Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model

Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). Howeve...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 4172 - 10
Main Authors Han, Zhongyi, Wei, Benzheng, Zheng, Yuanjie, Yin, Yilong, Li, Kejian, Li, Shuo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.06.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings.
AbstractList Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings.
Abstract Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings.
Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings.Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings.
ArticleNumber 4172
Author Yin, Yilong
Li, Kejian
Wei, Benzheng
Zheng, Yuanjie
Li, Shuo
Han, Zhongyi
Author_xml – sequence: 1
  givenname: Zhongyi
  surname: Han
  fullname: Han, Zhongyi
  organization: College of Science and Technology, Shandong University of Traditional Chinese Medicine
– sequence: 2
  givenname: Benzheng
  surname: Wei
  fullname: Wei, Benzheng
  email: wbz99@sina.com
  organization: College of Science and Technology, Shandong University of Traditional Chinese Medicine, Institute of evidence based Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
– sequence: 3
  givenname: Yuanjie
  surname: Zheng
  fullname: Zheng, Yuanjie
  organization: School of Information Science and Engineering, Shandong Normal University
– sequence: 4
  givenname: Yilong
  surname: Yin
  fullname: Yin, Yilong
  organization: School of Computer Science and Technology, Shandong University
– sequence: 5
  givenname: Kejian
  surname: Li
  fullname: Li, Kejian
  organization: Institute of evidence based Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
– sequence: 6
  givenname: Shuo
  surname: Li
  fullname: Li, Shuo
  organization: Department of Medical Imaging, Western University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28646155$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBIrFhE4gfN443SDA8OtJULOje8viR8ShjD7YDor8ed9KiaSXwxpbvOZ-Pru_z6sQHb6rqJWrfopb07xJFwPumRaxpacuguXlSneGWQoMJxidH59PqIqVtWxZgThF_Vp3ivqMdAjir9MdoZMr1QnplYn01jdk1apQpOeuUzC742sawqy9dymEv8yaMYSiVsV7u5GBS_cvlTf09x0nlKRpdfzJmX6-MjN75ob4K2owvqqdWjslc3O3n1fWXz9eLy2b17ety8WHVKKBtbpixUgOXDCtYa-gx7rjWGhu6hp7ZtZTQaUs6oJRwDIBxjxiiBLRlfWnKebWcsTrIrdhHt5PxtwjSicNFiIOQMTs1GsELhgBIa1VPJVUcgBQwweUJ1oEtrPczaz-td0Yr43OU4wPow4p3GzGEnwJoj3uGCuDNHSCGH5NJWexcUmYcpTdhSgJxRAjvWnKb-_Uj6TZM0ZdOFRUAZy3DtKheHSf6G-X-L4ugnwUqhpSisUK5fPjBEtCNArXidnLEPDmiTI44TI64KVb8yHpP_6-JzKZUxH4w8Sj2v11_AFgm1jQ
CitedBy_id crossref_primary_10_1007_s11042_021_11853_5
crossref_primary_10_1017_S1431927622000782
crossref_primary_10_3233_IDA_240334
crossref_primary_10_31590_ejosat_1018309
crossref_primary_10_3390_cancers12082031
crossref_primary_10_3390_healthcare10010010
crossref_primary_10_1016_j_bspc_2019_101789
crossref_primary_10_1038_s41598_024_78040_y
crossref_primary_10_3390_cancers13236116
crossref_primary_10_3390_cancers16223794
crossref_primary_10_1016_j_heliyon_2024_e30889
crossref_primary_10_1109_ACCESS_2020_2979926
crossref_primary_10_1109_JBHI_2023_3322387
crossref_primary_10_1109_TVCG_2018_2865027
crossref_primary_10_3390_diagnostics13010103
crossref_primary_10_1038_s41591_024_02885_z
crossref_primary_10_1155_acis_7011984
crossref_primary_10_1016_j_bspc_2021_103451
crossref_primary_10_1016_j_compbiomed_2024_109649
crossref_primary_10_3390_diagnostics14192253
crossref_primary_10_1007_s11633_019_1210_y
crossref_primary_10_1109_ACCESS_2025_3542989
crossref_primary_10_1109_ACCESS_2024_3386355
crossref_primary_10_1155_2021_7010438
crossref_primary_10_4236_etsn_2021_102003
crossref_primary_10_1117_1_JBO_25_2_026002
crossref_primary_10_3390_cells10040787
crossref_primary_10_1109_ACCESS_2020_2993788
crossref_primary_10_32628_CSEIT2390283
crossref_primary_10_1007_s40305_019_00262_z
crossref_primary_10_1007_s42979_022_01273_z
crossref_primary_10_1049_cvi2_12021
crossref_primary_10_36548_jiip_2022_3_008
crossref_primary_10_3390_s23020656
crossref_primary_10_1007_s10549_023_06970_8
crossref_primary_10_3390_cancers16111981
crossref_primary_10_1049_ipr2_12074
crossref_primary_10_24171_j_phrp_2023_0361
crossref_primary_10_3390_cancers14246159
crossref_primary_10_1155_2020_6180457
crossref_primary_10_1007_s10278_022_00739_z
crossref_primary_10_1007_s44196_023_00318_2
crossref_primary_10_1108_DTA_08_2022_0330
crossref_primary_10_3390_diagnostics12051152
crossref_primary_10_3390_informatics9040091
crossref_primary_10_1016_j_bspc_2024_107400
crossref_primary_10_1038_s41598_018_32308_2
crossref_primary_10_3390_app13074333
crossref_primary_10_3390_a17010008
crossref_primary_10_2196_28114
crossref_primary_10_1016_j_jksuci_2023_01_017
crossref_primary_10_1109_ACCESS_2022_3160290
crossref_primary_10_9746_jcmsi_12_56
crossref_primary_10_1109_ACCESS_2023_3239671
crossref_primary_10_3389_fpubh_2021_752509
crossref_primary_10_1016_j_prp_2022_154171
crossref_primary_10_15864_ajse_1304
crossref_primary_10_29109_gujsc_1400991
crossref_primary_10_1007_s00432_022_04446_8
crossref_primary_10_1007_s11517_020_02281_y
crossref_primary_10_1016_j_artmed_2020_101805
crossref_primary_10_1002_jemt_24557
crossref_primary_10_1007_s11042_020_08692_1
crossref_primary_10_1002_jemt_24677
crossref_primary_10_3390_app122211375
crossref_primary_10_1007_s10278_019_00295_z
crossref_primary_10_1007_s40846_021_00620_4
crossref_primary_10_1002_ima_22628
crossref_primary_10_1002_cam4_70069
crossref_primary_10_1007_s11042_024_20271_2
crossref_primary_10_1109_ACCESS_2024_3503413
crossref_primary_10_1016_j_procs_2020_03_427
crossref_primary_10_1007_s12065_020_00367_y
crossref_primary_10_1038_s41598_024_66543_7
crossref_primary_10_1111_his_15271
crossref_primary_10_1109_JBHI_2023_3283042
crossref_primary_10_1155_2022_1678000
crossref_primary_10_4018_IJIRR_289655
crossref_primary_10_3390_cancers13112764
crossref_primary_10_1109_TMI_2019_2962013
crossref_primary_10_1615_IntJMultCompEng_2022043544
crossref_primary_10_1007_s11042_024_19620_y
crossref_primary_10_1038_s41598_019_50587_1
crossref_primary_10_1080_03772063_2019_1583610
crossref_primary_10_1109_TUFFC_2021_3119251
crossref_primary_10_1177_10732748221095946
crossref_primary_10_1111_his_14354
crossref_primary_10_1097_PAP_0000000000000414
crossref_primary_10_1155_2019_2717454
crossref_primary_10_1109_ACCESS_2024_3415482
crossref_primary_10_1109_ACCESS_2024_3448219
crossref_primary_10_1155_2018_8961781
crossref_primary_10_1109_TNNLS_2023_3238104
crossref_primary_10_2174_1872212117666230130100048
crossref_primary_10_1080_09720510_2020_1818451
crossref_primary_10_1007_s11227_024_06663_z
crossref_primary_10_1016_j_breast_2019_12_007
crossref_primary_10_1016_j_ekir_2017_11_002
crossref_primary_10_1080_21681163_2023_2198037
crossref_primary_10_5858_arpa_2022_0457_RA
crossref_primary_10_1016_j_compbiomed_2022_106270
crossref_primary_10_1016_j_bbcan_2017_09_004
crossref_primary_10_3390_mi13122197
crossref_primary_10_1016_j_media_2020_101872
crossref_primary_10_1007_s11227_020_03321_y
crossref_primary_10_31590_ejosat_780705
crossref_primary_10_21456_vol11iss1pp70_79
crossref_primary_10_3390_info9010019
crossref_primary_10_1016_j_jpi_2022_100159
crossref_primary_10_3390_app10207201
crossref_primary_10_1111_his_13828
crossref_primary_10_1007_s10278_019_00307_y
crossref_primary_10_3390_app10228013
crossref_primary_10_3390_mti2030047
crossref_primary_10_1007_s11760_023_02692_y
crossref_primary_10_3390_math10214109
crossref_primary_10_3389_fgene_2020_547327
crossref_primary_10_1109_JBHI_2021_3099817
crossref_primary_10_1007_s12204_024_2705_4
crossref_primary_10_3389_fgene_2019_00080
crossref_primary_10_1002_jbio_202100370
crossref_primary_10_2174_1573405616666200423085826
crossref_primary_10_1016_j_compbiomed_2021_104918
crossref_primary_10_1371_journal_pone_0300133
crossref_primary_10_1016_j_artmed_2019_101743
crossref_primary_10_1021_acsestengg_3c00631
crossref_primary_10_1186_s13058_024_01895_6
crossref_primary_10_1371_journal_pone_0266973
crossref_primary_10_1038_s41598_019_46718_3
crossref_primary_10_1016_j_pathol_2024_02_009
crossref_primary_10_1155_2022_8585036
crossref_primary_10_3390_cancers15041013
crossref_primary_10_1109_JIOT_2022_3209895
crossref_primary_10_1038_s41598_020_62960_6
crossref_primary_10_1016_j_bspc_2023_105418
crossref_primary_10_3389_fonc_2021_657560
crossref_primary_10_1016_j_asej_2024_103211
crossref_primary_10_1007_s12553_021_00592_0
crossref_primary_10_1038_s41598_021_98978_7
crossref_primary_10_1016_j_bbrc_2022_06_004
crossref_primary_10_1007_s11831_020_09470_w
crossref_primary_10_1109_ACCESS_2022_3151830
crossref_primary_10_1364_BOE_394772
crossref_primary_10_1016_j_csbj_2018_01_001
crossref_primary_10_1109_ACCESS_2020_3029881
crossref_primary_10_3390_diagnostics12102505
crossref_primary_10_1002_jbio_202300194
crossref_primary_10_1080_03091902_2021_1896814
crossref_primary_10_5858_arpa_2021_0299_OA
crossref_primary_10_1109_ACCESS_2023_3304242
crossref_primary_10_1109_ACCESS_2022_3163822
crossref_primary_10_1155_2022_8904768
crossref_primary_10_1109_ACCESS_2020_2964276
crossref_primary_10_1007_s13721_024_00491_0
crossref_primary_10_3390_biomedicines12030568
crossref_primary_10_1093_bib_bbab523
crossref_primary_10_4236_jcc_2023_116001
crossref_primary_10_1016_j_bspc_2024_106607
crossref_primary_10_3390_cancers13020276
crossref_primary_10_1155_2022_8369368
crossref_primary_10_1371_journal_pone_0196836
crossref_primary_10_1109_TMI_2022_3161787
crossref_primary_10_1007_s00521_019_04196_8
crossref_primary_10_1038_s41698_024_00769_6
crossref_primary_10_1155_2022_4082906
crossref_primary_10_31818_JKNST_2024_12_7_4_591
crossref_primary_10_17671_gazibtd_1484037
crossref_primary_10_1007_s42979_024_03197_2
crossref_primary_10_1016_j_prp_2024_155644
crossref_primary_10_3233_JIFS_201702
crossref_primary_10_1109_ACCESS_2021_3063803
crossref_primary_10_1109_JBHI_2023_3336372
crossref_primary_10_3389_fonc_2021_665929
crossref_primary_10_3389_fnagi_2021_764872
crossref_primary_10_1109_JBHI_2019_2944977
crossref_primary_10_1016_j_chemolab_2022_104688
crossref_primary_10_1155_2022_9086060
crossref_primary_10_1016_j_mex_2025_103224
crossref_primary_10_1109_TMI_2019_2948026
crossref_primary_10_1016_j_media_2024_103335
crossref_primary_10_3390_s22249967
crossref_primary_10_1007_s11633_022_1382_8
crossref_primary_10_3390_jcm9020392
crossref_primary_10_1155_2021_9610830
crossref_primary_10_1016_j_asoc_2021_107886
crossref_primary_10_1007_s11042_024_18802_y
crossref_primary_10_1007_s11761_023_00378_4
crossref_primary_10_1109_ACCESS_2020_3021557
crossref_primary_10_1109_TGRS_2024_3468869
crossref_primary_10_1097_CM9_0000000000000694
crossref_primary_10_1109_TMI_2021_3123300
crossref_primary_10_1038_s41598_018_35501_5
crossref_primary_10_1155_2020_8826568
crossref_primary_10_3233_JIFS_231563
crossref_primary_10_1109_JBHI_2018_2885134
crossref_primary_10_3390_diagnostics13101793
crossref_primary_10_1007_s11042_021_11775_2
crossref_primary_10_1007_s11227_020_03157_6
crossref_primary_10_1007_s10462_019_09716_5
crossref_primary_10_1155_2021_4019358
crossref_primary_10_3389_fgene_2018_00682
crossref_primary_10_1158_1078_0432_CCR_20_3159
crossref_primary_10_3390_ani13091563
crossref_primary_10_1007_s11042_023_16232_w
crossref_primary_10_1155_2022_4242235
crossref_primary_10_3390_cancers17020197
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_1109_ACCESS_2024_3397667
crossref_primary_10_1371_journal_pone_0214587
crossref_primary_10_1016_j_ajpath_2023_07_002
crossref_primary_10_1016_j_cmpb_2020_105531
crossref_primary_10_3390_electronics11152322
crossref_primary_10_1038_s41523_022_00496_w
crossref_primary_10_1016_j_bspc_2024_107014
crossref_primary_10_2174_1874120702115010132
crossref_primary_10_1109_TCBB_2019_2955484
crossref_primary_10_3390_molecules27217405
crossref_primary_10_26782_jmcms_2022_11_00002
crossref_primary_10_3390_diagnostics14182045
crossref_primary_10_1038_s41598_021_82642_1
crossref_primary_10_2139_ssrn_3187926
crossref_primary_10_3390_diagnostics12020548
crossref_primary_10_1109_ACCESS_2023_3326478
crossref_primary_10_1007_s12065_020_00413_9
crossref_primary_10_12677_AAM_2022_119713
crossref_primary_10_16984_saufenbilder_720693
crossref_primary_10_1016_j_ejmp_2021_04_016
crossref_primary_10_1155_2021_9025470
crossref_primary_10_1016_j_eswa_2021_115586
crossref_primary_10_1016_j_compbiomed_2022_105221
crossref_primary_10_1007_s11227_021_04104_9
crossref_primary_10_1177_1744806918763658
crossref_primary_10_1016_j_imu_2019_100231
crossref_primary_10_3389_fmed_2024_1450103
crossref_primary_10_3390_app13010156
crossref_primary_10_1007_s11042_019_7525_4
crossref_primary_10_1038_s42256_019_0052_1
crossref_primary_10_1155_2022_9299621
crossref_primary_10_1007_s12539_022_00515_1
crossref_primary_10_1016_j_compbiomed_2020_103954
crossref_primary_10_1186_s12911_019_0913_x
crossref_primary_10_3389_fphar_2022_929755
crossref_primary_10_1016_j_eswa_2023_121800
crossref_primary_10_1007_s00432_024_06002_y
crossref_primary_10_1007_s11042_024_18985_4
crossref_primary_10_3390_bioengineering10080973
crossref_primary_10_1166_jctn_2020_9209
crossref_primary_10_1007_s00521_024_10849_0
crossref_primary_10_1007_s10278_019_00182_7
crossref_primary_10_1007_s11042_024_18949_8
crossref_primary_10_1007_s00371_019_01768_6
crossref_primary_10_1080_21681163_2022_2058415
crossref_primary_10_1007_s11760_024_03743_8
crossref_primary_10_1109_ACCESS_2024_3385011
crossref_primary_10_23851_mjs_v33i3_1069
crossref_primary_10_17671_gazibtd_746673
crossref_primary_10_3390_rs15153718
crossref_primary_10_1111_jgh_16661
crossref_primary_10_2147_CMAR_S312608
crossref_primary_10_1007_s11042_018_6970_9
crossref_primary_10_1186_s12880_023_00964_0
crossref_primary_10_35234_fumbd_517939
crossref_primary_10_4048_jbc_2023_26_e45
crossref_primary_10_1115_1_4065756
crossref_primary_10_1007_s10278_021_00432_7
crossref_primary_10_1371_journal_pone_0251521
crossref_primary_10_1016_j_compbiomed_2022_106329
crossref_primary_10_1038_s41467_023_37179_4
crossref_primary_10_32604_cmes_2022_017030
crossref_primary_10_1088_2057_1976_ace631
crossref_primary_10_3390_genes11070819
crossref_primary_10_3390_diagnostics11081373
crossref_primary_10_1145_3648359
crossref_primary_10_3390_app13031291
crossref_primary_10_1016_j_neucom_2019_09_044
crossref_primary_10_1016_j_jpi_2022_100093
Cites_doi 10.1016/j.compmedimag.2015.05.004
10.1016/j.neuroimage.2014.12.061
10.1016/j.sigpro.2015.11.011
10.1016/j.neuroimage.2016.01.024
10.1109/TBME.2015.2496264
10.1016/j.compmedimag.2016.02.002
10.1016/j.neuroimage.2014.06.077
10.1023/A:1018628609742
10.1113/jphysiol.1959.sp006308
10.1126/science.1127647
10.1056/NEJMp1500523
10.1038/nature.2015.16774
10.1186/1687-6180-2014-1
10.1109/TBME.2015.2496253
10.1007/BF00344251
10.1023/A:1010933404324
10.1038/nature14539
10.1186/1471-2105-8-110
10.1137/1.9781611970777
10.1038/srep26286
10.1109/CVPR.2005.177
10.1109/IJCNN.2016.7727519
10.1109/ICCV.1999.790410
10.1109/TSMC.1973.4309314
10.1146/annurev-bioeng-071516-044442
10.1109/CVPR.2016.90
10.1109/ICPR.2016.7900002
10.1145/2647868.2654889
10.1109/CVPR.2016.126
10.1109/DICTA.2016.7797091
10.1609/aaai.v30i1.10140
10.1109/CVPR.2014.180
10.1007/978-3-540-75757-3_113
10.1109/CVPR.2015.7298594
10.1109/CVPR.2009.5206848
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Jun 2017
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Jun 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-017-04075-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_9f36355affc84a4c955336532a56765f
PMC5482871
28646155
10_1038_s41598_017_04075_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AARCD
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-7efad59a72c5bd582269ddd2e4b587fbaa56df3654439255228171435df78103
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:22:04 EDT 2025
Thu Aug 21 13:59:10 EDT 2025
Fri Jul 11 16:18:22 EDT 2025
Wed Aug 13 03:10:44 EDT 2025
Mon Jul 21 06:06:07 EDT 2025
Thu Apr 24 22:55:25 EDT 2025
Tue Aug 05 12:08:53 EDT 2025
Fri Feb 21 02:39:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-7efad59a72c5bd582269ddd2e4b587fbaa56df3654439255228171435df78103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1955970724?pq-origsite=%requestingapplication%
PMID 28646155
PQID 1955970724
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_9f36355affc84a4c955336532a56765f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5482871
proquest_miscellaneous_1913396030
proquest_journals_1955970724
pubmed_primary_28646155
crossref_citationtrail_10_1038_s41598_017_04075_z
crossref_primary_10_1038_s41598_017_04075_z
springer_journals_10_1038_s41598_017_04075_z
PublicationCentury 2000
PublicationDate 2017-06-23
PublicationDateYYYYMMDD 2017-06-23
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hubel, Wiesel (CR26) 1959; 148
CR19
Hamilton, Pantelic, Hanson, Teasdale (CR22) 2007; 8
Cai (CR5) 2016; 51
CR18
Zheng, Wei, Liu, Xiao, Gee (CR6) 2015; 46
CR17
CR39
CR16
CR38
CR15
CR37
Reardon (CR2) 2015; 517 7536
CR36
CR35
CR11
CR10
Wu, Kim, Wang, Munsell, Shen (CR31) 2016; 63
CR32
Hinton, Salakhutdinov (CR33) 2006; 313
Breiman (CR40) 2001; 45
Fukushima (CR27) 1980; 36
Zhang (CR28) 2015; 108
LeCun, Bengio, Hinton (CR34) 2015; 521
Suykens, Vandewalle (CR14) 1999; 9
Collins, Varmus (CR1) 2015; 372 9
CR4
CR3
Wang, Hu, Li, Liu, Zhu (CR13) 2016; 122
Spanhol, Oliveira, Petitjean, Heutte (CR12) 2016; 63
Kleesiek (CR29) 2016; 129
CR7
CR9
CR25
CR24
CR23
CR21
CR20
Zhang, Zhang, Coenen, Xiao, Lu (CR8) 2014; 2014
Suk, Lee, Shen, Initiative (CR30) 2014; 101
Y Zhang (4075_CR8) 2014; 2014
F Spanhol (4075_CR12) 2016; 63
L Breiman (4075_CR40) 2001; 45
K Fukushima (4075_CR27) 1980; 36
S Reardon (4075_CR2) 2015; 517 7536
G Wu (4075_CR31) 2016; 63
4075_CR20
4075_CR21
4075_CR23
J Kleesiek (4075_CR29) 2016; 129
4075_CR24
4075_CR25
4075_CR4
4075_CR7
4075_CR9
P Wang (4075_CR13) 2016; 122
GE Hinton (4075_CR33) 2006; 313
4075_CR3
Y Zheng (4075_CR6) 2015; 46
FS Collins (4075_CR1) 2015; 372 9
Y Cai (4075_CR5) 2016; 51
4075_CR10
JA Suykens (4075_CR14) 1999; 9
NA Hamilton (4075_CR22) 2007; 8
4075_CR32
4075_CR11
Y LeCun (4075_CR34) 2015; 521
4075_CR35
H-I Suk (4075_CR30) 2014; 101
4075_CR36
4075_CR15
4075_CR37
4075_CR16
4075_CR38
4075_CR17
4075_CR39
4075_CR18
4075_CR19
DH Hubel (4075_CR26) 1959; 148
W Zhang (4075_CR28) 2015; 108
References_xml – volume: 46
  start-page: 73
  year: 2015
  end-page: 80
  ident: CR6
  article-title: Measuring sparse temporal-variation for accurate registration of dynamic contrast-enhanced breast mr images
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2015.05.004
– ident: CR18
– ident: CR4
– volume: 108
  start-page: 214
  year: 2015
  end-page: 224
  ident: CR28
  article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.061
– ident: CR39
– ident: CR16
– ident: CR37
– volume: 122
  start-page: 1
  year: 2016
  end-page: 13
  ident: CR13
  article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2015.11.011
– ident: CR10
– volume: 129
  start-page: 460
  year: 2016
  end-page: 469
  ident: CR29
  article-title: Deep mri brain extraction: a 3d convolutional neural network for skull stripping
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.024
– volume: 63
  start-page: 1455
  issue: 7
  year: 2016
  end-page: 1462
  ident: CR12
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Transactions on Biomedical Engineering (TBME)
  doi: 10.1109/TBME.2015.2496264
– volume: 51
  start-page: 11
  year: 2016
  end-page: 19
  ident: CR5
  article-title: Multi-modal vertebrae recognition using transformed deep convolution network
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2016.02.002
– ident: CR35
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: CR30
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– ident: CR25
– ident: CR23
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: CR14
  article-title: Least squares support vector machine classifiers
  publication-title: Neural processing letters
  doi: 10.1023/A:1018628609742
– ident: CR21
– ident: CR19
– ident: CR3
– ident: CR15
– ident: CR38
– volume: 148
  start-page: 574
  year: 1959
  end-page: 591
  ident: CR26
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: The Journal of physiology
  doi: 10.1113/jphysiol.1959.sp006308
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR33
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 372 9
  start-page: 793
  year: 2015
  end-page: 5
  ident: CR1
  article-title: A new initiative on precision medicine
  publication-title: The New England journal of medicine
  doi: 10.1056/NEJMp1500523
– volume: 517 7536
  start-page: 540
  year: 2015
  ident: CR2
  article-title: Precision-medicine plan raises hopes
  publication-title: Nature
  doi: 10.1038/nature.2015.16774
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 13
  ident: CR8
  article-title: One-class kernel subspace ensemble for medical image classification
  publication-title: EURASIP Journal on Advances in Signal Processing
  doi: 10.1186/1687-6180-2014-1
– ident: CR17
– ident: CR11
– volume: 63
  start-page: 1505
  year: 2016
  end-page: 1516
  ident: CR31
  article-title: Scalable high-performance image registration framework by unsupervised deep feature representations learning
  publication-title: IEEE Trans. Biomed. Engineering
  doi: 10.1109/TBME.2015.2496253
– ident: CR9
– volume: 36
  start-page: 193
  year: 1980
  end-page: 202
  ident: CR27
  article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biological cybernetics
  doi: 10.1007/BF00344251
– ident: CR32
– ident: CR36
– ident: CR7
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR40
  article-title: Random forests
  publication-title: Machine learning
  doi: 10.1023/A:1010933404324
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR34
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 8
  start-page: 1
  year: 2007
  ident: CR22
  article-title: Fast automated cell phenotype image classification
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-8-110
– ident: CR24
– ident: CR20
– ident: 4075_CR20
– ident: 4075_CR38
  doi: 10.1137/1.9781611970777
– volume: 46
  start-page: 73
  year: 2015
  ident: 4075_CR6
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2015.05.004
– ident: 4075_CR24
  doi: 10.1038/srep26286
– volume: 122
  start-page: 1
  year: 2016
  ident: 4075_CR13
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2015.11.011
– ident: 4075_CR11
  doi: 10.1109/CVPR.2005.177
– ident: 4075_CR39
– ident: 4075_CR17
  doi: 10.1109/IJCNN.2016.7727519
– ident: 4075_CR9
  doi: 10.1109/ICCV.1999.790410
– ident: 4075_CR10
  doi: 10.1109/TSMC.1973.4309314
– volume: 8
  start-page: 1
  year: 2007
  ident: 4075_CR22
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-8-110
– ident: 4075_CR7
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: 4075_CR25
– ident: 4075_CR36
  doi: 10.1109/CVPR.2016.90
– volume: 148
  start-page: 574
  year: 1959
  ident: 4075_CR26
  publication-title: The Journal of physiology
  doi: 10.1113/jphysiol.1959.sp006308
– ident: 4075_CR18
  doi: 10.1109/ICPR.2016.7900002
– ident: 4075_CR23
  doi: 10.1145/2647868.2654889
– volume: 2014
  start-page: 1
  year: 2014
  ident: 4075_CR8
  publication-title: EURASIP Journal on Advances in Signal Processing
  doi: 10.1186/1687-6180-2014-1
– ident: 4075_CR15
  doi: 10.1109/CVPR.2016.126
– volume: 108
  start-page: 214
  year: 2015
  ident: 4075_CR28
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.061
– volume: 129
  start-page: 460
  year: 2016
  ident: 4075_CR29
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.024
– ident: 4075_CR21
– ident: 4075_CR19
  doi: 10.1109/DICTA.2016.7797091
– ident: 4075_CR32
  doi: 10.1609/aaai.v30i1.10140
– volume: 521
  start-page: 436
  year: 2015
  ident: 4075_CR34
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 9
  start-page: 293
  year: 1999
  ident: 4075_CR14
  publication-title: Neural processing letters
  doi: 10.1023/A:1018628609742
– volume: 101
  start-page: 569
  year: 2014
  ident: 4075_CR30
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– ident: 4075_CR16
  doi: 10.1109/CVPR.2014.180
– volume: 63
  start-page: 1455
  issue: 7
  year: 2016
  ident: 4075_CR12
  publication-title: IEEE Transactions on Biomedical Engineering (TBME)
  doi: 10.1109/TBME.2015.2496264
– volume: 51
  start-page: 11
  year: 2016
  ident: 4075_CR5
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2016.02.002
– volume: 372 9
  start-page: 793
  year: 2015
  ident: 4075_CR1
  publication-title: The New England journal of medicine
  doi: 10.1056/NEJMp1500523
– ident: 4075_CR4
  doi: 10.1007/978-3-540-75757-3_113
– volume: 63
  start-page: 1505
  year: 2016
  ident: 4075_CR31
  publication-title: IEEE Trans. Biomed. Engineering
  doi: 10.1109/TBME.2015.2496253
– volume: 517 7536
  start-page: 540
  year: 2015
  ident: 4075_CR2
  publication-title: Nature
  doi: 10.1038/nature.2015.16774
– volume: 36
  start-page: 193
  year: 1980
  ident: 4075_CR27
  publication-title: Biological cybernetics
  doi: 10.1007/BF00344251
– ident: 4075_CR3
– ident: 4075_CR35
  doi: 10.1109/CVPR.2015.7298594
– ident: 4075_CR37
  doi: 10.1109/CVPR.2009.5206848
– volume: 45
  start-page: 5
  year: 2001
  ident: 4075_CR40
  publication-title: Machine learning
  doi: 10.1023/A:1010933404324
– volume: 313
  start-page: 504
  year: 2006
  ident: 4075_CR33
  publication-title: Science
  doi: 10.1126/science.1127647
SSID ssj0000529419
Score 2.654962
Snippet Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast...
Abstract Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4172
SubjectTerms 639/166/985
639/705/117
Automation
Breast cancer
Breast Neoplasms - classification
Breast Neoplasms - pathology
Classification
Databases as Topic
Deep Learning
Female
Fibroadenoma
Humanities and Social Sciences
Humans
Mammography
Models, Theoretical
multidisciplinary
Neural Networks (Computer)
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDLZQpUpcEJTXQEFB4gZRd_LOkRaqggQXitRblEwygFSmVXd7aH997czsapfnheskI1m240fsfAZ4KamzsJWJGycNV85rnnyreVE-9roTxSW60P_4yRx9UR9O9MnaqC_qCRvhgUfG7flekk-Mfd85FVXnNQYoRksRtbFG92R90eetJVMjqrfwqvXTK5mZdHtz9FT0mgyNMuqt1fx6wxNVwP7fRZm_Nkv-VDGtjujwLtyZIkj2ZqT8Htwqww5sjzMlr-5D3qc28wU7IHFesPrAlncUI1NTUJUDozclrAKE0EDipflj73-gcZkzupplnyuu7OVFyextKedswmH9ymh42ukDOD58d3xwxKdRCrzDkGzBbelj1j5a0emUNUYFxuecRVFJO9uniNzMyGlCw_OYZQjh6mR0nXvrkH8PYWs4G8pjYMLmKJMyaBuSajuZTMSQpk1Jdzmp0jbQLrkauglmnKZdnIZa7pYujJIIKIlQJRGuG3i1-ud8BNn46-59EtZqJwFk1w-oNmFSm_AvtWlgdynqMJ3aeWgrHN_MCtXAi9UynjcqosShnF3SHszqMe2TswYejZqxokQ4o6jO24Dd0JkNUjdXhu_fKqY3Jo6Uuzbweqlda2T9kRVP_gcrnsJtUY-F4ULuwhbqV3mGkdYiPa-H6gZZQiNW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlY3fueEaKEqSHChSHuz7NgpSCW77G4P7a9nxnECy6PX2JFsz3g8z28IeSEws7AWgWkrNJO2USw0tWJJNr5TLU82oEP_4yd9_EV-mKt5cbitS1rlKBOzoI6LFn3k-3WGSpsZLl8vfzDsGoXR1dJC4zq5gdBlmNJl5mbysWAUS9ZNqZWZCbu_hvcKa8pANAP3GsUut96jDNv_L13z75TJP-Km-Tk6ukNuFz2SvhkIf5dcS_09cnPoLHlxn8QDTDbf0EMk6ormMlvWoqaMqUGZGhQrS2iGCcG2xKMQpO-_g4hZU3TQ0s8ZXfZ8lSJ9m9KSFjTWU4ot1M4ekJOjdyeHx6w0VGAtKGYbZlLno2q84a0KUYFuoJsYI08yKGu64L3SsRMaMfEasDU4t7k_uoqdsXB-D8lOv-jTY0K5iV4EqUFCBFm3ImgPik0dgmpjkKmuSD2eqmsL2Dj2vDhzOegtrBso4YASLlPCXVbk5fTPcoDauHL2ARJrmokw2fnDYnXqyq1zDWwGFCrfda2VXrbAQwK2Jzhs1GjVVWRvJLUrd3ftfnFaRZ5Pw3DrMJTi-7Q4xzlg24PxJ2YVeTRwxrQSbrXEaG9FzBbPbC11e6T_9jUje4P5iBZsRV6N3PXbsv57FLtX7-IJucUzw2vGxR7ZAc5JT0GT2oRn-br8BG5_G8c
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSw2fudIF6qCBBeK1Jtlx06pVLJVdznQX8-M8xALBYlr4kiOZzz-xjPzDcALSZmFtYzcOGm4co3msak1z6oJnW5FdpEu9D9-Modf1IdjfbwDYqqFKUn7hdKymOkpO-z1Gg8aKgZDm4pqZzW_vAbXibqdtHpplvO9CkWuVN2M9TEL6a74dOsMKlT9V-HLP9Mkf4uVliPo4DbcGrEjezPM9g7s5P4u3Bi6Sf64B2mfEsw3bEmCvGCltJa3hI4pHahIgFE1CSvUINSKeDJ87P03NCtrRpey7HNhlMWlSextzudsZGA9YdQ27ew-HB28O1oe8rGJAm8RjG24zV1IuglWtDomjXjANCklkVXUznYxBG1SJw3x4DXoXwjhSk90nTrrcP0ewG6_6vMjYMKmIKMyaBWiqlsZTUAwU8eo2xRVriuop1X17UgwTn0uznwJdEvnB0l4lIQvkvCXFbycvzkf6DX-OXqfhDWPJGrs8mB1ceJHVfEN_gyCqNB1rVNBtY1GRGu0FPij1uiugr1J1H7cr2tfFyK-hRWqgufza9xpFD4JfV59pzHoz6PDJxcVPBw0Y56JcEZRhLcCu6UzW1PdftOffi1s3ugyktdawatJu36Z1l-X4vH_DX8CN0XZAIYLuQe7qEn5KaKpTXxWts9PlyEaEw
  priority: 102
  providerName: Springer Nature
Title Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model
URI https://link.springer.com/article/10.1038/s41598-017-04075-z
https://www.ncbi.nlm.nih.gov/pubmed/28646155
https://www.proquest.com/docview/1955970724
https://www.proquest.com/docview/1913396030
https://pubmed.ncbi.nlm.nih.gov/PMC5482871
https://doaj.org/article/9f36355affc84a4c955336532a56765f
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JjMpIvEFgcfyVB4TasmlU2oTYJvUtsmNnIJV2tJ3E9tdz5yQVhYJ4iuQ4ke27s39n-34H8DKnm4VZ7lJlcpUKU8jUFZlMgyhsLSsejKMN_eMTdXQuRmM53oIu3VE7gIuNrh3lkzqfT978-H79Hg3-XRMybt4ucBGiQDGcb1EltUxvtmEXVyZNhnrcwv2G65sXIub6IBL2FMEEb-NoNv9mba2KlP6bcOif1yl_O1ONS9XhXbjTYkzWb5TiHmyF6X241WSdvH4AfkAX0ZdsSAKfsxiCm1aEounaUJQUo6gTFilEKGVxN0Gyj99w-lkw2rxlp5F59moePPsQwiVrmVovGKVXmzyEs8ODs-FR2iZbSCsEbctUh9p6WVjNK-m8RNygCu89D8JJo2tnrVS-zhXx5RXoh3BuYu506WttcPwewc50Ng1PgHHtbe6EwtnDiazKnbIIejLnZOWdCFkCWTeqZdUSkVM-jEkZD8RzUzaSKFESZZREeZPAq9U3lw0Nxz9rD0hYq5pEoR0LZvOLsrXIssDOINiydV0ZYUVVSES-SuYcO6qVrBPY60RddmpZZpGwb19zkcCL1Wu0SDpmsdMwu6I66PejY5jvJ_C40YxVS7hRgk6CE9BrOrPW1PU3069fIus3upbk3SbwutOuX5r116F4-h_NfAa3edR6hSaxBzuoPuE5Qq2l68G2Huse7Pb7o9MRPgcHJ58-Y-lQDXtx-6IXLewnzEUo3w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO4EBhgJniBa41uSB4ToLmrZViEo0t6sOHbGpK0tbSe0_Sf-I-c4SaFc9rbXxIlsn-9c7HMDeCkosjARNtaZ0LHMchXbPFGxl3lRqZL7zNKF_sFQ97_ID4fqcA1-tLkwFFbZysQgqN2kpDvyzSSUSuumXL6bfoupaxR5V9sWGjUs9vz5dzyyzd8OtpG-rzjf3Rlt9eOmq0BconWyiFNfFU7lRcpLZZ1CBalz5xz30qosrWxRKO0qoakwXI4GN-dZaBKuXJVmSVfgb6_BuhR4kunAem9n-PHT8lKH3GYyyZvknK7INueoICmJDXUBskuq4osVBRj6BPzLuP07RvMPR23Qf7u34VZjuLL3NdLuwJof34XrdSvL83vgehTdvmBbhKIZC3m9cUmmOcUiBfIzSmVhoS4J9UFupS4bnKJMmzO6EWafQznbs5l3bNv7KWvKvx4x6tl2ch9GV7HXD6Aznoz9I2A8dYWwUqNIsjIphdUFWlKJtap0VvokgqTdVVM21c2pycaJCV52kZmaEgYpYQIlzEUEr5ffTOvaHpeO7hGxliOpLnd4MJkdmYbNTY6LQQuuqKoyk4UsEbQClyc4LjTVqopgoyW1aYTF3PyCdgQvlq-Rzcl3U4z95IzGJELgaVN0I3hYI2M5E55pSe7lCNIVzKxMdfXN-PhrKCWO51U6MkfwpkXXb9P671Y8vnwVz-FGf3Swb_YHw70ncJMH8OuYiw3oIIr8UzTjFvZZwzwMzBWz60956Vhe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxHUEBhgJnsBqfU8eEGIr1cpgQmJIfbPi2BlIoy1tJ7T9M_4d5zhJoVz2ttfEiWyf71zscyPkqcTIQi49M7k0TOWFZr7gmkVVlLWuRMw9Xui_PzB7n9TbsR5vkB9dLgyGVXYyMQnqMK3wjrzHU6m0vhWqV7dhER8Gw1ezbww7SKGntWun0UBkP55-h-Pb4uVoALR-JsTwzeHuHms7DLAKLJUls7Eugy5KKyrtgwZlaYoQgojK69zWviy1CbU0WCSuAONbiDw1DNehtjnvS_jtJXLZSs2RxezYrq530IGmeNGm6fRl3luAqsR0NtAKwDhWs7M1VZg6BvzLzP07WvMPl23ShMMb5HprwtLXDeZuko04uUWuNE0tT2-TsINx7ku6i3ia05Thyyo00jEqKQGBYlILTRVKsCNyJ3_p6CtItwXFu2H6MRW2PZnHQAcxzmhbCPaIYve24zvk8CJ2-i7ZnEwn8R6hwoZSemVAOHnFK-lNCTYV915XwavIM8K7XXVVW-cc220cu-Rvl7lrKOGAEi5Rwp1l5Pnqm1lT5ePc0TtIrNVIrNCdHkznR65leFfAYsCWK-u6ylWpKoCvhOVJAQu1RtcZ2e5I7VqxsXC_QJ6RJ6vXwPDoxSkncXqCY7iUcO6U_YxsNchYzUTkRqGjOSN2DTNrU11_M_nyORUVh5MrHp4z8qJD12_T-u9W3D9_FY_JVWBS9250sP-AXBMJ-4YJuU02AUTxIdhzS_8ocQ4l7oI59Se-vFsu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+Cancer+Multi-classification+from+Histopathological+Images+with+Structured+Deep+Learning+Model&rft.jtitle=Scientific+reports&rft.au=Han%2C+Zhongyi&rft.au=Wei%2C+Benzheng&rft.au=Zheng%2C+Yuanjie&rft.au=Yin%2C+Yilong&rft.date=2017-06-23&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=4172&rft_id=info:doi/10.1038%2Fs41598-017-04075-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon