Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis
Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to control the chemoselectivity and regioselectivity. Here we report an efficient partial transfer hydrogenation system operated by a cobalt-amid...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 1249 - 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.03.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to control the chemoselectivity and regioselectivity. Here we report an efficient partial transfer hydrogenation system operated by a cobalt-amido cooperative catalyst, which converts quinolines to 1,2-dihydroquinolines by the reaction with H
3
N·BH
3
at room temperature. This methodology enables the large scale synthesis of many 1,2-dihydroquinolines with a broad range of functional groups. Mechanistic studies demonstrate that the reduction of quinoline is controlled precisely by cobalt-amido cooperation to operate dihydrogen transfer from H
3
N·BH
3
to the N=C bond of the substrates.
Controlling the partial reduction of quinolines is challenging, given the competing overreduction to tetrahydroquinolines. Here, the authors report a cobalt-amido cooperative catalyst for the selective, partial transfer hydrogenation of quinolines to 1,2-dihydroquinolines with H
3
N·BH
3
as reductant. |
---|---|
AbstractList | Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to control the chemoselectivity and regioselectivity. Here we report an efficient partial transfer hydrogenation system operated by a cobalt-amido cooperative catalyst, which converts quinolines to 1,2-dihydroquinolines by the reaction with H3N·BH3 at room temperature. This methodology enables the large scale synthesis of many 1,2-dihydroquinolines with a broad range of functional groups. Mechanistic studies demonstrate that the reduction of quinoline is controlled precisely by cobalt-amido cooperation to operate dihydrogen transfer from H3N·BH3 to the N=C bond of the substrates.Controlling the partial reduction of quinolines is challenging, given the competing overreduction to tetrahydroquinolines. Here, the authors report a cobalt-amido cooperative catalyst for the selective, partial transfer hydrogenation of quinolines to 1,2-dihydroquinolines with H3N·BH3 as reductant. Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to control the chemoselectivity and regioselectivity. Here we report an efficient partial transfer hydrogenation system operated by a cobalt-amido cooperative catalyst, which converts quinolines to 1,2-dihydroquinolines by the reaction with H N·BH at room temperature. This methodology enables the large scale synthesis of many 1,2-dihydroquinolines with a broad range of functional groups. Mechanistic studies demonstrate that the reduction of quinoline is controlled precisely by cobalt-amido cooperation to operate dihydrogen transfer from H N·BH to the N=C bond of the substrates. Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to control the chemoselectivity and regioselectivity. Here we report an efficient partial transfer hydrogenation system operated by a cobalt-amido cooperative catalyst, which converts quinolines to 1,2-dihydroquinolines by the reaction with H 3 N·BH 3 at room temperature. This methodology enables the large scale synthesis of many 1,2-dihydroquinolines with a broad range of functional groups. Mechanistic studies demonstrate that the reduction of quinoline is controlled precisely by cobalt-amido cooperation to operate dihydrogen transfer from H 3 N·BH 3 to the N=C bond of the substrates. Controlling the partial reduction of quinolines is challenging, given the competing overreduction to tetrahydroquinolines. Here, the authors report a cobalt-amido cooperative catalyst for the selective, partial transfer hydrogenation of quinolines to 1,2-dihydroquinolines with H 3 N·BH 3 as reductant. Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to control the chemoselectivity and regioselectivity. Here we report an efficient partial transfer hydrogenation system operated by a cobalt-amido cooperative catalyst, which converts quinolines to 1,2-dihydroquinolines by the reaction with H3N·BH3 at room temperature. This methodology enables the large scale synthesis of many 1,2-dihydroquinolines with a broad range of functional groups. Mechanistic studies demonstrate that the reduction of quinoline is controlled precisely by cobalt-amido cooperation to operate dihydrogen transfer from H3N·BH3 to the N=C bond of the substrates.Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to control the chemoselectivity and regioselectivity. Here we report an efficient partial transfer hydrogenation system operated by a cobalt-amido cooperative catalyst, which converts quinolines to 1,2-dihydroquinolines by the reaction with H3N·BH3 at room temperature. This methodology enables the large scale synthesis of many 1,2-dihydroquinolines with a broad range of functional groups. Mechanistic studies demonstrate that the reduction of quinoline is controlled precisely by cobalt-amido cooperation to operate dihydrogen transfer from H3N·BH3 to the N=C bond of the substrates. Controlling the partial reduction of quinolines is challenging, given the competing overreduction to tetrahydroquinolines. Here, the authors report a cobalt-amido cooperative catalyst for the selective, partial transfer hydrogenation of quinolines to 1,2-dihydroquinolines with H3N·BH3 as reductant. Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to control the chemoselectivity and regioselectivity. Here we report an efficient partial transfer hydrogenation system operated by a cobalt-amido cooperative catalyst, which converts quinolines to 1,2-dihydroquinolines by the reaction with H 3 N·BH 3 at room temperature. This methodology enables the large scale synthesis of many 1,2-dihydroquinolines with a broad range of functional groups. Mechanistic studies demonstrate that the reduction of quinoline is controlled precisely by cobalt-amido cooperation to operate dihydrogen transfer from H 3 N·BH 3 to the N=C bond of the substrates. |
ArticleNumber | 1249 |
Author | Pang, Maofu Liao, Rong-Zhen Chen, Jia-Yi Tung, Chen-Ho Wang, Wenguang Zhang, Shengjie |
Author_xml | – sequence: 1 givenname: Maofu surname: Pang fullname: Pang, Maofu organization: Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University – sequence: 2 givenname: Jia-Yi surname: Chen fullname: Chen, Jia-Yi organization: School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology – sequence: 3 givenname: Shengjie surname: Zhang fullname: Zhang, Shengjie organization: Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University – sequence: 4 givenname: Rong-Zhen surname: Liao fullname: Liao, Rong-Zhen email: rongzhen@hust.edu.cn organization: School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology – sequence: 5 givenname: Chen-Ho surname: Tung fullname: Tung, Chen-Ho organization: Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University – sequence: 6 givenname: Wenguang orcidid: 0000-0002-4108-7865 surname: Wang fullname: Wang, Wenguang email: wwg@sdu.edu.cn organization: Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32144242$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuFDEQtFAQCUt-gAMaiQuXAb9mPHNBQisekSJxgSOyejztjVdee2PPRtm_x7uTQJJDfPGrqlTdXa_JSYgBCXnL6EdGRfcpSyZbVVNOa9Yw1tW3L8gZp5LVTHFx8uB8Ss5zXtOyRM86KV-RU8GZlFzyM_JnGcOUovc4VltIkwNfTQlCtpiqq_2Y4goDTC6GKtrqeudC9C5groZ9ZeIAfqph48ZYLnGLqSBvsDIwgd9nl9-QlxZ8xvO7fUF-f_v6a_mjvvz5_WL55bI2jaRTrWC0DaiGckBjhRKyEwNYZKUyHIG1g22toUaAkW0Pph9kD1KAVAOa3nZiQS5m3THCWm-T20Da6whOHx9iWulDbcajVmgtb8FSzno5Wtkh65rGgjBCmrERRevzrLXdDRscDZb-gH8k-vgnuCu9ijda0ZZyIYvAhzuBFK93mCe9cdmg9xAw7rLmQknRKFVGsyDvn0DXcZdCadUBxbuWtpIV1LuHjv5ZuZ9iAXQzwKSYc0KrjZuOQysGndeM6kNm9JwZXTKjj5nRt4XKn1Dv1Z8liZmUCzisMP23_QzrL0R91wg |
CitedBy_id | crossref_primary_10_1021_acscatal_2c00271 crossref_primary_10_1021_acs_inorgchem_1c01063 crossref_primary_10_3762_bjoc_20_46 crossref_primary_10_1016_j_cclet_2021_10_004 crossref_primary_10_1021_acs_inorgchem_3c03584 crossref_primary_10_1021_acs_orglett_2c03203 crossref_primary_10_1039_D2TA02284B crossref_primary_10_1016_j_apcata_2024_120080 crossref_primary_10_1021_acs_chemrev_3c00625 crossref_primary_10_1021_acsomega_3c07550 crossref_primary_10_1021_acs_accounts_3c00192 crossref_primary_10_1016_j_apcatb_2021_120681 crossref_primary_10_1039_D2SC03986A crossref_primary_10_1021_acscatal_4c05271 crossref_primary_10_1021_acs_orglett_3c00022 crossref_primary_10_1039_D4CY00813H crossref_primary_10_1039_D1QI00998B crossref_primary_10_1002_chem_202303178 crossref_primary_10_1055_a_1654_3302 crossref_primary_10_1021_acs_organomet_4c00293 crossref_primary_10_1016_j_mcat_2021_111738 crossref_primary_10_1039_D1QO00672J crossref_primary_10_1002_cjoc_202400069 crossref_primary_10_1021_acs_orglett_4c01293 crossref_primary_10_1021_acs_organomet_1c00174 crossref_primary_10_1021_acsanm_4c00715 crossref_primary_10_1021_acs_inorgchem_1c03451 crossref_primary_10_1016_j_tet_2021_132435 crossref_primary_10_1002_adsc_202200712 crossref_primary_10_1021_acs_orglett_0c01388 crossref_primary_10_6023_cjoc202302020 crossref_primary_10_1039_D0SC06787C crossref_primary_10_1021_acs_orglett_3c04051 crossref_primary_10_1021_acs_iecr_4c04023 crossref_primary_10_1038_s41570_024_00589_z crossref_primary_10_1039_D4SC03836C crossref_primary_10_1021_acs_organomet_3c00037 crossref_primary_10_1039_D1DT02637B crossref_primary_10_1039_D2SC04339D crossref_primary_10_1002_slct_202201250 crossref_primary_10_1016_j_gee_2022_03_011 crossref_primary_10_1039_D3DT00463E crossref_primary_10_1002_jhet_4729 crossref_primary_10_1002_ejoc_202400979 crossref_primary_10_1002_cctc_202300418 crossref_primary_10_1007_s10562_020_03491_7 crossref_primary_10_1016_j_cclet_2023_108293 crossref_primary_10_1021_acs_inorgchem_2c03389 crossref_primary_10_1021_acs_inorgchem_3c02925 crossref_primary_10_1021_acs_orglett_4c02090 crossref_primary_10_1016_j_jcat_2021_10_020 crossref_primary_10_1021_acs_organomet_3c00368 crossref_primary_10_1021_acscatal_1c01148 crossref_primary_10_1021_acscatal_1c03886 crossref_primary_10_1016_j_apcatb_2022_122277 crossref_primary_10_1002_adsc_202001147 crossref_primary_10_1021_acs_joc_1c02412 crossref_primary_10_1002_cctc_202301422 crossref_primary_10_1002_cjoc_202400766 crossref_primary_10_1038_s41467_022_32933_6 crossref_primary_10_1002_ejoc_202300597 |
Cites_doi | 10.1021/cr100307m 10.1021/ja902051m 10.1021/acscatal.8b05136 10.1002/anie.200701158 10.1021/acs.accounts.5b00027 10.1021/ja075523m 10.1021/jm960360q 10.1038/nchem.2087 10.1021/acs.accounts.5b00045 10.1021/cr00048a004 10.1021/om2008138 10.1002/anie.201612140 10.1002/anie.200802237 10.1021/cr000664r 10.1038/ncomms6474 10.1021/jm00261a019 10.1021/ja405925w 10.1002/anie.201507550 10.1038/nchem.1798 10.1002/anie.201204179 10.1002/anie.201901777 10.1021/jacs.7b09754 10.1021/jacs.9b09038 10.1021/ja9906610 10.1021/acscatal.6b02281 10.1039/C7SC00138J 10.1039/C6CS00715E 10.1002/anie.201310517 10.1021/ja2023042 10.1021/jacs.6b01375 10.1021/ol0262486 10.1021/ja01138a015 10.1002/anie.201303931 10.1021/jacs.9b09540 10.1039/c1cs15268h 10.1021/jacs.6b04271 10.1021/acs.accounts.7b00089 10.1021/cr200328h 10.1021/jacs.6b03709 10.1021/ja00039a033 10.1021/acs.organomet.5b00967 10.1021/acs.accounts.7b00530 10.1021/jacs.9b01516 10.1016/0968-0896(96)00192-7 10.1021/acscatal.8b00074 10.1002/anie.201511448 10.1002/anie.201411105 10.1002/anie.201612290 10.1021/acscatal.7b02811 10.1021/acscatal.8b01166 10.1021/acs.organomet.8b00114 10.1021/ja504523b 10.1039/c3cs35466k 10.1002/anie.201006017 10.1021/acs.chemrev.9b00262 10.1002/anie.200703925 10.1002/ange.201900907 10.1039/B513564H 10.1021/acs.accounts.5b00134 10.1021/ja111483r 10.1002/anie.201700904 10.1021/acs.chemrev.5b00203 10.1002/anie.200906302 10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y 10.1021/jacs.8b01038 10.1021/cr200251d 10.1002/anie.201404286 10.1002/anie.201503087 10.1021/ja2014983 10.1039/C8CS00277K 10.1021/jacs.7b11416 10.1002/anie.200902570 10.1021/ar1000956 10.1021/ja510674u 10.1002/anie.201809882 10.1002/9783527681020 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-15118-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_7eff26af02194df48e1855fa3c34cd53 PMC7060234 32144242 10_1038_s41467_020_15118_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-7adf5a7502aecf373483bafe1151eda16bf6fc0c3ac469ac9b49a43a47bec9f83 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:20:53 EDT 2025 Thu Aug 21 18:26:46 EDT 2025 Fri Jul 11 15:57:24 EDT 2025 Wed Aug 13 04:33:03 EDT 2025 Mon Jul 21 05:46:58 EDT 2025 Tue Jul 01 04:08:52 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Fri Feb 21 02:40:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-7adf5a7502aecf373483bafe1151eda16bf6fc0c3ac469ac9b49a43a47bec9f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4108-7865 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-15118-x |
PMID | 32144242 |
PQID | 2372860641 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7eff26af02194df48e1855fa3c34cd53 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7060234 proquest_miscellaneous_2374357772 proquest_journals_2372860641 pubmed_primary_32144242 crossref_citationtrail_10_1038_s41467_020_15118_x crossref_primary_10_1038_s41467_020_15118_x springer_journals_10_1038_s41467_020_15118_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-06 |
PublicationDateYYYYMMDD | 2020-03-06 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Heier (CR73) 1997; 40 Roche, Porco (CR10) 2011; 50 Drover, Love, Schafer (CR51) 2017; 46 Yang, Zhao, Fox, Wang, Berke (CR76) 2010; 49 Zhou (CR36) 2008; 47 Dillard, Pavey, Benslay (CR7) 1973; 16 Ding, Hall (CR70) 2013; 52 Zeng, Frey, Kinjo, Donnadieu, Bertrand (CR5) 2009; 131 Dudnik, Weidner, Motta, Delferro, Marks (CR38) 2014; 6 Sebastian, Shaik (CR77) 2011; 44 Wang, Astruc (CR49) 2015; 115 Morris (CR58) 2015; 48 Sridharan, Suryavanshi, Menendez (CR68) 2011; 111 Papa (CR62) 2017; 8 Bull, Mousseau, Pelletier, Charette (CR3) 2012; 112 Yamakawa, Yamada, Noyori (CR75) 2001; 40 Wang (CR19) 2011; 133 Drover, Schafer, Love (CR52) 2016; 55 Chirik (CR59) 2015; 48 Mizoguchi, Oikawa, Oguri (CR8) 2014; 6 Zell, Milstein (CR53) 2015; 48 Engler, LaTessa, Iyengar, Chai, Agrios (CR9) 1996; 4 Wang (CR32) 2018; 140 Kim, Loose, Bezdek, Wang, Chirik (CR24) 2019; 141 CR48 Wedek, Van Lommel, Daniliuc, De Proft, Hennecke (CR13) 2019; 58 Guo, Du, Xu (CR34) 2008; 47 Zhang, Chen, He, Fan (CR29) 2015; 54 Dobereiner (CR16) 2011; 133 Wang (CR25) 2019; 141 Ding, Rybak, Hall (CR71) 2014; 5 Zheng, You (CR4) 2012; 41 Omann, Königs, Klare, Oestreich (CR56) 2017; 50 Liu (CR44) 2019; 9 Alonso, Brandt, Nordin, Andersson (CR74) 1999; 121 Yuan, Lu, Chen, Xu (CR14) 2016; 55 Mai, Nikonov (CR31) 2016; 35 Park, Chang (CR37) 2017; 56 Meng, Feng, Du (CR28) 2017; 51 Zhang, Song, Zhuang, Tung, Wang (CR41) 2017; 139 Pang (CR64) 2018; 37 Lortie, Dudding, Gabidullin, Nikonov (CR42) 2017; 7 Drummond, Ford, Gray, Popescu, Fout (CR54) 2019; 141 Stahl, Müther, Ohki, Tatsumi, Oestreich (CR55) 2013; 135 Ikariya, Murata, Noyori (CR47) 2006; 4 Rueping, Antonchick (CR35) 2007; 46 Hupe, Marek, Knochel (CR72) 2002; 4 Adam (CR17) 2017; 56 Mahdi, Stephan (CR22) 2015; 54 Wang, Li, Wu, Pettman, Xiao (CR30) 2009; 48 CR11 Lam, Szkop, Mosaferi, Stephan (CR23) 2019; 48 Kubota, Watanabe, Hayama, Ito (CR69) 2016; 138 Li (CR21) 2019; 131 Chakraborty, Brennessel, Jones (CR18) 2014; 136 Zhu, Zhang, Yu, Wang, Cheng (CR67) 2008; 130 Gandhamsetty, Joung, Park, Park, Chang (CR45) 2014; 136 Elangovan (CR63) 2016; 138 Liang, Osten, Song (CR61) 2017; 56 Hassan, Sevignon, Gozzi, Schulz, Lemaire (CR12) 2002; 102 Wang, Chen, Lu, Zhou (CR26) 2011; 112 Fu (CR65) 2016; 138 Higashi, Kusumoto, Nozaki (CR50) 2019; 119 Baralt, Smith, Hurwitz, Horvath, Fish (CR20) 1992; 114 Stout, Meyers (CR1) 1982; 82 Yang, Wu, You (CR27) 2014; 53 Johnson, Buell (CR6) 1952; 74 Duttwyler (CR15) 2014; 53 Liu, Khononov, Eisen (CR43) 2018; 8 Klare (CR57) 2011; 133 Arrowsmith, Hill, Hadlington, Kociok-Köhn, Weetman (CR39) 2011; 30 Tamang, Singh, Unruh, Findlater (CR40) 2018; 8 Tu, Gong (CR33) 2012; 51 Rao, Chong, Kinjo (CR46) 2018; 140 Han (CR66) 2018; 57 McSkimming, Colbran (CR2) 2013; 42 MacNair, Millet, Nichol, Ironmonger, Thomas (CR60) 2016; 6 ZP Yang (15118_CR27) 2014; 53 S Elangovan (15118_CR63) 2016; 138 RF Heier (15118_CR73) 1997; 40 T Zell (15118_CR53) 2015; 48 S Fu (15118_CR65) 2016; 138 X Zeng (15118_CR5) 2009; 131 J Hassan (15118_CR12) 2002; 102 MW Drover (15118_CR51) 2017; 46 H Zhou (15118_CR36) 2008; 47 WS Johnson (15118_CR6) 1952; 74 S Duttwyler (15118_CR15) 2014; 53 T Higashi (15118_CR50) 2019; 119 MW Drover (15118_CR52) 2016; 55 M Arrowsmith (15118_CR39) 2011; 30 JA Bull (15118_CR3) 2012; 112 Y Wang (15118_CR25) 2019; 141 C Han (15118_CR66) 2018; 57 TA Engler (15118_CR9) 1996; 4 RD Dillard (15118_CR7) 1973; 16 E Hupe (15118_CR72) 2002; 4 YA Yuan (15118_CR14) 2016; 55 L Omann (15118_CR56) 2017; 50 SP Roche (15118_CR10) 2011; 50 J Liu (15118_CR44) 2019; 9 T Ikariya (15118_CR47) 2006; 4 K Kubota (15118_CR69) 2016; 138 J Ding (15118_CR71) 2014; 5 J Lam (15118_CR23) 2019; 48 DA Alonso (15118_CR74) 1999; 121 C Wang (15118_CR30) 2009; 48 GE Dobereiner (15118_CR16) 2011; 133 M Pang (15118_CR64) 2018; 37 B Rao (15118_CR46) 2018; 140 M Rueping (15118_CR35) 2007; 46 V Papa (15118_CR62) 2017; 8 DM Stout (15118_CR1) 1982; 82 T Stahl (15118_CR55) 2013; 135 RH Morris (15118_CR58) 2015; 48 R Adam (15118_CR17) 2017; 56 AJ MacNair (15118_CR60) 2016; 6 JL Lortie (15118_CR42) 2017; 7 X Li (15118_CR21) 2019; 131 AS Dudnik (15118_CR38) 2014; 6 QS Guo (15118_CR34) 2008; 47 S Kim (15118_CR24) 2019; 141 SR Tamang (15118_CR40) 2018; 8 HF Klare (15118_CR57) 2011; 133 W Meng (15118_CR28) 2017; 51 15118_CR48 C Zheng (15118_CR4) 2012; 41 DS Wang (15118_CR26) 2011; 112 Y Wang (15118_CR32) 2018; 140 D Wang (15118_CR49) 2015; 115 MJ Drummond (15118_CR54) 2019; 141 XF Tu (15118_CR33) 2012; 51 J Ding (15118_CR70) 2013; 52 E Baralt (15118_CR20) 1992; 114 K Sebastian (15118_CR77) 2011; 44 F Zhang (15118_CR41) 2017; 139 Q Liang (15118_CR61) 2017; 56 X-Q Zhu (15118_CR67) 2008; 130 A McSkimming (15118_CR2) 2013; 42 H Liu (15118_CR43) 2018; 8 T Mahdi (15118_CR22) 2015; 54 T Wang (15118_CR19) 2011; 133 S Park (15118_CR37) 2017; 56 X Yang (15118_CR76) 2010; 49 J Zhang (15118_CR29) 2015; 54 15118_CR11 N Gandhamsetty (15118_CR45) 2014; 136 V Sridharan (15118_CR68) 2011; 111 VH Mai (15118_CR31) 2016; 35 S Chakraborty (15118_CR18) 2014; 136 H Mizoguchi (15118_CR8) 2014; 6 V Wedek (15118_CR13) 2019; 58 M Yamakawa (15118_CR75) 2001; 40 PJ Chirik (15118_CR59) 2015; 48 |
References_xml | – volume: 111 start-page: 7157 year: 2011 end-page: 7259 ident: CR68 article-title: Advances in the chemistry of tetrahydroquinolines publication-title: Chem. Rev. doi: 10.1021/cr100307m – volume: 131 start-page: 8690 year: 2009 end-page: 8696 ident: CR5 article-title: Synthesis of a simplified version of stable bulky and rigid cyclic (alkyl)(amino) carbenes, and catalytic activity of the ensuing gold (I) complex in the three-component preparation of 1, 2-dihydroquinoline derivatives publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902051m – volume: 9 start-page: 3849 year: 2019 end-page: 3857 ident: CR44 article-title: Ni-O cooperation versus nickel(II) hydride in catalytic hydroboration of -heteroarenes publication-title: ACS Catal. doi: 10.1021/acscatal.8b05136 – volume: 46 start-page: 4562 year: 2007 end-page: 4565 ident: CR35 article-title: Organocatalytic enantioselective reduction of pyridines publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200701158 – volume: 48 start-page: 1979 year: 2015 end-page: 1994 ident: CR53 article-title: Hydrogenation and dehydrogenation iron pincer catalysts capable of metal–ligand cooperation by aromatization/dearomatization publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00027 – volume: 130 start-page: 2501 year: 2008 end-page: 2516 ident: CR67 article-title: Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075523m – volume: 40 start-page: 639 year: 1997 end-page: 646 ident: CR73 article-title: Synthesis and biological activities of ( )-5, 6-dihydro- , -dimethyl-4 H-imidazo [4, 5, 1- ] quinolin-5-amine and its metabolites publication-title: J. Med. Chem. doi: 10.1021/jm960360q – volume: 6 start-page: 1100 year: 2014 end-page: 1107 ident: CR38 article-title: Atom-efficient regioselective 1, 2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst publication-title: Nat. Chem. doi: 10.1038/nchem.2087 – volume: 48 start-page: 1494 year: 2015 end-page: 1502 ident: CR58 article-title: Exploiting metal–ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00045 – volume: 82 start-page: 223 year: 1982 end-page: 243 ident: CR1 article-title: Recent advances in the chemistry of dihydropyridines publication-title: Chem. Rev. doi: 10.1021/cr00048a004 – volume: 30 start-page: 5556 year: 2011 end-page: 5559 ident: CR39 article-title: Magnesium-catalyzed hydroboration of pyridines publication-title: Organometallics doi: 10.1021/om2008138 – volume: 56 start-page: 7720 year: 2017 end-page: 7738 ident: CR37 article-title: Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612140 – volume: 47 start-page: 8464 year: 2008 end-page: 8467 ident: CR36 article-title: Hydrogenation of quinolines using a recyclable phosphine-free chiral cationic ruthenium catalyst: enhancement of catalyst stability and selectivity in an ionic liquid publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200802237 – volume: 102 start-page: 1359 year: 2002 end-page: 1470 ident: CR12 article-title: Aryl−aryl bond formation one century after the discovery of the Ullmann reaction publication-title: Chem. Rev. doi: 10.1021/cr000664r – volume: 5 start-page: 5474 year: 2014 end-page: 5482 ident: CR71 article-title: Synthesis of chiral heterocycles by ligand-controlled regiodivergent and enantiospecific Suzuki Miyaura cross-coupling publication-title: Nat. Commun. doi: 10.1038/ncomms6474 – volume: 16 start-page: 251 year: 1973 end-page: 253 ident: CR7 article-title: Synthesis and antiinflammatory activity of some 2, 2-dimethyl-1, 2-dihydroquinolines publication-title: J. Med. Chem. doi: 10.1021/jm00261a019 – volume: 135 start-page: 10978 year: 2013 end-page: 10981 ident: CR55 article-title: Catalytic generation of borenium ions by cooperative B–H bond activation: the elusive direct electrophilic borylation of nitrogen heterocycles with pinacolborane publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405925w – volume: 55 start-page: 534 year: 2016 end-page: 538 ident: CR14 article-title: Iron‐catalyzed direct diazidation for a broad range of olefins publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507550 – volume: 6 start-page: 57 year: 2014 end-page: 64 ident: CR8 article-title: Biogenetically inspired synthesis and skeletal diversification of indole alkaloids publication-title: Nat. Chem. doi: 10.1038/nchem.1798 – volume: 51 start-page: 11346 year: 2012 end-page: 11349 ident: CR33 article-title: Highly enantioselective transfer hydrogenation of quinolines catalyzed by gold phosphates: achiral ligand tuning and chiral–Anion control of stereoselectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204179 – volume: 58 start-page: 9239 year: 2019 end-page: 9243 ident: CR13 article-title: Organocatalytic, enantioselective dichlorination of unfunctionalized alkenes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901777 – volume: 140 start-page: 652 year: 2018 end-page: 656 ident: CR46 article-title: Metal-free regio-and chemoselective hydroboration of pyridines catalyzed by 1, 3, 2-diazaphosphenium triflate publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09754 – volume: 141 start-page: 17337 year: 2019 end-page: 17349 ident: CR25 article-title: Unmasking the ligand effect in manganese-catalyzed hydrogenation: Mechanistic insight and catalytic application publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09038 – volume: 121 start-page: 9580 year: 1999 end-page: 9588 ident: CR74 article-title: Ru(arene)(amino alcohol)-catalyzed transfer hydrogenation of ketones: mechanism and origin of enantioselectivity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9906610 – volume: 6 start-page: 7217 year: 2016 end-page: 7221 ident: CR60 article-title: Markovnikov-selective, activator-free iron-catalyzed vinylarene hydroboration publication-title: ACS Catal. doi: 10.1021/acscatal.6b02281 – volume: 8 start-page: 3576 year: 2017 end-page: 3585 ident: CR62 article-title: Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese-PNN pincer complex publication-title: Chem. Sci. doi: 10.1039/C7SC00138J – volume: 46 start-page: 2913 year: 2017 end-page: 2940 ident: CR51 article-title: 1, 3-N, O-Complexes of late transition metals. Ligands with flexible bonding modes and reaction profiles publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00715E – ident: CR11 – volume: 53 start-page: 3877 year: 2014 end-page: 3880 ident: CR15 article-title: Regio- and stereoselective 1, 2–dihydropyridine alkylation/addition sequence for the synthesis of piperidines with quaternary centers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201310517 – volume: 133 start-page: 9878 year: 2011 end-page: 9891 ident: CR19 article-title: Highly enantioselective hydrogenation of quinolines using phosphine-free chiral cationic ruthenium catalysts: scope, mechanism, and origin of enantioselectivity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2023042 – volume: 138 start-page: 4338 year: 2016 end-page: 4341 ident: CR69 article-title: Enantioselective synthesis of chiral piperidines via the stepwise dearomatization/borylation of pyridines publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01375 – volume: 4 start-page: 2861 year: 2002 end-page: 2863 ident: CR72 article-title: Diastereoselective reduction of alkenylboronic esters as a new method for controlling the stereochemistry of up to three adjacent centers in cyclic and acyclic molecules publication-title: Org. Lett. doi: 10.1021/ol0262486 – volume: 74 start-page: 4517 year: 1952 end-page: 4520 ident: CR6 article-title: 1, 2-Dihydroquinoline publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01138a015 – volume: 52 start-page: 8069 year: 2013 end-page: 8073 ident: CR70 article-title: Concise synthesis and antimalarial activity of all four mefloquine stereoisomers using a highly enantioselective catalytic borylative alkene isomerization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201303931 – volume: 141 start-page: 17900 year: 2019 end-page: 17908 ident: CR24 article-title: Hydrogenation of -heteroarenes using rhodium precatalysts: Reductive elimination leads to formation of multimetallic clusters publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09540 – volume: 41 start-page: 2498 year: 2012 end-page: 2518 ident: CR4 article-title: Transfer hydrogenation with Hantzsch esters and related organic hydride donors publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15268h – volume: 138 start-page: 8588 year: 2016 end-page: 8594 ident: CR65 article-title: Ligand-controlled cobalt-catalyzed transfer hydrogenation of alkynes: stereodivergent synthesis of -and -alkenes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04271 – volume: 50 start-page: 1258 year: 2017 end-page: 1269 ident: CR56 article-title: Cooperative catalysis at metal–sulfur bonds publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00089 – volume: 112 start-page: 2557 year: 2011 end-page: 2590 ident: CR26 article-title: Asymmetric hydrogenation of heteroarenes and arenes publication-title: Chem. Rev. doi: 10.1021/cr200328h – volume: 138 start-page: 8809 year: 2016 end-page: 8814 ident: CR63 article-title: Selective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03709 – volume: 114 start-page: 5187 year: 1992 end-page: 5196 ident: CR20 article-title: Homogeneous catalytic hydrogenation. 6. synthetic and mechanistic aspects of the regioselective reductions of model coal nitrogen, sulfur, and oxygen heteroaromatic compounds using the ( -pentamethylcyclopentadienyl)rhodium tris(acetonitrile) dication complex as the catalyst precursor publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00039a033 – volume: 35 start-page: 943 year: 2016 end-page: 949 ident: CR31 article-title: Transfer hydrogenation of nitriles, olefins, and -heterocycles catalyzed by an -heterocyclic carbene-supported half-sandwich complex of ruthenium publication-title: Organometallics doi: 10.1021/acs.organomet.5b00967 – volume: 51 start-page: 191 year: 2017 end-page: 201 ident: CR28 article-title: Frustrated Lewis pairs catalyzed asymmetric metal-free hydrogenations and hydrosilylations publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00530 – volume: 141 start-page: 6639 year: 2019 end-page: 6650 ident: CR54 article-title: Radical rebound hydroxylation versus H-atom transfer in non-heme iron (III)-hydroxo complexes: reactivity and structural differentiation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01516 – volume: 4 start-page: 1755 year: 1996 end-page: 1769 ident: CR9 article-title: Stereoselective syntheses of substituted pterocarpans with anti-HIV activity, and 5-aza-/5-thia-pterocarpan and 2-aryl-2, 3-dihydrobenzofuran analogues publication-title: Bioorg. Med. Chem. doi: 10.1016/0968-0896(96)00192-7 – volume: 8 start-page: 3673 year: 2018 end-page: 3677 ident: CR43 article-title: Catalytic 1, 2-regioselective dearomatization of -heteroaromatics via a hydroboration publication-title: ACS Catal. doi: 10.1021/acscatal.8b00074 – volume: 55 start-page: 3181 year: 2016 end-page: 3186 ident: CR52 article-title: Capturing HBCy : Using N., O‐chelated complexes of rhodium (I) and iridium (I) for chemoselective hydroboration publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511448 – volume: 54 start-page: 4622 year: 2015 end-page: 4625 ident: CR29 article-title: Asymmetric ruthenium-catalyzed hydrogenation of 2, 6-disubstituted 1, 5-naphthyridines: Access to chiral 1, 5-diaza-cis-cecalins publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411105 – volume: 56 start-page: 3216 year: 2017 end-page: 3220 ident: CR17 article-title: A general and highly selective cobalt–catalyzed hydrogenation of -heteroarenes under mild reaction conditions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612290 – volume: 7 start-page: 8454 year: 2017 end-page: 8459 ident: CR42 article-title: Zinc-catalyzed hydrosilylation and hydroboration of -heterocycles publication-title: ACS Catal. doi: 10.1021/acscatal.7b02811 – volume: 8 start-page: 6186 year: 2018 end-page: 6191 ident: CR40 article-title: Nickel catalyzed regioselective 1,4-hydroboration of N-heteroarenes publication-title: ACS Catal. doi: 10.1021/acscatal.8b01166 – volume: 37 start-page: 1462 year: 2018 end-page: 1467 ident: CR64 article-title: Addition of a B–H bond across an amido–cobalt bond: CoII–H-catalyzed hydroboration of olefins publication-title: Organometallics doi: 10.1021/acs.organomet.8b00114 – volume: 136 start-page: 8564 year: 2014 end-page: 8567 ident: CR18 article-title: A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of -heterocycles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504523b – volume: 42 start-page: 5439 year: 2013 end-page: 5488 ident: CR2 article-title: The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35466k – volume: 50 start-page: 4068 year: 2011 end-page: 4093 ident: CR10 article-title: Dearomatization strategies in the synthesis of complex natural products publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201006017 – volume: 119 start-page: 10393 year: 2019 end-page: 10402 ident: CR50 article-title: Cleavage of Si–H, B–H, and C–H bonds by metal–ligand cooperation: focus review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00262 – volume: 47 start-page: 759 year: 2008 end-page: 762 ident: CR34 article-title: The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200703925 – volume: 131 start-page: 4712 year: 2019 end-page: 4716 ident: CR21 article-title: Spiro bicyclic bisborane catalysts for metal-free chemoselective and enantioselective hydrogenation of quinolines publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201900907 – volume: 4 start-page: 393 year: 2006 end-page: 406 ident: CR47 article-title: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses publication-title: Org. Biomol. Chem. doi: 10.1039/B513564H – ident: CR48 – volume: 48 start-page: 1687 year: 2015 end-page: 1695 ident: CR59 article-title: Iron- and cobalt-catalyzed alkene hydrogenation: catalysis with both redox-active and strong field ligands publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00134 – volume: 133 start-page: 3312 year: 2011 end-page: 3315 ident: CR57 article-title: Cooperative catalytic activation of Si−H bonds by a polar Ru−S bond: regioselective low-temperature C−H silylation of indoles under neutral conditions by a Friedel−Crafts mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111483r – volume: 56 start-page: 6317 year: 2017 end-page: 6320 ident: CR61 article-title: Iron-catalyzed gem-specific dimerization of terminal alkynes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201700904 – volume: 115 start-page: 6621 year: 2015 end-page: 6686 ident: CR49 article-title: The golden age of transfer hydrogenation publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00203 – volume: 49 start-page: 2058 year: 2010 end-page: 2062 ident: CR76 article-title: Transfer hydrogenation of imines with ammonia–borane: a concerted double-hydrogen-transfer reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906302 – volume: 40 start-page: 2818 year: 2001 end-page: 2821 ident: CR75 article-title: CH/π attraction: the origin of enantioselectivity in transfer hydrogenation of aromatic carbonyl compounds catalyzed by chiral -arene-ruthenium(II) complexes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y – volume: 140 start-page: 4417 year: 2018 end-page: 4429 ident: CR32 article-title: Transfer hydrogenation of alkenes using ethanol catalyzed by a NCP pincer iridium complex: scope and mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01038 – volume: 112 start-page: 2642 year: 2012 end-page: 2713 ident: CR3 article-title: Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to -activated pyridines publication-title: Chem. Rev. doi: 10.1021/cr200251d – volume: 53 start-page: 6986 year: 2014 end-page: 6989 ident: CR27 article-title: Direct asymmetric dearomatization of pyridines and pyrazines by iridium–catalyzed allylic amination reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404286 – volume: 54 start-page: 8511 year: 2015 end-page: 8514 ident: CR22 article-title: Facile protocol for catalytic frustrated Lewis pair hydrogenation and reductive deoxygenation of ketones and aldehydes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503087 – volume: 133 start-page: 7547 year: 2011 end-page: 7562 ident: CR16 article-title: Iridium-catalyzed hydrogenation of -heterocyclic compounds under mild conditions by an outer-sphere pathway publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2014983 – volume: 48 start-page: 3592 year: 2019 end-page: 3612 ident: CR23 article-title: FLP catalysis: main group hydrogenations of organic unsaturated substrates publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00277K – volume: 139 start-page: 17775 year: 2017 end-page: 17778 ident: CR41 article-title: Iron-catalyzed 1, 2-selective hydroboration of -heteroarenes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11416 – volume: 48 start-page: 6524 year: 2009 end-page: 6528 ident: CR30 article-title: pH–Regulated asymmetric transfer hydrogenation of quinolines in water publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200902570 – volume: 44 start-page: 101 year: 2011 end-page: 110 ident: CR77 article-title: How to conceptualize catalytic cycles? The energetic span model publication-title: Acc. Chem. Res. doi: 10.1021/ar1000956 – volume: 136 start-page: 16780 year: 2014 end-page: 16783 ident: CR45 article-title: Boron-catalyzed silylative reduction of quinolines: selective sp C–Si bond formation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510674u – volume: 57 start-page: 14857 year: 2018 end-page: 14861 ident: CR66 article-title: Palladium/Graphitic carbon nitride (g‐C N ) stabilized emulsion microreactor as a store for hydrogen from ammonia borane for use in alkene hydrogenation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809882 – volume: 4 start-page: 1755 year: 1996 ident: 15118_CR9 publication-title: Bioorg. Med. Chem. doi: 10.1016/0968-0896(96)00192-7 – volume: 121 start-page: 9580 year: 1999 ident: 15118_CR74 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9906610 – volume: 53 start-page: 3877 year: 2014 ident: 15118_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201310517 – volume: 51 start-page: 11346 year: 2012 ident: 15118_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204179 – volume: 141 start-page: 6639 year: 2019 ident: 15118_CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01516 – volume: 58 start-page: 9239 year: 2019 ident: 15118_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901777 – volume: 139 start-page: 17775 year: 2017 ident: 15118_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11416 – volume: 82 start-page: 223 year: 1982 ident: 15118_CR1 publication-title: Chem. Rev. doi: 10.1021/cr00048a004 – volume: 57 start-page: 14857 year: 2018 ident: 15118_CR66 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809882 – volume: 112 start-page: 2642 year: 2012 ident: 15118_CR3 publication-title: Chem. Rev. doi: 10.1021/cr200251d – volume: 30 start-page: 5556 year: 2011 ident: 15118_CR39 publication-title: Organometallics doi: 10.1021/om2008138 – volume: 136 start-page: 8564 year: 2014 ident: 15118_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504523b – volume: 35 start-page: 943 year: 2016 ident: 15118_CR31 publication-title: Organometallics doi: 10.1021/acs.organomet.5b00967 – volume: 55 start-page: 534 year: 2016 ident: 15118_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507550 – volume: 50 start-page: 1258 year: 2017 ident: 15118_CR56 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00089 – volume: 141 start-page: 17900 year: 2019 ident: 15118_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09540 – volume: 41 start-page: 2498 year: 2012 ident: 15118_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15268h – volume: 56 start-page: 7720 year: 2017 ident: 15118_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612140 – volume: 6 start-page: 1100 year: 2014 ident: 15118_CR38 publication-title: Nat. Chem. doi: 10.1038/nchem.2087 – volume: 74 start-page: 4517 year: 1952 ident: 15118_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01138a015 – volume: 119 start-page: 10393 year: 2019 ident: 15118_CR50 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00262 – volume: 48 start-page: 1494 year: 2015 ident: 15118_CR58 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00045 – volume: 40 start-page: 2818 year: 2001 ident: 15118_CR75 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y – volume: 47 start-page: 759 year: 2008 ident: 15118_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200703925 – volume: 114 start-page: 5187 year: 1992 ident: 15118_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00039a033 – volume: 133 start-page: 7547 year: 2011 ident: 15118_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2014983 – volume: 141 start-page: 17337 year: 2019 ident: 15118_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09038 – volume: 8 start-page: 3673 year: 2018 ident: 15118_CR43 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00074 – volume: 131 start-page: 8690 year: 2009 ident: 15118_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902051m – volume: 112 start-page: 2557 year: 2011 ident: 15118_CR26 publication-title: Chem. Rev. doi: 10.1021/cr200328h – volume: 48 start-page: 1979 year: 2015 ident: 15118_CR53 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00027 – volume: 53 start-page: 6986 year: 2014 ident: 15118_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404286 – volume: 133 start-page: 3312 year: 2011 ident: 15118_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111483r – volume: 48 start-page: 1687 year: 2015 ident: 15118_CR59 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00134 – volume: 140 start-page: 4417 year: 2018 ident: 15118_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01038 – volume: 4 start-page: 393 year: 2006 ident: 15118_CR47 publication-title: Org. Biomol. Chem. doi: 10.1039/B513564H – volume: 37 start-page: 1462 year: 2018 ident: 15118_CR64 publication-title: Organometallics doi: 10.1021/acs.organomet.8b00114 – volume: 8 start-page: 3576 year: 2017 ident: 15118_CR62 publication-title: Chem. Sci. doi: 10.1039/C7SC00138J – volume: 47 start-page: 8464 year: 2008 ident: 15118_CR36 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200802237 – volume: 8 start-page: 6186 year: 2018 ident: 15118_CR40 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01166 – volume: 51 start-page: 191 year: 2017 ident: 15118_CR28 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00530 – ident: 15118_CR48 doi: 10.1002/9783527681020 – volume: 102 start-page: 1359 year: 2002 ident: 15118_CR12 publication-title: Chem. Rev. doi: 10.1021/cr000664r – volume: 131 start-page: 4712 year: 2019 ident: 15118_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201900907 – volume: 46 start-page: 4562 year: 2007 ident: 15118_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200701158 – volume: 50 start-page: 4068 year: 2011 ident: 15118_CR10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201006017 – volume: 133 start-page: 9878 year: 2011 ident: 15118_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2023042 – volume: 135 start-page: 10978 year: 2013 ident: 15118_CR55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405925w – volume: 48 start-page: 3592 year: 2019 ident: 15118_CR23 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00277K – volume: 46 start-page: 2913 year: 2017 ident: 15118_CR51 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00715E – volume: 136 start-page: 16780 year: 2014 ident: 15118_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510674u – volume: 40 start-page: 639 year: 1997 ident: 15118_CR73 publication-title: J. Med. Chem. doi: 10.1021/jm960360q – volume: 138 start-page: 8588 year: 2016 ident: 15118_CR65 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04271 – volume: 7 start-page: 8454 year: 2017 ident: 15118_CR42 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02811 – volume: 48 start-page: 6524 year: 2009 ident: 15118_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200902570 – volume: 42 start-page: 5439 year: 2013 ident: 15118_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35466k – volume: 115 start-page: 6621 year: 2015 ident: 15118_CR49 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00203 – volume: 56 start-page: 6317 year: 2017 ident: 15118_CR61 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201700904 – volume: 6 start-page: 7217 year: 2016 ident: 15118_CR60 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02281 – volume: 138 start-page: 8809 year: 2016 ident: 15118_CR63 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03709 – volume: 56 start-page: 3216 year: 2017 ident: 15118_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612290 – volume: 52 start-page: 8069 year: 2013 ident: 15118_CR70 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201303931 – volume: 54 start-page: 4622 year: 2015 ident: 15118_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411105 – volume: 55 start-page: 3181 year: 2016 ident: 15118_CR52 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511448 – volume: 5 start-page: 5474 year: 2014 ident: 15118_CR71 publication-title: Nat. Commun. doi: 10.1038/ncomms6474 – volume: 16 start-page: 251 year: 1973 ident: 15118_CR7 publication-title: J. Med. Chem. doi: 10.1021/jm00261a019 – volume: 49 start-page: 2058 year: 2010 ident: 15118_CR76 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906302 – volume: 44 start-page: 101 year: 2011 ident: 15118_CR77 publication-title: Acc. Chem. Res. doi: 10.1021/ar1000956 – volume: 6 start-page: 57 year: 2014 ident: 15118_CR8 publication-title: Nat. Chem. doi: 10.1038/nchem.1798 – volume: 130 start-page: 2501 year: 2008 ident: 15118_CR67 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075523m – volume: 140 start-page: 652 year: 2018 ident: 15118_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09754 – volume: 111 start-page: 7157 year: 2011 ident: 15118_CR68 publication-title: Chem. Rev. doi: 10.1021/cr100307m – volume: 9 start-page: 3849 year: 2019 ident: 15118_CR44 publication-title: ACS Catal. doi: 10.1021/acscatal.8b05136 – volume: 138 start-page: 4338 year: 2016 ident: 15118_CR69 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01375 – volume: 4 start-page: 2861 year: 2002 ident: 15118_CR72 publication-title: Org. Lett. doi: 10.1021/ol0262486 – volume: 54 start-page: 8511 year: 2015 ident: 15118_CR22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503087 – ident: 15118_CR11 |
SSID | ssj0000391844 |
Score | 2.5321317 |
Snippet | Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to... Controlling the partial reduction of quinolines is challenging, given the competing overreduction to tetrahydroquinolines. Here, the authors report a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1249 |
SubjectTerms | 119/118 140/131 140/58 639/638/549/933 639/638/77/885 639/638/77/888 Catalysis Catalysts Cobalt Functional groups Humanities and Social Sciences Hydrogenation multidisciplinary Organic compounds Quinoline Quinolines Reduction Regioselectivity Room temperature Science Science (multidisciplinary) Substrates |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F23aVGht1Yketiyj0loCIX21EAuRYxeZCG1N7teyP77jiTvNtvnpeCLrTHImhnNN5b0DSFvnWswkCvJGgWWKQDOoAmChcCVF3hJng4Kf_rcnJ2rjxf1xa1SX2lPWKEHLgN3oEOMooGIsahTPqo2YISpI0gnlfN15vnEmHcrmcpzsOwwdVHTKZlD2R4sVZ4TUrbEE6pmNzuRKBP2_w5l_rpZ8qcV0xyITh-Q-xOCpEel5w_JndA_IndLTcn1Y_L1pGw-vwqeztPnoeyY0WlY0Mu1XwxoMlkddIj0ejXrU9mesKR2TV0iBxkZfJv5AW-GeSi84DT_5EncJU_I-emHLydnbKqhwBxisZFp8LEGhAUCgosycdlICzEgEOTBA29sbKI7dBIcJsrgOqs6UBKURuV2sZVPyV4_9OE5oRqccLGWLi0NxtaC7ni0Pqa3dGtlRfhmPI2bCMZTnYsrkxe6ZWuKDgzqwGQdmJuKvNu-My_0Gn-VPk5q2komauz8AA3GTAZj_mUwFdnfKNlM_ro0QmrRYi6neEXebJvR09LyCfRhWGUZxJYa05GKPCs2se1JKvekEO1URO9Yy05Xd1v62WVm8070RUKqirzf2NWPbv15KF78j6F4Se6J5BC5oOQ-2RsXq_AKMdZoX2d3-g61GiYl priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwRv12tEsE3DW022a8n0eJZBH2y0BcJs_mwB-3u9W4Pev-9M9nclvOjsC-7mUA2M5P8kkl-w9hba0ucyLUSpYZWaAApoPS58F5ql-OjJF0U_va9PD7RX0-L07ThtkrHKrdjYhyoXW9pj_wgV1VeI9rW8sPiUlDWKIquphQat9kdiTMNHemqZ1-mPRZiP6-1TndlDlV9sNJxZKA1kyRsLa525qNI2_8vrPn3kck_4qZxOpo9YPcTjuQfR8U_ZLd894jdHTNLbh6zn0fjEfRz7_iCrANlh4hR_ZKfbdyyR8OJSuF94JfreUfJe_yKtxtuiSJkEHAxdz2-9As_soPzuNVDDCZP2Mns84-jY5EyKQiLiGwQFbhQAIKDHLwNihhtVAvBIxyU3oEs21AGe2gVWFwug21a3YBWoCtUcRNq9ZTtdX3nnzNegc1tKJSlAGGoW6gaGVoXqFZVtypjctufxiaaccp2cW5iuFvVZtSBQR2YqANzlbF3U53FSLJxo_QnUtMkSQTZ8UO__GWSv5nKh5CXEBDCNNoFXXsEJkUAZZW2rsBm7m-VbJLXrsy1jWXszVSM_kZBFOh8v44yiDArXJRk7NloE1NLKOmTRsyTsWrHWnaaulvSzc8ipzeRGOVKZ-z91q6um_X_rnhx81-8ZPdyMvWYMHKf7Q3LtX-FGGpoX0dH-Q3LpR0b priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEG5CguBFNL5GYxjBmzamH_M6rsEQFvSigVykqemHWYgz6-4suP_eqp6HrIkBYS4zXQ01U1XTX3d1f8XYG2tzHMi14rmGmmsAwSH3knsvtJN4KUEHhT99zs8v9Pwyu9xjcjwLEzftR0rL-Jsed4e9X-sY0jTZEQSKOeLGA6JqR98-mM3mX-bTygpxnpdaDydkTlR5S-edUSiS9d-GMG9ulPwrWxoHobOH7MGAHtNZr-8jtuebQ3avrye5fcy-nfYbz6-9S5f0UijbRWTqV-nV1q1adJdoirQN6c_NoqGSPX6d1tvUEjFIx-HHwrV40y59zwmexgUe4i15wi7OPn49PedD_QRuEYd1vAAXMkBIIMHboIjHRtUQPIJA4R2IvA55sCdWgcVJMtiq1hVoBbpAw1ahVE_ZftM2_jlLC7DShkxZSguGsoaiEqF2gXoVZa0SJsbvaexALk41Lq5NTHKr0vQ2MGgDE21gfiXs7dRn2VNr3Cn9gcw0SRItdnzQrr6bwU1M4UOQOQQELpV2QZce4UgWQFmlrctQzaPRyGaI1bWRqpAlzuO0SNjrqRmjjFIn0Ph2E2UQVxY4FUnYs94nJk2o1JNGpJOwYsdbdlTdbWkWV5HJm6iLpNIJezf61R-1_v0pXvyf-Et2X5Lrx7KRR2y_W238K0RSXX08hM5v0W4cwA priority: 102 providerName: Springer Nature |
Title | Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis |
URI | https://link.springer.com/article/10.1038/s41467-020-15118-x https://www.ncbi.nlm.nih.gov/pubmed/32144242 https://www.proquest.com/docview/2372860641 https://www.proquest.com/docview/2374357772 https://pubmed.ncbi.nlm.nih.gov/PMC7060234 https://doaj.org/article/7eff26af02194df48e1855fa3c34cd53 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66lsFeRvfbaxc82NvmbbZky34YIw3NSqBlbAvkZYizLLWBzG4dB5r_fifZzsiWDQbBwfYJhO7O-s6yvg_glVIJTeScBQnHPOCIYYCJjgKtQ15E9GOh3Sh8fpGcTflkFs_2oJc76gZwubO0s3pS03rx9vZm_ZES_kO7ZTx9t-Qu3W0hFFrAHBCmPKCZSVhFg_MO7rsnM8uooOHd3pndTbfmJ0fjvwt7_vkJ5W_rqG56Gh_C_Q5X-sM2EB7Ani4fwt1WaXL9CL6P2k_SF7rwr220kG3jMKuu_at1UVcUSM5JfmX8m9W8tGI-eunna19ZypAmwB_zoqITGp-WLdx3r34so8ljmI5Pv43Ogk5ZIVCE0JpAYGFiJLAQoVaGWYYblqPRBA9DXWCY5CYx6r1iqKh8RpXlPEPOkAtyeWZS9gT2y6rUz8AXqCJlYqbsgqFJcxRZaPLC2FYizZkHYT-eUnW041b9YiHd8jdLZesDST6Qzgfy1oPXmzbXLenGP61PrJs2lpYw212o6kvZ5Z8U2pgoQUOQJuOF4akmoBIbZIpxVcTUzePeybIPQhkxEaVU4fHQg5eb25R_dlEFS12tnA0hTkFFigdP25jY9MSKQHHCQB6IrWjZ6ur2nXJ-5Ti-LalRxLgHb_q4-tWtvw_F8_8zP4J7kQ19Jyh5DPtNvdIvCGM1-QDuiJmgYzr-NICD4XDydUL_J6cXn7_Q1VEyGri3FwOXYD8BI0UryA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJuUAkGCE0RtbOd1QAgKy5Y-Tq3UC3IdP-hKbbLdzYrun-I3MuMkWy2P3irlsomzcjyfPZ899jcAr7VO0ZELHqVClZFQKo5UallkbSwMw4vHdFB4bz8dHopvR8nRCvzqz8LQtsp-TPQDtak1rZFvMJ6xHNm2iD-MzyPKGkXR1T6FRguLHTv_iVO26fvtz2jfN4wNvhxsDaMuq0CkkZ00UaaMSxQ6SqasdpzUXXipnEVqFFuj4rR0qdObmiuNU0eli1IUSnAlMvzcwuUc__cG3BQcPTmdTB98XazpkNp6LkR3NmeT5xtT4UcimqPFxOWjiyX_59ME_Ivb_r1F8484rXd_g3twt-Ot4ccWaPdhxVYP4FabyXL-EL5vtVveT60Jx4RGLNt4Tmwn4cncTGoEqgdBWLvwfDaqKFmQnYblPNQkSdJE6mxkavxRj22rRh76pSVSTHkEh9fSxo9htaor-xTCTGmmXcI1BSRdXqqsiF1pHL2V5SUPIO7bU-pO1pyya5xKH17nuWxtINEG0ttAXgTwdvHOuBX1uLL0JzLToiQJcvsb9eSH7Pq3zKxzLFUOKVMhjBO5RSKUOMU1F9okWM313siyGyWm8hLTAbxaPMb-TUEbVdl65ssgo81wEhTAkxYTi5pQkimBHCuAbAktS1VdflKNTryGOIkmMS4CeNfj6rJa_2-Ktau_4iXcHh7s7crd7f2dZ3CHEex9ssp1WG0mM_sc-VtTvvCdJoTj6-6lvwEbwlxR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ4i2sZ3XASH6WLUUVhWiUi_IOI5NVyrJdjcrun-NX8eM86iWR2-VctnEWTmeb-zPHvsbgJdaxziQCx7EQuWBUCoMVGxYYEwoCoYXD-mg8KdxvHckPhxHx2vwqzsLQ9squz7RddRFpWmNfMh4wlJk2yIc2nZbxOHO6N30LKAMUhRp7dJpNBA5MMufOH2bv93fQVu_Ymy0-2V7L2gzDAQamUodJKqwkcJBkymjLSelF54ra5AmhaZQYZzb2OpNzZXGaaTSWS4yJbgSCX56ZlOO_3sN1hOaFQ1gfWt3fPi5X-Eh7fVUiPakziZPh3Ph-iWasYXE7IPzldHQJQ34F9P9e8PmH1FbNxiObsOtlsX67xvY3YE1U96F601ey-U9-LrdbIA_NYU_JWxi2doxZDPzT5bFrELYOkj4lfXPFpOSUgeZuZ8vfU0CJXWgfkyKCn9UU9Nok_tuoYn0U-7D0ZW08gMYlFVpHoGfKM20jbim8KRNc5Vkoc0LS28lac49CLv2lLoVOadcG6fSBdt5KhsbSLSBdDaQ5x687t-ZNhIfl5beIjP1JUme292oZt9l6-0yMdayWFkkUJkorEgN0qLIKq650EWE1dzojCzbPmMuLxDuwYv-MXo7hXBUaaqFK4P8NsEpkQcPG0z0NaGUUwIZlwfJClpWqrr6pJycOEVxklBiXHjwpsPVRbX-3xSPL_-K53ADPVR-3B8fPIGbjFDvMlduwKCeLcxTJHN1_qz1Gh--XbWj_gbiMGHj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+partial+transfer+hydrogenation+of+quinolines+by+cobalt-amido+cooperative+catalysis&rft.jtitle=Nature+communications&rft.au=Pang%2C+Maofu&rft.au=Chen%2C+Jia-Yi&rft.au=Zhang%2C+Shengjie&rft.au=Liao%2C+Rong-Zhen&rft.date=2020-03-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-15118-x&rft.externalDocID=10_1038_s41467_020_15118_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |