Identifying influential spreaders in complex networks by an improved gravity model

Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most wide...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 22194 - 10
Main Authors Li, Zhe, Huang, Xinyu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.11.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k -shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k -shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall’s rank correlation, and in terms of ranking efficiency as measured by the monotonicity value.
AbstractList Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k-shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k-shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall's rank correlation, and in terms of ranking efficiency as measured by the monotonicity value.Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k-shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k-shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall's rank correlation, and in terms of ranking efficiency as measured by the monotonicity value.
Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k -shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k -shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall’s rank correlation, and in terms of ranking efficiency as measured by the monotonicity value.
Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k-shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k-shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall's rank correlation, and in terms of ranking efficiency as measured by the monotonicity value.
Abstract Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science and physical societies, and many algorithms to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used neighborhood-based centrality, was introduced into the network world to evaluate the spreading ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm. The k-shell decomposition method also faces the same problem. In order to solve the resolution limit problem, we propose a high-resolution index combining both degree centrality and the k-shell decomposition method. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks show that our model outperforms most of the state-of-the-art methods. It has a better performance in terms of ranking performance as measured by the Kendall’s rank correlation, and in terms of ranking efficiency as measured by the monotonicity value.
ArticleNumber 22194
Author Li, Zhe
Huang, Xinyu
Author_xml – sequence: 1
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
  email: gislzneu@163.com
  organization: Software College, Shenyang University of Technology of China
– sequence: 2
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  email: huangxinyu@mail.neu.edu.cn
  organization: Software College, Northeastern University of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34772970$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1UREvpC7BAkdiwCfh3bG-QUEXLSJWQUPeWE98MHpw42Jkp8_Y4TQttF_XG9vW5n46uz2t0NMQBEHpL8EeCmfqUORFa1ZiSGhNKVE1eoBOKuagpo_TowfkYneW8xWUJqjnRr9Ax41JSLfEJ-rF2MEy-O_hhU_mhC7v5akOVxwTWQcqlWrWxHwP8qQaYbmL6lavmUNmh8v2Y4h5ctUl276dD1UcH4Q162dmQ4exuP0XXF1-vz7_VV98v1-dfrupWcDzV0lHhWGNFA8Ryq-yKcIbByo5xBy2XYJXoLHZENdBxQhzWjbNcKdqBJuwUrResi3ZrxuR7mw4mWm9uCzFtjE2TbwMYLUErwbtGMMW104XAiGPMKdK0Wq4K6_PCGndND64tM0g2PII-fhn8T7OJe6OE0lrOZj7cAVL8vYM8md7nFkKwA8RdNlRoKTBhghXp-yfSbdyloUxqVq0UIUrponr30NE_K_c_VwRqEbQp5pygM62f7OTjbNAHQ7CZc2KWnJiSE3ObEzObpU9a7-nPNrGlqQSjZAXSf9vPdP0F99jQbg
CitedBy_id crossref_primary_10_1016_j_ememar_2024_101138
crossref_primary_10_7498_aps_74_20241256
crossref_primary_10_1038_s41598_022_27145_3
crossref_primary_10_1038_s41598_023_30308_5
crossref_primary_10_1007_s10115_024_02262_9
crossref_primary_10_1016_j_jcmds_2025_100112
crossref_primary_10_1038_s41598_022_14005_3
crossref_primary_10_1016_j_jocs_2024_102473
crossref_primary_10_3390_e27030298
crossref_primary_10_3389_fphy_2023_1239660
crossref_primary_10_1063_5_0127434
crossref_primary_10_1016_j_chaos_2024_115675
crossref_primary_10_1038_s41598_023_43585_x
crossref_primary_10_3390_e24070904
crossref_primary_10_1016_j_ins_2022_10_070
crossref_primary_10_1016_j_chaos_2024_115348
crossref_primary_10_3390_e24091279
crossref_primary_10_1016_j_frl_2023_104225
crossref_primary_10_1109_ACCESS_2024_3363635
crossref_primary_10_1016_j_eswa_2023_122077
crossref_primary_10_1103_PhysRevE_105_044308
Cites_doi 10.1080/0022250X.1972.9989806
10.1016/j.ins.2017.07.012
10.1016/j.ins.2019.07.072
10.3390/e22040450
10.1088/1674-1056/ab77fe
10.1016/j.eswa.2021.115061
10.1038/s41598-019-47119-2
10.1016/j.ecolmodel.2012.12.011
10.1093/oso/9780198805090.001.0001
10.1007/s11280-018-0537-6
10.3390/electronics8111331
10.1103/PhysRevE.69.025103
10.1103/PhysRevE.74.036104
10.1016/j.cam.2018.05.051
10.1016/j.physa.2015.12.162
10.1103/PhysRevLett.89.208701
10.1016/0378-8733(78)90021-7
10.1371/journal.pcbi.1001109
10.1145/1772690.1772756
10.1038/30918
10.1140/epjb/e2008-00370-y
10.1016/j.pharmthera.2013.01.016
10.1016/j.ipm.2019.102141
10.1371/journal.pone.0251208
10.1038/s41598-021-84684-x
10.1038/nphys1746
10.3390/sym13091570
10.1016/j.physa.2008.01.113
10.1016/j.ins.2017.10.019
10.1145/3292500.3330855
10.1016/j.chaos.2021.110934
10.1016/j.chaos.2020.110456
10.1038/srep05097
10.1016/j.physrep.2016.06.007
10.1016/j.eswa.2019.113092
10.1016/j.knosys.2021.107198
10.1137/S0036144500371907
10.1038/ncomms10168
10.1016/j.physa.2013.10.047
10.1073/pnas.200327197
10.1103/PhysRevE.68.065103
10.1038/s41598-019-44930-9
10.1038/nrg2918
10.1016/j.ins.2021.01.053
10.1093/acprof:oso/9780199211517.001.0001
10.3390/e23091216
10.1103/PhysRevE.85.026116
10.2307/3033543
10.1103/PhysRevLett.105.218701
10.1109/TNET.2003.822655
10.1142/S0219525903001067
10.1016/j.knosys.2019.105464
10.1145/1134271.1134277
10.1038/s42256-020-0177-2
10.1093/biomet/30.1-2.81
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-01218-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_97e9854fb53849d982f31d33d81bc976
PMC8589971
34772970
10_1038_s41598_021_01218_1
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-7d25d3ba5be1a4a8a61430ea7f34dec47ea85fa0d18bef411d09bda4882fe913
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:52 EDT 2025
Thu Aug 21 13:20:31 EDT 2025
Fri Jul 11 05:40:05 EDT 2025
Sat Aug 23 12:37:46 EDT 2025
Thu Jan 02 22:52:25 EST 2025
Tue Jul 01 01:33:46 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
Fri Feb 21 02:39:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-7d25d3ba5be1a4a8a61430ea7f34dec47ea85fa0d18bef411d09bda4882fe913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2596811889?pq-origsite=%requestingapplication%
PMID 34772970
PQID 2596811889
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_97e9854fb53849d982f31d33d81bc976
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8589971
proquest_miscellaneous_2597501353
proquest_journals_2596811889
pubmed_primary_34772970
crossref_citationtrail_10_1038_s41598_021_01218_1
crossref_primary_10_1038_s41598_021_01218_1
springer_journals_10_1038_s41598_021_01218_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-12
PublicationDateYYYYMMDD 2021-11-12
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References IwendiCPonnanSMunirathinamRSrinivasanKChangCYAn efficient and unique TF/IDF algorithmic model-based data analysis for handling applications with big data streamingElectronics20198133110.3390/electronics8111331
YanXCuiYNiSIdentifying influential spreaders in complex networks based on entropy weight method and gravity lawChin. Phys. B2020290489022020ChPhB..29d8902Y10.1088/1674-1056/ab77fe
HuHBWangXFUnified index to quantifying heterogeneity of complex networksPhysica A2008387376937802008PhyA..387.3769H10.1016/j.physa.2008.01.113
HuangXChenDWangDRenTIdentifying influencers in social networksEntropy2020224504217526751693010.3390/e22040450
WattsDJStrogatzSHCollective dynamics of small-world networksNature19983934404421:CAS:528:DyaK1cXjs1Khsrk%3D1368.051391998Natur.393..440W10.1038/30918
CaldarelliGScale-Free Networks: Complex Webs in Nature and Technology2007OxfordOxford University Press1119.9400110.1093/acprof:oso/9780199211517.001.0001
GuimerȧRDanonLDíaz-GuileraAGiraltFArenasASelf-similar community structure in a network of human interactionsPhys. Rev. E2003680651032003PhRvE..68f5103G10.1103/PhysRevE.68.065103
Park, N., Kan, A., Dong, X.L., Zhao, T. & Faloutsos, C. Estimating node importance in knowledge graphs using graph neural networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 596–606 (ACM Press, 2019).
ZhuJWangLIdentifying influential nodes in complex networks based on node itself and neighbor layer informationSymmetry202113157010.3390/sym13091570
UllahAWangBShengJLongJKhanNSunZIdentification of nodes influence based on global structure model in complex networksSci. Rep.20211161733373172079699362021NatSR..11.6173U10.1038/s41598-021-84684-x
YanGFuZQChenGEpidemic threshold and phase transition in scale-free networks with asymmetric infectionEur. Phys. J. B2008655915941:CAS:528:DC%2BD1cXhsVCjtbrM1188.911932008EPJB...65..591Y10.1140/epjb/e2008-00370-y
NewmanMEJFinding community structure in networks using the eigenvectors of matricesPhys. Rev. E20067403610422821391:STN:280:DC%2BD28rpslahuw%3D%3D2006PhRvE..74c6104N10.1103/PhysRevE.74.036104
BellingeriMBodiniAFood web's backbones and energy delivery in ecosystemsSci. Rep.2016125586594
KendallMA new measure of rank correlationBiometrika19383081890019.1300110.1093/biomet/30.1-2.81
MajiGDuttaAMaltaMCSenSIdentifying and ranking super spreaders in real world complex networks without influence overlapExpert Syst. Appl.202117911506110.1016/j.eswa.2021.115061
XuWLiTLiangWYuJXYangNGaoSIdentifying structural hole spanners to maximally block information propagationInf. Sci.201950510012639830371456.9110710.1016/j.ins.2019.07.072
BonacichPFactoring and weighting approaches to status scores and clique identificationMath. Sociol.1972211312010.1080/0022250X.1972.9989806
FreemanLCCentrality in social networks conceptual clarificationSoc. Netw.1979121523910.1016/0378-8733(78)90021-7
LiHShangQDengYA generalized gravity model for influential spreaders identification in complex networksChaos Solitons Fractals2021143110456419197110.1016/j.chaos.2020.110456
MajiGNamtirthaADuttaAMaltaMCInfluential spreaders identification in complex networks with improved k-shell hybrid methodExpert Syst. Appl.202014411309210.1016/j.eswa.2019.113092
LüLChenDRenXLZhangQMZhangYCZhouTVital nodes identification in complex networksPhys. Rep.201665016335438572016PhR...650....1L10.1016/j.physrep.2016.06.007
Yanez-SierraJDiaz-PerezASosa-SosaVAn efficient partition-based approach to identify and scatter multiple relevant spreaders in complex networksEntropy202123121643204503457384184686552021Entrp..23.1216Y10.3390/e23091216
KitsakMGallosLKHavlinSLiljerosFMuchnikLStanleyHEIdentification of influential spreaders in complex networksNat. Phys.201068888931:CAS:528:DC%2BC3cXhtlKltLfL10.1038/nphys1746
BarabásiALGulbahceNLoscalzoJNetwork medicine: A network-based approach to human diseaseNat. Rev. Genet.201112566821164525314005210.1038/nrg2918
LüLZhouTZhangQMStanleyHEThe H-index of a network node and its relation to degree and corenessNat. Commun.20167101682675416147299222016NatCo...710168L10.1038/ncomms10168
YuZShaoJYangQSunZProfitLeader: Identifying leaders in networks with profit capacityWorld Wide Web20192253355310.1007/s11280-018-0537-6
AmaralLANScalaABarthelemyMStanleyHEClasses of small-world networksPNAS20009711149111521:CAS:528:DC%2BD3cXnsF2rt7g%3D11005838171682000PNAS...9711149A10.1073/pnas.200327197
WangJLiCXiaCImproved centrality indicators to characterize the nodal spreading capability in complex networksAppl. Math. Comput.20183343884003804519
BellingeriMCassiDVincenziSIncreasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food websEcol. Model20132511810.1016/j.ecolmodel.2012.12.011
NewmanMEJAssortative mixing in networksPhys. Rev. Lett.2002892087011:STN:280:DC%2BD38notleksA%3D%3D124435152002PhRvL..89t8701N10.1103/PhysRevLett.89.208701
Leskovec, J., Huttenlocher, D. & Kleinberg, J. Predicting positive and negative links in online social networks. In Proceedings of the 19th International Conference on World Wide Web. 641–650 (ACM Press, 2010).
BaeJKimSIdentifying and ranking influential spreaders in complex networks by neighborhood corenessPhysica A201439554955931336861395.921392014PhyA..395..549B10.1016/j.physa.2013.10.047
LiZRenTMaXQLiuSMZhangYXZhouTIdentifying influential spreaders by gravity modelSci. Rep.2019983873118277365578502019NatSR...9.8387L10.1038/s41598-019-44930-9
RochaLELiljerosFHolmePSimulated epidemics in an empirical spatiotemporal network of 50,185 sexual contactsPLoS Comput. Biol.20117e10011091:CAS:528:DC%2BC3MXktVWhtLc%3D2144522830601612011PLSCB...7E1109R10.1371/journal.pcbi.1001109
YangXXiaoFAn improved gravity model to identify influential nodes in complex networks based on k-shell methodKnowl. Based Syst.202122710719810.1016/j.knosys.2021.107198
LiCWangLSunSXiaCIdentification of influential spreaders based on classified neighbors in real-world complex networksAppl. Math. Comput.201832051252337227641427.9120710.1016/j.cam.2018.05.051
CastellanoCPastor-SatorrasRThresholds for epidemic spreading in networksPhys. Rev. Lett.2010105218701212313612010PhRvL.105u8701C10.1103/PhysRevLett.105.218701
CsermelyPKorcsmárosTKissHJMLondonGNussinovRStructure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive reviewPharmacol. Ther.20131383334081:CAS:528:DC%2BC3sXls1CgtLk%3D23384594364700610.1016/j.pharmthera.2013.01.016
ShangQDengYCheongKHIdentifying influential nodes in complex networks: Effective distance gravity modelInf. Sci.2021577162179428588810.1016/j.ins.2021.01.053
Adamic, L. A. & Glance, N. The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery. 36–43 (ACM Press, 2005).
GleiserPDanonLCommunity structure in JazzAdv. Complex Syst.2003656510.1142/S0219525903001067
WangXYangQLiuMMaXComprehensive influence of topological location and neighbor information on identifying influential nodes in complex networksPLoS ONE202116e02512081:CAS:528:DC%2BB3MXhtFOktLvL34019580813945810.1371/journal.pone.0251208
ZhuPZhiQGuoYWangZAnalysis of epidemic spreading process in adaptive networksIEEE Trans Circuits Syst. II Express Briefs20186612521256
Mcauley, J. J. & Leskovec, J. Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst.
HethcoteHWThe mathematics of infectious diseasesSIAM Rev.20094259965318140490993.920332000SIAMR..42..599H10.1137/S0036144500371907
WangWTangMYangHDoYLaiYCLeeGAsymmetrically interacting spreading dynamics on complex layered networksSci. Rep.2014450971:CAS:528:DC%2BC2MXktlOgsLk%3D24872257403771510.1038/srep05097
LiuFWangZDengYGMM: A generalized mechanics model for identifying the importance of nodes in complex networksKnowl. Based Syst.202019310546410.1016/j.knosys.2019.105464
FanCZengLSunYLiuYFinding key players in complex networks through deep reinforcement learningNat. Mach. Intell.2020231732434124581819133510.1038/s42256-020-0177-2
ZhengZYeFLiRHLingGJinTFinding weighted k-truss communities in large networksInf. Sci.20174173443601444.9118010.1016/j.ins.2017.07.012
KumarASrinivasanKChengWHZomayaAYHybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social dataInform. Process. Manag.20205710214110.1016/j.ipm.2019.102141
FreemanLCA set of measures of centrality based on betweennessSociometry197740354110.2307/3033543
BiJJinJQuCZhanXWangGYanGTemporal gravity model for important node identification in temporal networksChaos Solitons Fractals2021147110934424834210.1016/j.chaos.2021.110934
MaLLMaCZhangHFWangBHIdentifying influential spreaders in complex networks based on gravity formulaPhysica A20154512052121400.924032016PhyA..451..205M10.1016/j.physa.2015.12.162
SpringNMahajanRWetherallDAndersonTMeasuring ISP topologies with rocketfuelIEEE/ACM Trans. Netw.20041221610.1109/TNET.2003.822655
NewmanMEJNetworks2018OxfordOxford University Press1391.9400610.1093/oso/9780198805090.001.0001
Borge-HolthoeferJMorenoYAbsence of influential spreaders in rumor dynamicsPhys. Rev. E2012850261162012PhRvE..85b6116B10.1103/PhysRevE.85.026116
BellingeriMBevacquaDScotognellaFCassiDThe heterogeneity in link weights may decrease the robustness of real-world complex weighted networksSci. Rep.20199106921:STN:280:DC%2BB3MvgsFehsg%3D%3D3133783466504362019NatSR...910692B10.1038/s41598-019-47119-2
HeKLiYSoundarajanSHopcroftJEHidden community detection in social networkInf. Sci.201842592106371711910.1016/j.ins.2017.10.019
AlbertRAlbertINakaradoGLStructural vulnerability of the North American power gridPhys. Rev. E2004690251032004PhRvE..69b5103A10.1103/PhysRevE.69.025103
Batageli, V. & Mrvar, A. Pajek Datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/ (2007).
N Spring (1218_CR50) 2004; 12
G Maji (1218_CR33) 2020; 144
1218_CR47
LC Freeman (1218_CR20) 1977; 40
C Iwendi (1218_CR24) 2019; 8
MEJ Newman (1218_CR46) 2006; 74
C Castellano (1218_CR53) 2010; 105
1218_CR43
X Huang (1218_CR39) 2020; 22
1218_CR42
1218_CR41
G Maji (1218_CR34) 2021; 179
W Xu (1218_CR10) 2019; 505
AL Barabási (1218_CR3) 2011; 12
W Wang (1218_CR59) 2014; 4
J Borge-Holthoefer (1218_CR5) 2012; 85
A Kumar (1218_CR22) 2020; 57
H Li (1218_CR37) 2021; 143
Q Shang (1218_CR32) 2021; 577
1218_CR7
M Bellingeri (1218_CR60) 2019; 9
J Bae (1218_CR56) 2014; 395
Z Yu (1218_CR8) 2019; 22
R Albert (1218_CR6) 2004; 69
DJ Watts (1218_CR49) 1998; 393
Z Li (1218_CR29) 2019; 9
LAN Amaral (1218_CR57) 2000; 97
M Bellingeri (1218_CR14) 2016; 125
J Wang (1218_CR27) 2018; 334
LL Ma (1218_CR28) 2015; 451
J Bi (1218_CR36) 2021; 147
P Csermely (1218_CR13) 2013; 138
M Kitsak (1218_CR18) 2010; 6
C Li (1218_CR26) 2018; 320
P Zhu (1218_CR4) 2018; 66
L Lü (1218_CR19) 2016; 7
LC Freeman (1218_CR21) 1979; 1
LE Rocha (1218_CR44) 2011; 7
MEJ Newman (1218_CR51) 2002; 89
F Liu (1218_CR30) 2020; 193
R Guimerȧ (1218_CR48) 2003; 68
MEJ Newman (1218_CR1) 2018
J Yanez-Sierra (1218_CR23) 2021; 23
X Wang (1218_CR38) 2021; 16
G Caldarelli (1218_CR2) 2007
A Ullah (1218_CR35) 2021; 11
J Zhu (1218_CR25) 2021; 13
M Bellingeri (1218_CR15) 2013; 251
L Lü (1218_CR16) 2016; 650
X Yang (1218_CR31) 2021; 227
G Yan (1218_CR58) 2008; 65
HB Hu (1218_CR52) 2008; 387
X Yan (1218_CR40) 2020; 29
K He (1218_CR12) 2018; 425
Z Zheng (1218_CR11) 2017; 417
HW Hethcote (1218_CR54) 2009; 42
P Bonacich (1218_CR17) 1972; 2
C Fan (1218_CR9) 2020; 2
P Gleiser (1218_CR45) 2003; 6
M Kendall (1218_CR55) 1938; 30
References_xml – reference: HuangXChenDWangDRenTIdentifying influencers in social networksEntropy2020224504217526751693010.3390/e22040450
– reference: KitsakMGallosLKHavlinSLiljerosFMuchnikLStanleyHEIdentification of influential spreaders in complex networksNat. Phys.201068888931:CAS:528:DC%2BC3cXhtlKltLfL10.1038/nphys1746
– reference: MajiGNamtirthaADuttaAMaltaMCInfluential spreaders identification in complex networks with improved k-shell hybrid methodExpert Syst. Appl.202014411309210.1016/j.eswa.2019.113092
– reference: NewmanMEJAssortative mixing in networksPhys. Rev. Lett.2002892087011:STN:280:DC%2BD38notleksA%3D%3D124435152002PhRvL..89t8701N10.1103/PhysRevLett.89.208701
– reference: HuHBWangXFUnified index to quantifying heterogeneity of complex networksPhysica A2008387376937802008PhyA..387.3769H10.1016/j.physa.2008.01.113
– reference: LiCWangLSunSXiaCIdentification of influential spreaders based on classified neighbors in real-world complex networksAppl. Math. Comput.201832051252337227641427.9120710.1016/j.cam.2018.05.051
– reference: LüLZhouTZhangQMStanleyHEThe H-index of a network node and its relation to degree and corenessNat. Commun.20167101682675416147299222016NatCo...710168L10.1038/ncomms10168
– reference: CsermelyPKorcsmárosTKissHJMLondonGNussinovRStructure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive reviewPharmacol. Ther.20131383334081:CAS:528:DC%2BC3sXls1CgtLk%3D23384594364700610.1016/j.pharmthera.2013.01.016
– reference: LüLChenDRenXLZhangQMZhangYCZhouTVital nodes identification in complex networksPhys. Rep.201665016335438572016PhR...650....1L10.1016/j.physrep.2016.06.007
– reference: WangXYangQLiuMMaXComprehensive influence of topological location and neighbor information on identifying influential nodes in complex networksPLoS ONE202116e02512081:CAS:528:DC%2BB3MXhtFOktLvL34019580813945810.1371/journal.pone.0251208
– reference: Leskovec, J., Huttenlocher, D. & Kleinberg, J. Predicting positive and negative links in online social networks. In Proceedings of the 19th International Conference on World Wide Web. 641–650 (ACM Press, 2010).
– reference: CaldarelliGScale-Free Networks: Complex Webs in Nature and Technology2007OxfordOxford University Press1119.9400110.1093/acprof:oso/9780199211517.001.0001
– reference: RochaLELiljerosFHolmePSimulated epidemics in an empirical spatiotemporal network of 50,185 sexual contactsPLoS Comput. Biol.20117e10011091:CAS:528:DC%2BC3MXktVWhtLc%3D2144522830601612011PLSCB...7E1109R10.1371/journal.pcbi.1001109
– reference: FreemanLCCentrality in social networks conceptual clarificationSoc. Netw.1979121523910.1016/0378-8733(78)90021-7
– reference: Adamic, L. A. & Glance, N. The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery. 36–43 (ACM Press, 2005).
– reference: Park, N., Kan, A., Dong, X.L., Zhao, T. & Faloutsos, C. Estimating node importance in knowledge graphs using graph neural networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 596–606 (ACM Press, 2019).
– reference: ZhuJWangLIdentifying influential nodes in complex networks based on node itself and neighbor layer informationSymmetry202113157010.3390/sym13091570
– reference: FanCZengLSunYLiuYFinding key players in complex networks through deep reinforcement learningNat. Mach. Intell.2020231732434124581819133510.1038/s42256-020-0177-2
– reference: IwendiCPonnanSMunirathinamRSrinivasanKChangCYAn efficient and unique TF/IDF algorithmic model-based data analysis for handling applications with big data streamingElectronics20198133110.3390/electronics8111331
– reference: HethcoteHWThe mathematics of infectious diseasesSIAM Rev.20094259965318140490993.920332000SIAMR..42..599H10.1137/S0036144500371907
– reference: AmaralLANScalaABarthelemyMStanleyHEClasses of small-world networksPNAS20009711149111521:CAS:528:DC%2BD3cXnsF2rt7g%3D11005838171682000PNAS...9711149A10.1073/pnas.200327197
– reference: MajiGDuttaAMaltaMCSenSIdentifying and ranking super spreaders in real world complex networks without influence overlapExpert Syst. Appl.202117911506110.1016/j.eswa.2021.115061
– reference: GuimerȧRDanonLDíaz-GuileraAGiraltFArenasASelf-similar community structure in a network of human interactionsPhys. Rev. E2003680651032003PhRvE..68f5103G10.1103/PhysRevE.68.065103
– reference: KumarASrinivasanKChengWHZomayaAYHybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social dataInform. Process. Manag.20205710214110.1016/j.ipm.2019.102141
– reference: FreemanLCA set of measures of centrality based on betweennessSociometry197740354110.2307/3033543
– reference: SpringNMahajanRWetherallDAndersonTMeasuring ISP topologies with rocketfuelIEEE/ACM Trans. Netw.20041221610.1109/TNET.2003.822655
– reference: ZhengZYeFLiRHLingGJinTFinding weighted k-truss communities in large networksInf. Sci.20174173443601444.9118010.1016/j.ins.2017.07.012
– reference: LiZRenTMaXQLiuSMZhangYXZhouTIdentifying influential spreaders by gravity modelSci. Rep.2019983873118277365578502019NatSR...9.8387L10.1038/s41598-019-44930-9
– reference: Mcauley, J. J. & Leskovec, J. Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst.
– reference: XuWLiTLiangWYuJXYangNGaoSIdentifying structural hole spanners to maximally block information propagationInf. Sci.201950510012639830371456.9110710.1016/j.ins.2019.07.072
– reference: LiHShangQDengYA generalized gravity model for influential spreaders identification in complex networksChaos Solitons Fractals2021143110456419197110.1016/j.chaos.2020.110456
– reference: YanGFuZQChenGEpidemic threshold and phase transition in scale-free networks with asymmetric infectionEur. Phys. J. B2008655915941:CAS:528:DC%2BD1cXhsVCjtbrM1188.911932008EPJB...65..591Y10.1140/epjb/e2008-00370-y
– reference: BellingeriMBodiniAFood web's backbones and energy delivery in ecosystemsSci. Rep.2016125586594
– reference: CastellanoCPastor-SatorrasRThresholds for epidemic spreading in networksPhys. Rev. Lett.2010105218701212313612010PhRvL.105u8701C10.1103/PhysRevLett.105.218701
– reference: BaeJKimSIdentifying and ranking influential spreaders in complex networks by neighborhood corenessPhysica A201439554955931336861395.921392014PhyA..395..549B10.1016/j.physa.2013.10.047
– reference: UllahAWangBShengJLongJKhanNSunZIdentification of nodes influence based on global structure model in complex networksSci. Rep.20211161733373172079699362021NatSR..11.6173U10.1038/s41598-021-84684-x
– reference: NewmanMEJNetworks2018OxfordOxford University Press1391.9400610.1093/oso/9780198805090.001.0001
– reference: Borge-HolthoeferJMorenoYAbsence of influential spreaders in rumor dynamicsPhys. Rev. E2012850261162012PhRvE..85b6116B10.1103/PhysRevE.85.026116
– reference: BellingeriMBevacquaDScotognellaFCassiDThe heterogeneity in link weights may decrease the robustness of real-world complex weighted networksSci. Rep.20199106921:STN:280:DC%2BB3MvgsFehsg%3D%3D3133783466504362019NatSR...910692B10.1038/s41598-019-47119-2
– reference: BarabásiALGulbahceNLoscalzoJNetwork medicine: A network-based approach to human diseaseNat. Rev. Genet.201112566821164525314005210.1038/nrg2918
– reference: LiuFWangZDengYGMM: A generalized mechanics model for identifying the importance of nodes in complex networksKnowl. Based Syst.202019310546410.1016/j.knosys.2019.105464
– reference: BellingeriMCassiDVincenziSIncreasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food websEcol. Model20132511810.1016/j.ecolmodel.2012.12.011
– reference: WangJLiCXiaCImproved centrality indicators to characterize the nodal spreading capability in complex networksAppl. Math. Comput.20183343884003804519
– reference: MaLLMaCZhangHFWangBHIdentifying influential spreaders in complex networks based on gravity formulaPhysica A20154512052121400.924032016PhyA..451..205M10.1016/j.physa.2015.12.162
– reference: Batageli, V. & Mrvar, A. Pajek Datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/ (2007).
– reference: GleiserPDanonLCommunity structure in JazzAdv. Complex Syst.2003656510.1142/S0219525903001067
– reference: HeKLiYSoundarajanSHopcroftJEHidden community detection in social networkInf. Sci.201842592106371711910.1016/j.ins.2017.10.019
– reference: YangXXiaoFAn improved gravity model to identify influential nodes in complex networks based on k-shell methodKnowl. Based Syst.202122710719810.1016/j.knosys.2021.107198
– reference: YuZShaoJYangQSunZProfitLeader: Identifying leaders in networks with profit capacityWorld Wide Web20192253355310.1007/s11280-018-0537-6
– reference: YanXCuiYNiSIdentifying influential spreaders in complex networks based on entropy weight method and gravity lawChin. Phys. B2020290489022020ChPhB..29d8902Y10.1088/1674-1056/ab77fe
– reference: KendallMA new measure of rank correlationBiometrika19383081890019.1300110.1093/biomet/30.1-2.81
– reference: AlbertRAlbertINakaradoGLStructural vulnerability of the North American power gridPhys. Rev. E2004690251032004PhRvE..69b5103A10.1103/PhysRevE.69.025103
– reference: WangWTangMYangHDoYLaiYCLeeGAsymmetrically interacting spreading dynamics on complex layered networksSci. Rep.2014450971:CAS:528:DC%2BC2MXktlOgsLk%3D24872257403771510.1038/srep05097
– reference: ZhuPZhiQGuoYWangZAnalysis of epidemic spreading process in adaptive networksIEEE Trans Circuits Syst. II Express Briefs20186612521256
– reference: BonacichPFactoring and weighting approaches to status scores and clique identificationMath. Sociol.1972211312010.1080/0022250X.1972.9989806
– reference: Yanez-SierraJDiaz-PerezASosa-SosaVAn efficient partition-based approach to identify and scatter multiple relevant spreaders in complex networksEntropy202123121643204503457384184686552021Entrp..23.1216Y10.3390/e23091216
– reference: BiJJinJQuCZhanXWangGYanGTemporal gravity model for important node identification in temporal networksChaos Solitons Fractals2021147110934424834210.1016/j.chaos.2021.110934
– reference: WattsDJStrogatzSHCollective dynamics of small-world networksNature19983934404421:CAS:528:DyaK1cXjs1Khsrk%3D1368.051391998Natur.393..440W10.1038/30918
– reference: NewmanMEJFinding community structure in networks using the eigenvectors of matricesPhys. Rev. E20067403610422821391:STN:280:DC%2BD28rpslahuw%3D%3D2006PhRvE..74c6104N10.1103/PhysRevE.74.036104
– reference: ShangQDengYCheongKHIdentifying influential nodes in complex networks: Effective distance gravity modelInf. Sci.2021577162179428588810.1016/j.ins.2021.01.053
– volume: 2
  start-page: 113
  year: 1972
  ident: 1218_CR17
  publication-title: Math. Sociol.
  doi: 10.1080/0022250X.1972.9989806
– volume: 417
  start-page: 344
  year: 2017
  ident: 1218_CR11
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.07.012
– volume: 66
  start-page: 1252
  year: 2018
  ident: 1218_CR4
  publication-title: IEEE Trans Circuits Syst. II Express Briefs
– volume: 505
  start-page: 100
  year: 2019
  ident: 1218_CR10
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.07.072
– volume: 22
  start-page: 450
  year: 2020
  ident: 1218_CR39
  publication-title: Entropy
  doi: 10.3390/e22040450
– volume: 29
  start-page: 048902
  year: 2020
  ident: 1218_CR40
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab77fe
– volume: 179
  start-page: 115061
  year: 2021
  ident: 1218_CR34
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115061
– volume: 9
  start-page: 10692
  year: 2019
  ident: 1218_CR60
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47119-2
– volume: 251
  start-page: 1
  year: 2013
  ident: 1218_CR15
  publication-title: Ecol. Model
  doi: 10.1016/j.ecolmodel.2012.12.011
– volume-title: Networks
  year: 2018
  ident: 1218_CR1
  doi: 10.1093/oso/9780198805090.001.0001
– volume: 22
  start-page: 533
  year: 2019
  ident: 1218_CR8
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0537-6
– volume: 8
  start-page: 1331
  year: 2019
  ident: 1218_CR24
  publication-title: Electronics
  doi: 10.3390/electronics8111331
– volume: 69
  start-page: 025103
  year: 2004
  ident: 1218_CR6
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.025103
– volume: 74
  start-page: 036104
  year: 2006
  ident: 1218_CR46
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.036104
– volume: 320
  start-page: 512
  year: 2018
  ident: 1218_CR26
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.cam.2018.05.051
– ident: 1218_CR42
– volume: 451
  start-page: 205
  year: 2015
  ident: 1218_CR28
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.12.162
– volume: 89
  start-page: 208701
  year: 2002
  ident: 1218_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.208701
– ident: 1218_CR47
– volume: 1
  start-page: 215
  year: 1979
  ident: 1218_CR21
  publication-title: Soc. Netw.
  doi: 10.1016/0378-8733(78)90021-7
– volume: 7
  start-page: e1001109
  year: 2011
  ident: 1218_CR44
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001109
– ident: 1218_CR43
  doi: 10.1145/1772690.1772756
– volume: 393
  start-page: 440
  year: 1998
  ident: 1218_CR49
  publication-title: Nature
  doi: 10.1038/30918
– volume: 65
  start-page: 591
  year: 2008
  ident: 1218_CR58
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2008-00370-y
– volume: 138
  start-page: 333
  year: 2013
  ident: 1218_CR13
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2013.01.016
– volume: 57
  start-page: 102141
  year: 2020
  ident: 1218_CR22
  publication-title: Inform. Process. Manag.
  doi: 10.1016/j.ipm.2019.102141
– volume: 16
  start-page: e0251208
  year: 2021
  ident: 1218_CR38
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0251208
– volume: 11
  start-page: 6173
  year: 2021
  ident: 1218_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84684-x
– volume: 6
  start-page: 888
  year: 2010
  ident: 1218_CR18
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1746
– volume: 13
  start-page: 1570
  year: 2021
  ident: 1218_CR25
  publication-title: Symmetry
  doi: 10.3390/sym13091570
– volume: 387
  start-page: 3769
  year: 2008
  ident: 1218_CR52
  publication-title: Physica A
  doi: 10.1016/j.physa.2008.01.113
– volume: 425
  start-page: 92
  year: 2018
  ident: 1218_CR12
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.10.019
– ident: 1218_CR7
  doi: 10.1145/3292500.3330855
– volume: 147
  start-page: 110934
  year: 2021
  ident: 1218_CR36
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110934
– volume: 143
  start-page: 110456
  year: 2021
  ident: 1218_CR37
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110456
– volume: 125
  start-page: 586
  year: 2016
  ident: 1218_CR14
  publication-title: Sci. Rep.
– volume: 4
  start-page: 5097
  year: 2014
  ident: 1218_CR59
  publication-title: Sci. Rep.
  doi: 10.1038/srep05097
– volume: 650
  start-page: 1
  year: 2016
  ident: 1218_CR16
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2016.06.007
– volume: 144
  start-page: 113092
  year: 2020
  ident: 1218_CR33
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113092
– volume: 334
  start-page: 388
  year: 2018
  ident: 1218_CR27
  publication-title: Appl. Math. Comput.
– volume: 227
  start-page: 107198
  year: 2021
  ident: 1218_CR31
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107198
– volume: 42
  start-page: 599
  year: 2009
  ident: 1218_CR54
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500371907
– volume: 7
  start-page: 10168
  year: 2016
  ident: 1218_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10168
– volume: 395
  start-page: 549
  year: 2014
  ident: 1218_CR56
  publication-title: Physica A
  doi: 10.1016/j.physa.2013.10.047
– volume: 97
  start-page: 11149
  year: 2000
  ident: 1218_CR57
  publication-title: PNAS
  doi: 10.1073/pnas.200327197
– volume: 68
  start-page: 065103
  year: 2003
  ident: 1218_CR48
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.065103
– volume: 9
  start-page: 8387
  year: 2019
  ident: 1218_CR29
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44930-9
– volume: 12
  start-page: 56
  year: 2011
  ident: 1218_CR3
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2918
– volume: 577
  start-page: 162
  year: 2021
  ident: 1218_CR32
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.053
– volume-title: Scale-Free Networks: Complex Webs in Nature and Technology
  year: 2007
  ident: 1218_CR2
  doi: 10.1093/acprof:oso/9780199211517.001.0001
– volume: 23
  start-page: 1216
  year: 2021
  ident: 1218_CR23
  publication-title: Entropy
  doi: 10.3390/e23091216
– volume: 85
  start-page: 026116
  year: 2012
  ident: 1218_CR5
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.026116
– volume: 40
  start-page: 35
  year: 1977
  ident: 1218_CR20
  publication-title: Sociometry
  doi: 10.2307/3033543
– volume: 105
  start-page: 218701
  year: 2010
  ident: 1218_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.218701
– volume: 12
  start-page: 2
  year: 2004
  ident: 1218_CR50
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2003.822655
– volume: 6
  start-page: 565
  year: 2003
  ident: 1218_CR45
  publication-title: Adv. Complex Syst.
  doi: 10.1142/S0219525903001067
– volume: 193
  start-page: 105464
  year: 2020
  ident: 1218_CR30
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.105464
– ident: 1218_CR41
  doi: 10.1145/1134271.1134277
– volume: 2
  start-page: 317
  year: 2020
  ident: 1218_CR9
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0177-2
– volume: 30
  start-page: 81
  year: 1938
  ident: 1218_CR55
  publication-title: Biometrika
  doi: 10.1093/biomet/30.1-2.81
SSID ssj0000529419
Score 2.530543
Snippet Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both computer science...
Abstract Identification of influential spreaders is still a challenging issue in network science. Therefore, it attracts increasing attention from both...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22194
SubjectTerms 639/766
639/766/530
Algorithms
Decomposition
Gravity
Humanities and Social Sciences
multidisciplinary
Nodes
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kUPAiVquurSVCb7p087VJjlpaiqCH0kJvIdkk-KBsxfcK9r93kux77avaXrxukt3ZyczOzGZmfgD7JnA-OO9axoPEAIX2rePRt7r3PrghBSVz7fDXb_3JufhyIS_uQH3lnLDaHrgy7sCoaLQUyaNmChOMZolTfEBAf2tAW5q_vmjz7gRTtas3M4KaqUqm4_pgjpYqV5OxHD2jXWvpmiUqDfv_5mX-mSx578S0GKLj5_Bs8iDJp0r5FjyJ4wvYrJiSNy_htJbelvIlMqsQJKjFlwTvV9OW8SopmeTxFxlrFvic-BviRjIrvxhiIBmVCP1zUoBytuHs-Ojs8KSdgBPaAR2wRasCk4F7J32kTjjt0AbzLjqVuAhxECo6LZPrAtU-JkFp6AzuDOoyS9FQ_go2xqsxvgGiUhwYR5-H9VI4F3QwkiWvaW9wsY4N0CUP7TA1Fc_YFpe2HG5zbSvfLfLdFr5b2sCH1ZoftaXGg7M_561ZzcztsMsFFBI7CYl9TEga2F1urJ10dG4x8Os1xlfaNPB-NYzalY9M3BivrsscdKkyNkgDr6scrCjhIkcmqmtArUnIGqnrI-Pse-ngrSWGuQrf7eNSlm7J-jcr3v4PVuzAU5aVIGcysl3YWPy8ju_Qr1r4vaJCvwF18x45
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFD5oRfBFvHe0SgTfdOjkNkmeRMVSBH2QCvsWkklGF8ps7W7B_ntPLjtlvfR1kgzJyTk5X3JuAK9M4Hxw3rWMB4kXFNq3jkff6t774IYxKJlihz9_6Y-_iU8LuagPbuvqVrk9E_NBHVZDeiM_RJjea0TD2rw9-9mmqlHJulpLaNyEWyl1WeJqtVDzG0uyYglqaqxMx_XhGvVViilj6Q6N2q2lO_oop-3_F9b822XyD7tpVkdH9-BuxZHkXdn4-3AjTg_gdqksefkQvpYA3BzERJalEAnK8inB_xXnZfxKsj95_EWm4gu-Jv6SuIks80NDDCTVJkKUTnK5nEdwcvTx5MNxW8sntAPCsE2rApOBeyd9pE447VAT8y46NXIR4iBUdFqOrgtU-zgKSkNncH9QotkYDeWPYW9aTXEfiBrjwDgiH9ZL4VzQwUg2ek17g4N1bIBuaWiHmlo8Vbg4tdnEzbUtdLdId5vpbmkDr-cxZyWxxrW936etmXumpNj5w-r8u60yZo2KRksxejzEhQkG18Ep8mJAaD4g7GrgYLuxtkrq2l7xVQMv52aUsWQ4cVNcXeQ-CKxShZAGnhQ-mGfCRbqfqK4BtcMhO1PdbZmWP3Ieby3xsqtwbW-2vHQ1rf-T4un1q3gGd1hi7-SpyA5gb3N-EZ8jbtr4F1k4fgPmYhaZ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9Ki-CLWD_XVongmy5uvjbJ4ymWcqAPWqFvIdlk9aDsld4V7H_vJNldOa2Cr_lYspOZzG-S-QB4ZQLnnfOuZjxINFBoWzsefa1b74Pr-qBkih3--Kk9_SqW5_J8D9gUC5Od9nNKy3xMT95hbzeoaFIwGEvGL6qlGi2eg5SqHXn7YLFYflnONyvp7UpQM0bINFzfMnlHC-Vk_bchzD8dJX97Lc1K6OQ-3BvRI1mU9R7CXhwewJ1ST_LmIXwuYbc5dImsSvkRlOALgt8rLsvYSrIXefxBhuIBviH-hriBrPL1QgwkVSRCbE5ykZxHcHby4ez9aT0WTag7BF_bWgUmA_dO-kidcNqh_uVNdKrnIsROqOi07F0TqPaxF5SGxuCuoByzPhrKH8P-sB7iUyCqjx3jiHdYK4VzQQcjWe81bQ1O1rECOtHQdmNC8VTX4sLmh22ubaG7RbrbTHdLK3g9z7ks6TT-Ofpd2pp5ZEqFnRvWV9_syBrWqGi0FL3Ho1uYYPA_OEUODAjIOwRbFRxPG2tH-dxYNPpajbaVNhW8nLtRstJziRvi-jqPQTiV6oJU8KTwwbwSLpJVopoK1A6H7Cx1t2dYfc_Zu7VEE1fhv72ZeOnXsv5Oimf_N_wI7rLE7slfkR3D_vbqOj5H9LT1L0Zx-Ql-ihWM
  priority: 102
  providerName: Springer Nature
Title Identifying influential spreaders in complex networks by an improved gravity model
URI https://link.springer.com/article/10.1038/s41598-021-01218-1
https://www.ncbi.nlm.nih.gov/pubmed/34772970
https://www.proquest.com/docview/2596811889
https://www.proquest.com/docview/2597501353
https://pubmed.ncbi.nlm.nih.gov/PMC8589971
https://doaj.org/article/97e9854fb53849d982f31d33d81bc976
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddy2AvY99z1wUN9rZ5i74s6WGMNLSUQMvoWsibkCx5CwRnS1Jo_vueJCcjWzb2FJBlI5_ucr-z7u6H0FvtGautsyVlXkCAQqrSsuBKVTnnbd14KWLt8PlFdXbNR2Mx3kNruqNOgIudoV3kk7qeTz_c_lx9BoP_lEvG1ccFOKFYKEZjYAwuq4Ro6AA8k4yMBucd3M-9vqnmiesjNmGH5VHa1dHsfsyWr0ot_Xfh0D_TKX87U02u6vQRethhTDzISvEY7YX2CbqfWSdXT9FlLs5NBU54kklKwM6nGJ6XE5thFKdc83CL25wnvsBuhW2LJ-kjRPA48hYBgseJSucZujo9uRqelR21QlkDRFuW0lPhmbPCBWK5VRa8NOsHKxvGfai5DFaJxvY9US40nBDf17B3YO20CZqw52i_nbXhJcKyCTVlgIpoJbi1XnktaOMUqTTcrEKByFqGpu7ajkf2i6lJx99MmSx3A3I3Se6GFOjd5p4fuenGP2cfx63ZzIwNs9PAbP7NdPZntAxaCd44-IPn2mt4D0ZATz3A9hogWYGO1htr1kpoIDSsFERgShfozeYy2F88VLFtmN2kOQC6IntIgV5kPdishPEYu8h-geSWhmwtdftKO_meenwrAYGwhHd7v9alX8v6uygO_2OZr9ADmnQ8JjEeof3l_Ca8BmC1dD10T45lDx0MBqOvI_g9Prn4cgmjw2rYSx8resme7gACISNY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1tpPYPiDEq9rSxwEt0t4sO3ZgpSpbulvB_ij-I2M72Wp59NZr4kT2-LNnxjPjD-C5cpw3xpqccVehg0Lr3HBvc1lb60zTOlGF2uHDo3r0pfw0qSYb8GuohQlplcOeGDdqN2vCGfkOmum1RGtYqjcn3_PAGhWiqwOFRoLFvl_-QJdt_nrvA87vC8Z2P47fj_KeVSBv0DpZ5MKxynFrKuupKY00qKB44Y1oeel8UwpvZNWawlFpfVtS6gqF3Uags9YryvG3V-Aq6t0i-HpiIlZHOiFoVlLVl-YUXO7MUT2GEjYWXHZUpjldU3-RJeBfpu3fGZp_hGmj9tu9BTd7s5W8TTi7DRu-uwPXEpHl8i58TvW-sWaKTBPvCW4dxwT_l3Kl8SmJ6ev-J-lS6vmc2CUxHZnGcw3vSKBCQqeARHaeezC-DLneh81u1vkHQETrG8bR0GJ1VRrjpFMVa62ktcKPpc-ADjLUTX-TeSDUONYxos6lTnLXKHcd5a5pBi9X35ykezwubP0uTM2qZbiDOz6YnX7V_ZLWSnglq7K1qDNK5RSOg1OEvkNPoEErL4PtYWJ1vzHM9TmMM3i2eo1LOsRpTOdnZ7EN2nGBkCSDrYSDVU94GdwhUWQg1hCy1tX1N930W7w2XFboWwsc26sBS-fd-r8oHl48iqdwfTQ-PNAHe0f7j-AGC1APSZJsGzYXp2f-MZpsC_skLhQC-pIX5m8iFFSG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUC9IN4EChgJThBt_EhiHxCitKuWwqqqitSbZccOrFRl2-5WsD-Nf8fYSbZaHr31ajuRPZ7xzHhm_AG8Uo7zyliTMu5ydFBokRrubSoLa52palfmoXb4y7jY_So-HefHa_Crr4UJaZX9mRgPajetwh35EM30QqI1LNWw7tIiDrZH70_P0oAgFSKtPZxGyyL7fvED3bfZu71t3OvXjI12jj7uph3CQFqhpTJPS8dyx63JradGGGlQWfHMm7LmwvlKlN7IvDaZo9L6WlDqMoVLQKZntVeU429vwHoZnKIBrG_tjA8Olxc8IYQmqOoKdTIuhzNUlqGgjQUHHlVrSleUYcQM-Jeh-3e-5h9B26gLR3fgdmfEkg8t192FNd_cg5strOXiPhy21b-xgopMWhQUPEhOCP6vzZzGVhKT2f1P0rSJ6DNiF8Q0ZBJvObwjARgJXQQSsXoewNF1UPYhDJpp4x8DKWtfMY5mFytyYYyTTuWstpIWCj-WPgHa01BX3bvmAV7jRMf4Ope6pbtGuutId00TeLP85rR91ePK0Vtha5Yjw4vcsWF6_k13Aq5V6ZXMRW1RgwjlFK6DUxQEh35BhTZfApv9xurumJjpS6ZO4OWyGwU8RG1M46cXcQxadQGeJIFHLR8sZ8JFcI7KLIFyhUNWprra00y-x0fEZY6edolre9vz0uW0_k-KJ1ev4gXcQqHUn_fG-09hgwVODxmTbBMG8_ML_wztt7l93kkKAX3NsvkbxkJaIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+influential+spreaders+in+complex+networks+by+an+improved+gravity+model&rft.jtitle=Scientific+reports&rft.au=Li%2C+Zhe&rft.au=Huang%2C+Xinyu&rft.date=2021-11-12&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=22194&rft_id=info:doi/10.1038%2Fs41598-021-01218-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon