Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels
MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine expressing MERS-CoV spike protein, with further groups receiving control vaccinations. Infectious camels with active naturally acquired MERS-CoV inf...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; pp. 16292 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.11.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine expressing MERS-CoV spike protein, with further groups receiving control vaccinations. Infectious camels with active naturally acquired MERS-CoV infection, were co-housed with the vaccinated camels at a ratio of 1:2 (infected:vaccinated); nasal discharge and virus titres were monitored for 14 days. Overall, the vaccination reduced virus shedding and nasal discharge (p = 0.0059 and p = 0.0274, respectively). Antibody responses in seropositive camels were enhancedby the vaccine; these camels had a higher average age than seronegative. Older seronegative camels responded more strongly to vaccination than younger animals; and neutralising antibodies were detected in nasal swabs. Further work is required to optimise vaccine regimens for younger seronegative camels. |
---|---|
AbstractList | MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine expressing MERS-CoV spike protein, with further groups receiving control vaccinations. Infectious camels with active naturally acquired MERS-CoV infection, were co-housed with the vaccinated camels at a ratio of 1:2 (infected:vaccinated); nasal discharge and virus titres were monitored for 14 days. Overall, the vaccination reduced virus shedding and nasal discharge (p = 0.0059 and p = 0.0274, respectively). Antibody responses in seropositive camels were enhancedby the vaccine; these camels had a higher average age than seronegative. Older seronegative camels responded more strongly to vaccination than younger animals; and neutralising antibodies were detected in nasal swabs. Further work is required to optimise vaccine regimens for younger seronegative camels. MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine expressing MERS-CoV spike protein, with further groups receiving control vaccinations. Infectious camels with active naturally acquired MERS-CoV infection, were co-housed with the vaccinated camels at a ratio of 1:2 (infected:vaccinated); nasal discharge and virus titres were monitored for 14 days. Overall, the vaccination reduced virus shedding and nasal discharge (p = 0.0059 and p = 0.0274, respectively). Antibody responses in seropositive camels were enhancedby the vaccine; these camels had a higher average age than seronegative. Older seronegative camels responded more strongly to vaccination than younger animals; and neutralising antibodies were detected in nasal swabs. Further work is required to optimise vaccine regimens for younger seronegative camels.MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine expressing MERS-CoV spike protein, with further groups receiving control vaccinations. Infectious camels with active naturally acquired MERS-CoV infection, were co-housed with the vaccinated camels at a ratio of 1:2 (infected:vaccinated); nasal discharge and virus titres were monitored for 14 days. Overall, the vaccination reduced virus shedding and nasal discharge (p = 0.0059 and p = 0.0274, respectively). Antibody responses in seropositive camels were enhancedby the vaccine; these camels had a higher average age than seronegative. Older seronegative camels responded more strongly to vaccination than younger animals; and neutralising antibodies were detected in nasal swabs. Further work is required to optimise vaccine regimens for younger seronegative camels. |
ArticleNumber | 16292 |
Author | Alharbi, Naif Khalaf Aldubaib, Musaad Temperton, Nigel J. Bayoumi, Faisal Aljami, Haya A. Lambe, Teresa Becker, Stephan Hashem, Anwar M. Gilbert, Sarah C. Balkhy, Hanan H. Alkarar, Ali Ibrahim, Osman H. Almasoud, Abdulrahman Qasim, Ibrahim Kasem, Samy Aldowerij, Ali Almansour, Ali Alhafufi, Ali Kupke, Alexandra Yoon, In-Kyu Abu-obaidah, Ali Albrahim, Raed Azhar, Esam Alenazi, Mohamed W. Aldibasi, Omar S. |
Author_xml | – sequence: 1 givenname: Naif Khalaf surname: Alharbi fullname: Alharbi, Naif Khalaf email: harbina2@ngha.med.sa organization: Department of Infectious Disease Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences – sequence: 2 givenname: Ibrahim surname: Qasim fullname: Qasim, Ibrahim organization: Ministry of Environment, Water and Agriculture (MEWA) – sequence: 3 givenname: Abdulrahman surname: Almasoud fullname: Almasoud, Abdulrahman organization: Department of Infectious Disease Research, King Abdullah International Medical Research Center – sequence: 4 givenname: Haya A. surname: Aljami fullname: Aljami, Haya A. organization: Department of Infectious Disease Research, King Abdullah International Medical Research Center – sequence: 5 givenname: Mohamed W. surname: Alenazi fullname: Alenazi, Mohamed W. organization: Department of Infectious Disease Research, King Abdullah International Medical Research Center – sequence: 6 givenname: Ali surname: Alhafufi fullname: Alhafufi, Ali organization: Ministry of Environment, Water and Agriculture (MEWA) – sequence: 7 givenname: Omar S. surname: Aldibasi fullname: Aldibasi, Omar S. organization: Department of Bioinformatics and Biostatistics, King Abdullah International Medical Research Center – sequence: 8 givenname: Anwar M. orcidid: 0000-0002-8471-7011 surname: Hashem fullname: Hashem, Anwar M. organization: Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University – sequence: 9 givenname: Samy surname: Kasem fullname: Kasem, Samy organization: Ministry of Environment, Water and Agriculture (MEWA), Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University – sequence: 10 givenname: Raed surname: Albrahim fullname: Albrahim, Raed organization: Ministry of Environment, Water and Agriculture (MEWA) – sequence: 11 givenname: Musaad surname: Aldubaib fullname: Aldubaib, Musaad organization: College of Agriculture and Veterinary Medicine, Qassim University – sequence: 12 givenname: Ali surname: Almansour fullname: Almansour, Ali organization: Ministry of Environment, Water and Agriculture (MEWA) – sequence: 13 givenname: Nigel J. orcidid: 0000-0002-7978-3815 surname: Temperton fullname: Temperton, Nigel J. organization: Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent – sequence: 14 givenname: Alexandra surname: Kupke fullname: Kupke, Alexandra organization: Institute of Virology, Philipps University of Marburg, German Center for Infection Research (DZIF) – sequence: 15 givenname: Stephan surname: Becker fullname: Becker, Stephan organization: Institute of Virology, Philipps University of Marburg, German Center for Infection Research (DZIF) – sequence: 16 givenname: Ali surname: Abu-obaidah fullname: Abu-obaidah, Ali organization: Ministry of Environment, Water and Agriculture (MEWA) – sequence: 17 givenname: Ali surname: Alkarar fullname: Alkarar, Ali organization: Ministry of Environment, Water and Agriculture (MEWA) – sequence: 18 givenname: In-Kyu surname: Yoon fullname: Yoon, In-Kyu organization: International Vaccine Institute – sequence: 19 givenname: Esam surname: Azhar fullname: Azhar, Esam organization: Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University – sequence: 20 givenname: Teresa surname: Lambe fullname: Lambe, Teresa organization: The Jenner Institute, University of Oxford – sequence: 21 givenname: Faisal surname: Bayoumi fullname: Bayoumi, Faisal organization: Ministry of Environment, Water and Agriculture (MEWA) – sequence: 22 givenname: Ali surname: Aldowerij fullname: Aldowerij, Ali organization: Ministry of Environment, Water and Agriculture (MEWA) – sequence: 23 givenname: Osman H. surname: Ibrahim fullname: Ibrahim, Osman H. organization: Ministry of Environment, Water and Agriculture (MEWA) – sequence: 24 givenname: Sarah C. orcidid: 0000-0002-6823-9750 surname: Gilbert fullname: Gilbert, Sarah C. organization: The Jenner Institute, University of Oxford – sequence: 25 givenname: Hanan H. surname: Balkhy fullname: Balkhy, Hanan H. organization: Department of Infectious Disease Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Department of Infection Prevention and Control, Ministry of National Guard - Health Affairs |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31705137$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUha0KVB7lD3RRWWLTTcCvJM6mEhqGh0SFVNpuLce5HjxKbLCTqvPv62F4lQXe2Lo-595z9e2hLR88IPSZkiNKuDxOgpaNLAhtipLVnBTiA9plRJQF44xtvXrvoIOUliSfkjWCNh_RDqc1KSmvd9HyYhpC1D2-HIbJhwV4Z9y4wtp3eG6tM9qscLBY4xvnFz3g05BgXZjdnnTXfyn-Pv9xg39rY5wHPMs21-kRsPP4NIYBOh1XuTxAnz6hbav7BAeP9z76dTb_Obsorq7PL2cnV4UpBRkLSQnrNDetJcLSBlirqZWtNIRADaITVSMrw2smiWyFrXTTMk6pMKQipmOW76Nvm753U5sDGPBjXlDdRTfkMCpop_7_8e5WLcIfVUlBa85yg6-PDWK4nyCNanDJQN9rD2FKKo_jXApJZZYevpEuwxR9Xu9BRaoms8mqL68TPUd5wpAFbCMwMaQUwT5LKFFr3GqDW2Xc6gG3Etkk35gyOT26sN7K9e9b-caa8hy_gPgS-x3XP0a9vTo |
CitedBy_id | crossref_primary_10_3390_vaccines10070993 crossref_primary_10_1007_s40121_020_00300_x crossref_primary_10_1016_S1473_3099_20_30317_0 crossref_primary_10_1186_s12929_020_00695_2 crossref_primary_10_3390_microorganisms9010042 crossref_primary_10_3390_vaccines8040634 crossref_primary_10_3389_fimmu_2020_602256 crossref_primary_10_3389_fimmu_2020_01651 crossref_primary_10_1111_cei_13517 crossref_primary_10_3390_v13020217 crossref_primary_10_1038_s41541_021_00315_6 crossref_primary_10_1016_S2214_109X_23_00117_1 crossref_primary_10_32415_jscientia_2020_6_6_41_80 crossref_primary_10_1186_s42522_022_00068_9 crossref_primary_10_3390_v12111215 crossref_primary_10_3201_eid2709_203508 crossref_primary_10_3390_vaccines10081330 crossref_primary_10_1007_s40199_022_00446_8 crossref_primary_10_2174_0929867328666210521164809 crossref_primary_10_1016_j_jiph_2020_04_016 crossref_primary_10_1016_j_diagmicrobio_2020_115273 crossref_primary_10_1590_1678_4685_gmb_2022_0079 crossref_primary_10_1016_j_cell_2020_08_026 crossref_primary_10_3201_eid2906_230128 crossref_primary_10_3389_fimmu_2022_1063679 crossref_primary_10_3390_vetsci8080156 crossref_primary_10_1111_cbdd_13761 crossref_primary_10_1016_S2666_5247_24_00082_X crossref_primary_10_1177_03009858211069120 crossref_primary_10_3390_vaccines9101052 crossref_primary_10_1128_mSphere_00203_20 crossref_primary_10_3390_genes13122355 crossref_primary_10_4110_in_2020_20_e28 crossref_primary_10_1016_j_trsl_2021_11_007 crossref_primary_10_1016_j_bios_2024_116423 crossref_primary_10_3389_fimmu_2022_823949 crossref_primary_10_1128_mSphere_00219_21 crossref_primary_10_1016_j_tjog_2020_09_006 crossref_primary_10_1002_cti2_1345 crossref_primary_10_1016_S1473_3099_20_30160_2 crossref_primary_10_1097_JCMA_0000000000000461 crossref_primary_10_1111_tbed_13872 crossref_primary_10_1128_mBio_00554_20 crossref_primary_10_1128_JVI_01614_21 crossref_primary_10_1177_11786302241271545 crossref_primary_10_1186_s12917_023_03769_z crossref_primary_10_1080_14760584_2020_1813574 crossref_primary_10_1080_21645515_2020_1787064 crossref_primary_10_1016_j_smim_2020_101430 crossref_primary_10_3389_fimmu_2023_1184362 crossref_primary_10_1016_j_phrs_2023_106699 crossref_primary_10_1371_journal_pone_0244415 crossref_primary_10_1007_s12275_022_1608_z crossref_primary_10_1016_S2666_5247_21_00193_2 crossref_primary_10_3389_fimmu_2023_1205080 crossref_primary_10_1126_sciadv_aba8399 crossref_primary_10_3390_v12121370 crossref_primary_10_3390_nu14163417 crossref_primary_10_1016_j_ymthe_2022_01_034 crossref_primary_10_1016_j_vaccine_2022_06_008 crossref_primary_10_1111_imcb_12419 crossref_primary_10_3390_ph14060511 crossref_primary_10_1007_s12275_022_1547_8 |
Cites_doi | 10.1016/j.jiph.2017.09.022 10.1038/mt.2013.284 10.1128/JVI.00614-15 10.1126/science.aad1283 10.2807/1560-7917.ES2013.18.36.20574 10.1073/pnas.1718769115 10.1093/infdis/jiz137 10.3201/eid2012.141280 10.1002/rmv.1917 10.1038/nature10590 10.3201/eid2007.140571 10.2807/1560-7917.ES2014.19.23.20828 10.1038/nature12328 10.1016/j.ebiom.2018.02.011 10.3390/v10080425 10.1016/j.mex.2015.09.003 10.3201/eid2212.160382 10.1038/emi.2017.44 10.3389/fimmu.2019.01677 10.1016/j.vaccine.2017.05.032 10.1016/j.phrp.2015.08.006 10.1038/s41541-017-0029-1 10.3389/fmicb.2019.01781 10.1016/j.jiph.2018.01.004 10.1080/14760584.2018.1506702 10.3201/eid2008.140596 10.3201/eid2008.140590 10.3201/eid2004.131746 10.1371/journal.pone.0040385 10.1111/ina.12430 10.2807/ese.17.39.20285-en 10.1038/emi.2017.89 10.1038/emi.2016.130 10.1128/mBio.01985-18 10.1056/NEJMoa1401505 10.3201/eid2510.190051 10.1016/S1473-3099(13)70164-6 10.1371/journal.pone.0140125 10.1038/nature12005 10.2807/1560-7917.ES.2017.22.13.30498 10.1038/nm.1850 10.3201/eid2012.141026 10.1038/srep20617 10.1016/j.jim.2019.01.005 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-019-52730-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | PMC6841732 31705137 10_1038_s41598_019_52730_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD COVID K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-8102da3cbf04f19e2ba1f8b8c00e7e4d46986c372808b4f6a9b23114c060cd2f3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 14:04:59 EDT 2025 Fri Jul 11 01:21:18 EDT 2025 Wed Aug 13 11:26:33 EDT 2025 Thu Apr 03 06:52:26 EDT 2025 Thu Apr 24 23:44:06 EDT 2025 Tue Jul 01 00:56:05 EDT 2025 Fri Feb 21 02:38:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-8102da3cbf04f19e2ba1f8b8c00e7e4d46986c372808b4f6a9b23114c060cd2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8471-7011 0000-0002-7978-3815 0000-0002-6823-9750 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-019-52730-4 |
PMID | 31705137 |
PQID | 2313069273 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6841732 proquest_miscellaneous_2313384818 proquest_journals_2313069273 pubmed_primary_31705137 crossref_primary_10_1038_s41598_019_52730_4 crossref_citationtrail_10_1038_s41598_019_52730_4 springer_journals_10_1038_s41598_019_52730_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-08 |
PublicationDateYYYYMMDD | 2019-11-08 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hemida, M. G. et al. Seroepidemiology of middle east respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity. Eurosurveillance, https://doi.org/10.2807/1560-7917.ES2014.19.23.20828 (2014). LuGMolecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26Nature2013500227311:CAS:528:DC%2BC3sXhtVKhtbfK2013Natur.500..227L10.1038/nature12328238316477095341 Reusken, C. B. E. M. et al. Geographic distribution of MERS coronavirus among dromedary camels, Africa. Emerg. Infect. Dis., https://doi.org/10.3201/eid2008.140590 (2014). YusofMFDiversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab EmiratesEmerg. Microbes Infect.201761:CAS:528:DC%2BC2sXhslOnur7J10.1038/emi.2017.89291162175717090 ReuskenCBEMMiddle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological studyLancet. Infect. Dis.201313859661:CAS:528:DC%2BC3sXht1Ggt7nM10.1016/S1473-3099(13)70164-6239330677106530 MunsterVJProtective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse modelNPJ Vaccines2017210.1038/s41541-017-0029-1292638835643297 Warimwe, G. M. et al. Chimpanzee adenovirus vaccine provides multispecies protection against rift valley fever. Sci. Rep. 6 (2016). Coughlan, L. et al. Heterologous Two-Dose Vaccination with Simian Adenovirus and Poxvirus Vectors Elicits Long-Lasting Cellular Immunity to Influenza Virus A in Healthy Adults. EbioMedicine, https://doi.org/10.1016/j.ebiom.2018.02.011 (2018). AliMASystematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in EgyptEmerg. Microbes Infect.2017610.1038/emi.2016.130280500215285495 ZhouYJiangSDuLProspects for a MERS-CoV spike vaccineExpert Rev. Vaccines2018176776861:CAS:528:DC%2BC1cXhsV2isb3J10.1080/14760584.2018.1506702300584036355461 DeemSLSerological Evidence of MERS-CoV Antibodies in Dromedary Camels (Camelus dromedaries) in Laikipia County, KenyaPLoS One201510e014012510.1371/journal.pone.0140125264737334608777 Kasem, S. et al. Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia. J. Infect. Public Health11, 331–338. Miguel, E. et al. Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015. Euro Surveill. 22 (2017). Alharbi, N. K. et al. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice, https://doi.org/10.1016/j.vaccine.2017.05.032 (2017). Padilla-QuirarteHOLopez-GuerreroDVGutierrez-XicotencatlLEsquivel-GuadarramaFProtective Antibodies Against Influenza ProteinsFront. Immunol.201910167710.3389/fimmu.2019.01677313798666657620 HashemAMDevelopment and validation of different indirect ELISAs for MERS-CoV serological testingJ. Immunol. Methods201946641461:CAS:528:DC%2BC1MXhsVyjsLw%3D10.1016/j.jim.2019.01.005306598367094657 Corman, V. M. et al. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013. Emerg. Infect. Dis., https://doi.org/10.3201/eid2008.140596 (2014). HaagmansBLAn orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camelsScience (80-.).201635177811:CAS:528:DC%2BC2MXitV2nt7nK2016Sci...351...77H10.1126/science.aad1283 YongCYOngHKYeapSKHoKLTanWSRecent Advances in the Vaccine Development Against Middle East Respiratory Syndrome-CoronavirusFront. Microbiol.201910178110.3389/fmicb.2019.01781314280746688523 Meyer, B. et al. Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013. Emerg. Infect. Dis., https://doi.org/10.3201/eid2004.131746 (2014). Conzade, R. et al. Reported Direct and Indirect Contact with Dromedary Camels among Laboratory-Confirmed MERS-CoV Cases. Viruses10 (2018). MeyerBTime Course of MERS-CoV Infection and Immunity in Dromedary CamelsEmerg. Infect. Dis.2016222171217310.3201/eid2212.160382272243155189137 HemidaMGMERS coronavirus in dromedary camel herd, Saudi ArabiaEmerg. Infect. Dis.2014201231410.3201/eid2007.140571249641934073860 Hashem, A. M. et al. A highly immunogenic, protective and safe adenovirus-based vaccine expressing MERS-CoV S1-CD40L fusion protein in transgenic human DPP4 mouse model. J. Infect. Dis., https://doi.org/10.1093/infdis/jiz137 (2019). Müller, M. A. et al. Mers coronavirus neutralizing antibodies in camels, eastern Africa, 1983–1997. Emerg. Infect. Dis, https://doi.org/10.3201/eid2012.141026 (2014). Korea Centers for Disease, C. & Prevention. Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015. Osong Public Heal. Res Perspect6, 269–278 (2015). Perera, R. A. et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, june 2013. Eurosurveillance18 (2013). Kasem, S. et al. The prevalence of Middle East respiratory Syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons. J. Infect. Public Health, https://doi.org/10.1016/j.jiph.2018.01.004 (2018). Perera, R. A. et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill18, pii=20574 (2013). Alharbi, N. K. Vaccines against Middle East respiratory syndrome coronavirus for humans and camels. Rev Med Virol27 (2016). Antrobus, R. D. et al. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens. Mol. Ther., https://doi.org/10.1038/mt.2013.284 (2014). Xiao, S., Li, Y., Sung, M., Wei, J. & Yang, Z. A study of the probable transmission routes of MERS-CoV during the first hospital outbreak in the Republic of Korea. Indoor Air, https://doi.org/10.1111/ina.12430 (2018). WHO. MERS-CoV. (2019). Okba, N. M. A. et al. Sensitive and Specific Detection of Low-Level Antibody Responses in Mild Middle East Respiratory Syndrome Coronavirus Infections. Emerg. Infect. Dis. 25 (2019). FalzaranoDDromedary camels in northern Mali have high seropositivity to MERS-CoVOne Heal. (Amsterdam, Netherlands)201734143 Chu, D. K. W. et al. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc. Natl. Acad. Sci. USA, https://doi.org/10.1073/pnas.1718769115 (2018). DicksMDA novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicityPLoS One20127e403851:CAS:528:DC%2BC38XhtVyisrvN2012PLoSO...740385D10.1371/journal.pone.0040385228081493396660 Alshukairi, A. N. et al. High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia. Mbio, https://doi.org/10.1128/mBio.01985-18 (2018). Volz, A. et al. Protective efficacy of recombinant Modified Vaccinia virus Ankara (MVA) delivering Middle East Respiratory Syndrome coronavirus spike glycoprotein. J Virol, https://doi.org/10.1128/JVI.00614-15 (2015). Grehan, K., Ferrara, F. & Temperton, N. An optimised method for the production of MERS-CoV spike expressing viral pseudotypes. MethodsX, https://doi.org/10.1016/j.mex.2015.09.003 (2015). HemidaMGLongitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015Emerg. Microbes Infect.2017610.1038/emi.2017.44286343555520318 AzharEIEvidence for camel-to-human transmission of MERS coronavirusN Engl J Med2014370249925051:CAS:528:DC%2BC2cXhs1artLzN10.1056/NEJMoa140150524896817 Corman, V. M. et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Eurosurveillance, https://doi.org/10.2807/ese.17.39.20285-en (2012). Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature, https://doi.org/10.1038/nature10590 (2011). AlagailiANMiddle East respiratory syndrome coronavirus infection in dromedary camels in Saudi ArabiaMBio20145e0088414245703703940034 RajVSDipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMCNature201349525141:CAS:528:DC%2BC3sXjvFensb8%3D2013Natur.495..251R10.1038/nature12005234860637095326 DraperSJEffective induction of high-titer antibodies by viral vector vaccinesNat Med2008148198211:CAS:528:DC%2BD1cXptlKlt7w%3D10.1038/nm.1850186608184822545 AdneyDRReplication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camelsEmerg Infect Dis201420199920051:CAS:528:DC%2BC28XitVOisLbJ10.3201/eid2012.141280254185294257817 52730_CR40 52730_CR44 52730_CR42 52730_CR3 52730_CR48 52730_CR4 AN Alagaili (52730_CR16) 2014; 5 52730_CR5 52730_CR24 52730_CR46 52730_CR45 Y Zhou (52730_CR22) 2018; 17 52730_CR1 B Meyer (52730_CR27) 2016; 22 52730_CR2 HO Padilla-Quirarte (52730_CR38) 2019; 10 MG Hemida (52730_CR28) 2014; 20 CY Yong (52730_CR23) 2019; 10 EI Azhar (52730_CR47) 2014; 370 BL Haagmans (52730_CR36) 2016; 351 SJ Draper (52730_CR43) 2008; 14 DR Adney (52730_CR41) 2014; 20 AM Hashem (52730_CR39) 2019; 466 52730_CR11 52730_CR33 CBEM Reusken (52730_CR6) 2013; 13 52730_CR10 MG Hemida (52730_CR26) 2017; 6 52730_CR30 52730_CR15 MA Ali (52730_CR25) 2017; 6 52730_CR37 52730_CR14 52730_CR13 52730_CR35 52730_CR12 52730_CR34 52730_CR19 52730_CR18 MD Dicks (52730_CR32) 2012; 7 52730_CR17 VS Raj (52730_CR21) 2013; 495 MF Yusof (52730_CR29) 2017; 6 52730_CR8 G Lu (52730_CR20) 2013; 500 VJ Munster (52730_CR31) 2017; 2 D Falzarano (52730_CR7) 2017; 3 SL Deem (52730_CR9) 2015; 10 |
References_xml | – reference: RajVSDipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMCNature201349525141:CAS:528:DC%2BC3sXjvFensb8%3D2013Natur.495..251R10.1038/nature12005234860637095326 – reference: HemidaMGLongitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015Emerg. Microbes Infect.2017610.1038/emi.2017.44286343555520318 – reference: Corman, V. M. et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Eurosurveillance, https://doi.org/10.2807/ese.17.39.20285-en (2012). – reference: FalzaranoDDromedary camels in northern Mali have high seropositivity to MERS-CoVOne Heal. (Amsterdam, Netherlands)201734143 – reference: LuGMolecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26Nature2013500227311:CAS:528:DC%2BC3sXhtVKhtbfK2013Natur.500..227L10.1038/nature12328238316477095341 – reference: HemidaMGMERS coronavirus in dromedary camel herd, Saudi ArabiaEmerg. Infect. Dis.2014201231410.3201/eid2007.140571249641934073860 – reference: ZhouYJiangSDuLProspects for a MERS-CoV spike vaccineExpert Rev. Vaccines2018176776861:CAS:528:DC%2BC1cXhsV2isb3J10.1080/14760584.2018.1506702300584036355461 – reference: AzharEIEvidence for camel-to-human transmission of MERS coronavirusN Engl J Med2014370249925051:CAS:528:DC%2BC2cXhs1artLzN10.1056/NEJMoa140150524896817 – reference: Kasem, S. et al. Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia. J. Infect. Public Health11, 331–338. – reference: Corman, V. M. et al. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013. Emerg. Infect. Dis., https://doi.org/10.3201/eid2008.140596 (2014). – reference: MeyerBTime Course of MERS-CoV Infection and Immunity in Dromedary CamelsEmerg. Infect. Dis.2016222171217310.3201/eid2212.160382272243155189137 – reference: ReuskenCBEMMiddle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological studyLancet. Infect. Dis.201313859661:CAS:528:DC%2BC3sXht1Ggt7nM10.1016/S1473-3099(13)70164-6239330677106530 – reference: Conzade, R. et al. Reported Direct and Indirect Contact with Dromedary Camels among Laboratory-Confirmed MERS-CoV Cases. Viruses10 (2018). – reference: HaagmansBLAn orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camelsScience (80-.).201635177811:CAS:528:DC%2BC2MXitV2nt7nK2016Sci...351...77H10.1126/science.aad1283 – reference: Perera, R. A. et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill18, pii=20574 (2013). – reference: Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature, https://doi.org/10.1038/nature10590 (2011). – reference: Coughlan, L. et al. Heterologous Two-Dose Vaccination with Simian Adenovirus and Poxvirus Vectors Elicits Long-Lasting Cellular Immunity to Influenza Virus A in Healthy Adults. EbioMedicine, https://doi.org/10.1016/j.ebiom.2018.02.011 (2018). – reference: Volz, A. et al. Protective efficacy of recombinant Modified Vaccinia virus Ankara (MVA) delivering Middle East Respiratory Syndrome coronavirus spike glycoprotein. J Virol, https://doi.org/10.1128/JVI.00614-15 (2015). – reference: Hemida, M. G. et al. Seroepidemiology of middle east respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity. Eurosurveillance, https://doi.org/10.2807/1560-7917.ES2014.19.23.20828 (2014). – reference: AdneyDRReplication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camelsEmerg Infect Dis201420199920051:CAS:528:DC%2BC28XitVOisLbJ10.3201/eid2012.141280254185294257817 – reference: Grehan, K., Ferrara, F. & Temperton, N. An optimised method for the production of MERS-CoV spike expressing viral pseudotypes. MethodsX, https://doi.org/10.1016/j.mex.2015.09.003 (2015). – reference: Chu, D. K. W. et al. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc. Natl. Acad. Sci. USA, https://doi.org/10.1073/pnas.1718769115 (2018). – reference: Kasem, S. et al. The prevalence of Middle East respiratory Syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons. J. Infect. Public Health, https://doi.org/10.1016/j.jiph.2018.01.004 (2018). – reference: Korea Centers for Disease, C. & Prevention. Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015. Osong Public Heal. Res Perspect6, 269–278 (2015). – reference: Hashem, A. M. et al. A highly immunogenic, protective and safe adenovirus-based vaccine expressing MERS-CoV S1-CD40L fusion protein in transgenic human DPP4 mouse model. J. Infect. Dis., https://doi.org/10.1093/infdis/jiz137 (2019). – reference: DeemSLSerological Evidence of MERS-CoV Antibodies in Dromedary Camels (Camelus dromedaries) in Laikipia County, KenyaPLoS One201510e014012510.1371/journal.pone.0140125264737334608777 – reference: YusofMFDiversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab EmiratesEmerg. Microbes Infect.201761:CAS:528:DC%2BC2sXhslOnur7J10.1038/emi.2017.89291162175717090 – reference: Alshukairi, A. N. et al. High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia. Mbio, https://doi.org/10.1128/mBio.01985-18 (2018). – reference: Xiao, S., Li, Y., Sung, M., Wei, J. & Yang, Z. A study of the probable transmission routes of MERS-CoV during the first hospital outbreak in the Republic of Korea. Indoor Air, https://doi.org/10.1111/ina.12430 (2018). – reference: AliMASystematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in EgyptEmerg. Microbes Infect.2017610.1038/emi.2016.130280500215285495 – reference: Meyer, B. et al. Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013. Emerg. Infect. Dis., https://doi.org/10.3201/eid2004.131746 (2014). – reference: AlagailiANMiddle East respiratory syndrome coronavirus infection in dromedary camels in Saudi ArabiaMBio20145e0088414245703703940034 – reference: DraperSJEffective induction of high-titer antibodies by viral vector vaccinesNat Med2008148198211:CAS:528:DC%2BD1cXptlKlt7w%3D10.1038/nm.1850186608184822545 – reference: Antrobus, R. D. et al. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens. Mol. Ther., https://doi.org/10.1038/mt.2013.284 (2014). – reference: Müller, M. A. et al. Mers coronavirus neutralizing antibodies in camels, eastern Africa, 1983–1997. Emerg. Infect. Dis, https://doi.org/10.3201/eid2012.141026 (2014). – reference: MunsterVJProtective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse modelNPJ Vaccines2017210.1038/s41541-017-0029-1292638835643297 – reference: Miguel, E. et al. Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015. Euro Surveill. 22 (2017). – reference: Okba, N. M. A. et al. Sensitive and Specific Detection of Low-Level Antibody Responses in Mild Middle East Respiratory Syndrome Coronavirus Infections. Emerg. Infect. Dis. 25 (2019). – reference: Reusken, C. B. E. M. et al. Geographic distribution of MERS coronavirus among dromedary camels, Africa. Emerg. Infect. Dis., https://doi.org/10.3201/eid2008.140590 (2014). – reference: Alharbi, N. K. et al. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice, https://doi.org/10.1016/j.vaccine.2017.05.032 (2017). – reference: Alharbi, N. K. Vaccines against Middle East respiratory syndrome coronavirus for humans and camels. Rev Med Virol27 (2016). – reference: WHO. MERS-CoV. (2019). – reference: Perera, R. A. et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, june 2013. Eurosurveillance18 (2013). – reference: HashemAMDevelopment and validation of different indirect ELISAs for MERS-CoV serological testingJ. Immunol. Methods201946641461:CAS:528:DC%2BC1MXhsVyjsLw%3D10.1016/j.jim.2019.01.005306598367094657 – reference: Padilla-QuirarteHOLopez-GuerreroDVGutierrez-XicotencatlLEsquivel-GuadarramaFProtective Antibodies Against Influenza ProteinsFront. Immunol.201910167710.3389/fimmu.2019.01677313798666657620 – reference: YongCYOngHKYeapSKHoKLTanWSRecent Advances in the Vaccine Development Against Middle East Respiratory Syndrome-CoronavirusFront. Microbiol.201910178110.3389/fmicb.2019.01781314280746688523 – reference: DicksMDA novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicityPLoS One20127e403851:CAS:528:DC%2BC38XhtVyisrvN2012PLoSO...740385D10.1371/journal.pone.0040385228081493396660 – reference: Warimwe, G. M. et al. Chimpanzee adenovirus vaccine provides multispecies protection against rift valley fever. Sci. Rep. 6 (2016). – ident: 52730_CR5 doi: 10.1016/j.jiph.2017.09.022 – ident: 52730_CR34 doi: 10.1038/mt.2013.284 – ident: 52730_CR1 – ident: 52730_CR46 doi: 10.1128/JVI.00614-15 – volume: 3 start-page: 41 year: 2017 ident: 52730_CR7 publication-title: One Heal. (Amsterdam, Netherlands) – volume: 351 start-page: 77 year: 2016 ident: 52730_CR36 publication-title: Science (80-.). doi: 10.1126/science.aad1283 – ident: 52730_CR37 doi: 10.2807/1560-7917.ES2013.18.36.20574 – ident: 52730_CR18 doi: 10.1073/pnas.1718769115 – ident: 52730_CR44 doi: 10.1093/infdis/jiz137 – volume: 20 start-page: 1999 year: 2014 ident: 52730_CR41 publication-title: Emerg Infect Dis doi: 10.3201/eid2012.141280 – ident: 52730_CR24 doi: 10.1002/rmv.1917 – ident: 52730_CR3 doi: 10.1038/nature10590 – volume: 20 start-page: 1231 year: 2014 ident: 52730_CR28 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2007.140571 – ident: 52730_CR15 doi: 10.2807/1560-7917.ES2014.19.23.20828 – volume: 500 start-page: 227 year: 2013 ident: 52730_CR20 publication-title: Nature doi: 10.1038/nature12328 – ident: 52730_CR35 doi: 10.1016/j.ebiom.2018.02.011 – ident: 52730_CR4 doi: 10.3390/v10080425 – ident: 52730_CR45 doi: 10.1016/j.mex.2015.09.003 – volume: 22 start-page: 2171 year: 2016 ident: 52730_CR27 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2212.160382 – volume: 6 year: 2017 ident: 52730_CR26 publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2017.44 – volume: 10 start-page: 1677 year: 2019 ident: 52730_CR38 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01677 – ident: 52730_CR10 doi: 10.2807/1560-7917.ES2013.18.36.20574 – ident: 52730_CR30 doi: 10.1016/j.vaccine.2017.05.032 – ident: 52730_CR2 doi: 10.1016/j.phrp.2015.08.006 – volume: 2 year: 2017 ident: 52730_CR31 publication-title: NPJ Vaccines doi: 10.1038/s41541-017-0029-1 – volume: 10 start-page: 1781 year: 2019 ident: 52730_CR23 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01781 – ident: 52730_CR17 doi: 10.1016/j.jiph.2018.01.004 – volume: 17 start-page: 677 year: 2018 ident: 52730_CR22 publication-title: Expert Rev. Vaccines doi: 10.1080/14760584.2018.1506702 – ident: 52730_CR13 doi: 10.3201/eid2008.140596 – ident: 52730_CR14 doi: 10.3201/eid2008.140590 – ident: 52730_CR11 doi: 10.3201/eid2004.131746 – volume: 7 start-page: e40385 year: 2012 ident: 52730_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0040385 – ident: 52730_CR42 doi: 10.1111/ina.12430 – ident: 52730_CR48 doi: 10.2807/ese.17.39.20285-en – volume: 6 year: 2017 ident: 52730_CR29 publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2017.89 – volume: 5 start-page: e00884 year: 2014 ident: 52730_CR16 publication-title: MBio – volume: 6 year: 2017 ident: 52730_CR25 publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2016.130 – ident: 52730_CR19 doi: 10.1128/mBio.01985-18 – volume: 370 start-page: 2499 year: 2014 ident: 52730_CR47 publication-title: N Engl J Med doi: 10.1056/NEJMoa1401505 – ident: 52730_CR40 doi: 10.3201/eid2510.190051 – volume: 13 start-page: 859 year: 2013 ident: 52730_CR6 publication-title: Lancet. Infect. Dis. doi: 10.1016/S1473-3099(13)70164-6 – volume: 10 start-page: e0140125 year: 2015 ident: 52730_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0140125 – volume: 495 start-page: 251 year: 2013 ident: 52730_CR21 publication-title: Nature doi: 10.1038/nature12005 – ident: 52730_CR8 doi: 10.2807/1560-7917.ES.2017.22.13.30498 – volume: 14 start-page: 819 year: 2008 ident: 52730_CR43 publication-title: Nat Med doi: 10.1038/nm.1850 – ident: 52730_CR12 doi: 10.3201/eid2012.141026 – ident: 52730_CR33 doi: 10.1038/srep20617 – volume: 466 start-page: 41 year: 2019 ident: 52730_CR39 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2019.01.005 |
SSID | ssj0000529419 |
Score | 2.5236285 |
Snippet | MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16292 |
SubjectTerms | 45 45/77 631/250/590 631/326/596/2563 64 82 96 96/1 Adenoviridae - immunology Animals Antibodies, Neutralizing - immunology Antibodies, Viral - immunology Camelidae Camelus - immunology Camelus - metabolism Coronavirus Infections - prevention & control Coronavirus Infections - veterinary Coronavirus Infections - virology Disease Outbreaks Humanities and Social Sciences Immunization Immunogenicity Middle East Respiratory Syndrome Coronavirus - immunology Middle East Respiratory Syndrome Coronavirus - metabolism Middle East Respiratory Syndrome Coronavirus - pathogenicity Middle East Respiratory Syndrome Coronavirus - physiology multidisciplinary Science Science (multidisciplinary) Spike protein Vaccination Vaccination - methods Vaccines Viral Vaccines - immunology Viral Vaccines - pharmacology Zoonoses - epidemiology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJuUgozEDaLaseM4J1RttypIBYlStLfIr6hblaR0t1L33zOTZFMtFb3azsvf2DOZ8XwD8MHF2gXnEQFvQ6pyJ1KnjE5RF-go8KqyoHzno2_68ER9neWzweG2GI5VrvfEbqMOrScf-S7aIWjdlqhtP1_8SalqFEVXhxIa9-EBUZeRVBezYvSxUBRLiXLIleHS7C5QX1FOmShTYh7jqdrUR7eMzNtnJf8JmHZ66OAJPB4MSLbXI_4U7sXmGTzsS0qunsMZ4kNJ9-wLJX60KB5zj4Y2s01gU6KLsH7F2ppZdoy3P49sv11Eapic7oXv14IdTX8cs1_WU8CdTSjphXwCbN6wfWI2CPZyhc2_UaW-gJOD6c_JYTrUU0g92mXL1KAxEaz0ruaqFmXMnBW1ccZzHouoAhWT1F5SwSrjVK1t6XDWhfJccx-yWr6EraZt4mtg-FsYtc144C5XseRO2zqaPC9QIPI8uATEelYrP5CNU82L86oLektT9UhUiETVIVGpBD6O11z0VBt3jt5Zg1UNy25R3QhJAu_HblwwFAWxTWyv-jGSigiYBF712I6Pk0QuJGSRQLGB-jiAyLg3e5r5aUfKrY0ShcwS-LSWj5vX-v9XbN_9FW_gUUay2rmxd2BreXkV36IRtHTvOkn_CzgZA_c priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcUHmHlspI3CDCThzHOa62W5WVChJLUW-RX1EXlQR1txL775nJCy2lSFzjceLkG2fGHs83AG9sqKy3DhFwxscysyK2UqsYbYEKAnsVOeU7n31Up-dyfpFd7EAy5MK0h_ZbSsv2Nz2cDnu_QkNDyWCiiIkyjMfyHuwRVTvq9t5kMl_Mx50Vil1JUfQZMjzVf-m8bYVuuZa3T0j-ESZtrc_JPjzs3UY26Qb6CHZC_Rjud4UkN0_gG6JCqfbsA6V7NKgUS4fuNTO1ZzMiiTBuw5qKGbbA218FdtysAl2YXk78p5-Cnc0-L9hX4yjMzqaU6kI7AWxZs2PiM_DmeoOXv6MhfQrnJ7Mv09O4r6IQO_TG1rFGF8Kb1NmKy0oUIbFGVNpqx3nIg_RUQlK5lMpUaSsrZQqLPp-QjivufFKlz2C3burwAhguBoMyCffcZjIU3CpTBZ1lOapBlnkbgRi-aul6inGqdHFVtqHuVJcdEiUiUbZIlDKCt2OfHx3Bxj-lDwewyn6yrUocLi58CpSI4PXYjNOEYh-mDs1NJ5NS6QAdwfMO2_FxKVEKiTSPIN9CfRQgCu7tlnp52VJxKy1FniYRvBv04_ew7n6Ll_8nfgAPEtLddjP7EHbX1zfhFbpCa3vU6_4vH_ADMg priority: 102 providerName: Springer Nature |
Title | Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels |
URI | https://link.springer.com/article/10.1038/s41598-019-52730-4 https://www.ncbi.nlm.nih.gov/pubmed/31705137 https://www.proquest.com/docview/2313069273 https://www.proquest.com/docview/2313384818 https://pubmed.ncbi.nlm.nih.gov/PMC6841732 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9ID5HYFRG4g0CceIkzgNCJes0KnWglaK-RbbjaEVdMtpOWv977vJRGBs88BTJPseO76w727nfD-CVtoXOtUENGJW7ItTc1UJGLvqCyHJslcSU7zw6iY4nYjgNp1vQ0R21E7i8dWtHfFKTxfzt1Y_1B1zw75uUcfluiU6IEsV44hKcmOeKbdhFzxQTo8GoDfcbrG8_ETxpc2dub7oHdwOCmOHEjP67q7oRf978jfKPu9TaRR3dh3ttbMn6jTE8gC1bPoQ7Ddvk-hF8R9VRPj77RDkhFVrOzGAMzlSZswEhSSizZlXBFBvj6-eWHVZLSwXpWT__fMXZaHA6Zt-Uobt4llI-DB0XsFnJDgn0IFeLNRafo7d9DJOjwdf02G2pFlyDIdvKlRhn5CowuvBEwRPra8ULqaXxPBtbkRPPZGQC4rKSWhSRSjQGhlwYL_JM7hfBE9gpq9I-BYY7Rhsp38s9HQqbeDpShZVhGKOthGGuHeDdrGamxSEnOox5Vt-HBzJrlJKhUrJaKZlw4PWmzUWDwvFP6YNOWVlnUBkOF3dHCUo48HJTjWuJLkhUaavLRiYgfgHpwH6j2013nVE4EF_T-kaAcLqv15SzsxqvO5Joi4HvwJvOPn4N6-9f8ey_O3oOez5ZdH34fQA7q8WlfYGh00r3YDuexj3Y7feH4yE-Pw5OvpxiaRqlvfo4olevmJ_pAhpe |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxBtDC4sEJ7C6a69fB1RVSaqENkWiLcrN7MtqULFLkwryp_iNzPiRKlT01qv35d35dmd2ZmcG4K12hbbaIAWMsr6MtPC1TGMfeUHsBLbKEvJ3Hh_Ew2P5aRJN1uBP5wtDzyq7M7E-qG1lSEe-hXIISrcZctvts58-ZY0i62qXQqOBxZ5b_MIr2-zjqI_0fRcEu4Oj3tBvswr4BqWTuZ8iS7UqNLrgshCZC7QSRapTw7lLnLSUUjE2IaVtSrUsYpVpHFtIw2NubFCE2O8tuI2Ml9NlL5kkS50OWc2kyFrfHB6mWzPkj-TDJjKfIp1xX67yvytC7dW3mf8YaGu-t_sA7rcCK9tpEPYQ1lz5CO40KSwXj-E74oGc_NmIHE0qhOPUoGDPVGnZgMJTKLNgVcEUO8TuTx3rVzNHH3onO_bzb8HGgy-H7KsyZOBnPXKyIR0Em5asT5EUrDpf4OcfyMKfwPGNrPRTWC-r0j0HhtdQF6uAW64j6TKuY1W4NIoSBGAUWe2B6FY1N21wc8qxcZrXRvYwzRtK5EiJvKZELj14v2xz1oT2uLb2RkesvN3ms_wSlB68WRbjBiWriypdddHUCSlpQerBs4a2y-FCCmYkwsSDZIXqywoU_Hu1pJye1EHA41SKJAw8-NDh4_K3_j-LF9fP4jXcHR6N9_P90cHeS7gXEG5rFfoGrM_PL9wmCmBz_apGPYNvN73N_gK5XUBq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUC8IG4CBYwETxBtnDjXA0JlD3UpXaqWVn0LvqIuKknpbgX71_h1zOSqloq-9TU-Yns-e8YznhmA18rmyiiNFNDSuCJU3FUiiVzkBZHl2CqNyd95ZxptHYhPR-HRGvxpfWHoWWV7JlYHtSk16cj7KIegdJsit-3nzbOI3eH4w-lPlzJIkaW1TadRQ2TbLn_h9W3-fjJEWr_x_fHo62DLbTIMuBollYWbIHs1MtAq90TOU-sryfNEJdrzbGyFofSKkQ4ohVOiRB7JVOE4uNBe5Gnj5wH2ewPWY7oV9WD942i6u9dpeMiGJnjaeOp4QdKfI7ckjzaeuhT3zHPFKje8JOJefqn5j7m24oLju3CnEV_ZZo23e7Bmi_tws05ouXwA3xEd5PLPJuR2UiI4ZxrFfCYLw0YUrELqJStzJtk-dn9i2bCcW_owON40X35ztjPa22eHUpO5nw3I5YY0EmxWsCHFVTDybImffyBDfwgH17LWj6BXlIV9AgwvpTaSvmc8FQqbeiqSuU3CMEY4hqFRDvB2VTPdhDqnjBsnWWVyD5KspkSGlMgqSmTCgbddm9M60MeVtTdaYmXNpp9nFxB14FVXjNuVbDCysOV5XSegFAaJA49r2na_Cyi0EQ9iB-IVqncVKBT4akkxO65CgkeJ4HHgO_CuxcfFsP4_i6dXz-Il3MItln2eTLefwW2fYFvp0zegtzg7t89RGluoFw3sGXy77p32F0ZmRgU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Humoral+Immunogenicity+and+Efficacy+of+a+Single+Dose+of+ChAdOx1+MERS+Vaccine+Candidate+in+Dromedary+Camels&rft.jtitle=Scientific+reports&rft.au=Alharbi%2C+Naif+Khalaf&rft.au=Qasim%2C+Ibrahim&rft.au=Almasoud%2C+Abdulrahman&rft.au=Aljami%2C+Haya+A.&rft.date=2019-11-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=9&rft_id=info:doi/10.1038%2Fs41598-019-52730-4&rft_id=info%3Apmid%2F31705137&rft.externalDocID=PMC6841732 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |