Metformin induces pyroptosis in leptin receptor-defective hepatocytes via overactivation of the AMPK axis

Metformin is the biguanide of hepatic insulin sensitizer for patients with non-alcohol fatty liver disease (NAFLD). Findings regarding its efficacy in restoring blood lipids and liver histology have been contradictory. In this study, we explore metformin’s preventive effects on NAFLD in leptin-insen...

Full description

Saved in:
Bibliographic Details
Published inCell death & disease Vol. 14; no. 2; p. 82
Main Authors Liu, Bingli, Xu, Jingyuan, Lu, Linyao, Gao, Lili, Zhu, Shengjuan, Sui, Yi, Cao, Ting, Yang, Tao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.02.2023
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metformin is the biguanide of hepatic insulin sensitizer for patients with non-alcohol fatty liver disease (NAFLD). Findings regarding its efficacy in restoring blood lipids and liver histology have been contradictory. In this study, we explore metformin’s preventive effects on NAFLD in leptin-insensitive individuals. We used liver tissue, serum exosomes and isolated hepatocytes from high-fat diet (HFD)-induced Zucker diabetic fatty (ZDF) rats and leptin receptor (Lepr) knockout rats to investigate the correlation between hepatic Lepr defective and liver damage caused by metformin. Through immunostaining, RT-PCR and glucose uptake monitoring, we showed that metformin treatment activates adenosine monophosphate (AMP)-activated protein kinase (AMPK) and its downstream cytochrome C oxidase (CCO). This leads to overactivation of glucose catabolism-related genes, excessive energy repertoire consumption, and subsequent hepatocyte pyroptosis. Single-cell RNA sequencing further confirmed the hyper-activation of glucose catabolism after metformin treatment. Altogether, we showed that functional Lepr is necessary for metformin treatment to be effective, and that long-term metformin treatment might promote NAFLD progression in leptin-insensitive individuals. This provides important insight into the clinical application of metformin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-4889
2041-4889
DOI:10.1038/s41419-023-05623-4