Identifying influential spreaders in complex networks by an improved gravity model
Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most wide...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 22194 - 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.11.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The
k
-shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the
k
-shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall’s rank correlation, and in terms of ranking efficiency as measured by the monotonicity value. |
---|---|
AbstractList | Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k-shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k-shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall's rank correlation, and in terms of ranking efficiency as measured by the monotonicity value.Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k-shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k-shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall's rank correlation, and in terms of ranking efficiency as measured by the monotonicity value. Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k -shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k -shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall’s rank correlation, and in terms of ranking efficiency as measured by the monotonicity value. Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k-shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k-shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall's rank correlation, and in terms of ranking efficiency as measured by the monotonicity value. Abstract Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k-shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k-shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall’s rank correlation, and in terms of ranking efficiency as measured by the monotonicity value. |
ArticleNumber | 22194 |
Author | Li, Zhe Huang, Xinyu |
Author_xml | – sequence: 1 givenname: Zhe surname: Li fullname: Li, Zhe email: gislzneu@163.com organization: Software College, Shenyang University of Technology of China – sequence: 2 givenname: Xinyu surname: Huang fullname: Huang, Xinyu email: huangxinyu@mail.neu.edu.cn organization: Software College, Northeastern University of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34772970$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhS1UREvpC7BAkdiwCfh3bG-QUEXLSJWQUPeWE98MHpw42Jkp8_Y4TQttF_XG9vW5n46uz2t0NMQBEHpL8EeCmfqUORFa1ZiSGhNKVE1eoBOKuagpo_TowfkYneW8xWUJqjnRr9Ax41JSLfEJ-rF2MEy-O_hhU_mhC7v5akOVxwTWQcqlWrWxHwP8qQaYbmL6lavmUNmh8v2Y4h5ctUl276dD1UcH4Q162dmQ4exuP0XXF1-vz7_VV98v1-dfrupWcDzV0lHhWGNFA8Ryq-yKcIbByo5xBy2XYJXoLHZENdBxQhzWjbNcKdqBJuwUrResi3ZrxuR7mw4mWm9uCzFtjE2TbwMYLUErwbtGMMW104XAiGPMKdK0Wq4K6_PCGndND64tM0g2PII-fhn8T7OJe6OE0lrOZj7cAVL8vYM8md7nFkKwA8RdNlRoKTBhghXp-yfSbdyloUxqVq0UIUrponr30NE_K_c_VwRqEbQp5pygM62f7OTjbNAHQ7CZc2KWnJiSE3ObEzObpU9a7-nPNrGlqQSjZAXSf9vPdP0F99jQbg |
CitedBy_id | crossref_primary_10_1016_j_ememar_2024_101138 crossref_primary_10_7498_aps_74_20241256 crossref_primary_10_1038_s41598_022_27145_3 crossref_primary_10_1038_s41598_023_30308_5 crossref_primary_10_1007_s10115_024_02262_9 crossref_primary_10_1016_j_jcmds_2025_100112 crossref_primary_10_1038_s41598_022_14005_3 crossref_primary_10_1016_j_jocs_2024_102473 crossref_primary_10_3390_e27030298 crossref_primary_10_3389_fphy_2023_1239660 crossref_primary_10_1063_5_0127434 crossref_primary_10_1016_j_chaos_2024_115675 crossref_primary_10_1038_s41598_023_43585_x crossref_primary_10_3390_e24070904 crossref_primary_10_1016_j_ins_2022_10_070 crossref_primary_10_1016_j_chaos_2024_115348 crossref_primary_10_3390_e24091279 crossref_primary_10_1016_j_frl_2023_104225 crossref_primary_10_1109_ACCESS_2024_3363635 crossref_primary_10_1016_j_eswa_2023_122077 crossref_primary_10_1103_PhysRevE_105_044308 |
Cites_doi | 10.1080/0022250X.1972.9989806 10.1016/j.ins.2017.07.012 10.1016/j.ins.2019.07.072 10.3390/e22040450 10.1088/1674-1056/ab77fe 10.1016/j.eswa.2021.115061 10.1038/s41598-019-47119-2 10.1016/j.ecolmodel.2012.12.011 10.1093/oso/9780198805090.001.0001 10.1007/s11280-018-0537-6 10.3390/electronics8111331 10.1103/PhysRevE.69.025103 10.1103/PhysRevE.74.036104 10.1016/j.cam.2018.05.051 10.1016/j.physa.2015.12.162 10.1103/PhysRevLett.89.208701 10.1016/0378-8733(78)90021-7 10.1371/journal.pcbi.1001109 10.1145/1772690.1772756 10.1038/30918 10.1140/epjb/e2008-00370-y 10.1016/j.pharmthera.2013.01.016 10.1016/j.ipm.2019.102141 10.1371/journal.pone.0251208 10.1038/s41598-021-84684-x 10.1038/nphys1746 10.3390/sym13091570 10.1016/j.physa.2008.01.113 10.1016/j.ins.2017.10.019 10.1145/3292500.3330855 10.1016/j.chaos.2021.110934 10.1016/j.chaos.2020.110456 10.1038/srep05097 10.1016/j.physrep.2016.06.007 10.1016/j.eswa.2019.113092 10.1016/j.knosys.2021.107198 10.1137/S0036144500371907 10.1038/ncomms10168 10.1016/j.physa.2013.10.047 10.1073/pnas.200327197 10.1103/PhysRevE.68.065103 10.1038/s41598-019-44930-9 10.1038/nrg2918 10.1016/j.ins.2021.01.053 10.1093/acprof:oso/9780199211517.001.0001 10.3390/e23091216 10.1103/PhysRevE.85.026116 10.2307/3033543 10.1103/PhysRevLett.105.218701 10.1109/TNET.2003.822655 10.1142/S0219525903001067 10.1016/j.knosys.2019.105464 10.1145/1134271.1134277 10.1038/s42256-020-0177-2 10.1093/biomet/30.1-2.81 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-01218-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_97e9854fb53849d982f31d33d81bc976 PMC8589971 34772970 10_1038_s41598_021_01218_1 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-7d25d3ba5be1a4a8a61430ea7f34dec47ea85fa0d18bef411d09bda4882fe913 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:52 EDT 2025 Thu Aug 21 13:20:31 EDT 2025 Fri Jul 11 05:40:05 EDT 2025 Sat Aug 23 12:37:46 EDT 2025 Thu Jan 02 22:52:25 EST 2025 Tue Jul 01 01:33:46 EDT 2025 Thu Apr 24 22:51:39 EDT 2025 Fri Feb 21 02:39:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-7d25d3ba5be1a4a8a61430ea7f34dec47ea85fa0d18bef411d09bda4882fe913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2596811889?pq-origsite=%requestingapplication% |
PMID | 34772970 |
PQID | 2596811889 |
PQPubID | 2041939 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_97e9854fb53849d982f31d33d81bc976 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8589971 proquest_miscellaneous_2597501353 proquest_journals_2596811889 pubmed_primary_34772970 crossref_citationtrail_10_1038_s41598_021_01218_1 crossref_primary_10_1038_s41598_021_01218_1 springer_journals_10_1038_s41598_021_01218_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-12 |
PublicationDateYYYYMMDD | 2021-11-12 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | IwendiCPonnanSMunirathinamRSrinivasanKChangCYAn efficient and unique TF/IDF algorithmic model-based data analysis for handling applications with big data streamingElectronics20198133110.3390/electronics8111331 YanXCuiYNiSIdentifying influential spreaders in complex networks based on entropy weight method and gravity lawChin. Phys. B2020290489022020ChPhB..29d8902Y10.1088/1674-1056/ab77fe HuHBWangXFUnified index to quantifying heterogeneity of complex networksPhysica A2008387376937802008PhyA..387.3769H10.1016/j.physa.2008.01.113 HuangXChenDWangDRenTIdentifying influencers in social networksEntropy2020224504217526751693010.3390/e22040450 WattsDJStrogatzSHCollective dynamics of small-world networksNature19983934404421:CAS:528:DyaK1cXjs1Khsrk%3D1368.051391998Natur.393..440W10.1038/30918 CaldarelliGScale-Free Networks: Complex Webs in Nature and Technology2007OxfordOxford University Press1119.9400110.1093/acprof:oso/9780199211517.001.0001 GuimerȧRDanonLDíaz-GuileraAGiraltFArenasASelf-similar community structure in a network of human interactionsPhys. Rev. E2003680651032003PhRvE..68f5103G10.1103/PhysRevE.68.065103 Park, N., Kan, A., Dong, X.L., Zhao, T. & Faloutsos, C. Estimating node importance in knowledge graphs using graph neural networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 596–606 (ACM Press, 2019). ZhuJWangLIdentifying influential nodes in complex networks based on node itself and neighbor layer informationSymmetry202113157010.3390/sym13091570 UllahAWangBShengJLongJKhanNSunZIdentification of nodes influence based on global structure model in complex networksSci. Rep.20211161733373172079699362021NatSR..11.6173U10.1038/s41598-021-84684-x YanGFuZQChenGEpidemic threshold and phase transition in scale-free networks with asymmetric infectionEur. Phys. J. B2008655915941:CAS:528:DC%2BD1cXhsVCjtbrM1188.911932008EPJB...65..591Y10.1140/epjb/e2008-00370-y NewmanMEJFinding community structure in networks using the eigenvectors of matricesPhys. Rev. E20067403610422821391:STN:280:DC%2BD28rpslahuw%3D%3D2006PhRvE..74c6104N10.1103/PhysRevE.74.036104 BellingeriMBodiniAFood web's backbones and energy delivery in ecosystemsSci. Rep.2016125586594 KendallMA new measure of rank correlationBiometrika19383081890019.1300110.1093/biomet/30.1-2.81 MajiGDuttaAMaltaMCSenSIdentifying and ranking super spreaders in real world complex networks without influence overlapExpert Syst. Appl.202117911506110.1016/j.eswa.2021.115061 XuWLiTLiangWYuJXYangNGaoSIdentifying structural hole spanners to maximally block information propagationInf. Sci.201950510012639830371456.9110710.1016/j.ins.2019.07.072 BonacichPFactoring and weighting approaches to status scores and clique identificationMath. Sociol.1972211312010.1080/0022250X.1972.9989806 FreemanLCCentrality in social networks conceptual clarificationSoc. Netw.1979121523910.1016/0378-8733(78)90021-7 LiHShangQDengYA generalized gravity model for influential spreaders identification in complex networksChaos Solitons Fractals2021143110456419197110.1016/j.chaos.2020.110456 MajiGNamtirthaADuttaAMaltaMCInfluential spreaders identification in complex networks with improved k-shell hybrid methodExpert Syst. Appl.202014411309210.1016/j.eswa.2019.113092 LüLChenDRenXLZhangQMZhangYCZhouTVital nodes identification in complex networksPhys. Rep.201665016335438572016PhR...650....1L10.1016/j.physrep.2016.06.007 Yanez-SierraJDiaz-PerezASosa-SosaVAn efficient partition-based approach to identify and scatter multiple relevant spreaders in complex networksEntropy202123121643204503457384184686552021Entrp..23.1216Y10.3390/e23091216 KitsakMGallosLKHavlinSLiljerosFMuchnikLStanleyHEIdentification of influential spreaders in complex networksNat. Phys.201068888931:CAS:528:DC%2BC3cXhtlKltLfL10.1038/nphys1746 BarabásiALGulbahceNLoscalzoJNetwork medicine: A network-based approach to human diseaseNat. Rev. Genet.201112566821164525314005210.1038/nrg2918 LüLZhouTZhangQMStanleyHEThe H-index of a network node and its relation to degree and corenessNat. Commun.20167101682675416147299222016NatCo...710168L10.1038/ncomms10168 YuZShaoJYangQSunZProfitLeader: Identifying leaders in networks with profit capacityWorld Wide Web20192253355310.1007/s11280-018-0537-6 AmaralLANScalaABarthelemyMStanleyHEClasses of small-world networksPNAS20009711149111521:CAS:528:DC%2BD3cXnsF2rt7g%3D11005838171682000PNAS...9711149A10.1073/pnas.200327197 WangJLiCXiaCImproved centrality indicators to characterize the nodal spreading capability in complex networksAppl. Math. Comput.20183343884003804519 BellingeriMCassiDVincenziSIncreasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food websEcol. Model20132511810.1016/j.ecolmodel.2012.12.011 NewmanMEJAssortative mixing in networksPhys. Rev. Lett.2002892087011:STN:280:DC%2BD38notleksA%3D%3D124435152002PhRvL..89t8701N10.1103/PhysRevLett.89.208701 Leskovec, J., Huttenlocher, D. & Kleinberg, J. Predicting positive and negative links in online social networks. In Proceedings of the 19th International Conference on World Wide Web. 641–650 (ACM Press, 2010). BaeJKimSIdentifying and ranking influential spreaders in complex networks by neighborhood corenessPhysica A201439554955931336861395.921392014PhyA..395..549B10.1016/j.physa.2013.10.047 LiZRenTMaXQLiuSMZhangYXZhouTIdentifying influential spreaders by gravity modelSci. Rep.2019983873118277365578502019NatSR...9.8387L10.1038/s41598-019-44930-9 RochaLELiljerosFHolmePSimulated epidemics in an empirical spatiotemporal network of 50,185 sexual contactsPLoS Comput. Biol.20117e10011091:CAS:528:DC%2BC3MXktVWhtLc%3D2144522830601612011PLSCB...7E1109R10.1371/journal.pcbi.1001109 YangXXiaoFAn improved gravity model to identify influential nodes in complex networks based on k-shell methodKnowl. Based Syst.202122710719810.1016/j.knosys.2021.107198 LiCWangLSunSXiaCIdentification of influential spreaders based on classified neighbors in real-world complex networksAppl. Math. Comput.201832051252337227641427.9120710.1016/j.cam.2018.05.051 CastellanoCPastor-SatorrasRThresholds for epidemic spreading in networksPhys. Rev. Lett.2010105218701212313612010PhRvL.105u8701C10.1103/PhysRevLett.105.218701 CsermelyPKorcsmárosTKissHJMLondonGNussinovRStructure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive reviewPharmacol. Ther.20131383334081:CAS:528:DC%2BC3sXls1CgtLk%3D23384594364700610.1016/j.pharmthera.2013.01.016 ShangQDengYCheongKHIdentifying influential nodes in complex networks: Effective distance gravity modelInf. Sci.2021577162179428588810.1016/j.ins.2021.01.053 Adamic, L. A. & Glance, N. The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery. 36–43 (ACM Press, 2005). GleiserPDanonLCommunity structure in JazzAdv. Complex Syst.2003656510.1142/S0219525903001067 WangXYangQLiuMMaXComprehensive influence of topological location and neighbor information on identifying influential nodes in complex networksPLoS ONE202116e02512081:CAS:528:DC%2BB3MXhtFOktLvL34019580813945810.1371/journal.pone.0251208 ZhuPZhiQGuoYWangZAnalysis of epidemic spreading process in adaptive networksIEEE Trans Circuits Syst. II Express Briefs20186612521256 Mcauley, J. J. & Leskovec, J. Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst. HethcoteHWThe mathematics of infectious diseasesSIAM Rev.20094259965318140490993.920332000SIAMR..42..599H10.1137/S0036144500371907 WangWTangMYangHDoYLaiYCLeeGAsymmetrically interacting spreading dynamics on complex layered networksSci. Rep.2014450971:CAS:528:DC%2BC2MXktlOgsLk%3D24872257403771510.1038/srep05097 LiuFWangZDengYGMM: A generalized mechanics model for identifying the importance of nodes in complex networksKnowl. Based Syst.202019310546410.1016/j.knosys.2019.105464 FanCZengLSunYLiuYFinding key players in complex networks through deep reinforcement learningNat. Mach. Intell.2020231732434124581819133510.1038/s42256-020-0177-2 ZhengZYeFLiRHLingGJinTFinding weighted k-truss communities in large networksInf. Sci.20174173443601444.9118010.1016/j.ins.2017.07.012 KumarASrinivasanKChengWHZomayaAYHybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social dataInform. Process. Manag.20205710214110.1016/j.ipm.2019.102141 FreemanLCA set of measures of centrality based on betweennessSociometry197740354110.2307/3033543 BiJJinJQuCZhanXWangGYanGTemporal gravity model for important node identification in temporal networksChaos Solitons Fractals2021147110934424834210.1016/j.chaos.2021.110934 MaLLMaCZhangHFWangBHIdentifying influential spreaders in complex networks based on gravity formulaPhysica A20154512052121400.924032016PhyA..451..205M10.1016/j.physa.2015.12.162 SpringNMahajanRWetherallDAndersonTMeasuring ISP topologies with rocketfuelIEEE/ACM Trans. Netw.20041221610.1109/TNET.2003.822655 NewmanMEJNetworks2018OxfordOxford University Press1391.9400610.1093/oso/9780198805090.001.0001 Borge-HolthoeferJMorenoYAbsence of influential spreaders in rumor dynamicsPhys. Rev. E2012850261162012PhRvE..85b6116B10.1103/PhysRevE.85.026116 BellingeriMBevacquaDScotognellaFCassiDThe heterogeneity in link weights may decrease the robustness of real-world complex weighted networksSci. Rep.20199106921:STN:280:DC%2BB3MvgsFehsg%3D%3D3133783466504362019NatSR...910692B10.1038/s41598-019-47119-2 HeKLiYSoundarajanSHopcroftJEHidden community detection in social networkInf. Sci.201842592106371711910.1016/j.ins.2017.10.019 AlbertRAlbertINakaradoGLStructural vulnerability of the North American power gridPhys. Rev. E2004690251032004PhRvE..69b5103A10.1103/PhysRevE.69.025103 Batageli, V. & Mrvar, A. Pajek Datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/ (2007). N Spring (1218_CR50) 2004; 12 G Maji (1218_CR33) 2020; 144 1218_CR47 LC Freeman (1218_CR20) 1977; 40 C Iwendi (1218_CR24) 2019; 8 MEJ Newman (1218_CR46) 2006; 74 C Castellano (1218_CR53) 2010; 105 1218_CR43 X Huang (1218_CR39) 2020; 22 1218_CR42 1218_CR41 G Maji (1218_CR34) 2021; 179 W Xu (1218_CR10) 2019; 505 AL Barabási (1218_CR3) 2011; 12 W Wang (1218_CR59) 2014; 4 J Borge-Holthoefer (1218_CR5) 2012; 85 A Kumar (1218_CR22) 2020; 57 H Li (1218_CR37) 2021; 143 Q Shang (1218_CR32) 2021; 577 1218_CR7 M Bellingeri (1218_CR60) 2019; 9 J Bae (1218_CR56) 2014; 395 Z Yu (1218_CR8) 2019; 22 R Albert (1218_CR6) 2004; 69 DJ Watts (1218_CR49) 1998; 393 Z Li (1218_CR29) 2019; 9 LAN Amaral (1218_CR57) 2000; 97 M Bellingeri (1218_CR14) 2016; 125 J Wang (1218_CR27) 2018; 334 LL Ma (1218_CR28) 2015; 451 J Bi (1218_CR36) 2021; 147 P Csermely (1218_CR13) 2013; 138 M Kitsak (1218_CR18) 2010; 6 C Li (1218_CR26) 2018; 320 P Zhu (1218_CR4) 2018; 66 L Lü (1218_CR19) 2016; 7 LC Freeman (1218_CR21) 1979; 1 LE Rocha (1218_CR44) 2011; 7 MEJ Newman (1218_CR51) 2002; 89 F Liu (1218_CR30) 2020; 193 R Guimerȧ (1218_CR48) 2003; 68 MEJ Newman (1218_CR1) 2018 J Yanez-Sierra (1218_CR23) 2021; 23 X Wang (1218_CR38) 2021; 16 G Caldarelli (1218_CR2) 2007 A Ullah (1218_CR35) 2021; 11 J Zhu (1218_CR25) 2021; 13 M Bellingeri (1218_CR15) 2013; 251 L Lü (1218_CR16) 2016; 650 X Yang (1218_CR31) 2021; 227 G Yan (1218_CR58) 2008; 65 HB Hu (1218_CR52) 2008; 387 X Yan (1218_CR40) 2020; 29 K He (1218_CR12) 2018; 425 Z Zheng (1218_CR11) 2017; 417 HW Hethcote (1218_CR54) 2009; 42 P Bonacich (1218_CR17) 1972; 2 C Fan (1218_CR9) 2020; 2 P Gleiser (1218_CR45) 2003; 6 M Kendall (1218_CR55) 1938; 30 |
References_xml | – reference: HuangXChenDWangDRenTIdentifying influencers in social networksEntropy2020224504217526751693010.3390/e22040450 – reference: KitsakMGallosLKHavlinSLiljerosFMuchnikLStanleyHEIdentification of influential spreaders in complex networksNat. Phys.201068888931:CAS:528:DC%2BC3cXhtlKltLfL10.1038/nphys1746 – reference: MajiGNamtirthaADuttaAMaltaMCInfluential spreaders identification in complex networks with improved k-shell hybrid methodExpert Syst. Appl.202014411309210.1016/j.eswa.2019.113092 – reference: NewmanMEJAssortative mixing in networksPhys. Rev. Lett.2002892087011:STN:280:DC%2BD38notleksA%3D%3D124435152002PhRvL..89t8701N10.1103/PhysRevLett.89.208701 – reference: HuHBWangXFUnified index to quantifying heterogeneity of complex networksPhysica A2008387376937802008PhyA..387.3769H10.1016/j.physa.2008.01.113 – reference: LiCWangLSunSXiaCIdentification of influential spreaders based on classified neighbors in real-world complex networksAppl. Math. Comput.201832051252337227641427.9120710.1016/j.cam.2018.05.051 – reference: LüLZhouTZhangQMStanleyHEThe H-index of a network node and its relation to degree and corenessNat. Commun.20167101682675416147299222016NatCo...710168L10.1038/ncomms10168 – reference: CsermelyPKorcsmárosTKissHJMLondonGNussinovRStructure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive reviewPharmacol. Ther.20131383334081:CAS:528:DC%2BC3sXls1CgtLk%3D23384594364700610.1016/j.pharmthera.2013.01.016 – reference: LüLChenDRenXLZhangQMZhangYCZhouTVital nodes identification in complex networksPhys. Rep.201665016335438572016PhR...650....1L10.1016/j.physrep.2016.06.007 – reference: WangXYangQLiuMMaXComprehensive influence of topological location and neighbor information on identifying influential nodes in complex networksPLoS ONE202116e02512081:CAS:528:DC%2BB3MXhtFOktLvL34019580813945810.1371/journal.pone.0251208 – reference: Leskovec, J., Huttenlocher, D. & Kleinberg, J. Predicting positive and negative links in online social networks. In Proceedings of the 19th International Conference on World Wide Web. 641–650 (ACM Press, 2010). – reference: CaldarelliGScale-Free Networks: Complex Webs in Nature and Technology2007OxfordOxford University Press1119.9400110.1093/acprof:oso/9780199211517.001.0001 – reference: RochaLELiljerosFHolmePSimulated epidemics in an empirical spatiotemporal network of 50,185 sexual contactsPLoS Comput. Biol.20117e10011091:CAS:528:DC%2BC3MXktVWhtLc%3D2144522830601612011PLSCB...7E1109R10.1371/journal.pcbi.1001109 – reference: FreemanLCCentrality in social networks conceptual clarificationSoc. Netw.1979121523910.1016/0378-8733(78)90021-7 – reference: Adamic, L. A. & Glance, N. The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery. 36–43 (ACM Press, 2005). – reference: Park, N., Kan, A., Dong, X.L., Zhao, T. & Faloutsos, C. Estimating node importance in knowledge graphs using graph neural networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 596–606 (ACM Press, 2019). – reference: ZhuJWangLIdentifying influential nodes in complex networks based on node itself and neighbor layer informationSymmetry202113157010.3390/sym13091570 – reference: FanCZengLSunYLiuYFinding key players in complex networks through deep reinforcement learningNat. Mach. Intell.2020231732434124581819133510.1038/s42256-020-0177-2 – reference: IwendiCPonnanSMunirathinamRSrinivasanKChangCYAn efficient and unique TF/IDF algorithmic model-based data analysis for handling applications with big data streamingElectronics20198133110.3390/electronics8111331 – reference: HethcoteHWThe mathematics of infectious diseasesSIAM Rev.20094259965318140490993.920332000SIAMR..42..599H10.1137/S0036144500371907 – reference: AmaralLANScalaABarthelemyMStanleyHEClasses of small-world networksPNAS20009711149111521:CAS:528:DC%2BD3cXnsF2rt7g%3D11005838171682000PNAS...9711149A10.1073/pnas.200327197 – reference: MajiGDuttaAMaltaMCSenSIdentifying and ranking super spreaders in real world complex networks without influence overlapExpert Syst. Appl.202117911506110.1016/j.eswa.2021.115061 – reference: GuimerȧRDanonLDíaz-GuileraAGiraltFArenasASelf-similar community structure in a network of human interactionsPhys. Rev. E2003680651032003PhRvE..68f5103G10.1103/PhysRevE.68.065103 – reference: KumarASrinivasanKChengWHZomayaAYHybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social dataInform. Process. Manag.20205710214110.1016/j.ipm.2019.102141 – reference: FreemanLCA set of measures of centrality based on betweennessSociometry197740354110.2307/3033543 – reference: SpringNMahajanRWetherallDAndersonTMeasuring ISP topologies with rocketfuelIEEE/ACM Trans. Netw.20041221610.1109/TNET.2003.822655 – reference: ZhengZYeFLiRHLingGJinTFinding weighted k-truss communities in large networksInf. Sci.20174173443601444.9118010.1016/j.ins.2017.07.012 – reference: LiZRenTMaXQLiuSMZhangYXZhouTIdentifying influential spreaders by gravity modelSci. Rep.2019983873118277365578502019NatSR...9.8387L10.1038/s41598-019-44930-9 – reference: Mcauley, J. J. & Leskovec, J. Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst. – reference: XuWLiTLiangWYuJXYangNGaoSIdentifying structural hole spanners to maximally block information propagationInf. Sci.201950510012639830371456.9110710.1016/j.ins.2019.07.072 – reference: LiHShangQDengYA generalized gravity model for influential spreaders identification in complex networksChaos Solitons Fractals2021143110456419197110.1016/j.chaos.2020.110456 – reference: YanGFuZQChenGEpidemic threshold and phase transition in scale-free networks with asymmetric infectionEur. Phys. J. B2008655915941:CAS:528:DC%2BD1cXhsVCjtbrM1188.911932008EPJB...65..591Y10.1140/epjb/e2008-00370-y – reference: BellingeriMBodiniAFood web's backbones and energy delivery in ecosystemsSci. Rep.2016125586594 – reference: CastellanoCPastor-SatorrasRThresholds for epidemic spreading in networksPhys. Rev. Lett.2010105218701212313612010PhRvL.105u8701C10.1103/PhysRevLett.105.218701 – reference: BaeJKimSIdentifying and ranking influential spreaders in complex networks by neighborhood corenessPhysica A201439554955931336861395.921392014PhyA..395..549B10.1016/j.physa.2013.10.047 – reference: UllahAWangBShengJLongJKhanNSunZIdentification of nodes influence based on global structure model in complex networksSci. Rep.20211161733373172079699362021NatSR..11.6173U10.1038/s41598-021-84684-x – reference: NewmanMEJNetworks2018OxfordOxford University Press1391.9400610.1093/oso/9780198805090.001.0001 – reference: Borge-HolthoeferJMorenoYAbsence of influential spreaders in rumor dynamicsPhys. Rev. E2012850261162012PhRvE..85b6116B10.1103/PhysRevE.85.026116 – reference: BellingeriMBevacquaDScotognellaFCassiDThe heterogeneity in link weights may decrease the robustness of real-world complex weighted networksSci. Rep.20199106921:STN:280:DC%2BB3MvgsFehsg%3D%3D3133783466504362019NatSR...910692B10.1038/s41598-019-47119-2 – reference: BarabásiALGulbahceNLoscalzoJNetwork medicine: A network-based approach to human diseaseNat. Rev. Genet.201112566821164525314005210.1038/nrg2918 – reference: LiuFWangZDengYGMM: A generalized mechanics model for identifying the importance of nodes in complex networksKnowl. Based Syst.202019310546410.1016/j.knosys.2019.105464 – reference: BellingeriMCassiDVincenziSIncreasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food websEcol. Model20132511810.1016/j.ecolmodel.2012.12.011 – reference: WangJLiCXiaCImproved centrality indicators to characterize the nodal spreading capability in complex networksAppl. Math. Comput.20183343884003804519 – reference: MaLLMaCZhangHFWangBHIdentifying influential spreaders in complex networks based on gravity formulaPhysica A20154512052121400.924032016PhyA..451..205M10.1016/j.physa.2015.12.162 – reference: Batageli, V. & Mrvar, A. Pajek Datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/ (2007). – reference: GleiserPDanonLCommunity structure in JazzAdv. Complex Syst.2003656510.1142/S0219525903001067 – reference: HeKLiYSoundarajanSHopcroftJEHidden community detection in social networkInf. Sci.201842592106371711910.1016/j.ins.2017.10.019 – reference: YangXXiaoFAn improved gravity model to identify influential nodes in complex networks based on k-shell methodKnowl. Based Syst.202122710719810.1016/j.knosys.2021.107198 – reference: YuZShaoJYangQSunZProfitLeader: Identifying leaders in networks with profit capacityWorld Wide Web20192253355310.1007/s11280-018-0537-6 – reference: YanXCuiYNiSIdentifying influential spreaders in complex networks based on entropy weight method and gravity lawChin. Phys. B2020290489022020ChPhB..29d8902Y10.1088/1674-1056/ab77fe – reference: KendallMA new measure of rank correlationBiometrika19383081890019.1300110.1093/biomet/30.1-2.81 – reference: AlbertRAlbertINakaradoGLStructural vulnerability of the North American power gridPhys. Rev. E2004690251032004PhRvE..69b5103A10.1103/PhysRevE.69.025103 – reference: WangWTangMYangHDoYLaiYCLeeGAsymmetrically interacting spreading dynamics on complex layered networksSci. Rep.2014450971:CAS:528:DC%2BC2MXktlOgsLk%3D24872257403771510.1038/srep05097 – reference: ZhuPZhiQGuoYWangZAnalysis of epidemic spreading process in adaptive networksIEEE Trans Circuits Syst. II Express Briefs20186612521256 – reference: BonacichPFactoring and weighting approaches to status scores and clique identificationMath. Sociol.1972211312010.1080/0022250X.1972.9989806 – reference: Yanez-SierraJDiaz-PerezASosa-SosaVAn efficient partition-based approach to identify and scatter multiple relevant spreaders in complex networksEntropy202123121643204503457384184686552021Entrp..23.1216Y10.3390/e23091216 – reference: BiJJinJQuCZhanXWangGYanGTemporal gravity model for important node identification in temporal networksChaos Solitons Fractals2021147110934424834210.1016/j.chaos.2021.110934 – reference: WattsDJStrogatzSHCollective dynamics of small-world networksNature19983934404421:CAS:528:DyaK1cXjs1Khsrk%3D1368.051391998Natur.393..440W10.1038/30918 – reference: NewmanMEJFinding community structure in networks using the eigenvectors of matricesPhys. Rev. E20067403610422821391:STN:280:DC%2BD28rpslahuw%3D%3D2006PhRvE..74c6104N10.1103/PhysRevE.74.036104 – reference: ShangQDengYCheongKHIdentifying influential nodes in complex networks: Effective distance gravity modelInf. Sci.2021577162179428588810.1016/j.ins.2021.01.053 – volume: 2 start-page: 113 year: 1972 ident: 1218_CR17 publication-title: Math. Sociol. doi: 10.1080/0022250X.1972.9989806 – volume: 417 start-page: 344 year: 2017 ident: 1218_CR11 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.07.012 – volume: 66 start-page: 1252 year: 2018 ident: 1218_CR4 publication-title: IEEE Trans Circuits Syst. II Express Briefs – volume: 505 start-page: 100 year: 2019 ident: 1218_CR10 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.07.072 – volume: 22 start-page: 450 year: 2020 ident: 1218_CR39 publication-title: Entropy doi: 10.3390/e22040450 – volume: 29 start-page: 048902 year: 2020 ident: 1218_CR40 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab77fe – volume: 179 start-page: 115061 year: 2021 ident: 1218_CR34 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115061 – volume: 9 start-page: 10692 year: 2019 ident: 1218_CR60 publication-title: Sci. Rep. doi: 10.1038/s41598-019-47119-2 – volume: 251 start-page: 1 year: 2013 ident: 1218_CR15 publication-title: Ecol. Model doi: 10.1016/j.ecolmodel.2012.12.011 – volume-title: Networks year: 2018 ident: 1218_CR1 doi: 10.1093/oso/9780198805090.001.0001 – volume: 22 start-page: 533 year: 2019 ident: 1218_CR8 publication-title: World Wide Web doi: 10.1007/s11280-018-0537-6 – volume: 8 start-page: 1331 year: 2019 ident: 1218_CR24 publication-title: Electronics doi: 10.3390/electronics8111331 – volume: 69 start-page: 025103 year: 2004 ident: 1218_CR6 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.025103 – volume: 74 start-page: 036104 year: 2006 ident: 1218_CR46 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.036104 – volume: 320 start-page: 512 year: 2018 ident: 1218_CR26 publication-title: Appl. Math. Comput. doi: 10.1016/j.cam.2018.05.051 – ident: 1218_CR42 – volume: 451 start-page: 205 year: 2015 ident: 1218_CR28 publication-title: Physica A doi: 10.1016/j.physa.2015.12.162 – volume: 89 start-page: 208701 year: 2002 ident: 1218_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.208701 – ident: 1218_CR47 – volume: 1 start-page: 215 year: 1979 ident: 1218_CR21 publication-title: Soc. Netw. doi: 10.1016/0378-8733(78)90021-7 – volume: 7 start-page: e1001109 year: 2011 ident: 1218_CR44 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1001109 – ident: 1218_CR43 doi: 10.1145/1772690.1772756 – volume: 393 start-page: 440 year: 1998 ident: 1218_CR49 publication-title: Nature doi: 10.1038/30918 – volume: 65 start-page: 591 year: 2008 ident: 1218_CR58 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2008-00370-y – volume: 138 start-page: 333 year: 2013 ident: 1218_CR13 publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2013.01.016 – volume: 57 start-page: 102141 year: 2020 ident: 1218_CR22 publication-title: Inform. Process. Manag. doi: 10.1016/j.ipm.2019.102141 – volume: 16 start-page: e0251208 year: 2021 ident: 1218_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0251208 – volume: 11 start-page: 6173 year: 2021 ident: 1218_CR35 publication-title: Sci. Rep. doi: 10.1038/s41598-021-84684-x – volume: 6 start-page: 888 year: 2010 ident: 1218_CR18 publication-title: Nat. Phys. doi: 10.1038/nphys1746 – volume: 13 start-page: 1570 year: 2021 ident: 1218_CR25 publication-title: Symmetry doi: 10.3390/sym13091570 – volume: 387 start-page: 3769 year: 2008 ident: 1218_CR52 publication-title: Physica A doi: 10.1016/j.physa.2008.01.113 – volume: 425 start-page: 92 year: 2018 ident: 1218_CR12 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.10.019 – ident: 1218_CR7 doi: 10.1145/3292500.3330855 – volume: 147 start-page: 110934 year: 2021 ident: 1218_CR36 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110934 – volume: 143 start-page: 110456 year: 2021 ident: 1218_CR37 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110456 – volume: 125 start-page: 586 year: 2016 ident: 1218_CR14 publication-title: Sci. Rep. – volume: 4 start-page: 5097 year: 2014 ident: 1218_CR59 publication-title: Sci. Rep. doi: 10.1038/srep05097 – volume: 650 start-page: 1 year: 2016 ident: 1218_CR16 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2016.06.007 – volume: 144 start-page: 113092 year: 2020 ident: 1218_CR33 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113092 – volume: 334 start-page: 388 year: 2018 ident: 1218_CR27 publication-title: Appl. Math. Comput. – volume: 227 start-page: 107198 year: 2021 ident: 1218_CR31 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107198 – volume: 42 start-page: 599 year: 2009 ident: 1218_CR54 publication-title: SIAM Rev. doi: 10.1137/S0036144500371907 – volume: 7 start-page: 10168 year: 2016 ident: 1218_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms10168 – volume: 395 start-page: 549 year: 2014 ident: 1218_CR56 publication-title: Physica A doi: 10.1016/j.physa.2013.10.047 – volume: 97 start-page: 11149 year: 2000 ident: 1218_CR57 publication-title: PNAS doi: 10.1073/pnas.200327197 – volume: 68 start-page: 065103 year: 2003 ident: 1218_CR48 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.065103 – volume: 9 start-page: 8387 year: 2019 ident: 1218_CR29 publication-title: Sci. Rep. doi: 10.1038/s41598-019-44930-9 – volume: 12 start-page: 56 year: 2011 ident: 1218_CR3 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2918 – volume: 577 start-page: 162 year: 2021 ident: 1218_CR32 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.053 – volume-title: Scale-Free Networks: Complex Webs in Nature and Technology year: 2007 ident: 1218_CR2 doi: 10.1093/acprof:oso/9780199211517.001.0001 – volume: 23 start-page: 1216 year: 2021 ident: 1218_CR23 publication-title: Entropy doi: 10.3390/e23091216 – volume: 85 start-page: 026116 year: 2012 ident: 1218_CR5 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.026116 – volume: 40 start-page: 35 year: 1977 ident: 1218_CR20 publication-title: Sociometry doi: 10.2307/3033543 – volume: 105 start-page: 218701 year: 2010 ident: 1218_CR53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.218701 – volume: 12 start-page: 2 year: 2004 ident: 1218_CR50 publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2003.822655 – volume: 6 start-page: 565 year: 2003 ident: 1218_CR45 publication-title: Adv. Complex Syst. doi: 10.1142/S0219525903001067 – volume: 193 start-page: 105464 year: 2020 ident: 1218_CR30 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105464 – ident: 1218_CR41 doi: 10.1145/1134271.1134277 – volume: 2 start-page: 317 year: 2020 ident: 1218_CR9 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0177-2 – volume: 30 start-page: 81 year: 1938 ident: 1218_CR55 publication-title: Biometrika doi: 10.1093/biomet/30.1-2.81 |
SSID | ssj0000529419 |
Score | 2.530543 |
Snippet | Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science... Abstract Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22194 |
SubjectTerms | 639/766 639/766/530 Algorithms Decomposition Gravity Humanities and Social Sciences multidisciplinary Nodes Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kUPAiVquurSVCb7p087VJjlpaiqCH0kJvIdkk-KBsxfcK9r93kux77avaXrxukt3ZyczOzGZmfgD7JnA-OO9axoPEAIX2rePRt7r3PrghBSVz7fDXb_3JufhyIS_uQH3lnLDaHrgy7sCoaLQUyaNmChOMZolTfEBAf2tAW5q_vmjz7gRTtas3M4KaqUqm4_pgjpYqV5OxHD2jXWvpmiUqDfv_5mX-mSx578S0GKLj5_Bs8iDJp0r5FjyJ4wvYrJiSNy_htJbelvIlMqsQJKjFlwTvV9OW8SopmeTxFxlrFvic-BviRjIrvxhiIBmVCP1zUoBytuHs-Ojs8KSdgBPaAR2wRasCk4F7J32kTjjt0AbzLjqVuAhxECo6LZPrAtU-JkFp6AzuDOoyS9FQ_go2xqsxvgGiUhwYR5-H9VI4F3QwkiWvaW9wsY4N0CUP7TA1Fc_YFpe2HG5zbSvfLfLdFr5b2sCH1ZoftaXGg7M_561ZzcztsMsFFBI7CYl9TEga2F1urJ10dG4x8Os1xlfaNPB-NYzalY9M3BivrsscdKkyNkgDr6scrCjhIkcmqmtArUnIGqnrI-Pse-ngrSWGuQrf7eNSlm7J-jcr3v4PVuzAU5aVIGcysl3YWPy8ju_Qr1r4vaJCvwF18x45 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFD5oRfBFvHe0SgTfdOjkNkmeRMVSBH2QCvsWkklGF8ps7W7B_ntPLjtlvfR1kgzJyTk5X3JuAK9M4Hxw3rWMB4kXFNq3jkff6t774IYxKJlihz9_6Y-_iU8LuagPbuvqVrk9E_NBHVZDeiM_RJjea0TD2rw9-9mmqlHJulpLaNyEWyl1WeJqtVDzG0uyYglqaqxMx_XhGvVViilj6Q6N2q2lO_oop-3_F9b822XyD7tpVkdH9-BuxZHkXdn4-3AjTg_gdqksefkQvpYA3BzERJalEAnK8inB_xXnZfxKsj95_EWm4gu-Jv6SuIks80NDDCTVJkKUTnK5nEdwcvTx5MNxW8sntAPCsE2rApOBeyd9pE447VAT8y46NXIR4iBUdFqOrgtU-zgKSkNncH9QotkYDeWPYW9aTXEfiBrjwDgiH9ZL4VzQwUg2ek17g4N1bIBuaWiHmlo8Vbg4tdnEzbUtdLdId5vpbmkDr-cxZyWxxrW936etmXumpNj5w-r8u60yZo2KRksxejzEhQkG18Ep8mJAaD4g7GrgYLuxtkrq2l7xVQMv52aUsWQ4cVNcXeQ-CKxShZAGnhQ-mGfCRbqfqK4BtcMhO1PdbZmWP3Ieby3xsqtwbW-2vHQ1rf-T4un1q3gGd1hi7-SpyA5gb3N-EZ8jbtr4F1k4fgPmYhaZ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9Ki-CLWD_XVongmy5uvjbJ4ymWcqAPWqFvIdlk9aDsld4V7H_vJNldOa2Cr_lYspOZzG-S-QB4ZQLnnfOuZjxINFBoWzsefa1b74Pr-qBkih3--Kk9_SqW5_J8D9gUC5Od9nNKy3xMT95hbzeoaFIwGEvGL6qlGi2eg5SqHXn7YLFYflnONyvp7UpQM0bINFzfMnlHC-Vk_bchzD8dJX97Lc1K6OQ-3BvRI1mU9R7CXhwewJ1ST_LmIXwuYbc5dImsSvkRlOALgt8rLsvYSrIXefxBhuIBviH-hriBrPL1QgwkVSRCbE5ykZxHcHby4ez9aT0WTag7BF_bWgUmA_dO-kidcNqh_uVNdKrnIsROqOi07F0TqPaxF5SGxuCuoByzPhrKH8P-sB7iUyCqjx3jiHdYK4VzQQcjWe81bQ1O1rECOtHQdmNC8VTX4sLmh22ubaG7RbrbTHdLK3g9z7ks6TT-Ofpd2pp5ZEqFnRvWV9_syBrWqGi0FL3Ho1uYYPA_OEUODAjIOwRbFRxPG2tH-dxYNPpajbaVNhW8nLtRstJziRvi-jqPQTiV6oJU8KTwwbwSLpJVopoK1A6H7Cx1t2dYfc_Zu7VEE1fhv72ZeOnXsv5Oimf_N_wI7rLE7slfkR3D_vbqOj5H9LT1L0Zx-Ql-ihWM priority: 102 providerName: Springer Nature |
Title | Identifying influential spreaders in complex networks by an improved gravity model |
URI | https://link.springer.com/article/10.1038/s41598-021-01218-1 https://www.ncbi.nlm.nih.gov/pubmed/34772970 https://www.proquest.com/docview/2596811889 https://www.proquest.com/docview/2597501353 https://pubmed.ncbi.nlm.nih.gov/PMC8589971 https://doaj.org/article/97e9854fb53849d982f31d33d81bc976 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddy2AvY99z1wUN9rZ5i74s6WGMNLSUQMvoWsibkCx5CwRnS1Jo_vueJCcjWzb2FJBlI5_ucr-z7u6H0FvtGautsyVlXkCAQqrSsuBKVTnnbd14KWLt8PlFdXbNR2Mx3kNruqNOgIudoV3kk7qeTz_c_lx9BoP_lEvG1ccFOKFYKEZjYAwuq4Ro6AA8k4yMBucd3M-9vqnmiesjNmGH5VHa1dHsfsyWr0ot_Xfh0D_TKX87U02u6vQRethhTDzISvEY7YX2CbqfWSdXT9FlLs5NBU54kklKwM6nGJ6XE5thFKdc83CL25wnvsBuhW2LJ-kjRPA48hYBgseJSucZujo9uRqelR21QlkDRFuW0lPhmbPCBWK5VRa8NOsHKxvGfai5DFaJxvY9US40nBDf17B3YO20CZqw52i_nbXhJcKyCTVlgIpoJbi1XnktaOMUqTTcrEKByFqGpu7ajkf2i6lJx99MmSx3A3I3Se6GFOjd5p4fuenGP2cfx63ZzIwNs9PAbP7NdPZntAxaCd44-IPn2mt4D0ZATz3A9hogWYGO1htr1kpoIDSsFERgShfozeYy2F88VLFtmN2kOQC6IntIgV5kPdishPEYu8h-geSWhmwtdftKO_meenwrAYGwhHd7v9alX8v6uygO_2OZr9ADmnQ8JjEeof3l_Ca8BmC1dD10T45lDx0MBqOvI_g9Prn4cgmjw2rYSx8resme7gACISNY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1tpPYPiDEq9rSxwEt0t4sO3ZgpSpbulvB_ij-I2M72Wp59NZr4kT2-LNnxjPjD-C5cpw3xpqccVehg0Lr3HBvc1lb60zTOlGF2uHDo3r0pfw0qSYb8GuohQlplcOeGDdqN2vCGfkOmum1RGtYqjcn3_PAGhWiqwOFRoLFvl_-QJdt_nrvA87vC8Z2P47fj_KeVSBv0DpZ5MKxynFrKuupKY00qKB44Y1oeel8UwpvZNWawlFpfVtS6gqF3Uags9YryvG3V-Aq6t0i-HpiIlZHOiFoVlLVl-YUXO7MUT2GEjYWXHZUpjldU3-RJeBfpu3fGZp_hGmj9tu9BTd7s5W8TTi7DRu-uwPXEpHl8i58TvW-sWaKTBPvCW4dxwT_l3Kl8SmJ6ev-J-lS6vmc2CUxHZnGcw3vSKBCQqeARHaeezC-DLneh81u1vkHQETrG8bR0GJ1VRrjpFMVa62ktcKPpc-ADjLUTX-TeSDUONYxos6lTnLXKHcd5a5pBi9X35ykezwubP0uTM2qZbiDOz6YnX7V_ZLWSnglq7K1qDNK5RSOg1OEvkNPoEErL4PtYWJ1vzHM9TmMM3i2eo1LOsRpTOdnZ7EN2nGBkCSDrYSDVU94GdwhUWQg1hCy1tX1N930W7w2XFboWwsc26sBS-fd-r8oHl48iqdwfTQ-PNAHe0f7j-AGC1APSZJsGzYXp2f-MZpsC_skLhQC-pIX5m8iFFSG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUC9IN4EChgJThBt_EhiHxCitKuWwqqqitSbZccOrFRl2-5WsD-Nf8fYSbZaHr31ajuRPZ7xzHhm_AG8Uo7zyliTMu5ydFBokRrubSoLa52palfmoXb4y7jY_So-HefHa_Crr4UJaZX9mRgPajetwh35EM30QqI1LNWw7tIiDrZH70_P0oAgFSKtPZxGyyL7fvED3bfZu71t3OvXjI12jj7uph3CQFqhpTJPS8dyx63JradGGGlQWfHMm7LmwvlKlN7IvDaZo9L6WlDqMoVLQKZntVeU429vwHoZnKIBrG_tjA8Olxc8IYQmqOoKdTIuhzNUlqGgjQUHHlVrSleUYcQM-Jeh-3e-5h9B26gLR3fgdmfEkg8t192FNd_cg5strOXiPhy21b-xgopMWhQUPEhOCP6vzZzGVhKT2f1P0rSJ6DNiF8Q0ZBJvObwjARgJXQQSsXoewNF1UPYhDJpp4x8DKWtfMY5mFytyYYyTTuWstpIWCj-WPgHa01BX3bvmAV7jRMf4Ope6pbtGuutId00TeLP85rR91ePK0Vtha5Yjw4vcsWF6_k13Aq5V6ZXMRW1RgwjlFK6DUxQEh35BhTZfApv9xurumJjpS6ZO4OWyGwU8RG1M46cXcQxadQGeJIFHLR8sZ8JFcI7KLIFyhUNWprra00y-x0fEZY6edolre9vz0uW0_k-KJ1ev4gXcQqHUn_fG-09hgwVODxmTbBMG8_ML_wztt7l93kkKAX3NsvkbxkJaIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+influential+spreaders+in+complex+networks+by+an+improved+gravity+model&rft.jtitle=Scientific+reports&rft.au=Li%2C+Zhe&rft.au=Huang%2C+Xinyu&rft.date=2021-11-12&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=22194&rft_id=info:doi/10.1038%2Fs41598-021-01218-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |