Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model
Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). Howeve...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 4172 - 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.06.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings. |
---|---|
AbstractList | Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings. Abstract Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings. Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings.Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings. |
ArticleNumber | 4172 |
Author | Yin, Yilong Li, Kejian Wei, Benzheng Zheng, Yuanjie Li, Shuo Han, Zhongyi |
Author_xml | – sequence: 1 givenname: Zhongyi surname: Han fullname: Han, Zhongyi organization: College of Science and Technology, Shandong University of Traditional Chinese Medicine – sequence: 2 givenname: Benzheng surname: Wei fullname: Wei, Benzheng email: wbz99@sina.com organization: College of Science and Technology, Shandong University of Traditional Chinese Medicine, Institute of evidence based Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine – sequence: 3 givenname: Yuanjie surname: Zheng fullname: Zheng, Yuanjie organization: School of Information Science and Engineering, Shandong Normal University – sequence: 4 givenname: Yilong surname: Yin fullname: Yin, Yilong organization: School of Computer Science and Technology, Shandong University – sequence: 5 givenname: Kejian surname: Li fullname: Li, Kejian organization: Institute of evidence based Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine – sequence: 6 givenname: Shuo surname: Li fullname: Li, Shuo organization: Department of Medical Imaging, Western University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28646155$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpH2CBIrFhE4gfN443SDA8OtJULOje8viR8ShjD7YDor8ed9KiaSXwxpbvOZ-Pru_z6sQHb6rqJWrfopb07xJFwPumRaxpacuguXlSneGWQoMJxidH59PqIqVtWxZgThF_Vp3ivqMdAjir9MdoZMr1QnplYn01jdk1apQpOeuUzC742sawqy9dymEv8yaMYSiVsV7u5GBS_cvlTf09x0nlKRpdfzJmX6-MjN75ob4K2owvqqdWjslc3O3n1fWXz9eLy2b17ety8WHVKKBtbpixUgOXDCtYa-gx7rjWGhu6hp7ZtZTQaUs6oJRwDIBxjxiiBLRlfWnKebWcsTrIrdhHt5PxtwjSicNFiIOQMTs1GsELhgBIa1VPJVUcgBQwweUJ1oEtrPczaz-td0Yr43OU4wPow4p3GzGEnwJoj3uGCuDNHSCGH5NJWexcUmYcpTdhSgJxRAjvWnKb-_Uj6TZM0ZdOFRUAZy3DtKheHSf6G-X-L4ugnwUqhpSisUK5fPjBEtCNArXidnLEPDmiTI44TI64KVb8yHpP_6-JzKZUxH4w8Sj2v11_AFgm1jQ |
CitedBy_id | crossref_primary_10_1007_s11042_021_11853_5 crossref_primary_10_1017_S1431927622000782 crossref_primary_10_3233_IDA_240334 crossref_primary_10_31590_ejosat_1018309 crossref_primary_10_3390_cancers12082031 crossref_primary_10_3390_healthcare10010010 crossref_primary_10_1016_j_bspc_2019_101789 crossref_primary_10_1038_s41598_024_78040_y crossref_primary_10_3390_cancers13236116 crossref_primary_10_3390_cancers16223794 crossref_primary_10_1016_j_heliyon_2024_e30889 crossref_primary_10_1109_ACCESS_2020_2979926 crossref_primary_10_1109_JBHI_2023_3322387 crossref_primary_10_1109_TVCG_2018_2865027 crossref_primary_10_3390_diagnostics13010103 crossref_primary_10_1038_s41591_024_02885_z crossref_primary_10_1155_acis_7011984 crossref_primary_10_1016_j_bspc_2021_103451 crossref_primary_10_1016_j_compbiomed_2024_109649 crossref_primary_10_3390_diagnostics14192253 crossref_primary_10_1007_s11633_019_1210_y crossref_primary_10_1109_ACCESS_2025_3542989 crossref_primary_10_1109_ACCESS_2024_3386355 crossref_primary_10_1155_2021_7010438 crossref_primary_10_4236_etsn_2021_102003 crossref_primary_10_1117_1_JBO_25_2_026002 crossref_primary_10_3390_cells10040787 crossref_primary_10_1109_ACCESS_2020_2993788 crossref_primary_10_32628_CSEIT2390283 crossref_primary_10_1007_s40305_019_00262_z crossref_primary_10_1007_s42979_022_01273_z crossref_primary_10_1049_cvi2_12021 crossref_primary_10_36548_jiip_2022_3_008 crossref_primary_10_3390_s23020656 crossref_primary_10_1007_s10549_023_06970_8 crossref_primary_10_3390_cancers16111981 crossref_primary_10_1049_ipr2_12074 crossref_primary_10_24171_j_phrp_2023_0361 crossref_primary_10_3390_cancers14246159 crossref_primary_10_1155_2020_6180457 crossref_primary_10_1007_s10278_022_00739_z crossref_primary_10_1007_s44196_023_00318_2 crossref_primary_10_1108_DTA_08_2022_0330 crossref_primary_10_3390_diagnostics12051152 crossref_primary_10_3390_informatics9040091 crossref_primary_10_1016_j_bspc_2024_107400 crossref_primary_10_1038_s41598_018_32308_2 crossref_primary_10_3390_app13074333 crossref_primary_10_3390_a17010008 crossref_primary_10_2196_28114 crossref_primary_10_1016_j_jksuci_2023_01_017 crossref_primary_10_1109_ACCESS_2022_3160290 crossref_primary_10_9746_jcmsi_12_56 crossref_primary_10_1109_ACCESS_2023_3239671 crossref_primary_10_3389_fpubh_2021_752509 crossref_primary_10_1016_j_prp_2022_154171 crossref_primary_10_15864_ajse_1304 crossref_primary_10_29109_gujsc_1400991 crossref_primary_10_1007_s00432_022_04446_8 crossref_primary_10_1007_s11517_020_02281_y crossref_primary_10_1016_j_artmed_2020_101805 crossref_primary_10_1002_jemt_24557 crossref_primary_10_1007_s11042_020_08692_1 crossref_primary_10_1002_jemt_24677 crossref_primary_10_3390_app122211375 crossref_primary_10_1007_s10278_019_00295_z crossref_primary_10_1007_s40846_021_00620_4 crossref_primary_10_1002_ima_22628 crossref_primary_10_1002_cam4_70069 crossref_primary_10_1007_s11042_024_20271_2 crossref_primary_10_1109_ACCESS_2024_3503413 crossref_primary_10_1016_j_procs_2020_03_427 crossref_primary_10_1007_s12065_020_00367_y crossref_primary_10_1038_s41598_024_66543_7 crossref_primary_10_1111_his_15271 crossref_primary_10_1109_JBHI_2023_3283042 crossref_primary_10_1155_2022_1678000 crossref_primary_10_4018_IJIRR_289655 crossref_primary_10_3390_cancers13112764 crossref_primary_10_1109_TMI_2019_2962013 crossref_primary_10_1615_IntJMultCompEng_2022043544 crossref_primary_10_1007_s11042_024_19620_y crossref_primary_10_1038_s41598_019_50587_1 crossref_primary_10_1080_03772063_2019_1583610 crossref_primary_10_1109_TUFFC_2021_3119251 crossref_primary_10_1177_10732748221095946 crossref_primary_10_1111_his_14354 crossref_primary_10_1097_PAP_0000000000000414 crossref_primary_10_1155_2019_2717454 crossref_primary_10_1109_ACCESS_2024_3415482 crossref_primary_10_1109_ACCESS_2024_3448219 crossref_primary_10_1155_2018_8961781 crossref_primary_10_1109_TNNLS_2023_3238104 crossref_primary_10_2174_1872212117666230130100048 crossref_primary_10_1080_09720510_2020_1818451 crossref_primary_10_1007_s11227_024_06663_z crossref_primary_10_1016_j_breast_2019_12_007 crossref_primary_10_1016_j_ekir_2017_11_002 crossref_primary_10_1080_21681163_2023_2198037 crossref_primary_10_5858_arpa_2022_0457_RA crossref_primary_10_1016_j_compbiomed_2022_106270 crossref_primary_10_1016_j_bbcan_2017_09_004 crossref_primary_10_3390_mi13122197 crossref_primary_10_1016_j_media_2020_101872 crossref_primary_10_1007_s11227_020_03321_y crossref_primary_10_31590_ejosat_780705 crossref_primary_10_21456_vol11iss1pp70_79 crossref_primary_10_3390_info9010019 crossref_primary_10_1016_j_jpi_2022_100159 crossref_primary_10_3390_app10207201 crossref_primary_10_1111_his_13828 crossref_primary_10_1007_s10278_019_00307_y crossref_primary_10_3390_app10228013 crossref_primary_10_3390_mti2030047 crossref_primary_10_1007_s11760_023_02692_y crossref_primary_10_3390_math10214109 crossref_primary_10_3389_fgene_2020_547327 crossref_primary_10_1109_JBHI_2021_3099817 crossref_primary_10_1007_s12204_024_2705_4 crossref_primary_10_3389_fgene_2019_00080 crossref_primary_10_1002_jbio_202100370 crossref_primary_10_2174_1573405616666200423085826 crossref_primary_10_1016_j_compbiomed_2021_104918 crossref_primary_10_1371_journal_pone_0300133 crossref_primary_10_1016_j_artmed_2019_101743 crossref_primary_10_1021_acsestengg_3c00631 crossref_primary_10_1186_s13058_024_01895_6 crossref_primary_10_1371_journal_pone_0266973 crossref_primary_10_1038_s41598_019_46718_3 crossref_primary_10_1016_j_pathol_2024_02_009 crossref_primary_10_1155_2022_8585036 crossref_primary_10_3390_cancers15041013 crossref_primary_10_1109_JIOT_2022_3209895 crossref_primary_10_1038_s41598_020_62960_6 crossref_primary_10_1016_j_bspc_2023_105418 crossref_primary_10_3389_fonc_2021_657560 crossref_primary_10_1016_j_asej_2024_103211 crossref_primary_10_1007_s12553_021_00592_0 crossref_primary_10_1038_s41598_021_98978_7 crossref_primary_10_1016_j_bbrc_2022_06_004 crossref_primary_10_1007_s11831_020_09470_w crossref_primary_10_1109_ACCESS_2022_3151830 crossref_primary_10_1364_BOE_394772 crossref_primary_10_1016_j_csbj_2018_01_001 crossref_primary_10_1109_ACCESS_2020_3029881 crossref_primary_10_3390_diagnostics12102505 crossref_primary_10_1002_jbio_202300194 crossref_primary_10_1080_03091902_2021_1896814 crossref_primary_10_5858_arpa_2021_0299_OA crossref_primary_10_1109_ACCESS_2023_3304242 crossref_primary_10_1109_ACCESS_2022_3163822 crossref_primary_10_1155_2022_8904768 crossref_primary_10_1109_ACCESS_2020_2964276 crossref_primary_10_1007_s13721_024_00491_0 crossref_primary_10_3390_biomedicines12030568 crossref_primary_10_1093_bib_bbab523 crossref_primary_10_4236_jcc_2023_116001 crossref_primary_10_1016_j_bspc_2024_106607 crossref_primary_10_3390_cancers13020276 crossref_primary_10_1155_2022_8369368 crossref_primary_10_1371_journal_pone_0196836 crossref_primary_10_1109_TMI_2022_3161787 crossref_primary_10_1007_s00521_019_04196_8 crossref_primary_10_1038_s41698_024_00769_6 crossref_primary_10_1155_2022_4082906 crossref_primary_10_31818_JKNST_2024_12_7_4_591 crossref_primary_10_17671_gazibtd_1484037 crossref_primary_10_1007_s42979_024_03197_2 crossref_primary_10_1016_j_prp_2024_155644 crossref_primary_10_3233_JIFS_201702 crossref_primary_10_1109_ACCESS_2021_3063803 crossref_primary_10_1109_JBHI_2023_3336372 crossref_primary_10_3389_fonc_2021_665929 crossref_primary_10_3389_fnagi_2021_764872 crossref_primary_10_1109_JBHI_2019_2944977 crossref_primary_10_1016_j_chemolab_2022_104688 crossref_primary_10_1155_2022_9086060 crossref_primary_10_1016_j_mex_2025_103224 crossref_primary_10_1109_TMI_2019_2948026 crossref_primary_10_1016_j_media_2024_103335 crossref_primary_10_3390_s22249967 crossref_primary_10_1007_s11633_022_1382_8 crossref_primary_10_3390_jcm9020392 crossref_primary_10_1155_2021_9610830 crossref_primary_10_1016_j_asoc_2021_107886 crossref_primary_10_1007_s11042_024_18802_y crossref_primary_10_1007_s11761_023_00378_4 crossref_primary_10_1109_ACCESS_2020_3021557 crossref_primary_10_1109_TGRS_2024_3468869 crossref_primary_10_1097_CM9_0000000000000694 crossref_primary_10_1109_TMI_2021_3123300 crossref_primary_10_1038_s41598_018_35501_5 crossref_primary_10_1155_2020_8826568 crossref_primary_10_3233_JIFS_231563 crossref_primary_10_1109_JBHI_2018_2885134 crossref_primary_10_3390_diagnostics13101793 crossref_primary_10_1007_s11042_021_11775_2 crossref_primary_10_1007_s11227_020_03157_6 crossref_primary_10_1007_s10462_019_09716_5 crossref_primary_10_1155_2021_4019358 crossref_primary_10_3389_fgene_2018_00682 crossref_primary_10_1158_1078_0432_CCR_20_3159 crossref_primary_10_3390_ani13091563 crossref_primary_10_1007_s11042_023_16232_w crossref_primary_10_1155_2022_4242235 crossref_primary_10_3390_cancers17020197 crossref_primary_10_1016_j_media_2020_101813 crossref_primary_10_1109_ACCESS_2024_3397667 crossref_primary_10_1371_journal_pone_0214587 crossref_primary_10_1016_j_ajpath_2023_07_002 crossref_primary_10_1016_j_cmpb_2020_105531 crossref_primary_10_3390_electronics11152322 crossref_primary_10_1038_s41523_022_00496_w crossref_primary_10_1016_j_bspc_2024_107014 crossref_primary_10_2174_1874120702115010132 crossref_primary_10_1109_TCBB_2019_2955484 crossref_primary_10_3390_molecules27217405 crossref_primary_10_26782_jmcms_2022_11_00002 crossref_primary_10_3390_diagnostics14182045 crossref_primary_10_1038_s41598_021_82642_1 crossref_primary_10_2139_ssrn_3187926 crossref_primary_10_3390_diagnostics12020548 crossref_primary_10_1109_ACCESS_2023_3326478 crossref_primary_10_1007_s12065_020_00413_9 crossref_primary_10_12677_AAM_2022_119713 crossref_primary_10_16984_saufenbilder_720693 crossref_primary_10_1016_j_ejmp_2021_04_016 crossref_primary_10_1155_2021_9025470 crossref_primary_10_1016_j_eswa_2021_115586 crossref_primary_10_1016_j_compbiomed_2022_105221 crossref_primary_10_1007_s11227_021_04104_9 crossref_primary_10_1177_1744806918763658 crossref_primary_10_1016_j_imu_2019_100231 crossref_primary_10_3389_fmed_2024_1450103 crossref_primary_10_3390_app13010156 crossref_primary_10_1007_s11042_019_7525_4 crossref_primary_10_1038_s42256_019_0052_1 crossref_primary_10_1155_2022_9299621 crossref_primary_10_1007_s12539_022_00515_1 crossref_primary_10_1016_j_compbiomed_2020_103954 crossref_primary_10_1186_s12911_019_0913_x crossref_primary_10_3389_fphar_2022_929755 crossref_primary_10_1016_j_eswa_2023_121800 crossref_primary_10_1007_s00432_024_06002_y crossref_primary_10_1007_s11042_024_18985_4 crossref_primary_10_3390_bioengineering10080973 crossref_primary_10_1166_jctn_2020_9209 crossref_primary_10_1007_s00521_024_10849_0 crossref_primary_10_1007_s10278_019_00182_7 crossref_primary_10_1007_s11042_024_18949_8 crossref_primary_10_1007_s00371_019_01768_6 crossref_primary_10_1080_21681163_2022_2058415 crossref_primary_10_1007_s11760_024_03743_8 crossref_primary_10_1109_ACCESS_2024_3385011 crossref_primary_10_23851_mjs_v33i3_1069 crossref_primary_10_17671_gazibtd_746673 crossref_primary_10_3390_rs15153718 crossref_primary_10_1111_jgh_16661 crossref_primary_10_2147_CMAR_S312608 crossref_primary_10_1007_s11042_018_6970_9 crossref_primary_10_1186_s12880_023_00964_0 crossref_primary_10_35234_fumbd_517939 crossref_primary_10_4048_jbc_2023_26_e45 crossref_primary_10_1115_1_4065756 crossref_primary_10_1007_s10278_021_00432_7 crossref_primary_10_1371_journal_pone_0251521 crossref_primary_10_1016_j_compbiomed_2022_106329 crossref_primary_10_1038_s41467_023_37179_4 crossref_primary_10_32604_cmes_2022_017030 crossref_primary_10_1088_2057_1976_ace631 crossref_primary_10_3390_genes11070819 crossref_primary_10_3390_diagnostics11081373 crossref_primary_10_1145_3648359 crossref_primary_10_3390_app13031291 crossref_primary_10_1016_j_neucom_2019_09_044 crossref_primary_10_1016_j_jpi_2022_100093 |
Cites_doi | 10.1016/j.compmedimag.2015.05.004 10.1016/j.neuroimage.2014.12.061 10.1016/j.sigpro.2015.11.011 10.1016/j.neuroimage.2016.01.024 10.1109/TBME.2015.2496264 10.1016/j.compmedimag.2016.02.002 10.1016/j.neuroimage.2014.06.077 10.1023/A:1018628609742 10.1113/jphysiol.1959.sp006308 10.1126/science.1127647 10.1056/NEJMp1500523 10.1038/nature.2015.16774 10.1186/1687-6180-2014-1 10.1109/TBME.2015.2496253 10.1007/BF00344251 10.1023/A:1010933404324 10.1038/nature14539 10.1186/1471-2105-8-110 10.1137/1.9781611970777 10.1038/srep26286 10.1109/CVPR.2005.177 10.1109/IJCNN.2016.7727519 10.1109/ICCV.1999.790410 10.1109/TSMC.1973.4309314 10.1146/annurev-bioeng-071516-044442 10.1109/CVPR.2016.90 10.1109/ICPR.2016.7900002 10.1145/2647868.2654889 10.1109/CVPR.2016.126 10.1109/DICTA.2016.7797091 10.1609/aaai.v30i1.10140 10.1109/CVPR.2014.180 10.1007/978-3-540-75757-3_113 10.1109/CVPR.2015.7298594 10.1109/CVPR.2009.5206848 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Jun 2017 |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Jun 2017 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-017-04075-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_9f36355affc84a4c955336532a56765f PMC5482871 28646155 10_1038_s41598_017_04075_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AARCD AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-7efad59a72c5bd582269ddd2e4b587fbaa56df3654439255228171435df78103 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:22:04 EDT 2025 Thu Aug 21 13:59:10 EDT 2025 Fri Jul 11 16:18:22 EDT 2025 Wed Aug 13 03:10:44 EDT 2025 Mon Jul 21 06:06:07 EDT 2025 Thu Apr 24 22:55:25 EDT 2025 Tue Aug 05 12:08:53 EDT 2025 Fri Feb 21 02:39:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-7efad59a72c5bd582269ddd2e4b587fbaa56df3654439255228171435df78103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1955970724?pq-origsite=%requestingapplication% |
PMID | 28646155 |
PQID | 1955970724 |
PQPubID | 2041939 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9f36355affc84a4c955336532a56765f pubmedcentral_primary_oai_pubmedcentral_nih_gov_5482871 proquest_miscellaneous_1913396030 proquest_journals_1955970724 pubmed_primary_28646155 crossref_citationtrail_10_1038_s41598_017_04075_z crossref_primary_10_1038_s41598_017_04075_z springer_journals_10_1038_s41598_017_04075_z |
PublicationCentury | 2000 |
PublicationDate | 2017-06-23 |
PublicationDateYYYYMMDD | 2017-06-23 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hubel, Wiesel (CR26) 1959; 148 CR19 Hamilton, Pantelic, Hanson, Teasdale (CR22) 2007; 8 Cai (CR5) 2016; 51 CR18 Zheng, Wei, Liu, Xiao, Gee (CR6) 2015; 46 CR17 CR39 CR16 CR38 CR15 CR37 Reardon (CR2) 2015; 517 7536 CR36 CR35 CR11 CR10 Wu, Kim, Wang, Munsell, Shen (CR31) 2016; 63 CR32 Hinton, Salakhutdinov (CR33) 2006; 313 Breiman (CR40) 2001; 45 Fukushima (CR27) 1980; 36 Zhang (CR28) 2015; 108 LeCun, Bengio, Hinton (CR34) 2015; 521 Suykens, Vandewalle (CR14) 1999; 9 Collins, Varmus (CR1) 2015; 372 9 CR4 CR3 Wang, Hu, Li, Liu, Zhu (CR13) 2016; 122 Spanhol, Oliveira, Petitjean, Heutte (CR12) 2016; 63 Kleesiek (CR29) 2016; 129 CR7 CR9 CR25 CR24 CR23 CR21 CR20 Zhang, Zhang, Coenen, Xiao, Lu (CR8) 2014; 2014 Suk, Lee, Shen, Initiative (CR30) 2014; 101 Y Zhang (4075_CR8) 2014; 2014 F Spanhol (4075_CR12) 2016; 63 L Breiman (4075_CR40) 2001; 45 K Fukushima (4075_CR27) 1980; 36 S Reardon (4075_CR2) 2015; 517 7536 G Wu (4075_CR31) 2016; 63 4075_CR20 4075_CR21 4075_CR23 J Kleesiek (4075_CR29) 2016; 129 4075_CR24 4075_CR25 4075_CR4 4075_CR7 4075_CR9 P Wang (4075_CR13) 2016; 122 GE Hinton (4075_CR33) 2006; 313 4075_CR3 Y Zheng (4075_CR6) 2015; 46 FS Collins (4075_CR1) 2015; 372 9 Y Cai (4075_CR5) 2016; 51 4075_CR10 JA Suykens (4075_CR14) 1999; 9 NA Hamilton (4075_CR22) 2007; 8 4075_CR32 4075_CR11 Y LeCun (4075_CR34) 2015; 521 4075_CR35 H-I Suk (4075_CR30) 2014; 101 4075_CR36 4075_CR15 4075_CR37 4075_CR16 4075_CR38 4075_CR17 4075_CR39 4075_CR18 4075_CR19 DH Hubel (4075_CR26) 1959; 148 W Zhang (4075_CR28) 2015; 108 |
References_xml | – volume: 46 start-page: 73 year: 2015 end-page: 80 ident: CR6 article-title: Measuring sparse temporal-variation for accurate registration of dynamic contrast-enhanced breast mr images publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2015.05.004 – ident: CR18 – ident: CR4 – volume: 108 start-page: 214 year: 2015 end-page: 224 ident: CR28 article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.061 – ident: CR39 – ident: CR16 – ident: CR37 – volume: 122 start-page: 1 year: 2016 end-page: 13 ident: CR13 article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images publication-title: Signal Processing doi: 10.1016/j.sigpro.2015.11.011 – ident: CR10 – volume: 129 start-page: 460 year: 2016 end-page: 469 ident: CR29 article-title: Deep mri brain extraction: a 3d convolutional neural network for skull stripping publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.024 – volume: 63 start-page: 1455 issue: 7 year: 2016 end-page: 1462 ident: CR12 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Transactions on Biomedical Engineering (TBME) doi: 10.1109/TBME.2015.2496264 – volume: 51 start-page: 11 year: 2016 end-page: 19 ident: CR5 article-title: Multi-modal vertebrae recognition using transformed deep convolution network publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2016.02.002 – ident: CR35 – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: CR30 article-title: Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – ident: CR25 – ident: CR23 – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: CR14 article-title: Least squares support vector machine classifiers publication-title: Neural processing letters doi: 10.1023/A:1018628609742 – ident: CR21 – ident: CR19 – ident: CR3 – ident: CR15 – ident: CR38 – volume: 148 start-page: 574 year: 1959 end-page: 591 ident: CR26 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: The Journal of physiology doi: 10.1113/jphysiol.1959.sp006308 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR33 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 372 9 start-page: 793 year: 2015 end-page: 5 ident: CR1 article-title: A new initiative on precision medicine publication-title: The New England journal of medicine doi: 10.1056/NEJMp1500523 – volume: 517 7536 start-page: 540 year: 2015 ident: CR2 article-title: Precision-medicine plan raises hopes publication-title: Nature doi: 10.1038/nature.2015.16774 – volume: 2014 start-page: 1 year: 2014 end-page: 13 ident: CR8 article-title: One-class kernel subspace ensemble for medical image classification publication-title: EURASIP Journal on Advances in Signal Processing doi: 10.1186/1687-6180-2014-1 – ident: CR17 – ident: CR11 – volume: 63 start-page: 1505 year: 2016 end-page: 1516 ident: CR31 article-title: Scalable high-performance image registration framework by unsupervised deep feature representations learning publication-title: IEEE Trans. Biomed. Engineering doi: 10.1109/TBME.2015.2496253 – ident: CR9 – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: CR27 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biological cybernetics doi: 10.1007/BF00344251 – ident: CR32 – ident: CR36 – ident: CR7 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR40 article-title: Random forests publication-title: Machine learning doi: 10.1023/A:1010933404324 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR34 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 8 start-page: 1 year: 2007 ident: CR22 article-title: Fast automated cell phenotype image classification publication-title: BMC bioinformatics doi: 10.1186/1471-2105-8-110 – ident: CR24 – ident: CR20 – ident: 4075_CR20 – ident: 4075_CR38 doi: 10.1137/1.9781611970777 – volume: 46 start-page: 73 year: 2015 ident: 4075_CR6 publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2015.05.004 – ident: 4075_CR24 doi: 10.1038/srep26286 – volume: 122 start-page: 1 year: 2016 ident: 4075_CR13 publication-title: Signal Processing doi: 10.1016/j.sigpro.2015.11.011 – ident: 4075_CR11 doi: 10.1109/CVPR.2005.177 – ident: 4075_CR39 – ident: 4075_CR17 doi: 10.1109/IJCNN.2016.7727519 – ident: 4075_CR9 doi: 10.1109/ICCV.1999.790410 – ident: 4075_CR10 doi: 10.1109/TSMC.1973.4309314 – volume: 8 start-page: 1 year: 2007 ident: 4075_CR22 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-8-110 – ident: 4075_CR7 doi: 10.1146/annurev-bioeng-071516-044442 – ident: 4075_CR25 – ident: 4075_CR36 doi: 10.1109/CVPR.2016.90 – volume: 148 start-page: 574 year: 1959 ident: 4075_CR26 publication-title: The Journal of physiology doi: 10.1113/jphysiol.1959.sp006308 – ident: 4075_CR18 doi: 10.1109/ICPR.2016.7900002 – ident: 4075_CR23 doi: 10.1145/2647868.2654889 – volume: 2014 start-page: 1 year: 2014 ident: 4075_CR8 publication-title: EURASIP Journal on Advances in Signal Processing doi: 10.1186/1687-6180-2014-1 – ident: 4075_CR15 doi: 10.1109/CVPR.2016.126 – volume: 108 start-page: 214 year: 2015 ident: 4075_CR28 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.061 – volume: 129 start-page: 460 year: 2016 ident: 4075_CR29 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.024 – ident: 4075_CR21 – ident: 4075_CR19 doi: 10.1109/DICTA.2016.7797091 – ident: 4075_CR32 doi: 10.1609/aaai.v30i1.10140 – volume: 521 start-page: 436 year: 2015 ident: 4075_CR34 publication-title: Nature doi: 10.1038/nature14539 – volume: 9 start-page: 293 year: 1999 ident: 4075_CR14 publication-title: Neural processing letters doi: 10.1023/A:1018628609742 – volume: 101 start-page: 569 year: 2014 ident: 4075_CR30 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – ident: 4075_CR16 doi: 10.1109/CVPR.2014.180 – volume: 63 start-page: 1455 issue: 7 year: 2016 ident: 4075_CR12 publication-title: IEEE Transactions on Biomedical Engineering (TBME) doi: 10.1109/TBME.2015.2496264 – volume: 51 start-page: 11 year: 2016 ident: 4075_CR5 publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2016.02.002 – volume: 372 9 start-page: 793 year: 2015 ident: 4075_CR1 publication-title: The New England journal of medicine doi: 10.1056/NEJMp1500523 – ident: 4075_CR4 doi: 10.1007/978-3-540-75757-3_113 – volume: 63 start-page: 1505 year: 2016 ident: 4075_CR31 publication-title: IEEE Trans. Biomed. Engineering doi: 10.1109/TBME.2015.2496253 – volume: 517 7536 start-page: 540 year: 2015 ident: 4075_CR2 publication-title: Nature doi: 10.1038/nature.2015.16774 – volume: 36 start-page: 193 year: 1980 ident: 4075_CR27 publication-title: Biological cybernetics doi: 10.1007/BF00344251 – ident: 4075_CR3 – ident: 4075_CR35 doi: 10.1109/CVPR.2015.7298594 – ident: 4075_CR37 doi: 10.1109/CVPR.2009.5206848 – volume: 45 start-page: 5 year: 2001 ident: 4075_CR40 publication-title: Machine learning doi: 10.1023/A:1010933404324 – volume: 313 start-page: 504 year: 2006 ident: 4075_CR33 publication-title: Science doi: 10.1126/science.1127647 |
SSID | ssj0000529419 |
Score | 2.654962 |
Snippet | Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast... Abstract Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4172 |
SubjectTerms | 639/166/985 639/705/117 Automation Breast cancer Breast Neoplasms - classification Breast Neoplasms - pathology Classification Databases as Topic Deep Learning Female Fibroadenoma Humanities and Social Sciences Humans Mammography Models, Theoretical multidisciplinary Neural Networks (Computer) Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDLZQpUpcEJTXQEFB4gZRd_LOkRaqggQXitRblEwygFSmVXd7aH997czsapfnheskI1m240fsfAZ4KamzsJWJGycNV85rnnyreVE-9roTxSW60P_4yRx9UR9O9MnaqC_qCRvhgUfG7flekk-Mfd85FVXnNQYoRksRtbFG92R90eetJVMjqrfwqvXTK5mZdHtz9FT0mgyNMuqt1fx6wxNVwP7fRZm_Nkv-VDGtjujwLtyZIkj2ZqT8Htwqww5sjzMlr-5D3qc28wU7IHFesPrAlncUI1NTUJUDozclrAKE0EDipflj73-gcZkzupplnyuu7OVFyextKedswmH9ymh42ukDOD58d3xwxKdRCrzDkGzBbelj1j5a0emUNUYFxuecRVFJO9uniNzMyGlCw_OYZQjh6mR0nXvrkH8PYWs4G8pjYMLmKJMyaBuSajuZTMSQpk1Jdzmp0jbQLrkauglmnKZdnIZa7pYujJIIKIlQJRGuG3i1-ud8BNn46-59EtZqJwFk1w-oNmFSm_AvtWlgdynqMJ3aeWgrHN_MCtXAi9UynjcqosShnF3SHszqMe2TswYejZqxokQ4o6jO24Dd0JkNUjdXhu_fKqY3Jo6Uuzbweqlda2T9kRVP_gcrnsJtUY-F4ULuwhbqV3mGkdYiPa-H6gZZQiNW priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlY3fueEaKEqSHChSHuz7NgpSCW77G4P7a9nxnECy6PX2JFsz3g8z28IeSEws7AWgWkrNJO2USw0tWJJNr5TLU82oEP_4yd9_EV-mKt5cbitS1rlKBOzoI6LFn3k-3WGSpsZLl8vfzDsGoXR1dJC4zq5gdBlmNJl5mbysWAUS9ZNqZWZCbu_hvcKa8pANAP3GsUut96jDNv_L13z75TJP-Km-Tk6ukNuFz2SvhkIf5dcS_09cnPoLHlxn8QDTDbf0EMk6ormMlvWoqaMqUGZGhQrS2iGCcG2xKMQpO-_g4hZU3TQ0s8ZXfZ8lSJ9m9KSFjTWU4ot1M4ekJOjdyeHx6w0VGAtKGYbZlLno2q84a0KUYFuoJsYI08yKGu64L3SsRMaMfEasDU4t7k_uoqdsXB-D8lOv-jTY0K5iV4EqUFCBFm3ImgPik0dgmpjkKmuSD2eqmsL2Dj2vDhzOegtrBso4YASLlPCXVbk5fTPcoDauHL2ARJrmokw2fnDYnXqyq1zDWwGFCrfda2VXrbAQwK2Jzhs1GjVVWRvJLUrd3ftfnFaRZ5Pw3DrMJTi-7Q4xzlg24PxJ2YVeTRwxrQSbrXEaG9FzBbPbC11e6T_9jUje4P5iBZsRV6N3PXbsv57FLtX7-IJucUzw2vGxR7ZAc5JT0GT2oRn-br8BG5_G8c priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSw2fudIF6qCBBeK1Jtlx06pVLJVdznQX8-M8xALBYlr4kiOZzz-xjPzDcALSZmFtYzcOGm4co3msak1z6oJnW5FdpEu9D9-Modf1IdjfbwDYqqFKUn7hdKymOkpO-z1Gg8aKgZDm4pqZzW_vAbXibqdtHpplvO9CkWuVN2M9TEL6a74dOsMKlT9V-HLP9Mkf4uVliPo4DbcGrEjezPM9g7s5P4u3Bi6Sf64B2mfEsw3bEmCvGCltJa3hI4pHahIgFE1CSvUINSKeDJ87P03NCtrRpey7HNhlMWlSextzudsZGA9YdQ27ew-HB28O1oe8rGJAm8RjG24zV1IuglWtDomjXjANCklkVXUznYxBG1SJw3x4DXoXwjhSk90nTrrcP0ewG6_6vMjYMKmIKMyaBWiqlsZTUAwU8eo2xRVriuop1X17UgwTn0uznwJdEvnB0l4lIQvkvCXFbycvzkf6DX-OXqfhDWPJGrs8mB1ceJHVfEN_gyCqNB1rVNBtY1GRGu0FPij1uiugr1J1H7cr2tfFyK-hRWqgufza9xpFD4JfV59pzHoz6PDJxcVPBw0Y56JcEZRhLcCu6UzW1PdftOffi1s3ugyktdawatJu36Z1l-X4vH_DX8CN0XZAIYLuQe7qEn5KaKpTXxWts9PlyEaEw priority: 102 providerName: Springer Nature |
Title | Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model |
URI | https://link.springer.com/article/10.1038/s41598-017-04075-z https://www.ncbi.nlm.nih.gov/pubmed/28646155 https://www.proquest.com/docview/1955970724 https://www.proquest.com/docview/1913396030 https://pubmed.ncbi.nlm.nih.gov/PMC5482871 https://doaj.org/article/9f36355affc84a4c955336532a56765f |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JjMpIvEFgcfyVB4TasmlU2oTYJvUtsmNnIJV2tJ3E9tdz5yQVhYJ4iuQ4ke27s39n-34H8DKnm4VZ7lJlcpUKU8jUFZlMgyhsLSsejKMN_eMTdXQuRmM53oIu3VE7gIuNrh3lkzqfT978-H79Hg3-XRMybt4ucBGiQDGcb1EltUxvtmEXVyZNhnrcwv2G65sXIub6IBL2FMEEb-NoNv9mba2KlP6bcOif1yl_O1ONS9XhXbjTYkzWb5TiHmyF6X241WSdvH4AfkAX0ZdsSAKfsxiCm1aEounaUJQUo6gTFilEKGVxN0Gyj99w-lkw2rxlp5F59moePPsQwiVrmVovGKVXmzyEs8ODs-FR2iZbSCsEbctUh9p6WVjNK-m8RNygCu89D8JJo2tnrVS-zhXx5RXoh3BuYu506WttcPwewc50Ng1PgHHtbe6EwtnDiazKnbIIejLnZOWdCFkCWTeqZdUSkVM-jEkZD8RzUzaSKFESZZREeZPAq9U3lw0Nxz9rD0hYq5pEoR0LZvOLsrXIssDOINiydV0ZYUVVSES-SuYcO6qVrBPY60RddmpZZpGwb19zkcCL1Wu0SDpmsdMwu6I66PejY5jvJ_C40YxVS7hRgk6CE9BrOrPW1PU3069fIus3upbk3SbwutOuX5r116F4-h_NfAa3edR6hSaxBzuoPuE5Qq2l68G2Huse7Pb7o9MRPgcHJ58-Y-lQDXtx-6IXLewnzEUo3w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO4EBhgJniBa41uSB4ToLmrZViEo0t6sOHbGpK0tbSe0_Sf-I-c4SaFc9rbXxIlsn-9c7HMDeCkosjARNtaZ0LHMchXbPFGxl3lRqZL7zNKF_sFQ97_ID4fqcA1-tLkwFFbZysQgqN2kpDvyzSSUSuumXL6bfoupaxR5V9sWGjUs9vz5dzyyzd8OtpG-rzjf3Rlt9eOmq0BconWyiFNfFU7lRcpLZZ1CBalz5xz30qosrWxRKO0qoakwXI4GN-dZaBKuXJVmSVfgb6_BuhR4kunAem9n-PHT8lKH3GYyyZvknK7INueoICmJDXUBskuq4osVBRj6BPzLuP07RvMPR23Qf7u34VZjuLL3NdLuwJof34XrdSvL83vgehTdvmBbhKIZC3m9cUmmOcUiBfIzSmVhoS4J9UFupS4bnKJMmzO6EWafQznbs5l3bNv7KWvKvx4x6tl2ch9GV7HXD6Aznoz9I2A8dYWwUqNIsjIphdUFWlKJtap0VvokgqTdVVM21c2pycaJCV52kZmaEgYpYQIlzEUEr5ffTOvaHpeO7hGxliOpLnd4MJkdmYbNTY6LQQuuqKoyk4UsEbQClyc4LjTVqopgoyW1aYTF3PyCdgQvlq-Rzcl3U4z95IzGJELgaVN0I3hYI2M5E55pSe7lCNIVzKxMdfXN-PhrKCWO51U6MkfwpkXXb9P671Y8vnwVz-FGf3Swb_YHw70ncJMH8OuYiw3oIIr8UzTjFvZZwzwMzBWz60956Vhe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxHUEBhgJnsBqfU8eEGIr1cpgQmJIfbPi2BlIoy1tJ7T9M_4d5zhJoVz2ttfEiWyf71zscyPkqcTIQi49M7k0TOWFZr7gmkVVlLWuRMw9Xui_PzB7n9TbsR5vkB9dLgyGVXYyMQnqMK3wjrzHU6m0vhWqV7dhER8Gw1ezbww7SKGntWun0UBkP55-h-Pb4uVoALR-JsTwzeHuHms7DLAKLJUls7Eugy5KKyrtgwZlaYoQgojK69zWviy1CbU0WCSuAONbiDw1DNehtjnvS_jtJXLZSs2RxezYrq530IGmeNGm6fRl3luAqsR0NtAKwDhWs7M1VZg6BvzLzP07WvMPl23ShMMb5HprwtLXDeZuko04uUWuNE0tT2-TsINx7ku6i3ia05Thyyo00jEqKQGBYlILTRVKsCNyJ3_p6CtItwXFu2H6MRW2PZnHQAcxzmhbCPaIYve24zvk8CJ2-i7ZnEwn8R6hwoZSemVAOHnFK-lNCTYV915XwavIM8K7XXVVW-cc220cu-Rvl7lrKOGAEi5Rwp1l5Pnqm1lT5ePc0TtIrNVIrNCdHkznR65leFfAYsCWK-u6ylWpKoCvhOVJAQu1RtcZ2e5I7VqxsXC_QJ6RJ6vXwPDoxSkncXqCY7iUcO6U_YxsNchYzUTkRqGjOSN2DTNrU11_M_nyORUVh5MrHp4z8qJD12_T-u9W3D9_FY_JVWBS9250sP-AXBMJ-4YJuU02AUTxIdhzS_8ocQ4l7oI59Se-vFsu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+Cancer+Multi-classification+from+Histopathological+Images+with+Structured+Deep+Learning+Model&rft.jtitle=Scientific+reports&rft.au=Han%2C+Zhongyi&rft.au=Wei%2C+Benzheng&rft.au=Zheng%2C+Yuanjie&rft.au=Yin%2C+Yilong&rft.date=2017-06-23&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=4172&rft_id=info:doi/10.1038%2Fs41598-017-04075-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |