Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a co...
Saved in:
Published in | Genome biology and evolution Vol. 6; no. 6; pp. 1408 - 1422 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. |
---|---|
AbstractList | Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8-3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly.Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8-3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. |
Author | Takeuchi, Takeshi Mungpakdee, Sutada Tanaka, Makiko Lin, Senjie Hisata, Kanako Shoguchi, Eiichi Goto, Hiroki Fujie, Manabu Kawashima, Takeshi Satoh, Nori Koyanagi, Ryo Shinzato, Chuya |
Author_xml | – sequence: 1 givenname: Sutada surname: Mungpakdee fullname: Mungpakdee, Sutada organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 2 givenname: Chuya surname: Shinzato fullname: Shinzato, Chuya organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 3 givenname: Takeshi surname: Takeuchi fullname: Takeuchi, Takeshi organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 4 givenname: Takeshi surname: Kawashima fullname: Kawashima, Takeshi organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 5 givenname: Ryo surname: Koyanagi fullname: Koyanagi, Ryo organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 6 givenname: Kanako surname: Hisata fullname: Hisata, Kanako organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 7 givenname: Makiko surname: Tanaka fullname: Tanaka, Makiko organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 8 givenname: Hiroki surname: Goto fullname: Goto, Hiroki organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 9 givenname: Manabu surname: Fujie fullname: Fujie, Manabu organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 10 givenname: Senjie surname: Lin fullname: Lin, Senjie organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 11 givenname: Nori surname: Satoh fullname: Satoh, Nori organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan – sequence: 12 givenname: Eiichi surname: Shoguchi fullname: Shoguchi, Eiichi organization: 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24881086$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtr3DAQhUVJaa4v_QFFL4VS2EayLMl-KYR0c4HcyOUtIMb2aKtiSxtLXpp_H282CUkpeZqB-eYcZs4mWfPBIyGfOfvBWSl2ZxXu4mIY-w9kg2tZTpSSYu1Vv042Y_zDmFK5Ep_IepYXBWeF2iC3pxCjWyA9RI_0ugcfLfYUfEOnfxP6x9nl2R6dNi45P6PBUqBX913lQnI1_eV8sC3MsG0hIb1oISbXLNVCh9vko4U24s5T3SI3B9Pr_aPJyfnh8f7eyaSWOUsTbcuiRllqq1XBAcBmomhElatMYCUwK61GWUgralSVBc6EklpXrNJQMKnEFvm50p0PVYdNjT710Jp57zro700AZ95OvPttZmFhcqbLjGejwLcngT7cDRiT6Vyslzd5DEM0XIoyV3J82oh-ee31YvL80hFgK6DuQ4w9WlO7BMmFpbVrDWdmmZoZUzOr1MaV7_-sPKv-F_66gsMwf497AHNvp1o |
CitedBy_id | crossref_primary_10_1038_s41589_024_01661_x crossref_primary_10_1146_annurev_micro_102215_095448 crossref_primary_10_1371_journal_pone_0151092 crossref_primary_10_1111_jpy_13219 crossref_primary_10_1111_mec_15952 crossref_primary_10_1016_j_ejop_2024_126061 crossref_primary_10_1093_gbe_evaa244 crossref_primary_10_1534_g3_117_300290 crossref_primary_10_1093_nar_gkw188 crossref_primary_10_3389_frpro_2024_1320917 crossref_primary_10_1093_gbe_evaa042 crossref_primary_10_1093_gbe_evv137 crossref_primary_10_1073_pnas_1720897115 crossref_primary_10_1038_s41598_017_14286_z crossref_primary_10_1073_pnas_1421380112 crossref_primary_10_1134_S1022795421010117 crossref_primary_10_1111_jpy_12514 crossref_primary_10_1371_journal_pone_0119406 crossref_primary_10_1111_1462_2920_13478 crossref_primary_10_1186_s12864_024_10847_5 crossref_primary_10_1186_s13059_023_03107_4 crossref_primary_10_3390_microorganisms8111759 crossref_primary_10_3389_fevo_2017_00056 crossref_primary_10_7717_peerj_15023 crossref_primary_10_1007_s10811_015_0570_0 crossref_primary_10_1016_j_hal_2019_03_005 crossref_primary_10_1016_j_protis_2019_06_001 crossref_primary_10_3390_ijms24119651 crossref_primary_10_1073_pnas_1816822116 crossref_primary_10_1186_s12915_021_00994_6 crossref_primary_10_1007_s13199_020_00664_1 crossref_primary_10_1038_s42003_018_0098_3 crossref_primary_10_1371_journal_pgen_1006619 crossref_primary_10_3389_fmicb_2021_613199 crossref_primary_10_3390_genes8020080 crossref_primary_10_3390_genes7120115 crossref_primary_10_1093_molbev_msw235 crossref_primary_10_3389_fpls_2022_918543 crossref_primary_10_1007_s00338_021_02115_9 crossref_primary_10_3389_fmicb_2014_00336 crossref_primary_10_1016_j_tig_2016_06_005 crossref_primary_10_1007_s11103_024_01511_3 crossref_primary_10_1111_nph_14760 crossref_primary_10_1111_1755_0998_12585 crossref_primary_10_1002_ece3_5910 crossref_primary_10_1093_gbe_evy057 crossref_primary_10_3390_biom9080299 crossref_primary_10_1016_j_molbiopara_2016_07_004 crossref_primary_10_1016_j_algal_2023_103118 crossref_primary_10_1038_s41598_020_58817_7 crossref_primary_10_1016_j_molp_2019_11_002 crossref_primary_10_3390_jmse6010013 crossref_primary_10_3389_fpls_2017_00271 crossref_primary_10_1007_s11103_015_0408_9 crossref_primary_10_1073_pnas_1614842114 crossref_primary_10_1007_s11033_019_04657_2 crossref_primary_10_1093_bib_bbw088 crossref_primary_10_1111_tpj_13121 crossref_primary_10_1093_molbev_msu189 crossref_primary_10_1186_s12915_020_00782_8 |
Cites_doi | 10.1007/s11103-012-9916-z 10.1016/j.protis.2011.09.001 10.1016/S0169-5347(00)02084-X 10.1371/journal.pone.0035269 10.1093/molbev/mst144 10.1093/bioinformatics/btm404 10.1146/annurev.biochem.71.110601.135501 10.1146/annurev.arplant.52.1.593 10.1093/bioinformatics/btp698 10.1093/nar/gkt640 10.1073/pnas.1003335107 10.1007/s004380100582 10.1016/j.cub.2004.01.032 10.1093/nar/gkn750 10.1126/science.1210624 10.1093/nar/gkj438 10.1093/nar/gkp985 10.1098/rstb.2000.0614 10.1016/S0014-5793(01)02871-X 10.1002/bip.360221211 10.1186/1471-2229-8-79 10.1093/pcp/pcs069 10.1104/pp.110.170688 10.1016/j.febslet.2004.10.060 10.1016/j.gene.2004.02.008 10.1016/S0022-2836(02)00468-0 10.1128/AEM.02103-07 10.1093/nar/gkf436 10.1093/oxfordjournals.molbev.a003942 10.1105/tpc.006155 10.1186/1471-2164-12-346 10.1126/science.1210484 10.1186/1471-2148-11-101 10.1016/j.tplants.2011.10.004 10.1016/S0022-2836(05)80360-2 10.1093/nar/gkg563 10.1098/rstb.2009.0103 10.1016/j.tplants.2008.10.001 10.1078/1434461000165 10.1016/j.plaphy.2007.12.013 10.1146/annurev-arplant-050312-120124 10.1002/j.1460-2075.1991.tb04893.x 10.1016/j.gene.2009.04.006 10.1093/nar/gkm321 10.1093/nar/gki366 10.1073/pnas.0901004106 10.1016/j.febslet.2007.07.075 10.1093/jxb/erm292 10.1016/j.jplph.2010.12.009 10.1101/gr.110254.110 10.1146/annurev-micro-090110-102841 10.1111/j.1469-8137.2010.03203.x 10.1016/j.cub.2013.05.062 10.1099/ijs.0.02594-0 10.2108/zsj.30.797 10.1128/MCB.00708-07 10.1093/oxfordjournals.molbev.a004104 10.1038/22099 10.1016/0014-5793(95)00297-M 10.1002/j.1460-2075.1994.tb06350.x 10.1093/molbev/mss270 10.1093/gbe/evt181 10.1016/0968-0004(94)90167-8 10.1093/bioinformatics/btp120 10.1104/pp.85.4.1021 10.1093/nar/gkp063 10.1074/jbc.M109.058545 10.1093/bioinformatics/btp352 10.1242/jcs.102285 10.1023/A:1005734809834 10.1186/gb-2009-10-3-r25 10.1093/dnares/10.2.67 10.1186/1471-2164-7-297 10.1016/j.neuron.2012.04.010 10.1073/pnas.1212270109 10.1073/pnas.0708554105 10.1098/rstb.2002.1176 10.1093/nar/gkg581 |
ContentType | Journal Article |
Copyright | The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2014 The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. |
Copyright_xml | – notice: The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2014 – notice: The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/gbe/evu109 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1759-6653 |
EndPage | 1422 |
ExternalDocumentID | PMC4079212 24881086 10_1093_gbe_evu109 10.1093/gbe/evu109 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .I3 0R~ 53G 5VS 5WA AAFWJ AAHBH AAMVS AAPPN AAPXW AAVAP ABPTD ABXVV ACGFS ADBBV ADHZD ADRAZ AENEX AENZO AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL CIDKT CZ4 DIK DU5 D~K E3Z EBS EJD EMOBN ESX GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 KSI M48 ML0 M~E O5R O5S OAWHX OJQWA OK1 P2P PEELM PQQKQ RD5 ROL ROX RPM RXO TOX TR2 X7H ~91 ~D7 ~S- AAYXX ABEJV ABGNP AMNDL CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c540t-7f98ce597f7681aaaf238d3b4623eb3e29f7e585f3ce6bfa1036577b0b7a80563 |
IEDL.DBID | M48 |
ISSN | 1759-6653 |
IngestDate | Thu Aug 21 18:02:05 EDT 2025 Fri Jul 11 01:13:58 EDT 2025 Thu Apr 03 07:08:13 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 Tue Jul 01 04:13:48 EDT 2025 Wed Aug 28 03:22:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | hydropathy minicircles RNA editing light-harvesting complex proteins dinoflagellate plastid-associated genes Symbiodinium minutum |
Language | English |
License | The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-7f98ce597f7681aaaf238d3b4623eb3e29f7e585f3ce6bfa1036577b0b7a80563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Associate editor: Shu-Miaw Chaw Data deposition: Plastid minicircle sequences reported in this article have been deposited at GenBank under the accessions JX094304–JX094335. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/gbe/evu109 |
PMID | 24881086 |
PQID | 1539465881 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4079212 proquest_miscellaneous_1539465881 pubmed_primary_24881086 crossref_citationtrail_10_1093_gbe_evu109 crossref_primary_10_1093_gbe_evu109 oup_primary_10_1093_gbe_evu109 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Genome biology and evolution |
PublicationTitleAlternate | Genome Biol Evol |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Kiefer ( key 20170627113032_evu109-B34) 2009; 37 Bachvaroff ( key 20170627113032_evu109-B4) 2004; 155 Leung ( key 20170627113032_evu109-B39) 2009; 37 Janouskovec ( key 20170627113032_evu109-B28) 2013; 30 Koyanagi ( key 20170627113032_evu109-B35) 2013; 30 Janouskovec ( key 20170627113032_evu109-B27) 2010; 107 Pusnik ( key 20170627113032_evu109-B58) 2007; 27 Gasteiger ( key 20170627113032_evu109-B17) 2003; 31 Barbrook ( key 20170627113032_evu109-B7) 2012; 79 Dang ( key 20170627113032_evu109-B12) 2010; 285 Lukes ( key 20170627113032_evu109-B44) 2009; 106 Moore ( key 20170627113032_evu109-B49) 2003; 53 Takahashi ( key 20170627113032_evu109-B67) 2008; 105 Jansson ( key 20170627113032_evu109-B29) 1987; 85 Wollman ( key 20170627113032_evu109-B71) 1998 Hackett ( key 20170627113032_evu109-B20) 2004; 14 Ohta ( key 20170627113032_evu109-B56) 2003; 10 Nisbet ( key 20170627113032_evu109-B54) 2004; 331 Barbrook ( key 20170627113032_evu109-B5) 2006; 7 Moriya ( key 20170627113032_evu109-B51) 2007; 35 Altschul ( key 20170627113032_evu109-B2) 1990; 215 Lin ( key 20170627113032_evu109-B43) 2012 Yamashita ( key 20170627113032_evu109-B72) 2011; 21 Trapnell ( key 20170627113032_evu109-B68) 2009; 25 Graham ( key 20170627113032_evu109-B19) 2000; 355 Li ( key 20170627113032_evu109-B41) 2009; 25 Howe ( key 20170627113032_evu109-B25) 2003; 358 Li ( key 20170627113032_evu109-B40) 2010; 26 Miyagishima ( key 20170627113032_evu109-B48) 2011; 155 Georg ( key 20170627113032_evu109-B18) 2010; 186 Hoffman ( key 20170627113032_evu109-B23) 2011; 11 Morey ( key 20170627113032_evu109-B50) 2011; 12 Wang ( key 20170627113032_evu109-B69) 2006; 34 Selosse ( key 20170627113032_evu109-B64) 2001; 16 Nakamura ( key 20170627113032_evu109-B52) 2012; 53 Langmead ( key 20170627113032_evu109-B37) 2009; 10 Maul ( key 20170627113032_evu109-B47) 2002; 14 Dorrell ( key 20170627113032_evu109-B15) 2012; 125 Dang ( key 20170627113032_evu109-B11) 2009; 442 Hiller ( key 20170627113032_evu109-B21) 2001; 505 Larkin ( key 20170627113032_evu109-B38) 2007; 23 Schattner ( key 20170627113032_evu109-B61) 2005; 33 Dorrell ( key 20170627113032_evu109-B14) 2012; 109 Zhang ( key 20170627113032_evu109-B75) 2008; 74 Smart ( key 20170627113032_evu109-B66) 1991; 10 Bass ( key 20170627113032_evu109-B8) 2002; 71 Maier ( key 20170627113032_evu109-B46) 2013; 5 Shoguchi ( key 20170627113032_evu109-B65) 2013; 23 Katoh ( key 20170627113032_evu109-B31) 2002; 30 Zhang ( key 20170627113032_evu109-B76) 2001; 18 Chitnis ( key 20170627113032_evu109-B10) 2001; 52 Zito ( key 20170627113032_evu109-B79) 1997; 33 Obornik ( key 20170627113032_evu109-B55) 2012; 163 Allen ( key 20170627113032_evu109-B1) 2011; 16 Howe ( key 20170627113032_evu109-B24) 2008; 59 Zauner ( key 20170627113032_evu109-B74) 2004; 577 Yura ( key 20170627113032_evu109-B73) 2008; 8 Wisecaver ( key 20170627113032_evu109-B70) 2011; 65 Zhang ( key 20170627113032_evu109-B77) 2002; 19 Zhang ( key 20170627113032_evu109-B78) 1999; 400 Barbrook ( key 20170627113032_evu109-B6) 2001; 266 Keeling ( key 20170627113032_evu109-B33) 2010; 365 Rosenthal ( key 20170627113032_evu109-B59) 2012; 74 Salone ( key 20170627113032_evu109-B60) 2007; 581 Bayer ( key 20170627113032_evu109-B9) 2012; 7 Jackson ( key 20170627113032_evu109-B26) 2013; 30 Hiller ( key 20170627113032_evu109-B22) 1995; 363 Kawabata ( key 20170627113032_evu109-B32) 2003; 31 Pickrell ( key 20170627113032_evu109-B57) 2012 Luro ( key 20170627113032_evu109-B45) 2013; 41 Kuras ( key 20170627113032_evu109-B36) 1994; 13 Amunts ( key 20170627113032_evu109-B3) 2008; 46 Kabsch ( key 20170627113032_evu109-B30) 1983; 22 Nickelsen ( key 20170627113032_evu109-B53) 2013; 64 Schmitz-Linneweber ( key 20170627113032_evu109-B62) 2008; 13 Schottler ( key 20170627113032_evu109-B63) 2011; 168 Doolittle ( key 20170627113032_evu109-B13) 1994; 19 Finn ( key 20170627113032_evu109-B16) 2010; 38 Lin ( key 20170627113032_evu109-B42) 2002; 320 23974208 - Mol Biol Evol. 2013 Nov;30(11):2447-62 23451783 - Annu Rev Plant Biol. 2013;64:609-35 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 22422964 - Science. 2012 Mar 16;335(6074):1302; author reply 1302 15980563 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W686-9 18319241 - J Exp Bot. 2008;59(5):1035-45 17123435 - BMC Genomics. 2006;7:297 21729317 - BMC Genomics. 2011;12:346 16665796 - Plant Physiol. 1987 Dec;85(4):1021-5 23197592 - Mol Biol Evol. 2013 Apr;30(4):788-92 19004664 - Trends Plant Sci. 2008 Dec;13(12):663-70 11810235 - Mol Genet Genomics. 2001 Dec;266(4):632-8 12045112 - Annu Rev Biochem. 2002;71:817-46 6667333 - Biopolymers. 1983 Dec;22(12):2577-637 19528647 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9963-70 22529998 - PLoS One. 2012;7(4):e35269 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 19376212 - Gene. 2009 Aug 1;442(1-2):73-80 22562591 - Plant Mol Biol. 2012 Jul;79(4-5):347-57 17646387 - Mol Cell Biol. 2007 Oct;27(19):6876-88 24125644 - Zoolog Sci. 2013 Oct;30(10):797-800 16434702 - Nucleic Acids Res. 2006;34(2):613-9 21372179 - Genome Res. 2011 May;21(5):775-89 20202127 - New Phytol. 2010 May;186(3):615-22 11179577 - Trends Ecol Evol. 2001 Mar 1;16(3):135-141 12594920 - Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):99-106; discussion 106-7 21311032 - Plant Physiol. 2011 Apr;155(4):1533-44 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 23921629 - Nucleic Acids Res. 2013 Oct;41(19):9141-51 14657100 - Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):1725-34 11576546 - FEBS Lett. 2001 Sep 21;505(3):449-52 12824418 - Nucleic Acids Res. 2003 Jul 1;31(13):3784-8 22055836 - Protist. 2012 Mar;163(2):306-23 1717264 - EMBO J. 1991 Nov;10(11):3289-96 12755171 - DNA Res. 2003 Apr 30;10(2):67-77 15556642 - FEBS Lett. 2004 Nov 19;577(3):535-8 9037161 - Plant Mol Biol. 1997 Jan;33(1):79-86 18272382 - Plant Physiol Biochem. 2008 Mar;46(3):228-37 8131736 - EMBO J. 1994 Mar 1;13(5):1019-27 21255865 - J Plant Physiol. 2011 Aug 15;168(12):1452-61 14761653 - Curr Biol. 2004 Feb 3;14(3):213-8 22547565 - J Cell Sci. 2012 Apr 15;125(Pt 8):1865-75 12095251 - J Mol Biol. 2002 Jul 19;320(4):727-39 15144059 - Protist. 2004 Mar;155(1):65-78 22578495 - Neuron. 2012 May 10;74(3):432-9 11470847 - Mol Biol Evol. 2001 Aug;18(8):1558-65 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 10905608 - Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):757-66; discussion 766-7 18165361 - Appl Environ Microbiol. 2008 Mar;74(5):1546-54 15094200 - Gene. 2004 Apr 28;331:141-7 22422963 - Science. 2012 Mar 16;335(6074):1302; author reply 1302 18931379 - Nucleic Acids Res. 2009 Jan;37(Database issue):D387-92 22093371 - Trends Plant Sci. 2011 Dec;16(12):645-55 23850284 - Curr Biol. 2013 Aug 5;23(15):1399-408 22576772 - Plant Cell Physiol. 2012 Jul;53(7):1171-9 21682644 - Annu Rev Microbiol. 2011;65:369-87 7729542 - FEBS Lett. 1995 Apr 17;363(1-2):175-8 20534454 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10949-54 12824329 - Nucleic Acids Res. 2003 Jul 1;31(13):3367-9 11337410 - Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:593-626 17707818 - FEBS Lett. 2007 Sep 4;581(22):4132-8 19261174 - Genome Biol. 2009;10(3):R25 23112181 - Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18879-84 17526522 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 20124341 - Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48 12136088 - Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 10408440 - Nature. 1999 Jul 8;400(6740):155-9 11919290 - Mol Biol Evol. 2002 Apr;19(4):489-500 18631376 - BMC Plant Biol. 2008;8:79 12417694 - Plant Cell. 2002 Nov;14(11):2659-79 8140615 - Trends Biochem Sci. 1994 Jan;19(1):15-8 19208639 - Nucleic Acids Res. 2009 Apr;37(6):1991-2002 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 24259312 - Genome Biol Evol. 2013;5(12):2318-29 19948728 - J Biol Chem. 2010 Feb 19;285(8):5196-203 18322010 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4203-8 21496217 - BMC Evol Biol. 2011;11:101 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
References_xml | – volume: 79 start-page: 347 year: 2012 ident: key 20170627113032_evu109-B7 article-title: Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae publication-title: Plant Mol Biol. doi: 10.1007/s11103-012-9916-z – volume: 163 start-page: 306 year: 2012 ident: key 20170627113032_evu109-B55 article-title: Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef publication-title: Protist doi: 10.1016/j.protis.2011.09.001 – volume: 16 start-page: 135 year: 2001 ident: key 20170627113032_evu109-B64 article-title: Reducing the genome size of organelles favours gene transfer to the nucleus publication-title: Trends Ecol Evol. doi: 10.1016/S0169-5347(00)02084-X – volume: 7 start-page: e35269 year: 2012 ident: key 20170627113032_evu109-B9 article-title: Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals publication-title: PLoS One doi: 10.1371/journal.pone.0035269 – volume: 30 start-page: 2447 year: 2013 ident: key 20170627113032_evu109-B28 article-title: Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia publication-title: Mol Biol Evol. doi: 10.1093/molbev/mst144 – volume: 23 start-page: 2947 year: 2007 ident: key 20170627113032_evu109-B38 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 71 start-page: 817 year: 2002 ident: key 20170627113032_evu109-B8 article-title: RNA editing by adenosine deaminases that act on RNA publication-title: Annu Rev Biochem. doi: 10.1146/annurev.biochem.71.110601.135501 – volume: 52 start-page: 593 year: 2001 ident: key 20170627113032_evu109-B10 article-title: PHOTOSYSTEM I: function and physiology publication-title: Annu Rev Plant Physiol Plant Mol Biol. doi: 10.1146/annurev.arplant.52.1.593 – volume: 26 start-page: 589 year: 2010 ident: key 20170627113032_evu109-B40 article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 – volume: 41 start-page: 9141 year: 2013 ident: key 20170627113032_evu109-B45 article-title: RNase J participates in a pentatricopeptide repeat protein-mediated 5’ end maturation of chloroplast mRNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt640 – volume: 107 start-page: 10949 year: 2010 ident: key 20170627113032_evu109-B27 article-title: A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1003335107 – volume: 266 start-page: 632 year: 2001 ident: key 20170627113032_evu109-B6 article-title: Organisation and expression of the plastid genome of the dinoflagellate Amphidinium operculatum publication-title: Mol Genet Genomics. doi: 10.1007/s004380100582 – volume: 14 start-page: 213 year: 2004 ident: key 20170627113032_evu109-B20 article-title: Migration of the plastid genome to the nucleus in a peridinin dinoflagellate publication-title: Curr Biol. doi: 10.1016/j.cub.2004.01.032 – start-page: 459 volume-title: The molecular biology of chloroplasts and mitochondria in Chlamydomonas year: 1998 ident: key 20170627113032_evu109-B71 article-title: The structure, function and biogenesis of cytochrome b6f Complexes – volume: 37 start-page: D387 year: 2009 ident: key 20170627113032_evu109-B34 article-title: The SWISS-MODEL Repository and associated resources publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn750 – year: 2012 ident: key 20170627113032_evu109-B43 article-title: Comment on “Widespread RNA and DNA sequence differences in the human transcriptome.” doi: 10.1126/science.1210624 – volume: 34 start-page: 613 year: 2006 ident: key 20170627113032_evu109-B69 article-title: Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj438 – volume: 38 start-page: D211 year: 2010 ident: key 20170627113032_evu109-B16 article-title: The Pfam protein families database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp985 – volume: 355 start-page: 757 year: 2000 ident: key 20170627113032_evu109-B19 article-title: The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport publication-title: Philos Trans R Soc Lond B Biol Sci. doi: 10.1098/rstb.2000.0614 – volume: 505 start-page: 449 year: 2001 ident: key 20170627113032_evu109-B21 article-title: “Empty” minicircles and petB/atpA and psbD/psbE (cytb559 alpha) genes in tandem in Amphidinium carterae plastid DNA publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02871-X – volume: 22 start-page: 2577 year: 1983 ident: key 20170627113032_evu109-B30 article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features publication-title: Biopolymers doi: 10.1002/bip.360221211 – volume: 8 start-page: 79 year: 2008 ident: key 20170627113032_evu109-B73 article-title: Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-8-79 – volume: 53 start-page: 1171 year: 2012 ident: key 20170627113032_evu109-B52 article-title: Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcs069 – volume: 155 start-page: 1533 year: 2011 ident: key 20170627113032_evu109-B48 article-title: Mechanism of plastid division: from a bacterium to an organelle publication-title: Plant Physiol. doi: 10.1104/pp.110.170688 – volume: 577 start-page: 535 year: 2004 ident: key 20170627113032_evu109-B74 article-title: Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate Ceratium horridum publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.10.060 – volume: 331 start-page: 141 year: 2004 ident: key 20170627113032_evu109-B54 article-title: Novel plastid gene minicircles in the dinoflagellate Amphidinium operculatum publication-title: Gene doi: 10.1016/j.gene.2004.02.008 – volume: 320 start-page: 727 year: 2002 ident: key 20170627113032_evu109-B42 article-title: Widespread and extensive editing of mitochondrial mRNAS in dinoflagellates publication-title: J Mol Biol. doi: 10.1016/S0022-2836(02)00468-0 – volume: 74 start-page: 1546 year: 2008 ident: key 20170627113032_evu109-B75 article-title: Mitochondrial cob and cox1 genes and editing of the corresponding mRNAs in Dinophysis acuminata from Narragansett Bay, with special reference to the phylogenetic position of the genus Dinophysis publication-title: Appl Environ Microbiol. doi: 10.1128/AEM.02103-07 – volume: 30 start-page: 3059 year: 2002 ident: key 20170627113032_evu109-B31 article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf436 – volume: 18 start-page: 1558 year: 2001 ident: key 20170627113032_evu109-B76 article-title: A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate publication-title: Mol Biol Evol. doi: 10.1093/oxfordjournals.molbev.a003942 – volume: 14 start-page: 2659 year: 2002 ident: key 20170627113032_evu109-B47 article-title: The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats publication-title: Plant Cell doi: 10.1105/tpc.006155 – volume: 12 start-page: 346 year: 2011 ident: key 20170627113032_evu109-B50 article-title: Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition publication-title: BMC Genomics doi: 10.1186/1471-2164-12-346 – year: 2012 ident: key 20170627113032_evu109-B57 article-title: Comment on “Widespread RNA and DNA sequence differences in the human transcriptome.” doi: 10.1126/science.1210484 – volume: 11 start-page: 101 year: 2011 ident: key 20170627113032_evu109-B23 article-title: Evolution of light-harvesting complex proteins from Chl c-containing algae publication-title: BMC Evol Biol. doi: 10.1186/1471-2148-11-101 – volume: 16 start-page: 645 year: 2011 ident: key 20170627113032_evu109-B1 article-title: A structural phylogenetic map for chloroplast photosynthesis publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2011.10.004 – volume: 215 start-page: 403 year: 1990 ident: key 20170627113032_evu109-B2 article-title: Basic local alignment search tool publication-title: J Mol Biol. doi: 10.1016/S0022-2836(05)80360-2 – volume: 31 start-page: 3784 year: 2003 ident: key 20170627113032_evu109-B17 article-title: ExPASy: the proteomics server for in-depth protein knowledge and analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg563 – volume: 365 start-page: 729 year: 2010 ident: key 20170627113032_evu109-B33 article-title: The endosymbiotic origin, diversification and fate of plastids publication-title: Philos Trans R Soc Lond B Biol Sci. doi: 10.1098/rstb.2009.0103 – volume: 13 start-page: 663 year: 2008 ident: key 20170627113032_evu109-B62 article-title: Pentatricopeptide repeat proteins: a socket set for organelle gene expression publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.10.001 – volume: 155 start-page: 65 year: 2004 ident: key 20170627113032_evu109-B4 article-title: Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome publication-title: Protist doi: 10.1078/1434461000165 – volume: 46 start-page: 228 year: 2008 ident: key 20170627113032_evu109-B3 article-title: Functional organization of a plant Photosystem I: evolution of a highly efficient photochemical machine publication-title: Plant Physiol Biochem. doi: 10.1016/j.plaphy.2007.12.013 – volume: 64 start-page: 609 year: 2013 ident: key 20170627113032_evu109-B53 article-title: Photosystem II assembly: from cyanobacteria to plants publication-title: Annu Rev Plant Biol. doi: 10.1146/annurev-arplant-050312-120124 – volume: 10 start-page: 3289 year: 1991 ident: key 20170627113032_evu109-B66 article-title: Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb04893.x – volume: 442 start-page: 73 year: 2009 ident: key 20170627113032_evu109-B11 article-title: Substitutional editing of Heterocapsa triquetra chloroplast transcripts and a folding model for its divergent chloroplast 16S rRNA publication-title: Gene doi: 10.1016/j.gene.2009.04.006 – volume: 35 start-page: W182 year: 2007 ident: key 20170627113032_evu109-B51 article-title: KAAS: an automatic genome annotation and pathway reconstruction server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm321 – volume: 33 start-page: W686 year: 2005 ident: key 20170627113032_evu109-B61 article-title: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki366 – volume: 106 start-page: 9963 year: 2009 ident: key 20170627113032_evu109-B44 article-title: Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0901004106 – volume: 581 start-page: 4132 year: 2007 ident: key 20170627113032_evu109-B60 article-title: A hypothesis on the identification of the editing enzyme in plant organelles publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.07.075 – volume: 59 start-page: 1035 year: 2008 ident: key 20170627113032_evu109-B24 article-title: The remarkable chloroplast genome of dinoflagellates publication-title: J Exp Bot. doi: 10.1093/jxb/erm292 – volume: 168 start-page: 1452 year: 2011 ident: key 20170627113032_evu109-B63 article-title: Photosystem I: its biogenesis and function in higher plants publication-title: J Plant Physiol. doi: 10.1016/j.jplph.2010.12.009 – volume: 21 start-page: 775 year: 2011 ident: key 20170627113032_evu109-B72 article-title: Genome-wide characterization of transcriptional start sites in humans by integrative transcriptome analysis publication-title: Genome Res. doi: 10.1101/gr.110254.110 – volume: 65 start-page: 369 year: 2011 ident: key 20170627113032_evu109-B70 article-title: Dinoflagellate genome evolution publication-title: Annu Rev Microbiol. doi: 10.1146/annurev-micro-090110-102841 – volume: 186 start-page: 615 year: 2010 ident: key 20170627113032_evu109-B18 article-title: A long antisense RNA in plant chloroplasts publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03203.x – volume: 23 start-page: 1399 year: 2013 ident: key 20170627113032_evu109-B65 article-title: Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure publication-title: Curr Biol. doi: 10.1016/j.cub.2013.05.062 – volume: 53 start-page: 1725 year: 2003 ident: key 20170627113032_evu109-B49 article-title: Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium publication-title: Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.02594-0 – volume: 30 start-page: 797 year: 2013 ident: key 20170627113032_evu109-B35 article-title: MarinegenomicsDB: an integrated genome viewer for community-based annotation of genomes publication-title: Zool Sci. doi: 10.2108/zsj.30.797 – volume: 27 start-page: 6876 year: 2007 ident: key 20170627113032_evu109-B58 article-title: Pentatricopeptide repeat proteins in Trypanosoma brucei function in mitochondrial ribosomes publication-title: Mol Cell Biol. doi: 10.1128/MCB.00708-07 – volume: 19 start-page: 489 year: 2002 ident: key 20170627113032_evu109-B77 article-title: Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins publication-title: Mol Biol Evol. doi: 10.1093/oxfordjournals.molbev.a004104 – volume: 400 start-page: 155 year: 1999 ident: key 20170627113032_evu109-B78 article-title: Single gene circles in dinoflagellate chloroplast genomes publication-title: Nature doi: 10.1038/22099 – volume: 363 start-page: 175 year: 1995 ident: key 20170627113032_evu109-B22 article-title: The light-harvesting chlorophyll a-c-binding protein of dinoflagellates: a putative polyprotein publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)00297-M – volume: 13 start-page: 1019 year: 1994 ident: key 20170627113032_evu109-B36 article-title: The assembly of cytochrome b6/f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06350.x – volume: 30 start-page: 788 year: 2013 ident: key 20170627113032_evu109-B26 article-title: A tertiary plastid gains RNA editing in its new host publication-title: Mol Biol Evol. doi: 10.1093/molbev/mss270 – volume: 5 start-page: 2318 year: 2013 ident: key 20170627113032_evu109-B46 article-title: Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes publication-title: Genome Biol Evol. doi: 10.1093/gbe/evt181 – volume: 19 start-page: 15 year: 1994 ident: key 20170627113032_evu109-B13 article-title: Convergent evolution: the need to be explicit publication-title: Trends Biochem Sci. doi: 10.1016/0968-0004(94)90167-8 – volume: 25 start-page: 1105 year: 2009 ident: key 20170627113032_evu109-B68 article-title: TopHat: discovering splice junctions with RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 85 start-page: 1021 year: 1987 ident: key 20170627113032_evu109-B29 article-title: Construction of an obligate photoheterotrophic mutant of the cyanobacterium Synechocystis 6803: inactivation of the psbA gene family publication-title: Plant Physiol. doi: 10.1104/pp.85.4.1021 – volume: 37 start-page: 1991 year: 2009 ident: key 20170627113032_evu109-B39 article-title: The replication of plastid minicircles involves rolling circle intermediates publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp063 – volume: 285 start-page: 5196 year: 2010 ident: key 20170627113032_evu109-B12 article-title: Long transcripts from dinoflagellate chloroplast minicircles suggest “rolling circle” transcription publication-title: J Biol Chem. doi: 10.1074/jbc.M109.058545 – volume: 25 start-page: 2078 year: 2009 ident: key 20170627113032_evu109-B41 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 125 start-page: 1865 year: 2012 ident: key 20170627113032_evu109-B15 article-title: What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses publication-title: J Cell Sci. doi: 10.1242/jcs.102285 – volume: 33 start-page: 79 year: 1997 ident: key 20170627113032_evu109-B79 article-title: Mutations of cytochrome b6 in Chlamydomonas reinhardtii disclose the functional significance for a proline to leucine conversion by petB editing in maize and tobacco publication-title: Plant Mol Biol. doi: 10.1023/A:1005734809834 – volume: 10 start-page: R25 year: 2009 ident: key 20170627113032_evu109-B37 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 10 start-page: 67 year: 2003 ident: key 20170627113032_evu109-B56 article-title: Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae publication-title: DNA Res. doi: 10.1093/dnares/10.2.67 – volume: 7 start-page: 297 year: 2006 ident: key 20170627113032_evu109-B5 article-title: Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes publication-title: BMC Genomics doi: 10.1186/1471-2164-7-297 – volume: 74 start-page: 432 year: 2012 ident: key 20170627113032_evu109-B59 article-title: A-to-I RNA editing: effects on proteins key to neural excitability publication-title: Neuron doi: 10.1016/j.neuron.2012.04.010 – volume: 109 start-page: 18879 year: 2012 ident: key 20170627113032_evu109-B14 article-title: Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1212270109 – volume: 105 start-page: 4203 year: 2008 ident: key 20170627113032_evu109-B67 article-title: Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured Symbiodinium publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0708554105 – volume: 358 start-page: 97 year: 2003 ident: key 20170627113032_evu109-B25 article-title: Evolution of the chloroplast genome publication-title: Philos Trans R Soc Lond B Biol Sci. doi: 10.1098/rstb.2002.1176 – volume: 31 start-page: 3367 year: 2003 ident: key 20170627113032_evu109-B32 article-title: MATRAS: a program for protein 3D structure comparison publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg581 – reference: 12045112 - Annu Rev Biochem. 2002;71:817-46 – reference: 8131736 - EMBO J. 1994 Mar 1;13(5):1019-27 – reference: 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 – reference: 22576772 - Plant Cell Physiol. 2012 Jul;53(7):1171-9 – reference: 14761653 - Curr Biol. 2004 Feb 3;14(3):213-8 – reference: 15094200 - Gene. 2004 Apr 28;331:141-7 – reference: 12417694 - Plant Cell. 2002 Nov;14(11):2659-79 – reference: 23850284 - Curr Biol. 2013 Aug 5;23(15):1399-408 – reference: 9037161 - Plant Mol Biol. 1997 Jan;33(1):79-86 – reference: 18931379 - Nucleic Acids Res. 2009 Jan;37(Database issue):D387-92 – reference: 11337410 - Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:593-626 – reference: 19004664 - Trends Plant Sci. 2008 Dec;13(12):663-70 – reference: 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 – reference: 11810235 - Mol Genet Genomics. 2001 Dec;266(4):632-8 – reference: 17526522 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 – reference: 20534454 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10949-54 – reference: 18272382 - Plant Physiol Biochem. 2008 Mar;46(3):228-37 – reference: 21496217 - BMC Evol Biol. 2011;11:101 – reference: 8140615 - Trends Biochem Sci. 1994 Jan;19(1):15-8 – reference: 10408440 - Nature. 1999 Jul 8;400(6740):155-9 – reference: 22547565 - J Cell Sci. 2012 Apr 15;125(Pt 8):1865-75 – reference: 21729317 - BMC Genomics. 2011;12:346 – reference: 18322010 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4203-8 – reference: 23197592 - Mol Biol Evol. 2013 Apr;30(4):788-92 – reference: 11179577 - Trends Ecol Evol. 2001 Mar 1;16(3):135-141 – reference: 21682644 - Annu Rev Microbiol. 2011;65:369-87 – reference: 12594920 - Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):99-106; discussion 106-7 – reference: 18631376 - BMC Plant Biol. 2008;8:79 – reference: 18319241 - J Exp Bot. 2008;59(5):1035-45 – reference: 23921629 - Nucleic Acids Res. 2013 Oct;41(19):9141-51 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 22422964 - Science. 2012 Mar 16;335(6074):1302; author reply 1302 – reference: 23451783 - Annu Rev Plant Biol. 2013;64:609-35 – reference: 11576546 - FEBS Lett. 2001 Sep 21;505(3):449-52 – reference: 22562591 - Plant Mol Biol. 2012 Jul;79(4-5):347-57 – reference: 24259312 - Genome Biol Evol. 2013;5(12):2318-29 – reference: 21311032 - Plant Physiol. 2011 Apr;155(4):1533-44 – reference: 19376212 - Gene. 2009 Aug 1;442(1-2):73-80 – reference: 15144059 - Protist. 2004 Mar;155(1):65-78 – reference: 21255865 - J Plant Physiol. 2011 Aug 15;168(12):1452-61 – reference: 22529998 - PLoS One. 2012;7(4):e35269 – reference: 16665796 - Plant Physiol. 1987 Dec;85(4):1021-5 – reference: 18165361 - Appl Environ Microbiol. 2008 Mar;74(5):1546-54 – reference: 7729542 - FEBS Lett. 1995 Apr 17;363(1-2):175-8 – reference: 24125644 - Zoolog Sci. 2013 Oct;30(10):797-800 – reference: 22578495 - Neuron. 2012 May 10;74(3):432-9 – reference: 21372179 - Genome Res. 2011 May;21(5):775-89 – reference: 23974208 - Mol Biol Evol. 2013 Nov;30(11):2447-62 – reference: 11470847 - Mol Biol Evol. 2001 Aug;18(8):1558-65 – reference: 14657100 - Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):1725-34 – reference: 10905608 - Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):757-66; discussion 766-7 – reference: 15980563 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W686-9 – reference: 19528647 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9963-70 – reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 – reference: 17123435 - BMC Genomics. 2006;7:297 – reference: 22093371 - Trends Plant Sci. 2011 Dec;16(12):645-55 – reference: 12136088 - Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 – reference: 12095251 - J Mol Biol. 2002 Jul 19;320(4):727-39 – reference: 20124341 - Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48 – reference: 22055836 - Protist. 2012 Mar;163(2):306-23 – reference: 1717264 - EMBO J. 1991 Nov;10(11):3289-96 – reference: 12824329 - Nucleic Acids Res. 2003 Jul 1;31(13):3367-9 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 – reference: 16434702 - Nucleic Acids Res. 2006;34(2):613-9 – reference: 6667333 - Biopolymers. 1983 Dec;22(12):2577-637 – reference: 15556642 - FEBS Lett. 2004 Nov 19;577(3):535-8 – reference: 19208639 - Nucleic Acids Res. 2009 Apr;37(6):1991-2002 – reference: 22422963 - Science. 2012 Mar 16;335(6074):1302; author reply 1302 – reference: 17707818 - FEBS Lett. 2007 Sep 4;581(22):4132-8 – reference: 11919290 - Mol Biol Evol. 2002 Apr;19(4):489-500 – reference: 12755171 - DNA Res. 2003 Apr 30;10(2):67-77 – reference: 12824418 - Nucleic Acids Res. 2003 Jul 1;31(13):3784-8 – reference: 19948728 - J Biol Chem. 2010 Feb 19;285(8):5196-203 – reference: 17646387 - Mol Cell Biol. 2007 Oct;27(19):6876-88 – reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 – reference: 23112181 - Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18879-84 – reference: 20202127 - New Phytol. 2010 May;186(3):615-22 |
SSID | ssj0066463 |
Score | 2.2824726 |
Snippet | Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently... Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1408 |
SubjectTerms | Amino Acid Sequence Base Sequence Biological Evolution Dinoflagellida - chemistry Dinoflagellida - cytology Dinoflagellida - genetics Genes, Protozoan Genome, Plastid Models, Molecular Molecular Sequence Data Plastids - genetics Protein Conformation Protozoan Proteins - chemistry Protozoan Proteins - genetics RNA Editing RNA, Protozoan - genetics |
Title | Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24881086 https://www.proquest.com/docview/1539465881 https://pubmed.ncbi.nlm.nih.gov/PMC4079212 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA-lIvgifntaj4i--LB2P7Kby4NIkdYiXAXpwT0IS5Kd1IPrbr3bk95_7y_7cXRL9SUsZJiHmUl-v9kkM4y9T0BptaY4SIwNA-GsC_BhgtApiotQ2SL0r5GnZ9npTHybp_M91vfv7Ay4vjO18_2kZqvlx-vf289Y8J-6YkiHF4YO6c8m8u_47gGRpF-gU7E7TcgykSV9adKBvC8FjAj23YYGuDR463aDct6-OXkDik4esYcdh-RHrdMfsz0qn7D7bVfJ7VP2cwpCjE2MIzaI1w0zpRXXZcGbX97N3I-zIw7c8peeeeW45uvtpVlU0MiBZpVbYp9BhNTEr8Cv60XhtVWX9IzNTo7Pv5wGXROFwIKM1YF0auKfWkmHxCLSWjuAdJEYAd6DRJpi5SQhZ3CJpcw4HQHSUilNaKSegB0lz9l-WZX0knEFspVoyqKJy4Syqc5iK1OdxjYSpCIxYh96E-a2qzDuG10s8_akO8lh-by1_Ii928letXU17pQawxP_FXjbOynHuvCHHbqkarPOsZMrAXo1iUbsReu0nZ7e5yMmB-7cCfia28OZcvGrqb2N_FcB7V_9U-dr9gCcSrS3yQ7Yfr3a0BvwltqMm3wf49d5NG4CFOP59_lfnGTy_Q |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Massive+gene+transfer+and+extensive+RNA+editing+of+a+symbiotic+dinoflagellate+plastid+genome&rft.jtitle=Genome+biology+and+evolution&rft.au=Mungpakdee%2C+Sutada&rft.au=Shinzato%2C+Chuya&rft.au=Takeuchi%2C+Takeshi&rft.au=Kawashima%2C+Takeshi&rft.date=2014-06-01&rft.eissn=1759-6653&rft.volume=6&rft.issue=6&rft.spage=1408&rft_id=info:doi/10.1093%2Fgbe%2Fevu109&rft_id=info%3Apmid%2F24881086&rft.externalDocID=24881086 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-6653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-6653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-6653&client=summon |