Video-Based Detection Infrastructure Enhancement for Automated Ship Recognition and Behavior Analysis
Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which provides critical on-site traffic data for maritime participants. Ship behavior analysis, one of the fundamental tasks for fulfilling smart video-based detection infrastructure, h...
Saved in:
Published in | Journal of advanced transportation Vol. 2020; no. 2020; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which provides critical on-site traffic data for maritime participants. Ship behavior analysis, one of the fundamental tasks for fulfilling smart video-based detection infrastructure, has become an active topic in the CAS community. Previous studies focused on ship behavior analysis by exploring spatial-temporal information from automatic identification system (AIS) data, and less attention was paid to maritime surveillance videos. To bridge the gap, we proposed an ensemble you only look once (YOLO) framework for ship behavior analysis. First, we employed the convolutional neural network in the YOLO model to extract multi-scaled ship features from the input ship images. Second, the proposed framework generated many bounding boxes (i.e., potential ship positions) based on the object confidence level. Third, we suppressed the background bounding box interferences, and determined ship detection results with intersection over union (IOU) criterion, and thus obtained ship positions in each ship image. Fourth, we analyzed spatial-temporal ship behavior in consecutive maritime images based on kinematic ship information. The experimental results have shown that ships are accurately detected (i.e., both of the average recall and precision rate were higher than 90%) and the historical ship behaviors are successfully recognized. The proposed framework can be adaptively deployed in the connected and autonomous vehicle detection system in the automated terminal for the purpose of exploring the coupled interactions between traffic flow variation and heterogeneous detection infrastructures, and thus enhance terminal traffic network capacity and safety. |
---|---|
AbstractList | Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which provides critical on-site traffic data for maritime participants. Ship behavior analysis, one of the fundamental tasks for fulfilling smart video-based detection infrastructure, has become an active topic in the CAS community. Previous studies focused on ship behavior analysis by exploring spatial-temporal information from automatic identification system (AIS) data, and less attention was paid to maritime surveillance videos. To bridge the gap, we proposed an ensemble you only look once (YOLO) framework for ship behavior analysis. First, we employed the convolutional neural network in the YOLO model to extract multi-scaled ship features from the input ship images. Second, the proposed framework generated many bounding boxes (i.e., potential ship positions) based on the object confidence level. Third, we suppressed the background bounding box interferences, and determined ship detection results with intersection over union (IOU) criterion, and thus obtained ship positions in each ship image. Fourth, we analyzed spatial-temporal ship behavior in consecutive maritime images based on kinematic ship information. The experimental results have shown that ships are accurately detected (i.e., both of the average recall and precision rate were higher than 90%) and the historical ship behaviors are successfully recognized. The proposed framework can be adaptively deployed in the connected and autonomous vehicle detection system in the automated terminal for the purpose of exploring the coupled interactions between traffic flow variation and heterogeneous detection infrastructures, and thus enhance terminal traffic network capacity and safety. |
Audience | Academic |
Author | Luo, Qiang Yang, Yongsheng Postolache, Octavian Chen, Xinqiang Qi, Lei Tang, Jinjun Wu, Huafeng |
Author_xml | – sequence: 1 fullname: Wu, Huafeng – sequence: 2 fullname: Postolache, Octavian – sequence: 3 fullname: Luo, Qiang – sequence: 4 fullname: Yang, Yongsheng – sequence: 5 fullname: Qi, Lei – sequence: 6 fullname: Chen, Xinqiang – sequence: 7 fullname: Tang, Jinjun |
BookMark | eNqFks1r3DAQxU1JoZu0t56LocfWiT5t67hJk3YhUOjX1Yzlsa1lV9pKckv--8hxaEvZUgQSDL_3RtKb0-zEOotZ9pKSc0qlvGCEkYuKKsEFe5KtGBGs4FTJk2xFqKqKsmLqWXYawpYQrqQSqwy_mQ5dcQkBu_wdRtTROJtvbO8hRD_pOHnMr-0IVuMebcx75_P1FN0eYpJ8Hs0h_4TaDdY8KMF2-SWO8MPMnIXdXTDhefa0h13AF4_nWfb15vrL1Yfi9uP7zdX6ttBSkFjUtKSskqqibS1qXdK2E23Z8ZaIinRSawFCadFJpFxQqupWAciaM0lRE6X5WbZZfDsH2-bgzR78XePANA8F54cGfDR6hw1tW1qWQDSvWyGlUkLXquUIvSKcqCp5vV68Dt59nzDEZusmnx4UGiZIVQpOS56oYqEGSKbG9i560ANa9LBL6fQmldclY6ysOZWJPz_Cp9Xh3uijgrd_CNopGIshbcEMYwwDTCEcxbV3IXjsf_0CJc08JM08JM3jkCSc_YVrE2EOMl3L7P4lerOIRmM7-Gn-1-LVQmNisIffNJ2j5vwe4YzVCg |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2986500 crossref_primary_10_1109_ACCESS_2021_3055253 crossref_primary_10_1109_TITS_2020_3023957 crossref_primary_10_1155_2020_8147310 crossref_primary_10_1155_2021_7537825 crossref_primary_10_1155_2021_9440212 crossref_primary_10_1155_2021_7552180 crossref_primary_10_1155_2021_5708779 crossref_primary_10_1088_1361_6501_acd6ad crossref_primary_10_21595_jme_2023_23638 crossref_primary_10_3390_jmse10030444 crossref_primary_10_1155_2020_4813183 crossref_primary_10_1155_2021_6893816 crossref_primary_10_1371_journal_pone_0229211 crossref_primary_10_1108_AJIM_02_2020_0054 crossref_primary_10_1155_2021_3515512 crossref_primary_10_1016_j_oceaneng_2024_120065 crossref_primary_10_1155_2021_9612480 crossref_primary_10_1155_2020_7191296 crossref_primary_10_1155_2021_8380247 crossref_primary_10_3390_s21175767 crossref_primary_10_3390_electronics11050782 crossref_primary_10_1155_2021_5538320 crossref_primary_10_3389_fmars_2023_1085342 crossref_primary_10_1109_JSEN_2020_3007809 crossref_primary_10_3390_s21093062 crossref_primary_10_1109_TITS_2022_3140933 crossref_primary_10_1080_10095020_2022_2072241 crossref_primary_10_1155_2021_5531965 crossref_primary_10_1016_j_scitotenv_2022_160363 crossref_primary_10_1155_2021_5552099 crossref_primary_10_1016_j_istruc_2024_107048 crossref_primary_10_1155_2021_9973336 crossref_primary_10_1155_2021_9730813 crossref_primary_10_1155_2021_7534739 crossref_primary_10_1155_2021_2085876 crossref_primary_10_3390_jmse11122227 crossref_primary_10_1007_s10668_022_02172_2 crossref_primary_10_1155_2021_1936764 crossref_primary_10_1186_s40561_024_00350_5 crossref_primary_10_1371_journal_pone_0262678 crossref_primary_10_1109_MITS_2022_3198334 crossref_primary_10_1155_2021_3771640 crossref_primary_10_1080_19439962_2022_2147611 crossref_primary_10_1109_TITS_2023_3235911 crossref_primary_10_1016_j_apor_2020_102455 crossref_primary_10_1155_2020_6402149 crossref_primary_10_1155_2021_2798351 crossref_primary_10_1155_2022_2555350 crossref_primary_10_1109_ACCESS_2021_3138983 crossref_primary_10_1155_2021_4959504 crossref_primary_10_1155_2020_6725408 crossref_primary_10_1016_j_oceaneng_2024_118242 crossref_primary_10_3390_jmse10070841 crossref_primary_10_1155_2022_6312139 crossref_primary_10_3390_s24113458 crossref_primary_10_3390_a16070326 crossref_primary_10_1155_2021_5808206 crossref_primary_10_1155_2021_8453465 crossref_primary_10_3390_s23167027 crossref_primary_10_1155_2021_6566207 crossref_primary_10_1155_2021_8772688 crossref_primary_10_1016_j_eswa_2023_122191 crossref_primary_10_3390_jmse9121408 crossref_primary_10_1007_s11802_022_5128_6 crossref_primary_10_3390_app14188420 crossref_primary_10_1080_15472450_2022_2130693 crossref_primary_10_3390_jmse10060809 crossref_primary_10_1109_TITS_2025_3530678 crossref_primary_10_1155_2021_6639559 crossref_primary_10_3390_en14238066 crossref_primary_10_1155_2021_5598390 crossref_primary_10_1080_19439962_2023_2169801 crossref_primary_10_1109_TITS_2021_3102983 crossref_primary_10_3390_s22072713 |
Cites_doi | 10.1007/s12145-018-0371-5 10.1017/S0373463318000504 10.1109/TITS.2017.2699635 10.1017/S0373463317000406 10.1109/TITS.2016.2634580 10.1016/j.oceaneng.2018.12.019 10.1061/JTEPBS.0000138 10.1109/LGRS.2018.2869561 10.1109/LGRS.2017.2727515 10.1109/MGRS.2016.2540798 10.3390/rs9080860 10.1016/j.sigpro.2014.07.029 10.1016/j.patrec.2017.03.008 10.1016/j.jss.2016.06.016 10.1016/j.ress.2018.03.033 10.1109/LGRS.2015.2419371 10.1109/TGRS.2018.2820911 10.1109/ACCESS.2018.2866364 10.1016/j.apor.2018.06.011 10.1109/TVLSI.2019.2905242 10.3390/s19040821 10.1016/j.oceaneng.2015.07.046 10.3390/s18124211 10.1109/TGRS.2019.2897251 10.1016/j.oceaneng.2016.07.059 10.1016/j.oceaneng.2017.06.022 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Xinqiang Chen et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 Xinqiang Chen et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © 2020 Xinqiang Chen et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 Xinqiang Chen et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION N95 3V. 7ST 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ C1K CCPQU DWQXO FR3 FRNLG F~G HCIFZ K60 K6~ KR7 L.- L6V M0C M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U SOI DOA |
DOI | 10.1155/2020/7194342 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Business: Insights (Gale) ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2042-3195 |
Editor | Yu, Hao |
Editor_xml | – sequence: 1 givenname: Hao surname: Yu fullname: Yu, Hao |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_1bb166a0c38b455994c89b3eaf903097 A622268315 10_1155_2020_7194342 1175973 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51579143; 51509167 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 18040501700; 18295801100; 17595810300 |
GroupedDBID | -~X ..I 05W 0R~ 1OC 24P 29J 31~ 3SF 4.4 52U 5GY 7WY 8-1 8FL AAESR AAEVG AAFWJ AAJEY AAONW AAZKR ABDBF ABDPE ABJCF ABUWG ACBWZ ACIWK ACNCT ACXQS ADBBV ADIZJ ADJCN AEIMD AENEX AFBPY AFKRA AFPKN AFRAH AHFXO AI. AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZFZN AZVAB BAAKF BCNDV BDRZF BENPR BEZIV BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU DU5 DWQXO EBS EJD ESX FEDTE FRNLG G-S GODZA GROUPED_DOAJ H13 HCIFZ HVGLF HZ~ I-F IAO ICW IOF ITC LITHE LPU M0C M7S MY~ N95 O9- OK1 P2P PIMPY PQBIZ PQBZA PTHSS PV9 RHX RIWAO RJQFR RZL SUPJJ TN5 TUS VH1 WBKPD WH7 WIH XI7 RHU RHW AAYXX ACCMX ACUHS AEUYN CITATION PHGZM PHGZT PMFND 3V. 7ST 7XB 8FD 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K FR3 K60 K6~ KR7 L.- L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U SOI PUEGO |
ID | FETCH-LOGICAL-c540t-8161275971b848c61bd4b6d3b0470d5cc4a49c4d5e1341198b9aa583251ec09c3 |
IEDL.DBID | RHX |
ISSN | 0197-6729 |
IngestDate | Wed Aug 27 01:12:48 EDT 2025 Fri Jul 25 10:28:59 EDT 2025 Fri Jun 13 00:05:37 EDT 2025 Tue Jun 10 21:01:24 EDT 2025 Fri May 23 02:36:22 EDT 2025 Tue Jul 01 00:34:08 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 Sun Jun 02 18:55:01 EDT 2024 Tue Nov 26 17:06:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-8161275971b848c61bd4b6d3b0470d5cc4a49c4d5e1341198b9aa583251ec09c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5172-387X 0000-0001-8959-5108 |
OpenAccessLink | https://dx.doi.org/10.1155/2020/7194342 |
PQID | 2407643163 |
PQPubID | 1006382 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1bb166a0c38b455994c89b3eaf903097 proquest_journals_2407643163 gale_infotracgeneralonefile_A622268315 gale_infotracacademiconefile_A622268315 gale_businessinsightsgauss_A622268315 crossref_primary_10_1155_2020_7194342 crossref_citationtrail_10_1155_2020_7194342 hindawi_primary_10_1155_2020_7194342 emarefa_primary_1175973 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: London |
PublicationTitle | Journal of advanced transportation |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 22 (34) 2004 26 27 28 10 32 11 12 13 14 15 16 (33) 1990 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 32 doi: 10.1007/s12145-018-0371-5 – ident: 10 doi: 10.1017/S0373463318000504 – ident: 4 doi: 10.1109/TITS.2017.2699635 – ident: 1 doi: 10.1017/S0373463317000406 – ident: 12 doi: 10.1109/TITS.2016.2634580 – ident: 3 doi: 10.1016/j.oceaneng.2018.12.019 – ident: 28 doi: 10.1061/JTEPBS.0000138 – ident: 16 doi: 10.1109/LGRS.2018.2869561 – ident: 22 doi: 10.1109/LGRS.2017.2727515 – ident: 20 doi: 10.1109/MGRS.2016.2540798 – ident: 21 doi: 10.3390/rs9080860 – ident: 9 doi: 10.1016/j.sigpro.2014.07.029 – ident: 27 doi: 10.1016/j.patrec.2017.03.008 – ident: 14 doi: 10.1016/j.jss.2016.06.016 – ident: 7 doi: 10.1016/j.ress.2018.03.033 – year: 1990 ident: 33 – ident: 8 doi: 10.1109/LGRS.2015.2419371 – ident: 11 doi: 10.1109/TGRS.2018.2820911 – ident: 2 doi: 10.1109/ACCESS.2018.2866364 – ident: 18 doi: 10.1016/j.apor.2018.06.011 – ident: 26 doi: 10.1109/TVLSI.2019.2905242 – ident: 17 doi: 10.3390/s19040821 – ident: 5 doi: 10.1016/j.oceaneng.2015.07.046 – ident: 19 doi: 10.3390/s18124211 – year: 2004 ident: 34 – ident: 13 doi: 10.1109/TGRS.2019.2897251 – ident: 6 doi: 10.1016/j.oceaneng.2016.07.059 – ident: 15 doi: 10.1016/j.oceaneng.2017.06.022 |
SSID | ssj0039594 |
Score | 2.493497 |
Snippet | Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which provides critical on-site traffic data... |
SourceID | doaj proquest gale crossref hindawi emarefa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Automation Behavior Confidence intervals Deep learning Detectors Efficiency Feature extraction Infrastructure Infrastructure (Economics) Kinematics Methods Neural networks Onsite Production planning Spatial analysis Spatial discrimination Surveillance Traffic capacity Traffic flow Traffic information Traffic safety Transportation Vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQ4IGh5LC1VDgUOKKq9fqx93EKrFgkOQFFvll_prlRlq2ZX_fvMOM7SFaBeuERKNJaTmbFnxpn5hpADmVigXPDaYT6OUNrVhje8Zq5JjeE0RI6Fwl--qtNz8flCXtxp9YU5YT08cM-4Q-Y9U8rRwLUXCI8lgjaeJ9cY_DuQ68jB5g3BVL8HcyNNj-ptJrUC_3FIeZcSo316OGGIizbeMEYZsz8X5jq4d-s9-uEMo-Pb-R-7dTZBJ0_Jk-I7VtP-nZ-RB6ndJo_vIArukPRzHtOiPgLbFKtPaZkTrdrqrG1uXA8Vu7pJ1XE7Q2HjwWAFTms1XS0X4LnCkO-z-XX1bUgqgpGujVXBUAS6gmDynJyfHP_4eFqXTgp1AI9sWWvw68YTiB2Y10IHxXwUXkXuqZjQKEMQTpggIkgOrBoz2hvnJCx2yVKgJvAXZKtdtOkVqejYpKi1Sb4ZiyCjpxCbixC981R76kfkw8BSGwrMOHa7uLI53JDSogBsEcCIvF1TX_fwGv-gO0LprGkQFDs_AFWxRVXsfaoyIi-LbH_PxZArHF4DZW1L40-4dHg00l26VdfZqQInSmnO5Ii8z3S4-OGjgis1DMAahNHaoHy3QXnZg4j_jfCg6Nc9DNgblM-WXaazGI0rxDLgr_8Hf3bJI5yyP2DaI1uglekNuFxLv59X1y_BaSJt priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZgExI8IO50DJSHAQ8oml3bif2EWug0kJjQYGhvlm9pK6G0a1rx9zkncToqbi-Rkhzn4mOfm4-_Q8iRjMxTLnhuMR9HFMrmmlc8Z7aKlebUB44bhT-dFacX4uOlvEwBtyalVfYysRXUYeExRn6MnkeB-7b52-VVjlWjcHU1ldC4SfZBBCtwvvbHk7PP570s5lrqDt1bl3kBdmSf-i4lev30uGSIjzbcUUotdn-7QdfCud3K6lsz9JJ_zH-T2q0qOrlH7iYbMht1TL9PbsT6AbnzC7LgQxK_zUNc5GPQUSF7H9dtwlWdfairle0gYzermE3qGTIdA4QZGK_ZaLNegAULTb7M5svsvE8ugpa2DlnCUgS6hGTyiFycTL6-O81TRYXcg2W2zhXYd8MSfAjmlFC-YC4IVwTuqChpkN4LK7QXATgI2o1p5bS1Eia9ZNFT7fljslcv6viUZHSoY1BKR1cNhZfBUfDRhQ_OOqocdQPypu9S4xPcOFa9-G5at0NKgwwwiQED8nJLvexgNv5CN0bubGkQHLu9sFhNTZprhjnHisJSz5UTiKgmvNKOR1tpXFAqB-RJ4u31uxj2CofPQF6bVAAUDg2GSJqp3TSNGRVgTBWKMzkgr1s6FALwU96mvQzQNQintUP5aody2oGJ_4nwKI2v_3TAYT_4TJI2jbmeGwf_vv2M3MaHdSGkQ7IH4y0-B6Nq7V6kmfMTPOMb4g priority: 102 providerName: ProQuest |
Title | Video-Based Detection Infrastructure Enhancement for Automated Ship Recognition and Behavior Analysis |
URI | https://search.emarefa.net/detail/BIM-1175973 https://dx.doi.org/10.1155/2020/7194342 https://www.proquest.com/docview/2407643163 https://doaj.org/article/1bb166a0c38b455994c89b3eaf903097 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jj9MwFLZgEBIcEOtQGKocBjigCLt2HPvYQktBYoQGBvVmecu0EkpHk1b8fd5LnEIZEFwiOXrO8vbn5TMhx0VknnLBc4vrcYRUNte84jmzVaw0pz5w3Cj88UTOz8SHRbFIIEnN1Sl8iHZYntPXJUMgM_C110HBsCifL3qHy3WhOwhvXeYSksV-fftvffciTwvQ3-7CtdC2O4d8c4ml8PfVFdfcxpvZXXInJYrZuJPsPXIt1vfJ7V_gAx-Q-HUV4jqfQCAK2du4aVdV1dn7urq0HS7s9jJm03qJksVRwAwy1Gy83awhTYUun5eri-y0X0EEPW0dsgSYCHQJruQhOZtNv7yZ5-nYhNxD-rXJFSRxoxIKBeaUUF4yF4STgTsqShoK74UV2osAYoIQxrRy2toCLLtg0VPt-SNyUK_r-JhkdKRjUEpHV42EL4KjUIgLH5x1VDnqBuRVz1LjE6Y4Hm3xzbS1RVEYFIBJAhiQ5zvqiw5L4y90E5TOjgYRsNsboBUmGZRhzjEpLfVcOYGwacIr7Xi0lcZZo3JADpNsf76LIVc4fAbK2qRTPuHS4DhIc263TWPGEjImqTgrBuRlS4eWDj_lbdqwAKxBzKw9yhd7lOcdYvifCI-Tfv2DAUe98pnkUhqDpbdE4AL-5P-e8pTcwmY3XnREDkDv4jPIoDZuCFY0ezckNybTk0-nw3YcYtja1A9HmxOz |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQcEG8CBXxo4YCsrr27jveAUEpbEvo4QFv1tuzLSSTkhDhRxZ_iNzJjr1MiXqdeojzGdjwzOy_vfEPIpvCJpYyzWON-HJ7lOpasYHGiC19IRq1j2Ch8dJz1T_nHc3G-Rn60vTC4rbK1ibWhdhOLNfJtzDwy7Ntm76bfYpwahU9X2xEajVoc-O8XkLJVbwe7IN-tNN3fO3nfj8NUgdhCdDKPc4hx0i7E0YnJeW6zxDhuMscM5V3qhLVcc2m5g7sACw85uZFaC1B8kXhLpWVw3mvkOmdM4orK9z-0lp9JIRsscdmNM4ha2432QmCNgW53E0RjS1dcYD0poG4H1vBZLz3DjRHm5Bfj33xE7fj275I7IWKNeo2K3SNrvrxPbv-CY_iA-LOx85N4Bzyii3b9vN7eVUaDspjpBqB2MfPRXjlCFcNyZAShctRbzCcQL8Mhn0fjafSp3coER-rSRQG5EegCbspDcnolnH5E1stJ6Z-QiKbSuzyX3hQpt8IZ6g28cUYbmhtqOuRNy1JlA7g5ztj4quokRwiFAlBBAB2ytaSeNqAef6HbQeksaRCKu_5iMhuqsLJVYkySZZpalhuO-G3c5tIwrwuJj6-6HfI4yPbyWglyhcHfQFmrMG4UXiosyFRDvagq1csgdMtylogOeV3TocmBm7I6dE4AaxC8a4Xy1QrlsIEu_xPhZtCv_zBgo1U-FWxbpS5X4tN___yS3OyfHB2qw8HxwTNyC0_cFK82yDronn8O4dzcvKjXUES-XPWi_QlLLVWW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCA4IN4ECvjQwgFZWXt3_TgglJBEDYWoKrTqzezLSSTkhDhRxV_j1zFjr1MiXqdeojzGjj3vHc9-Q8i-sIGmjDNfYj8OjxLppyxnfiBzm6eMasNwo_DHcXR4yt-fi_Md8qPZC4NtlY1PrBy1mWuskXdw5RHhvm3WyV1bxHF_-HbxzccJUviktRmnUavIkf1-Acu38s2oD7I-CMPh4PO7Q99NGPA1ZCorP4F8J4whpw5UwhMdBcpwFRmmKI-pEVpzyVPNDdwReHtYn6tUSgFGIAKraaoZnPca2Y3h2miL7PYG4-OTJg6wVKQ1snga-xHksE3bvRBYcaCdOEBstnArIFZzA6rNwRI-y02cuD7FFfrF7LeIUYXB4R1y2-WvXrdWuLtkxxb3yK1fUA3vE3s2M3bu9yA-Gq9vV1WzV-GNinwpa7ja9dJ6g2KKCofFSQ8SZ6-7Xs0he4ZDPk1nC--kaWyCI2VhPIfjCHQOReUBOb0SXj8krWJe2MfEo2FqTZKkVuUh18IoahW8MUoqmiiq2uR1w9JMO6hznLjxNauWPEJkKIDMCaBNDjbUixri4y90PZTOhgaBuasv5stJ5uw8C5QKokhSzRLFEc2N6yRVzMo8xYdZcZs8crK9_K8AucLgMlDWmRs-Ci8llmfKiVyXZdaNIJGLEhaINnlV0aEDgpvS0u2jANYglNcW5cstykkNZP4nwn2nX_9hwF6jfJnzdGV2aZdP_v3zC3IDDDb7MBofPSU38bx1JWuPtED17DPI7VbquTMij3y5arv9CVYmWyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video-Based+Detection+Infrastructure+Enhancement+for+Automated+Ship+Recognition+and+Behavior+Analysis&rft.jtitle=Journal+of+advanced+transportation&rft.au=Wu%2C+Huafeng&rft.au=Postolache%2C+Octavian&rft.au=Luo%2C+Qiang&rft.au=Yang%2C+Yongsheng&rft.date=2020&rft.pub=Hindawi+Publishing+Corporation&rft.issn=0197-6729&rft.eissn=2042-3195&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1155%2F2020%2F7194342&rft.externalDBID=ADJCN&rft.externalDocID=1175973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon |