Video-Based Detection Infrastructure Enhancement for Automated Ship Recognition and Behavior Analysis

Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which provides critical on-site traffic data for maritime participants. Ship behavior analysis, one of the fundamental tasks for fulfilling smart video-based detection infrastructure, h...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced transportation Vol. 2020; no. 2020; pp. 1 - 12
Main Authors Wu, Huafeng, Postolache, Octavian, Luo, Qiang, Yang, Yongsheng, Qi, Lei, Chen, Xinqiang, Tang, Jinjun
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which provides critical on-site traffic data for maritime participants. Ship behavior analysis, one of the fundamental tasks for fulfilling smart video-based detection infrastructure, has become an active topic in the CAS community. Previous studies focused on ship behavior analysis by exploring spatial-temporal information from automatic identification system (AIS) data, and less attention was paid to maritime surveillance videos. To bridge the gap, we proposed an ensemble you only look once (YOLO) framework for ship behavior analysis. First, we employed the convolutional neural network in the YOLO model to extract multi-scaled ship features from the input ship images. Second, the proposed framework generated many bounding boxes (i.e., potential ship positions) based on the object confidence level. Third, we suppressed the background bounding box interferences, and determined ship detection results with intersection over union (IOU) criterion, and thus obtained ship positions in each ship image. Fourth, we analyzed spatial-temporal ship behavior in consecutive maritime images based on kinematic ship information. The experimental results have shown that ships are accurately detected (i.e., both of the average recall and precision rate were higher than 90%) and the historical ship behaviors are successfully recognized. The proposed framework can be adaptively deployed in the connected and autonomous vehicle detection system in the automated terminal for the purpose of exploring the coupled interactions between traffic flow variation and heterogeneous detection infrastructures, and thus enhance terminal traffic network capacity and safety.
AbstractList Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which provides critical on-site traffic data for maritime participants. Ship behavior analysis, one of the fundamental tasks for fulfilling smart video-based detection infrastructure, has become an active topic in the CAS community. Previous studies focused on ship behavior analysis by exploring spatial-temporal information from automatic identification system (AIS) data, and less attention was paid to maritime surveillance videos. To bridge the gap, we proposed an ensemble you only look once (YOLO) framework for ship behavior analysis. First, we employed the convolutional neural network in the YOLO model to extract multi-scaled ship features from the input ship images. Second, the proposed framework generated many bounding boxes (i.e., potential ship positions) based on the object confidence level. Third, we suppressed the background bounding box interferences, and determined ship detection results with intersection over union (IOU) criterion, and thus obtained ship positions in each ship image. Fourth, we analyzed spatial-temporal ship behavior in consecutive maritime images based on kinematic ship information. The experimental results have shown that ships are accurately detected (i.e., both of the average recall and precision rate were higher than 90%) and the historical ship behaviors are successfully recognized. The proposed framework can be adaptively deployed in the connected and autonomous vehicle detection system in the automated terminal for the purpose of exploring the coupled interactions between traffic flow variation and heterogeneous detection infrastructures, and thus enhance terminal traffic network capacity and safety.
Audience Academic
Author Luo, Qiang
Yang, Yongsheng
Postolache, Octavian
Chen, Xinqiang
Qi, Lei
Tang, Jinjun
Wu, Huafeng
Author_xml – sequence: 1
  fullname: Wu, Huafeng
– sequence: 2
  fullname: Postolache, Octavian
– sequence: 3
  fullname: Luo, Qiang
– sequence: 4
  fullname: Yang, Yongsheng
– sequence: 5
  fullname: Qi, Lei
– sequence: 6
  fullname: Chen, Xinqiang
– sequence: 7
  fullname: Tang, Jinjun
BookMark eNqFks1r3DAQxU1JoZu0t56LocfWiT5t67hJk3YhUOjX1Yzlsa1lV9pKckv--8hxaEvZUgQSDL_3RtKb0-zEOotZ9pKSc0qlvGCEkYuKKsEFe5KtGBGs4FTJk2xFqKqKsmLqWXYawpYQrqQSqwy_mQ5dcQkBu_wdRtTROJtvbO8hRD_pOHnMr-0IVuMebcx75_P1FN0eYpJ8Hs0h_4TaDdY8KMF2-SWO8MPMnIXdXTDhefa0h13AF4_nWfb15vrL1Yfi9uP7zdX6ttBSkFjUtKSskqqibS1qXdK2E23Z8ZaIinRSawFCadFJpFxQqupWAciaM0lRE6X5WbZZfDsH2-bgzR78XePANA8F54cGfDR6hw1tW1qWQDSvWyGlUkLXquUIvSKcqCp5vV68Dt59nzDEZusmnx4UGiZIVQpOS56oYqEGSKbG9i560ANa9LBL6fQmldclY6ysOZWJPz_Cp9Xh3uijgrd_CNopGIshbcEMYwwDTCEcxbV3IXjsf_0CJc08JM08JM3jkCSc_YVrE2EOMl3L7P4lerOIRmM7-Gn-1-LVQmNisIffNJ2j5vwe4YzVCg
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2986500
crossref_primary_10_1109_ACCESS_2021_3055253
crossref_primary_10_1109_TITS_2020_3023957
crossref_primary_10_1155_2020_8147310
crossref_primary_10_1155_2021_7537825
crossref_primary_10_1155_2021_9440212
crossref_primary_10_1155_2021_7552180
crossref_primary_10_1155_2021_5708779
crossref_primary_10_1088_1361_6501_acd6ad
crossref_primary_10_21595_jme_2023_23638
crossref_primary_10_3390_jmse10030444
crossref_primary_10_1155_2020_4813183
crossref_primary_10_1155_2021_6893816
crossref_primary_10_1371_journal_pone_0229211
crossref_primary_10_1108_AJIM_02_2020_0054
crossref_primary_10_1155_2021_3515512
crossref_primary_10_1016_j_oceaneng_2024_120065
crossref_primary_10_1155_2021_9612480
crossref_primary_10_1155_2020_7191296
crossref_primary_10_1155_2021_8380247
crossref_primary_10_3390_s21175767
crossref_primary_10_3390_electronics11050782
crossref_primary_10_1155_2021_5538320
crossref_primary_10_3389_fmars_2023_1085342
crossref_primary_10_1109_JSEN_2020_3007809
crossref_primary_10_3390_s21093062
crossref_primary_10_1109_TITS_2022_3140933
crossref_primary_10_1080_10095020_2022_2072241
crossref_primary_10_1155_2021_5531965
crossref_primary_10_1016_j_scitotenv_2022_160363
crossref_primary_10_1155_2021_5552099
crossref_primary_10_1016_j_istruc_2024_107048
crossref_primary_10_1155_2021_9973336
crossref_primary_10_1155_2021_9730813
crossref_primary_10_1155_2021_7534739
crossref_primary_10_1155_2021_2085876
crossref_primary_10_3390_jmse11122227
crossref_primary_10_1007_s10668_022_02172_2
crossref_primary_10_1155_2021_1936764
crossref_primary_10_1186_s40561_024_00350_5
crossref_primary_10_1371_journal_pone_0262678
crossref_primary_10_1109_MITS_2022_3198334
crossref_primary_10_1155_2021_3771640
crossref_primary_10_1080_19439962_2022_2147611
crossref_primary_10_1109_TITS_2023_3235911
crossref_primary_10_1016_j_apor_2020_102455
crossref_primary_10_1155_2020_6402149
crossref_primary_10_1155_2021_2798351
crossref_primary_10_1155_2022_2555350
crossref_primary_10_1109_ACCESS_2021_3138983
crossref_primary_10_1155_2021_4959504
crossref_primary_10_1155_2020_6725408
crossref_primary_10_1016_j_oceaneng_2024_118242
crossref_primary_10_3390_jmse10070841
crossref_primary_10_1155_2022_6312139
crossref_primary_10_3390_s24113458
crossref_primary_10_3390_a16070326
crossref_primary_10_1155_2021_5808206
crossref_primary_10_1155_2021_8453465
crossref_primary_10_3390_s23167027
crossref_primary_10_1155_2021_6566207
crossref_primary_10_1155_2021_8772688
crossref_primary_10_1016_j_eswa_2023_122191
crossref_primary_10_3390_jmse9121408
crossref_primary_10_1007_s11802_022_5128_6
crossref_primary_10_3390_app14188420
crossref_primary_10_1080_15472450_2022_2130693
crossref_primary_10_3390_jmse10060809
crossref_primary_10_1109_TITS_2025_3530678
crossref_primary_10_1155_2021_6639559
crossref_primary_10_3390_en14238066
crossref_primary_10_1155_2021_5598390
crossref_primary_10_1080_19439962_2023_2169801
crossref_primary_10_1109_TITS_2021_3102983
crossref_primary_10_3390_s22072713
Cites_doi 10.1007/s12145-018-0371-5
10.1017/S0373463318000504
10.1109/TITS.2017.2699635
10.1017/S0373463317000406
10.1109/TITS.2016.2634580
10.1016/j.oceaneng.2018.12.019
10.1061/JTEPBS.0000138
10.1109/LGRS.2018.2869561
10.1109/LGRS.2017.2727515
10.1109/MGRS.2016.2540798
10.3390/rs9080860
10.1016/j.sigpro.2014.07.029
10.1016/j.patrec.2017.03.008
10.1016/j.jss.2016.06.016
10.1016/j.ress.2018.03.033
10.1109/LGRS.2015.2419371
10.1109/TGRS.2018.2820911
10.1109/ACCESS.2018.2866364
10.1016/j.apor.2018.06.011
10.1109/TVLSI.2019.2905242
10.3390/s19040821
10.1016/j.oceaneng.2015.07.046
10.3390/s18124211
10.1109/TGRS.2019.2897251
10.1016/j.oceaneng.2016.07.059
10.1016/j.oceaneng.2017.06.022
ContentType Journal Article
Copyright Copyright © 2020 Xinqiang Chen et al.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright © 2020 Xinqiang Chen et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2020 Xinqiang Chen et al.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright © 2020 Xinqiang Chen et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
N95
3V.
7ST
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
HCIFZ
K60
K6~
KR7
L.-
L6V
M0C
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
SOI
DOA
DOI 10.1155/2020/7194342
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Business: Insights (Gale)
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2042-3195
Editor Yu, Hao
Editor_xml – sequence: 1
  givenname: Hao
  surname: Yu
  fullname: Yu, Hao
EndPage 12
ExternalDocumentID oai_doaj_org_article_1bb166a0c38b455994c89b3eaf903097
A622268315
10_1155_2020_7194342
1175973
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51579143; 51509167
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 18040501700; 18295801100; 17595810300
GroupedDBID -~X
..I
05W
0R~
1OC
24P
29J
31~
3SF
4.4
52U
5GY
7WY
8-1
8FL
AAESR
AAEVG
AAFWJ
AAJEY
AAONW
AAZKR
ABDBF
ABDPE
ABJCF
ABUWG
ACBWZ
ACIWK
ACNCT
ACXQS
ADBBV
ADIZJ
ADJCN
AEIMD
AENEX
AFBPY
AFKRA
AFPKN
AFRAH
AHFXO
AI.
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAAKF
BCNDV
BDRZF
BENPR
BEZIV
BGLVJ
BHBCM
BNHUX
BOGZA
BRXPI
CCPQU
DU5
DWQXO
EBS
EJD
ESX
FEDTE
FRNLG
G-S
GODZA
GROUPED_DOAJ
H13
HCIFZ
HVGLF
HZ~
I-F
IAO
ICW
IOF
ITC
LITHE
LPU
M0C
M7S
MY~
N95
O9-
OK1
P2P
PIMPY
PQBIZ
PQBZA
PTHSS
PV9
RHX
RIWAO
RJQFR
RZL
SUPJJ
TN5
TUS
VH1
WBKPD
WH7
WIH
XI7
RHU
RHW
AAYXX
ACCMX
ACUHS
AEUYN
CITATION
PHGZM
PHGZT
PMFND
3V.
7ST
7XB
8FD
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
FR3
K60
K6~
KR7
L.-
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
SOI
PUEGO
ID FETCH-LOGICAL-c540t-8161275971b848c61bd4b6d3b0470d5cc4a49c4d5e1341198b9aa583251ec09c3
IEDL.DBID RHX
ISSN 0197-6729
IngestDate Wed Aug 27 01:12:48 EDT 2025
Fri Jul 25 10:28:59 EDT 2025
Fri Jun 13 00:05:37 EDT 2025
Tue Jun 10 21:01:24 EDT 2025
Fri May 23 02:36:22 EDT 2025
Tue Jul 01 00:34:08 EDT 2025
Thu Apr 24 22:58:21 EDT 2025
Sun Jun 02 18:55:01 EDT 2024
Tue Nov 26 17:06:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-8161275971b848c61bd4b6d3b0470d5cc4a49c4d5e1341198b9aa583251ec09c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5172-387X
0000-0001-8959-5108
OpenAccessLink https://dx.doi.org/10.1155/2020/7194342
PQID 2407643163
PQPubID 1006382
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1bb166a0c38b455994c89b3eaf903097
proquest_journals_2407643163
gale_infotracgeneralonefile_A622268315
gale_infotracacademiconefile_A622268315
gale_businessinsightsgauss_A622268315
crossref_primary_10_1155_2020_7194342
crossref_citationtrail_10_1155_2020_7194342
hindawi_primary_10_1155_2020_7194342
emarefa_primary_1175973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: London
PublicationTitle Journal of advanced transportation
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 22
(34) 2004
26
27
28
10
32
11
12
13
14
15
16
(33) 1990
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 32
  doi: 10.1007/s12145-018-0371-5
– ident: 10
  doi: 10.1017/S0373463318000504
– ident: 4
  doi: 10.1109/TITS.2017.2699635
– ident: 1
  doi: 10.1017/S0373463317000406
– ident: 12
  doi: 10.1109/TITS.2016.2634580
– ident: 3
  doi: 10.1016/j.oceaneng.2018.12.019
– ident: 28
  doi: 10.1061/JTEPBS.0000138
– ident: 16
  doi: 10.1109/LGRS.2018.2869561
– ident: 22
  doi: 10.1109/LGRS.2017.2727515
– ident: 20
  doi: 10.1109/MGRS.2016.2540798
– ident: 21
  doi: 10.3390/rs9080860
– ident: 9
  doi: 10.1016/j.sigpro.2014.07.029
– ident: 27
  doi: 10.1016/j.patrec.2017.03.008
– ident: 14
  doi: 10.1016/j.jss.2016.06.016
– ident: 7
  doi: 10.1016/j.ress.2018.03.033
– year: 1990
  ident: 33
– ident: 8
  doi: 10.1109/LGRS.2015.2419371
– ident: 11
  doi: 10.1109/TGRS.2018.2820911
– ident: 2
  doi: 10.1109/ACCESS.2018.2866364
– ident: 18
  doi: 10.1016/j.apor.2018.06.011
– ident: 26
  doi: 10.1109/TVLSI.2019.2905242
– ident: 17
  doi: 10.3390/s19040821
– ident: 5
  doi: 10.1016/j.oceaneng.2015.07.046
– ident: 19
  doi: 10.3390/s18124211
– year: 2004
  ident: 34
– ident: 13
  doi: 10.1109/TGRS.2019.2897251
– ident: 6
  doi: 10.1016/j.oceaneng.2016.07.059
– ident: 15
  doi: 10.1016/j.oceaneng.2017.06.022
SSID ssj0039594
Score 2.493497
Snippet Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which provides critical on-site traffic data...
SourceID doaj
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Automation
Behavior
Confidence intervals
Deep learning
Detectors
Efficiency
Feature extraction
Infrastructure
Infrastructure (Economics)
Kinematics
Methods
Neural networks
Onsite
Production planning
Spatial analysis
Spatial discrimination
Surveillance
Traffic capacity
Traffic flow
Traffic information
Traffic safety
Transportation
Vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQ4IGh5LC1VDgUOKKq9fqx93EKrFgkOQFFvll_prlRlq2ZX_fvMOM7SFaBeuERKNJaTmbFnxpn5hpADmVigXPDaYT6OUNrVhje8Zq5JjeE0RI6Fwl--qtNz8flCXtxp9YU5YT08cM-4Q-Y9U8rRwLUXCI8lgjaeJ9cY_DuQ68jB5g3BVL8HcyNNj-ptJrUC_3FIeZcSo316OGGIizbeMEYZsz8X5jq4d-s9-uEMo-Pb-R-7dTZBJ0_Jk-I7VtP-nZ-RB6ndJo_vIArukPRzHtOiPgLbFKtPaZkTrdrqrG1uXA8Vu7pJ1XE7Q2HjwWAFTms1XS0X4LnCkO-z-XX1bUgqgpGujVXBUAS6gmDynJyfHP_4eFqXTgp1AI9sWWvw68YTiB2Y10IHxXwUXkXuqZjQKEMQTpggIkgOrBoz2hvnJCx2yVKgJvAXZKtdtOkVqejYpKi1Sb4ZiyCjpxCbixC981R76kfkw8BSGwrMOHa7uLI53JDSogBsEcCIvF1TX_fwGv-gO0LprGkQFDs_AFWxRVXsfaoyIi-LbH_PxZArHF4DZW1L40-4dHg00l26VdfZqQInSmnO5Ii8z3S4-OGjgis1DMAahNHaoHy3QXnZg4j_jfCg6Nc9DNgblM-WXaazGI0rxDLgr_8Hf3bJI5yyP2DaI1uglekNuFxLv59X1y_BaSJt
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZgExI8IO50DJSHAQ8oml3bif2EWug0kJjQYGhvlm9pK6G0a1rx9zkncToqbi-Rkhzn4mOfm4-_Q8iRjMxTLnhuMR9HFMrmmlc8Z7aKlebUB44bhT-dFacX4uOlvEwBtyalVfYysRXUYeExRn6MnkeB-7b52-VVjlWjcHU1ldC4SfZBBCtwvvbHk7PP570s5lrqDt1bl3kBdmSf-i4lev30uGSIjzbcUUotdn-7QdfCud3K6lsz9JJ_zH-T2q0qOrlH7iYbMht1TL9PbsT6AbnzC7LgQxK_zUNc5GPQUSF7H9dtwlWdfairle0gYzermE3qGTIdA4QZGK_ZaLNegAULTb7M5svsvE8ugpa2DlnCUgS6hGTyiFycTL6-O81TRYXcg2W2zhXYd8MSfAjmlFC-YC4IVwTuqChpkN4LK7QXATgI2o1p5bS1Eia9ZNFT7fljslcv6viUZHSoY1BKR1cNhZfBUfDRhQ_OOqocdQPypu9S4xPcOFa9-G5at0NKgwwwiQED8nJLvexgNv5CN0bubGkQHLu9sFhNTZprhjnHisJSz5UTiKgmvNKOR1tpXFAqB-RJ4u31uxj2CofPQF6bVAAUDg2GSJqp3TSNGRVgTBWKMzkgr1s6FALwU96mvQzQNQintUP5aody2oGJ_4nwKI2v_3TAYT_4TJI2jbmeGwf_vv2M3MaHdSGkQ7IH4y0-B6Nq7V6kmfMTPOMb4g
  priority: 102
  providerName: ProQuest
Title Video-Based Detection Infrastructure Enhancement for Automated Ship Recognition and Behavior Analysis
URI https://search.emarefa.net/detail/BIM-1175973
https://dx.doi.org/10.1155/2020/7194342
https://www.proquest.com/docview/2407643163
https://doaj.org/article/1bb166a0c38b455994c89b3eaf903097
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jj9MwFLZgEBIcEOtQGKocBjigCLt2HPvYQktBYoQGBvVmecu0EkpHk1b8fd5LnEIZEFwiOXrO8vbn5TMhx0VknnLBc4vrcYRUNte84jmzVaw0pz5w3Cj88UTOz8SHRbFIIEnN1Sl8iHZYntPXJUMgM_C110HBsCifL3qHy3WhOwhvXeYSksV-fftvffciTwvQ3-7CtdC2O4d8c4ml8PfVFdfcxpvZXXInJYrZuJPsPXIt1vfJ7V_gAx-Q-HUV4jqfQCAK2du4aVdV1dn7urq0HS7s9jJm03qJksVRwAwy1Gy83awhTYUun5eri-y0X0EEPW0dsgSYCHQJruQhOZtNv7yZ5-nYhNxD-rXJFSRxoxIKBeaUUF4yF4STgTsqShoK74UV2osAYoIQxrRy2toCLLtg0VPt-SNyUK_r-JhkdKRjUEpHV42EL4KjUIgLH5x1VDnqBuRVz1LjE6Y4Hm3xzbS1RVEYFIBJAhiQ5zvqiw5L4y90E5TOjgYRsNsboBUmGZRhzjEpLfVcOYGwacIr7Xi0lcZZo3JADpNsf76LIVc4fAbK2qRTPuHS4DhIc263TWPGEjImqTgrBuRlS4eWDj_lbdqwAKxBzKw9yhd7lOcdYvifCI-Tfv2DAUe98pnkUhqDpbdE4AL-5P-e8pTcwmY3XnREDkDv4jPIoDZuCFY0ezckNybTk0-nw3YcYtja1A9HmxOz
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQcEG8CBXxo4YCsrr27jveAUEpbEvo4QFv1tuzLSSTkhDhRxZ_iNzJjr1MiXqdeojzGdjwzOy_vfEPIpvCJpYyzWON-HJ7lOpasYHGiC19IRq1j2Ch8dJz1T_nHc3G-Rn60vTC4rbK1ibWhdhOLNfJtzDwy7Ntm76bfYpwahU9X2xEajVoc-O8XkLJVbwe7IN-tNN3fO3nfj8NUgdhCdDKPc4hx0i7E0YnJeW6zxDhuMscM5V3qhLVcc2m5g7sACw85uZFaC1B8kXhLpWVw3mvkOmdM4orK9z-0lp9JIRsscdmNM4ha2432QmCNgW53E0RjS1dcYD0poG4H1vBZLz3DjRHm5Bfj33xE7fj275I7IWKNeo2K3SNrvrxPbv-CY_iA-LOx85N4Bzyii3b9vN7eVUaDspjpBqB2MfPRXjlCFcNyZAShctRbzCcQL8Mhn0fjafSp3coER-rSRQG5EegCbspDcnolnH5E1stJ6Z-QiKbSuzyX3hQpt8IZ6g28cUYbmhtqOuRNy1JlA7g5ztj4quokRwiFAlBBAB2ytaSeNqAef6HbQeksaRCKu_5iMhuqsLJVYkySZZpalhuO-G3c5tIwrwuJj6-6HfI4yPbyWglyhcHfQFmrMG4UXiosyFRDvagq1csgdMtylogOeV3TocmBm7I6dE4AaxC8a4Xy1QrlsIEu_xPhZtCv_zBgo1U-FWxbpS5X4tN___yS3OyfHB2qw8HxwTNyC0_cFK82yDronn8O4dzcvKjXUES-XPWi_QlLLVWW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCA4IN4ECvjQwgFZWXt3_TgglJBEDYWoKrTqzezLSSTkhDhRxV_j1zFjr1MiXqdeojzGjj3vHc9-Q8i-sIGmjDNfYj8OjxLppyxnfiBzm6eMasNwo_DHcXR4yt-fi_Md8qPZC4NtlY1PrBy1mWuskXdw5RHhvm3WyV1bxHF_-HbxzccJUviktRmnUavIkf1-Acu38s2oD7I-CMPh4PO7Q99NGPA1ZCorP4F8J4whpw5UwhMdBcpwFRmmKI-pEVpzyVPNDdwReHtYn6tUSgFGIAKraaoZnPca2Y3h2miL7PYG4-OTJg6wVKQ1snga-xHksE3bvRBYcaCdOEBstnArIFZzA6rNwRI-y02cuD7FFfrF7LeIUYXB4R1y2-WvXrdWuLtkxxb3yK1fUA3vE3s2M3bu9yA-Gq9vV1WzV-GNinwpa7ja9dJ6g2KKCofFSQ8SZ6-7Xs0he4ZDPk1nC--kaWyCI2VhPIfjCHQOReUBOb0SXj8krWJe2MfEo2FqTZKkVuUh18IoahW8MUoqmiiq2uR1w9JMO6hznLjxNauWPEJkKIDMCaBNDjbUixri4y90PZTOhgaBuasv5stJ5uw8C5QKokhSzRLFEc2N6yRVzMo8xYdZcZs8crK9_K8AucLgMlDWmRs-Ci8llmfKiVyXZdaNIJGLEhaINnlV0aEDgpvS0u2jANYglNcW5cstykkNZP4nwn2nX_9hwF6jfJnzdGV2aZdP_v3zC3IDDDb7MBofPSU38bx1JWuPtED17DPI7VbquTMij3y5arv9CVYmWyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video-Based+Detection+Infrastructure+Enhancement+for+Automated+Ship+Recognition+and+Behavior+Analysis&rft.jtitle=Journal+of+advanced+transportation&rft.au=Wu%2C+Huafeng&rft.au=Postolache%2C+Octavian&rft.au=Luo%2C+Qiang&rft.au=Yang%2C+Yongsheng&rft.date=2020&rft.pub=Hindawi+Publishing+Corporation&rft.issn=0197-6729&rft.eissn=2042-3195&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1155%2F2020%2F7194342&rft.externalDBID=ADJCN&rft.externalDocID=1175973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon