2020.01.085
10.1109/ACCESS.2019.2962554
10.1109/CVPR.2019.00358
10.1016/j.patcog.2016.09.039
10.1109/TNNLS.2014.2330900
10.1007/s11042-018-5856-1
10.1007/s00371-020-01821-9
10.1109/IV48863.2021.9575718
10.1109/ICCV.2019.00855
10.1609/aaai.v33i01.33018901
10.1007/s00371-019-01786-4
10.1109/WCNC.2017.7925709
10.1007/s00371-019-01787-3
10.1038/s41598-019-38914-y
10.1145/3161174
10.1109/ACCESS.2019.2902507
10.3115/v1/P15-2139
10.1109/CVPRW.2019.00158
10.1109/ACCESS.2018.2830661
10.1038/nature14539
10.1109/IROS.2011.6094649
10.1162/NECO_a_00801
10.1007/978-3-030-32962-4_18
10.1007/978-3-030-58604-1_7
10.1007/s00371-019-01774-8
10.1109/ICCVW.2017.360
10.1007/s10916-020-01562-1
10.3390/jimaging5010005
10.1007/s11263-019-01247-4
10.1186/s13640-018-0371-x
10.1007/s00371-018-1609-4
10.1007/978-3-662-44415-3_16
10.1109/IGARSS.2019.8898605
10.1109/INTELCIS.2017.8260032
10.1109/ICCV.2017.324
10.1016/j.csl.2020.101093
10.1007/978-3-030-32583-1_12
10.1109/JSEN.2020.3015781
10.1109/CVPR.2019.00511
10.1109/ACCESS.2019.2907071
10.1007/s00371-019-01720-8
10.1109/ICCV.2015.301
10.1109/TPAMI.2016.2577031
10.1007/s00371-020-01957-8
10.1016/j.patrec.2017.09.038
10.1162/0899766042321814
10.1109/CVPR.2019.00679
10.1109/TMM.2017.2742704
10.1038/323533a0
10.1109/CVPR.2018.00644
10.1016/j.eswa.2019.113114
10.7551/mitpress/3717.003.0017
10.1109/TIV.2019.2938110
10.1109/CVPR.2015.7298965
10.1109/CVPR.2019.00072
10.1002/rob.21918
10.1109/CVPR.2016.442
10.1023/A:1007379606734
10.1186/s10033-018-0275-9
10.1007/s11263-018-1133-z
10.1007/978-981-10-8530-7_8
10.1109/ICRA.2014.6906903
10.1109/WACV45572.2020.9093438
10.1109/CVPR.2016.10
10.3390/s19204494
10.1007/s00371-020-01934-1
10.1109/5.726791
10.1007/978-981-13-1132-1_5
10.1109/CVPR42600.2020.01088
10.1023/A:1007425814087
10.1109/ICRA.2011.5980382
10.1109/CVPR.2017.759
10.1007/978-3-319-10605-2_54
10.1016/j.neucom.2018.11.004
10.1162/neco.2006.18.7.1527
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright Springer Nature B.V. Aug 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
– notice: Copyright Springer Nature B.V. Aug 2022
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00371-021-02166-7
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Advanced Technologies & Aerospace Collection

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 2970
ExternalDocumentID PMC8192112
34131356
10_1007_s00371_021_02166_7
Genre Journal Article
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
ABRTQ
NPM
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-829ba22497f18037a2e809f8bd1ab30beb2bf51ffd29c7218018f4e3cea2e3b93
IEDL.DBID BENPR
ISSN 0178-2789
IngestDate Thu Aug 21 18:19:34 EDT 2025
Fri Jul 11 16:38:13 EDT 2025
Fri Jul 25 20:28:43 EDT 2025
Mon Jul 21 06:07:23 EDT 2025
Tue Jul 01 05:11:44 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Thu Apr 10 07:49:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Datasets
Deep learning
Computer vision
Applications
Sensory modalities
Multimodal learning
Language English
License The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-829ba22497f18037a2e809f8bd1ab30beb2bf51ffd29c7218018f4e3cea2e3b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1148-4800
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8192112
PMID 34131356
PQID 2918065202
PQPubID 2043737
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192112
proquest_miscellaneous_2541783961
proquest_journals_2918065202
pubmed_primary_34131356
crossref_primary_10_1007_s00371_021_02166_7
crossref_citationtrail_10_1007_s00371_021_02166_7
springer_journals_10_1007_s00371_021_02166_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationTitleAlternate Vis Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LR Rabiner (2166_CR44) 1989; 77
DJ Butler (2166_CR64) 2012; 2012
Y Jang (2166_CR129) 2019; 127
S Tu (2166_CR187) 2020; 21
F Aiolli (2166_CR42) 2015; 169
W Guo (2166_CR35) 2019; 7
A Sano (2166_CR222) 2019; 23
Y Guo (2166_CR28) 2018; 7
K Bayoudh (2166_CR238) 2020; 43
L Wei (2166_CR131) 2020
P Sangkloy (2166_CR101) 2016; 35
A Metzger (2166_CR147) 2019; 9
2166_CR11
EJ Shamwell (2166_CR199) 2019
2166_CR10
2166_CR191
K Bayoudh (2166_CR198) 2020
2166_CR196
S Liu (2166_CR151) 2019; 19
2166_CR194
2166_CR18
2166_CR17
2166_CR16
2166_CR186
J Kim (2166_CR210) 2020; 8
2166_CR14
2166_CR22
2166_CR181
G Rohith (2166_CR226) 2020
2166_CR20
Z Kandylakis (2166_CR195) 2019; 11
2166_CR185
O Guclu (2166_CR148) 2020; 36
P Zarbakhsh (2166_CR123) 2020; 36
2166_CR29
2166_CR176
2166_CR27
2166_CR175
2166_CR26
2166_CR25
2166_CR24
2166_CR23
K Ščupáková (2166_CR165) 2019; 9
L Liu (2166_CR84) 2020; 128
S Zhang (2166_CR240) 2020; 36
DR Hardoon (2166_CR202) 2004; 16
S Dargan (2166_CR92) 2020; 143
M Gönen (2166_CR41) 2011; 12
R Caruana (2166_CR110) 1997; 28
2166_CR200
2166_CR204
MY Abbass (2166_CR178) 2020
GE Hinton (2166_CR15) 2006; 18
2166_CR207
2166_CR205
YB Michael (2166_CR190) 2019
L Jiao (2166_CR67) 2019; 7
Y Guo (2166_CR179) 2016; 187
Q Luo (2166_CR184) 2020; 378
S Grigorescu (2166_CR146) 2020; 37
H Wen (2166_CR43) 2017; 63
M Gao (2166_CR216) 2019; 7
A Rangesh (2166_CR83) 2019; 4
H Basly (2166_CR241) 2021
N Srivastava (2166_CR206) 2014; 15
A Dilawari (2166_CR68) 2019; 7
X Yang (2166_CR201) 2019; 1
C Ding (2166_CR51) 2015; 17
X Liu (2166_CR177) 2019; 35
T Zhou (2166_CR242) 2021
WG Hatcher (2166_CR180) 2018; 6
F Rosenblatt (2166_CR8) 1960; 48
X Huang (2166_CR234) 2021; 37
2166_CR77
2166_CR76
2166_CR75
2166_CR74
2166_CR72
G Bhatt (2166_CR208) 2019; 95
S Pouyanfar (2166_CR182) 2018; 51
2166_CR122
2166_CR243
2166_CR121
2166_CR120
2166_CR127
2166_CR126
A Asvadi (2166_CR192) 2018; 115
2166_CR79
2166_CR125
Y Lecun (2166_CR21) 1998; 86
2166_CR78
2166_CR124
2166_CR128
P Viola (2166_CR49) 2004; 57
R Singh (2166_CR218) 2020; 26
2166_CR88
2166_CR87
2166_CR85
G Lian (2166_CR157) 2020; 36
2166_CR82
2166_CR81
2166_CR233
2166_CR111
AH Abdulnabi (2166_CR219) 2018; 20
2166_CR232
2166_CR231
Y Bengio (2166_CR2) 2013; 35
2166_CR230
S Zhang (2166_CR239) 2020; 36
2166_CR116
2166_CR237
2166_CR115
2166_CR236
2166_CR114
2166_CR89
2166_CR119
2166_CR118
2166_CR117
Y Liu (2166_CR135) 2020; 29
2166_CR91
S Escalera (2166_CR96) 2016; 17
2166_CR90
S Hashemi Hosseinabad (2166_CR143) 2020
2166_CR99
2166_CR98
2166_CR97
T Ma (2166_CR225) 2020
2166_CR94
C Zou (2166_CR95) 2019; 127
2166_CR100
L Wang (2166_CR158) 2020; 36
D Zhao (2166_CR220) 2019; 329
Z Ghahramani (2166_CR45) 1997; 29
2166_CR104
2166_CR103
T Mahmud (2166_CR193) 2020
2166_CR102
2166_CR223
2166_CR109
2166_CR108
2166_CR229
X Zhang (2166_CR138) 2020
X Li (2166_CR221) 2018; 77
B Ammour (2166_CR93) 2020; 9
D Ramachandram (2166_CR34) 2017; 34
DE Rumelhart (2166_CR12) 1986; 323
R Mur-Artal (2166_CR152) 2016
FS Bashiri (2166_CR166) 2019; 5
M He (2166_CR150) 2020; 36
J Van Brummelen (2166_CR149) 2018; 89
2166_CR211
L Shao (2166_CR70) 2015; 26
MY Abbass (2166_CR139) 2020
2166_CR215
S Hochreiter (2166_CR13) 1997; 9
2166_CR214
2166_CR213
2166_CR212
2166_CR217
JR Uijlings (2166_CR80) 2013; 104
2166_CR33
2166_CR170
2166_CR32
2166_CR31
S Palaskar (2166_CR113) 2020; 64
2166_CR30
2166_CR174
2166_CR173
2166_CR172
2166_CR171
2166_CR167
Y Liu (2166_CR209) 2016; 120
2166_CR39
2166_CR38
2166_CR37
S Liu (2166_CR189) 2020; 59
Y LeCun (2166_CR4) 2015; 521
2166_CR168
Y Peng (2166_CR112) 2017; 20
W Wang (2166_CR130) 2019; 10
H Song (2166_CR224) 2020
A Krizhevsky (2166_CR7) 2017; 60
J Li (2166_CR188) 2017; 107
2166_CR40
JH Koo (2166_CR73) 2018; 18
2166_CR163
2166_CR162
2166_CR161
2166_CR160
P Xi (2166_CR140) 2020; 36
2166_CR156
2166_CR155
2166_CR154
D Lahat (2166_CR36) 2015; 103
2166_CR153
S-Y Guan (2166_CR169) 2018; 31
2166_CR48
X Wang (2166_CR107) 2020; 1
2166_CR47
2166_CR159
G Duan (2166_CR54) 2011; 22
Z Wang (2166_CR164) 2020; 8
Y Linde (2166_CR46) 1980; 28
2166_CR55
2166_CR53
W Wang (2166_CR66) 2020; 8
2166_CR52
2166_CR50
X Fan (2166_CR228) 2020
2166_CR145
2166_CR144
2166_CR142
Z Liu (2166_CR235) 2020
2166_CR59
2166_CR58
2166_CR57
F Shi (2166_CR105) 2020; 1
X Jia (2166_CR227) 2021
2166_CR56
KC Santosh (2166_CR106) 2020; 44
A Creswell (2166_CR19) 2018; 35
N Srivastava (2166_CR71) 2014; 15
X Lan (2166_CR197) 2020; 130
G Ciaparrone (2166_CR86) 2020; 381
S Chandar (2166_CR203) 2016; 28
BKP Horn (2166_CR65) 1981; 17
2166_CR63
2166_CR62
2166_CR141
2166_CR61
2166_CR60
T Hascoet (2166_CR132) 2019; 2019
2166_CR5
2166_CR134
2166_CR6
2166_CR133
2166_CR3
2166_CR1
T Ophoff (2166_CR183) 2019; 19
2166_CR69
2166_CR137
2166_CR136
2166_CR9
References_xml – ident: 2166_CR161
– volume: 8
  start-page: 104933
  year: 2020
  ident: 2166_CR210
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997255
– ident: 2166_CR18
  doi: 10.1109/CVPR.2017.632
– volume: 17
  start-page: 1
  year: 2016
  ident: 2166_CR96
  publication-title: J. Mach. Learn. Res.
– volume: 130
  start-page: 12
  year: 2020
  ident: 2166_CR197
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.10.002
– volume: 7
  start-page: 128837
  year: 2019
  ident: 2166_CR67
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939201
– ident: 2166_CR142
  doi: 10.1109/ICCV.2019.00518
– volume: 9
  start-page: 1735
  year: 1997
  ident: 2166_CR13
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 2166_CR119
  doi: 10.1016/j.cviu.2021.103255
– ident: 2166_CR9
  doi: 10.1007/978-3-642-70911-1_20
– ident: 2166_CR37
– ident: 2166_CR175
  doi: 10.1109/ICASSP.2019.8682377
– ident: 2166_CR30
  doi: 10.1109/ICCV.2017.322
– ident: 2166_CR116
  doi: 10.1109/CVPRW50498.2020.00486
– ident: 2166_CR137
  doi: 10.1609/aaai.v34i03.5649
– volume: 48
  start-page: 301
  year: 1960
  ident: 2166_CR8
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1960.287598
– volume: 51
  start-page: 92:1
  year: 2018
  ident: 2166_CR182
  publication-title: ACM Comput. Surv.
– ident: 2166_CR108
– volume: 29
  start-page: 4788
  year: 2020
  ident: 2166_CR135
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2975980
– ident: 2166_CR89
  doi: 10.1109/CVPR.2018.00008
– ident: 2166_CR145
  doi: 10.1109/ACCESS.2020.3016780
– volume: 35
  start-page: 445
  year: 2019
  ident: 2166_CR177
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1566-y
– year: 2021
  ident: 2166_CR241
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-021-02064-y
– ident: 2166_CR32
  doi: 10.1007/978-3-030-16272-6_11
– ident: 2166_CR215
  doi: 10.1007/s00371-020-01864-y
– ident: 2166_CR78
  doi: 10.1007/978-3-319-46448-0_2
– year: 2021
  ident: 2166_CR242
  publication-title: Comp. Vis. Med.
  doi: 10.1007/s41095-020-0199-z
– ident: 2166_CR50
– ident: 2166_CR229
  doi: 10.1109/CVPR.2018.00143
– ident: 2166_CR52
  doi: 10.1109/CVPR.2019.01275
– ident: 2166_CR136
  doi: 10.1109/CVPR.2018.00581
– volume: 1
  start-page: 2020
  year: 2020
  ident: 2166_CR105
  publication-title: IEEE Rev. Biomed. Eng.
– ident: 2166_CR25
  doi: 10.1109/CVPR.2016.91
– volume: 17
  start-page: 185
  year: 1981
  ident: 2166_CR65
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(81)90024-2
– ident: 2166_CR133
  doi: 10.1109/ICCV.2019.00680
– volume: 127
  start-page: 1385
  year: 2019
  ident: 2166_CR129
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01189-x
– volume: 19
  start-page: 866
  year: 2019
  ident: 2166_CR183
  publication-title: Sensors
  doi: 10.3390/s19040866
– ident: 2166_CR77
  doi: 10.1109/CVPR.2017.106
– ident: 2166_CR125
  doi: 10.1109/CVPR.2019.00209
– ident: 2166_CR87
  doi: 10.1109/CVPR.2018.00387
– volume-title: Multimodal Scene Understanding
  year: 2019
  ident: 2166_CR190
– volume: 60
  start-page: 84
  year: 2017
  ident: 2166_CR7
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 187
  start-page: 27
  year: 2016
  ident: 2166_CR179
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 169
  start-page: 215
  year: 2015
  ident: 2166_CR42
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.078
– year: 2020
  ident: 2166_CR139
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01833-5
– ident: 2166_CR155
  doi: 10.1109/CVPR42600.2020.01164
– ident: 2166_CR230
  doi: 10.1007/978-3-030-01219-9_11
– ident: 2166_CR90
  doi: 10.1109/CVPR.2019.00647
– ident: 2166_CR72
– ident: 2166_CR185
  doi: 10.1109/CCHI.2019.8901921
– ident: 2166_CR10
  doi: 10.1109/IMCEC.2016.7867471
– volume: 22
  start-page: 471
  year: 2011
  ident: 2166_CR54
  publication-title: Content-based image retrieval research. Phys. Proc.
– ident: 2166_CR75
  doi: 10.1109/ICCV.2015.169
– ident: 2166_CR200
  doi: 10.1109/CVPR.2019.00126
– ident: 2166_CR60
  doi: 10.1109/IROS.2011.6048835
– ident: 2166_CR114
  doi: 10.18653/v1/P17-2031
– volume: 2012
  start-page: 611
  year: 2012
  ident: 2166_CR64
  publication-title: Comput. Vis. ECCV
– year: 2020
  ident: 2166_CR228
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-02015-z
– ident: 2166_CR39
  doi: 10.18653/v1/P18-1209
– ident: 2166_CR40
  doi: 10.1109/wicom.2011.6040028
– volume: 104
  start-page: 154
  year: 2013
  ident: 2166_CR80
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– ident: 2166_CR233
  doi: 10.1109/ICCV.2017.450
– ident: 2166_CR134
  doi: 10.1109/ICCV.2019.00368
– volume: 77
  start-page: 257
  year: 1989
  ident: 2166_CR44
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– ident: 2166_CR109
  doi: 10.1609/aaai.v33i01.33014822
– ident: 2166_CR237
  doi: 10.1109/CVPR42600.2020.01034
– year: 2020
  ident: 2166_CR178
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01848-y
– ident: 2166_CR144
  doi: 10.1007/978-3-030-00919-9_23
– volume: 103
  start-page: 1449
  issue: 9
  year: 2015
  ident: 2166_CR36
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2460697
– ident: 2166_CR204
  doi: 10.1109/CVPR.2018.00419
– volume: 9
  start-page: 14383
  year: 2019
  ident: 2166_CR147
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50835-4
– volume: 378
  start-page: 364
  year: 2020
  ident: 2166_CR184
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.025
– volume: 7
  start-page: 87
  year: 2018
  ident: 2166_CR28
  publication-title: Int. J. Multimed. Infom. Retr.
  doi: 10.1007/s13735-017-0141-z
– ident: 2166_CR1
– ident: 2166_CR47
– volume: 7
  start-page: 63373
  year: 2019
  ident: 2166_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916887
– ident: 2166_CR156
  doi: 10.1167/16.12.326
– ident: 2166_CR99
– year: 2019
  ident: 2166_CR199
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2909895
– ident: 2166_CR118
  doi: 10.24963/ijcai.2020/124
– ident: 2166_CR102
  doi: 10.1109/CVPR.2015.7299135
– ident: 2166_CR91
  doi: 10.1007/978-3-319-10602-1_30
– volume: 36
  start-page: 1869
  year: 2020
  ident: 2166_CR140
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01775-7
– ident: 2166_CR124
– volume: 381
  start-page: 61
  year: 2020
  ident: 2166_CR86
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.023
– volume: 1
  start-page: 2020
  year: 2020
  ident: 2166_CR107
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 95
  start-page: 12
  year: 2019
  ident: 2166_CR208
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.05.032
– volume: 36
  start-page: 799
  year: 2020
  ident: 2166_CR157
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01661-2
– ident: 2166_CR162
– volume: 23
  start-page: 1607
  year: 2019
  ident: 2166_CR222
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2867619
– ident: 2166_CR59
  doi: 10.1109/ICCVW.2011.6130298
– ident: 2166_CR127
  doi: 10.1109/CVPR42600.2020.00999
– year: 2016
  ident: 2166_CR152
  publication-title: Stereo RGB-D Cameras
  doi: 10.1109/TRO.2017.2705103
– ident: 2166_CR20
  doi: 10.1007/s10462-020-09825-6
– ident: 2166_CR63
  doi: 10.1109/CVPR.2016.438
– volume: 17
  start-page: 2049
  year: 2015
  ident: 2166_CR51
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2015.2477042
– volume: 21
  start-page: 1072
  year: 2020
  ident: 2166_CR187
  publication-title: Precision Agric.
  doi: 10.1007/s11119-020-09709-3
– volume: 37
  start-page: 95
  year: 2021
  ident: 2166_CR234
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01982-7
– volume: 15
  start-page: 2949
  year: 2014
  ident: 2166_CR206
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: 2166_CR224
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01986-3
– ident: 2166_CR205
– volume: 28
  start-page: 84
  year: 1980
  ident: 2166_CR46
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1980.1094577
– ident: 2166_CR163
– ident: 2166_CR100
  doi: 10.1109/CVPR.2016.541
– volume: 57
  start-page: 137
  year: 2004
  ident: 2166_CR49
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000013087.49260.fb
– volume: 59
  start-page: 053103
  year: 2020
  ident: 2166_CR189
  publication-title: OE
– volume: 120
  start-page: 761
  year: 2016
  ident: 2166_CR209
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.01.001
– ident: 2166_CR159
  doi: 10.1109/ICCV.2019.00604
– year: 2020
  ident: 2166_CR225
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01843-3
– volume: 1
  start-page: 2019
  year: 2019
  ident: 2166_CR201
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2021
  ident: 2166_CR227
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-021-02061-1
– ident: 2166_CR48
  doi: 10.1109/BTAS.2015.7358754
– ident: 2166_CR22
  doi: 10.1109/ICCV.2015.314
– ident: 2166_CR196
  doi: 10.1109/ICIP.2019.8803528
– volume: 36
  start-page: 1053
  year: 2020
  ident: 2166_CR150
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01714-6
– ident: 2166_CR128
  doi: 10.1109/ICCV.2019.00751
– ident: 2166_CR74
  doi: 10.1109/CVPR.2014.81
– ident: 2166_CR94
  doi: 10.1109/ICCV.2015.141
– ident: 2166_CR168
– ident: 2166_CR53
  doi: 10.1109/ICIP.2019.8802922
– ident: 2166_CR194
  doi: 10.1109/ICCV.2019.00245
– volume: 36
  start-page: 305
  year: 2020
  ident: 2166_CR239
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1612-9
– volume: 11
  start-page: 446
  year: 2019
  ident: 2166_CR195
  publication-title: Remote Sens.
  doi: 10.3390/rs11040446
– year: 2020
  ident: 2166_CR198
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01801-5
– volume: 18
  start-page: 3040
  year: 2018
  ident: 2166_CR73
  publication-title: Sensors
  doi: 10.3390/s18093040
– ident: 2166_CR117
– year: 2020
  ident: 2166_CR138
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01854-0
– volume: 34
  start-page: 96
  year: 2017
  ident: 2166_CR34
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2738401
– volume: 35
  start-page: 53
  year: 2018
  ident: 2166_CR19
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2765202
– ident: 2166_CR126
  doi: 10.1109/CVPR.2019.00210
– ident: 2166_CR14
  doi: 10.1109/CVPR.2018.00572
– volume: 35
  start-page: 1798
  year: 2013
  ident: 2166_CR2
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 9
  start-page: 85
  year: 2020
  ident: 2166_CR93
  publication-title: Electronics
  doi: 10.3390/electronics9010085
– ident: 2166_CR232
– ident: 2166_CR81
– volume: 12
  start-page: 2211
  year: 2011
  ident: 2166_CR41
  publication-title: J. Mach. Learn. Res.
– ident: 2166_CR97
  doi: 10.1007/978-3-319-29451-3_54
– volume: 107
  start-page: 135
  year: 2017
  ident: 2166_CR188
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2017.03.069
– ident: 2166_CR11
  doi: 10.1155/2013/425740
– volume: 43
  start-page: 1415
  year: 2020
  ident: 2166_CR238
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00957-1
– ident: 2166_CR57
– volume: 20
  start-page: 1656
  year: 2018
  ident: 2166_CR219
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2774007
– volume: 89
  start-page: 384
  year: 2018
  ident: 2166_CR149
  publication-title: Transp. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2018.02.012
– volume: 8
  start-page: 36776
  year: 2020
  ident: 2166_CR66
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975640
– volume: 26
  start-page: 313
  year: 2020
  ident: 2166_CR218
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-019-00645-5
– ident: 2166_CR82
  doi: 10.1016/B978-0-12-816385-6.00005-2
– ident: 2166_CR174
  doi: 10.1109/ICCV.2019.00273
– ident: 2166_CR121
  doi: 10.1109/CVPR.2019.01281
– volume: 36
  start-page: 951
  year: 2020
  ident: 2166_CR123
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01705-7
– ident: 2166_CR103
  doi: 10.1109/CVPR.2019.00660
– volume: 35
  start-page: 119:1
  year: 2016
  ident: 2166_CR101
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2897824.2925954
– ident: 2166_CR170
  doi: 10.1109/FG47880.2020.00038
– volume: 15
  start-page: 2949
  issue: 1
  year: 2014
  ident: 2166_CR71
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 13:1
  year: 2019
  ident: 2166_CR130
  publication-title: ACM Trans. Intell. Syst. Technol.
– ident: 2166_CR16
– ident: 2166_CR5
  doi: 10.1109/IJCNN.2000.857823
– ident: 2166_CR181
  doi: 10.1016/j.neucom.2020.01.085
– volume: 8
  start-page: 2847
  year: 2020
  ident: 2166_CR164
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962554
– ident: 2166_CR172
  doi: 10.1109/CVPR.2019.00358
– volume: 63
  start-page: 601
  year: 2017
  ident: 2166_CR43
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.039
– volume: 26
  start-page: 1019
  year: 2015
  ident: 2166_CR70
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2330900
– volume: 77
  start-page: 29847
  year: 2018
  ident: 2166_CR221
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5856-1
– year: 2020
  ident: 2166_CR235
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01821-9
– ident: 2166_CR191
  doi: 10.1109/IV48863.2021.9575718
– ident: 2166_CR173
  doi: 10.1109/ICCV.2019.00855
– ident: 2166_CR17
  doi: 10.1609/aaai.v33i01.33018901
– ident: 2166_CR24
– year: 2020
  ident: 2166_CR143
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01786-4
– ident: 2166_CR212
  doi: 10.1109/WCNC.2017.7925709
– year: 2020
  ident: 2166_CR131
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01787-3
– volume: 9
  start-page: 2915
  year: 2019
  ident: 2166_CR165
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38914-y
– ident: 2166_CR33
  doi: 10.1145/3161174
– volume: 7
  start-page: 29253
  year: 2019
  ident: 2166_CR68
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902507
– ident: 2166_CR122
– ident: 2166_CR111
  doi: 10.3115/v1/P15-2139
– ident: 2166_CR186
  doi: 10.1109/CVPRW.2019.00158
– ident: 2166_CR69
– volume: 6
  start-page: 24411
  year: 2018
  ident: 2166_CR180
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2830661
– volume: 521
  start-page: 436
  year: 2015
  ident: 2166_CR4
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 2166_CR27
– ident: 2166_CR58
  doi: 10.1109/IROS.2011.6094649
– volume: 28
  start-page: 257
  year: 2016
  ident: 2166_CR203
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00801
– ident: 2166_CR104
  doi: 10.1007/978-3-030-32962-4_18
– ident: 2166_CR120
  doi: 10.1007/978-3-030-58604-1_7
– volume: 36
  start-page: 1797
  year: 2020
  ident: 2166_CR240
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01774-8
– ident: 2166_CR98
  doi: 10.1109/ICCVW.2017.360
– volume: 44
  start-page: 93
  year: 2020
  ident: 2166_CR106
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01562-1
– ident: 2166_CR171
– volume: 5
  start-page: 5
  year: 2019
  ident: 2166_CR166
  publication-title: J. Imag.
  doi: 10.3390/jimaging5010005
– ident: 2166_CR62
– volume: 128
  start-page: 261
  year: 2020
  ident: 2166_CR84
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01247-4
– volume: 2019
  start-page: 13
  year: 2019
  ident: 2166_CR132
  publication-title: J. Image Video Proc.
  doi: 10.1186/s13640-018-0371-x
– volume: 36
  start-page: 317
  year: 2020
  ident: 2166_CR158
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1609-4
– ident: 2166_CR207
– ident: 2166_CR85
– ident: 2166_CR38
  doi: 10.1007/978-3-662-44415-3_16
– ident: 2166_CR231
  doi: 10.1109/IGARSS.2019.8898605
– ident: 2166_CR6
  doi: 10.1109/INTELCIS.2017.8260032
– ident: 2166_CR79
  doi: 10.1109/ICCV.2017.324
– volume: 64
  start-page: 101093
  year: 2020
  ident: 2166_CR113
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2020.101093
– ident: 2166_CR243
  doi: 10.1007/978-3-030-32583-1_12
– year: 2020
  ident: 2166_CR193
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3015781
– ident: 2166_CR31
  doi: 10.1109/CVPR.2019.00511
– volume: 7
  start-page: 43110
  year: 2019
  ident: 2166_CR216
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907071
– volume: 36
  start-page: 1271
  year: 2020
  ident: 2166_CR148
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01720-8
– ident: 2166_CR213
  doi: 10.1109/ICCV.2015.301
– ident: 2166_CR76
  doi: 10.1109/TPAMI.2016.2577031
– year: 2020
  ident: 2166_CR226
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01957-8
– volume: 115
  start-page: 20
  year: 2018
  ident: 2166_CR192
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.09.038
– volume: 16
  start-page: 2639
  year: 2004
  ident: 2166_CR202
  publication-title: Neural Comput.
  doi: 10.1162/0899766042321814
– ident: 2166_CR88
  doi: 10.1109/CVPR.2019.00679
– volume: 20
  start-page: 405
  issue: 2
  year: 2017
  ident: 2166_CR112
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2742704
– ident: 2166_CR214
– volume: 323
  start-page: 533
  year: 1986
  ident: 2166_CR12
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 2166_CR26
  doi: 10.1109/CVPR.2018.00644
– ident: 2166_CR115
– volume: 143
  start-page: 113114
  year: 2020
  ident: 2166_CR92
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113114
– ident: 2166_CR23
  doi: 10.7551/mitpress/3717.003.0017
– volume: 4
  start-page: 588
  year: 2019
  ident: 2166_CR83
  publication-title: IEEE Trans. Intelli. Veh.
  doi: 10.1109/TIV.2019.2938110
– ident: 2166_CR29
  doi: 10.1109/CVPR.2015.7298965
– ident: 2166_CR167
  doi: 10.1109/CVPR.2019.00072
– volume: 37
  start-page: 362
  year: 2020
  ident: 2166_CR146
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21918
– ident: 2166_CR3
– ident: 2166_CR61
  doi: 10.1109/CVPR.2016.442
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  ident: 2166_CR110
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007379606734
– volume: 31
  start-page: 76
  year: 2018
  ident: 2166_CR169
  publication-title: Chin. J. Mech. Eng.
  doi: 10.1186/s10033-018-0275-9
– volume: 127
  start-page: 143
  year: 2019
  ident: 2166_CR95
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1133-z
– ident: 2166_CR223
  doi: 10.1007/978-981-10-8530-7_8
– ident: 2166_CR56
  doi: 10.1109/ICRA.2014.6906903
– ident: 2166_CR141
  doi: 10.1109/WACV45572.2020.9093438
– ident: 2166_CR236
  doi: 10.1109/CVPR.2016.10
– volume: 19
  start-page: 4494
  year: 2019
  ident: 2166_CR151
  publication-title: Sensors
  doi: 10.3390/s19204494
– ident: 2166_CR217
  doi: 10.1007/s00371-020-01934-1
– volume: 86
  start-page: 2278
  year: 1998
  ident: 2166_CR21
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 2166_CR211
  doi: 10.1007/978-981-13-1132-1_5
– ident: 2166_CR154
– ident: 2166_CR176
  doi: 10.1109/CVPR42600.2020.01088
– volume: 29
  start-page: 245
  year: 1997
  ident: 2166_CR45
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007425814087
– ident: 2166_CR55
  doi: 10.1109/ICRA.2011.5980382
– ident: 2166_CR160
  doi: 10.1109/CVPR.2017.759
– ident: 2166_CR153
  doi: 10.1007/978-3-319-10605-2_54
– volume: 329
  start-page: 476
  year: 2019
  ident: 2166_CR220
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.004
– volume: 18
  start-page: 1527
  year: 2006
  ident: 2166_CR15
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
SSID ssj0017749
Score 2.6546772
Snippet The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2939
SubjectTerms Algorithms
Artificial Intelligence
Big Data
Computer Graphics
Computer Science
Computer vision
Data transmission
Datasets
Deep learning
Image Processing and Computer Vision
Intelligent systems
Machine learning
Natural language processing
Sensors
Survey
Trends
Unstructured data
Voice recognition
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTg-1FfRPDmFkzSV7wtooigJxe8laZJVNDuYruC_95JNq2uL_DQQ-k0aTOTzAzzzQzAUWHTIRVlyAERhRFTWShjHoUaD8I4LWJmXPeG65vkchBd3cV3PimsbtHubUjSndRdspurLhdaSAFeSRKmszAfW98dpXjA-l3sAA0aZ_RS9I9snqdPlfl5jGl19M3G_A6V_BIvdWroYgWWvP1I-hOGr8KMrtZgue3NQPxWXYPFT4UG18H0ST1-edVvZFgRpfWIOCDh81DhWL5xxD1B-5WU7UiTpPNT4kECdY80Dj7bI59j3nhXKWJhprVu6g0YXJzfnl2GvsNCWKKl1oQZE7JAJS5SQzNcmoLp7ESYTCpaSH4i0e2WJqbGKCZK9BVRnWUm0rzUSMml4JswVw0rvQ2E61Sga0hlkZaRSiKZZUoUmqP_xU3KeQC0Xei89OXHbReMp7wrnOyYkyNjcsecPA3guHtnNCm-8Sf1Xsu_3G_EOmeC2tAxikkAh91j3EI2LlJUejhGmjhCWeEioQFsTdjdTWeVPOVxEkA6JQgdgS3PPf2kenxwZbpdqTmK8_Zakfn4rN__Yud_5LuwwGxChoMk7sFc8zLW-2gmNfLA7Yp35jQIIw
  priority: 102
  providerName: Springer Nature
Title A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets
URI https://link.springer.com/article/10.1007/s00371-021-02166-7
https://www.ncbi.nlm.nih.gov/pubmed/34131356
https://www.proquest.com/docview/2918065202
https://www.proquest.com/docview/2541783961
https://pubmed.ncbi.nlm.nih.gov/PMC8192112
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Nb9Mw9ImtFzig8R0YlZG40YjZTmKbCypTuwnEhBCVximKY3sgQVKWFGn_nmfXzdZN7JBD4mc59rPfh98XwOvKh0MayhADKkszZmSqc56lFglhLqqcuVC94fNJcbzIPp7mp_HCrYtulRuaGAi1aWt_R_6WKeptgKirv1_-SX3VKG9djSU0dmCEJFii8jX6MDv58nWwI6BwEwRgirqSj_mMYTMheC5kq0u9iwI-RZGKbdZ0Q9686TZ5zXYaWNJ8D-5HWZJM18h_AHds8xDuXckw-AjclHSr87_2grQNMdYuSfAg_N0a7BgrRpwRFFxJHcs7kHW0-TsSvQO6CemD3-yEXDV241tjiPcv7WzfPYbFfPbt8DiNpRXSGkW0PpVM6Qq5txIOl5WLill5oJzUhlaaH2jUt7XLqXOGqRqVRORj0mWW1xYhuVb8Cew2bWOfAeFWKNQJqa5EnZki01IaVVmOihd3gvME6GZVyzrmHfflL36VQ8bkgIkSsVAGTJQigTdDn-U668at0PsbZJXxBHbl5X5J4NXQjGfHG0SqxrYrhMkz3BhcFTSBp2vcDsN57k55XiQgtrA-APi83Nstzc8fIT93yDFHcdzJZn9c_tb_Z_H89lm8gLvMR14E38N92O3PV_YlykO9HsOOnB-NYTQ9-v5pNo5HAL8u2PQfuYsJuQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEG9CCxgJTqxF_UgcIyFUAcuWPk6t1FuIYweQINk22Vb9U_xGxs6jXSp66yGHyHYSe8bjmczMNwCvcp8OaRlHCmhJJbcpNbGQ1KEgjFUe8zJUb9jdS2YH8uthfLgCf4ZcGB9WOcjEIKhtXfh_5G-5Zt4HiLb6h_kR9VWjvHd1KKHRscW2OztFk615v_UJ6fua8-nn_Y8z2lcVoAVqJy1NuTY5HlxalfhEoXLu0g1dpsay3IgNg6amKWNWlpbrAu0jFOFpKZ0oHPYUxoMvoci_IYXQfkel0y-j1wJVqaBuM7TMfIZpn6QTUvUCNh71ARF4JQlVywfhJe32cpDmP57acABO78KdXnMlmx2r3YMVV92H2xfwDB9AuUmaxfGJOyN1RaxzcxLiFX_XFgf29Sm-E1STSdEXkyBdbvs70sciNBPShijdCbnoWse7yhIfzdq4tnkIB9ey5I9gtaor9wSIcEqjBcpMrgppE2nS1OrcCTTzRKmEiIANq5oVPcq5L7bxKxvxmQMlMqRCFiiRqQjejGPmHcbHlb3XB2Jl_X5vsnPujODl2Iw71btf8srVC-wTS2QM5BoWweOOtuPrvC7BRJxEoJaoPnbwKODLLdXPHwENPCDaMXzvZOCP88_6_yyeXj2LF3Bztr-7k-1s7W2vwS3ucz5C1OM6rLbHC_cMNbHWPA_sT-Dbde-3v3pHQkY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xkKbtgQGDka0MT-JtjVrb-fLeqo2q40t7oBJvURzbbBKkFUmR-O93dj7Wjg2JhzxEudiJ7-y70939DuAos-WQijLkgAj8gKnElyEPfI0HYRhnITOue8P5RTSZBidX4dVSFb_Ldm9DknVNg0VpKqrBXJlBV_jmkOZ8m16AVxT58QvYwOOYWrmeslEXR0DjxhnAFH0lW_PZlM38e4xV1fTI3nycNvlX7NSppPEWbDa2JBnVzN-GNV3swJu2TwNptu0OvF4CHXwLZkTKxd29fiCzgiit58QlFd7OFI7VNJG4JmjLkrwdqS5A_0KahIGyTyqXStsny_FvvCsUsSmnpa7KXZiOjy-_Tvym24Kfo9VW-QkTMkOFLmJDE1yajOlkKEwiFc0kH0p0waUJqTGKiRz9RlRtiQk0zzVScin4HqwXs0LvA-E6FugmUpnFeaCiQCaJEpnm6ItxE3PuAW0XOs0bKHLbEeMm7UCUHXNSZEzqmJPGHnzu3pnXQBxPUvda_qXNpixTJqgNI7Mh8-BT9xi3k42RZIWeLZAmDFBWuIioB-9qdnfTWYVPeRh5EK8IQkdgobpXnxS_fjrIbgc7R3Hefisyfz7r_3_x_nnkh_Dyx7dxevb94vQDvGK2TsNlKvZgvbpb6AO0nir50W2Q37ByD1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+deep+multimodal+learning+for+computer+vision%3A+advances%2C+trends%2C+applications%2C+and+datasets&rft.jtitle=The+Visual+computer&rft.au=Bayoudh%2C+Khaled&rft.au=Knani%2C+Raja&rft.au=Hamdaoui%2C+Fay%C3%A7al&rft.au=Mtibaa%2C+Abdellatif&rft.date=2022-08-01&rft.issn=0178-2789&rft.volume=38&rft.issue=8&rft.spage=2939&rft_id=info:doi/10.1007%2Fs00371-021-02166-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon