Explainable machine learning model for predicting spontaneous bacterial peritonitis in cirrhotic patients with ascites

Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 21639 - 11
Main Authors Hu, Yingying, Chen, Ruijia, Gao, Haibing, Lin, Haitao, Wang, Jinye, Wang, Xiaowei, Liu, Jingfeng, Zeng, Yongyi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.11.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model’s outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783–0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784–0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP.
AbstractList Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model's outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783-0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784-0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP.Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model's outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783-0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784-0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP.
Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model’s outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783–0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784–0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP.
Abstract Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model’s outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783–0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784–0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP.
ArticleNumber 21639
Author Liu, Jingfeng
Zeng, Yongyi
Wang, Xiaowei
Hu, Yingying
Wang, Jinye
Lin, Haitao
Chen, Ruijia
Gao, Haibing
Author_xml – sequence: 1
  givenname: Yingying
  surname: Hu
  fullname: Hu, Yingying
  organization: Department of Pharmacy, Mengchao Hepatobiliary Hospital of Fujian Medical University
– sequence: 2
  givenname: Ruijia
  surname: Chen
  fullname: Chen, Ruijia
  organization: Department of Pharmacy, Mengchao Hepatobiliary Hospital of Fujian Medical University
– sequence: 3
  givenname: Haibing
  surname: Gao
  fullname: Gao, Haibing
  organization: Department of Infection and Liver Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University
– sequence: 4
  givenname: Haitao
  surname: Lin
  fullname: Lin, Haitao
  organization: The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University
– sequence: 5
  givenname: Jinye
  surname: Wang
  fullname: Wang, Jinye
  organization: Department of Pharmacy, Mengchao Hepatobiliary Hospital of Fujian Medical University
– sequence: 6
  givenname: Xiaowei
  surname: Wang
  fullname: Wang, Xiaowei
  organization: The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University
– sequence: 7
  givenname: Jingfeng
  surname: Liu
  fullname: Liu, Jingfeng
  email: drjingfeng@126.com
  organization: Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University
– sequence: 8
  givenname: Yongyi
  surname: Zeng
  fullname: Zeng, Yongyi
  email: lamp197311@126.com
  organization: Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34737270$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOyxIVLwJ9xfEFCVYFKlbjA2XKcya5XXjvY3gL_Hqdpoe2hPnis8XvPb8bzsjkKMUDTvCb4PcGs_5A5EapvMSUtrlvfimfNCcVctJRRenTvfNyc5bzDdQmqOFEvmmPGJZNU4pPm-uL37I0LZvCA9sZuXQDkwaTgwgbt4wgeTTGhOcHobFmSeY6hmADxkNFgbIHkjEdzDSUGV1xGLiDrUtrG4iyaTXEQSka_XNkik60rkF81zyfjM5zdxtPmx-eL7-df26tvXy7PP121VnBcWkkxVZKogVrCGen5KBlRmMDACebcjECoUSPQbpgmCjAKYSTpx1qrHKZRsdPmctUdo9npObm9SX90NE7fJGLaaJOqSw96ADKoTnaDHTCnliolJ1lfEIIQyvmi9XHVmg_DHkZbi0rGPxB9eBPcVm_ite5Fp0hHq8C7W4EUfx4gF7132YL3azM1FYpTxVjfVejbR9BdPKRQW7WgGOsIY7yi3tx39M_K3fdWQL8CbIo5J5h07X79j7gYdF4TrJdh0usw6TpH-maYtKhU-oh6p_4kia2kXMFhA-m_7SdYfwHr792J
CitedBy_id crossref_primary_10_1186_s12967_024_05726_2
crossref_primary_10_3390_diagnostics12112847
crossref_primary_10_1186_s12876_023_02949_3
crossref_primary_10_3389_fmars_2024_1503292
Cites_doi 10.1016/j.mayocp.2019.02.027
10.1186/s12911-019-0874-0
10.3390/jcm9020343
10.1111/liv.13283
10.2147/CLEP.S129785
10.1007/s11033-011-1432-8
10.14218/JCTH.2018.00001
10.2196/23458
10.1186/cc9309
10.1016/0016-5085(93)90284-J
10.14309/ajg.0000000000000632
10.1111/liv.12795
10.1200/CCI.20.00002
10.1038/s41551-018-0304-0
10.21037/atm.2016.10.67
10.1186/s13054-020-03179-9
10.1111/j.1572-0241.2007.01485.x
10.11604/pamj.2019.33.35.18029
10.3109/00365521.2013.848471
10.1007/s12072-018-09923-2
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-00218-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_be1b9676bcb042c2997f7ade55112449
PMC8569162
34737270
10_1038_s41598_021_00218_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fujian Medical University Qihang Project
  grantid: 2019QH1301
– fundername: Open Project of Fujian Key Laboratory of Natural Pharmacology in 2019
  grantid: FJNMP-201905
– fundername: ;
  grantid: 2019QH1301
– fundername: ;
  grantid: FJNMP-201905
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-72029719b2c143184d731901eb41044ade12a9de26bff2eed55a718d0007bfd93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:33 EDT 2025
Thu Aug 21 18:31:08 EDT 2025
Mon Jul 21 10:10:23 EDT 2025
Wed Aug 13 09:50:33 EDT 2025
Thu Jan 02 22:56:26 EST 2025
Tue Jul 01 01:33:41 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
Fri Feb 21 02:39:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-72029719b2c143184d731901eb41044ade12a9de26bff2eed55a718d0007bfd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-00218-5
PMID 34737270
PQID 2593361334
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_be1b9676bcb042c2997f7ade55112449
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8569162
proquest_miscellaneous_2594293386
proquest_journals_2593361334
pubmed_primary_34737270
crossref_citationtrail_10_1038_s41598_021_00218_5
crossref_primary_10_1038_s41598_021_00218_5
springer_journals_10_1038_s41598_021_00218_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-04
PublicationDateYYYYMMDD 2021-11-04
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Khan, Ravi, Chirapongsathorn, Jennings, Salameh, Russ, Skinner, Mudumbi, Simonetto, Kuo, Kamath, Singal (CR8) 2019; 94
Deshmukh, Merchant (CR11) 2020; 115
Xu, Duan, Ding, Li, Jia, Wei, Linghu, Zhuang (CR13) 2019; 13
Fernández, Acevedo, Arroyo (CR1) 2017; 37
Tseng, Chen, Wang, Chiu, Peng, Hsu, Chen, Yang, Lee (CR10) 2020; 24
CR18
Wehmeyer, Krohm, Kastein, Lohse, Lüth (CR3) 2014; 49
de Jager, van Wijk, Mathoera (CR17) 2010; 14
Zhang (CR21) 2016; 4
Kia, Timsina, Joshi, Klang, Gupta, Freeman, Reich, Tomlinson, Dudley, Kohli-Seth, Mazumdar, Levin (CR9) 2020; 9
Wu, Chen, Sun, Meng, Hou (CR16) 2016; 326
Li, Shinde, Liu, Glaser, Lyou, Yuh, Wong, Amini (CR23) 2020; 4
Schwabl, Bucsics, Soucek, Mandorfer, Bota, Blacky, Hirschl, Ferlitsch, Trauner, Peck-Radosavljevic, Reiberger (CR5) 2015; 35
Lundberg, Nair, Vavilala (CR19) 2018; 2
Shi, Fan, Ying, Lin, Song, Li, Yu, Chen, Zheng (CR2) 2012; 39
Wang, Zhang (CR6) 2018; 47
Elshawi, Al-Mallah, Sakr (CR20) 2019; 19
Obstein, Campbell, Reddy, Yang (CR7) 2007; 102
Ikemura, Bellin, Yagi, Billett, Saada, Simone, Stahl, Szymanski, Goldstein, Reyes (CR12) 2021; 23
Andreu, Sola, Sitges-Serra, Alia, Gallen, Vila, Coll, Oliver (CR15) 1993; 104
Pedersen, Mikkelsen, Cronin-Fenton, Kristensen, Pham, Pedersen, Petersen (CR22) 2017; 15
Metwally, Fouad, Assem, Abdelsameea, Yousery (CR4) 2018; 6
Duah, Nkrumah (CR14) 2019; 33
A Duah (218_CR14) 2019; 33
R Li (218_CR23) 2020; 4
M Andreu (218_CR15) 1993; 104
K Ikemura (218_CR12) 2021; 23
KL Obstein (218_CR7) 2007; 102
Z Zhang (218_CR21) 2016; 4
MH Wehmeyer (218_CR3) 2014; 49
CP de Jager (218_CR17) 2010; 14
218_CR18
A Kia (218_CR9) 2020; 9
K Metwally (218_CR4) 2018; 6
R Elshawi (218_CR20) 2019; 19
R Khan (218_CR8) 2019; 94
PY Tseng (218_CR10) 2020; 24
H Wu (218_CR16) 2016; 326
P Schwabl (218_CR5) 2015; 35
F Deshmukh (218_CR11) 2020; 115
Y Wang (218_CR6) 2018; 47
Xu (218_CR13) 2019; 13
SM Lundberg (218_CR19) 2018; 2
AB Pedersen (218_CR22) 2017; 15
KQ Shi (218_CR2) 2012; 39
J Fernández (218_CR1) 2017; 37
References_xml – volume: 94
  start-page: 1799
  year: 2019
  end-page: 1806
  ident: CR8
  article-title: Model for end-stage liver disease score predicts development of first episode of spontaneous bacterial peritonitis in patients with cirrhosis
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2019.02.027
– volume: 19
  start-page: 146
  year: 2019
  ident: CR20
  article-title: On the interpretability of machine learning-based model for predicting hypertension
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-0874-0
– volume: 47
  start-page: 1883
  year: 2018
  end-page: 1890
  ident: CR6
  article-title: Analysis of risk factors for patients with liver cirrhosis complicated with spontaneous bacterial peritonitis
  publication-title: Iran. J. Public Health.
– volume: 9
  start-page: 343
  year: 2020
  ident: CR9
  article-title: MEWS++: Enhancing the prediction of clinical deterioration in admitted patients through a machine learning model
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9020343
– ident: CR18
– volume: 37
  start-page: 623
  year: 2017
  ident: CR1
  article-title: Response to the clinical course and short-term mortality of cirrhotic patients with non-spontaneous bacterial peritonitis infections
  publication-title: Liver Int.
  doi: 10.1111/liv.13283
– volume: 15
  start-page: 157
  issue: 9
  year: 2017
  end-page: 166
  ident: CR22
  article-title: Missing data and multiple imputation in clinical epidemiological research
  publication-title: Clin. Epidemiol.
  doi: 10.2147/CLEP.S129785
– volume: 13
  start-page: 1
  year: 2019
  end-page: 21
  ident: CR13
  article-title: Chinese guidelines on the management of ascites and its related complications in cirrhosis
  publication-title: Hepatol. Int.
– volume: 39
  start-page: 6161
  year: 2012
  end-page: 6169
  ident: CR2
  article-title: Risk stratification of spontaneous bacterial peritonitis in cirrhosis with ascites based on classification and regression tree analysis
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-011-1432-8
– volume: 6
  start-page: 372
  year: 2018
  end-page: 376
  ident: CR4
  article-title: Predictors of spontaneous bacterial peritonitis in patients with cirrhotic ascites
  publication-title: J. Clin. Transl. Hepatol.
  doi: 10.14218/JCTH.2018.00001
– volume: 23
  start-page: e23458
  year: 2021
  ident: CR12
  article-title: Using automated machine learning to predict the mortality of patients with COVID-19: Prediction model development study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/23458
– volume: 326
  start-page: 1484
  issue: 6
  year: 2016
  ident: CR16
  article-title: The role of serum procalcitonin and C-reactive protein levels in predicting spontaneous bacterial peritonitis in patients with advanced liver cirrhosis
  publication-title: Pak. J. Med. Sci.
– volume: 14
  start-page: R192
  issue: 5
  year: 2010
  ident: CR17
  article-title: Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit
  publication-title: Crit. Care.
  doi: 10.1186/cc9309
– volume: 104
  start-page: 1133
  year: 1993
  end-page: 1138
  ident: CR15
  article-title: Risk factors for spontaneous bacterial peritonitis in cirrhotic patients with ascites
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(93)90284-J
– volume: 115
  start-page: 1657
  year: 2020
  end-page: 1668
  ident: CR11
  article-title: Explainable machine learning model for predicting GI bleed mortality in the intensive care unit
  publication-title: Am. J. Gastroenterol.
  doi: 10.14309/ajg.0000000000000632
– volume: 35
  start-page: 2121
  year: 2015
  end-page: 2128
  ident: CR5
  article-title: Risk factors for development of spontaneous bacterial peritonitis and subsequent mortality in cirrhotic patients with ascites
  publication-title: Liver Int.
  doi: 10.1111/liv.12795
– volume: 4
  start-page: 637
  year: 2020
  end-page: 646
  ident: CR23
  article-title: Machine learning-based interpretation and visualization of nonlinear interactions in prostate cancer survival
  publication-title: JCO Clin. Cancer Inform.
  doi: 10.1200/CCI.20.00002
– volume: 2
  start-page: 749
  year: 2018
  end-page: 760
  ident: CR19
  article-title: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0304-0
– volume: 4
  start-page: 30
  year: 2016
  ident: CR21
  article-title: Multiple imputation with multivariate imputation by chained equation (MICE) package
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2016.10.67
– volume: 24
  start-page: 478
  year: 2020
  ident: CR10
  article-title: Prediction of the development of acute kidney injury following cardiac surgery by machine learning
  publication-title: Crit. Care.
  doi: 10.1186/s13054-020-03179-9
– volume: 102
  start-page: 2732
  year: 2007
  end-page: 2736
  ident: CR7
  article-title: Association between model for end-stage liver disease and spontaneous bacterial peritonitis
  publication-title: Am. J. Gastroenterol.
  doi: 10.1111/j.1572-0241.2007.01485.x
– volume: 33
  start-page: 35
  year: 2019
  ident: CR14
  article-title: Prevalence and predictors for spontaneous bacterial peritonitis in cirrhotic patients with ascites admitted at medical block in Korle–Bu Teaching Hospital, Ghana
  publication-title: Pan. Afr. Med J.
  doi: 10.11604/pamj.2019.33.35.18029
– volume: 49
  start-page: 595
  year: 2014
  end-page: 603
  ident: CR3
  article-title: Prediction of spontaneous bacterial peritonitis in cirrhotic ascites by a simple scoring system
  publication-title: Scand. J. Gastroenterol.
  doi: 10.3109/00365521.2013.848471
– volume: 326
  start-page: 1484
  issue: 6
  year: 2016
  ident: 218_CR16
  publication-title: Pak. J. Med. Sci.
– volume: 4
  start-page: 30
  year: 2016
  ident: 218_CR21
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2016.10.67
– volume: 2
  start-page: 749
  year: 2018
  ident: 218_CR19
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0304-0
– volume: 47
  start-page: 1883
  year: 2018
  ident: 218_CR6
  publication-title: Iran. J. Public Health.
– volume: 104
  start-page: 1133
  year: 1993
  ident: 218_CR15
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(93)90284-J
– volume: 37
  start-page: 623
  year: 2017
  ident: 218_CR1
  publication-title: Liver Int.
  doi: 10.1111/liv.13283
– volume: 94
  start-page: 1799
  year: 2019
  ident: 218_CR8
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2019.02.027
– volume: 23
  start-page: e23458
  year: 2021
  ident: 218_CR12
  publication-title: J. Med. Internet Res.
  doi: 10.2196/23458
– volume: 49
  start-page: 595
  year: 2014
  ident: 218_CR3
  publication-title: Scand. J. Gastroenterol.
  doi: 10.3109/00365521.2013.848471
– volume: 33
  start-page: 35
  year: 2019
  ident: 218_CR14
  publication-title: Pan. Afr. Med J.
  doi: 10.11604/pamj.2019.33.35.18029
– volume: 13
  start-page: 1
  year: 2019
  ident: 218_CR13
  publication-title: Hepatol. Int.
  doi: 10.1007/s12072-018-09923-2
– volume: 4
  start-page: 637
  year: 2020
  ident: 218_CR23
  publication-title: JCO Clin. Cancer Inform.
  doi: 10.1200/CCI.20.00002
– volume: 6
  start-page: 372
  year: 2018
  ident: 218_CR4
  publication-title: J. Clin. Transl. Hepatol.
  doi: 10.14218/JCTH.2018.00001
– volume: 115
  start-page: 1657
  year: 2020
  ident: 218_CR11
  publication-title: Am. J. Gastroenterol.
  doi: 10.14309/ajg.0000000000000632
– volume: 102
  start-page: 2732
  year: 2007
  ident: 218_CR7
  publication-title: Am. J. Gastroenterol.
  doi: 10.1111/j.1572-0241.2007.01485.x
– volume: 14
  start-page: R192
  issue: 5
  year: 2010
  ident: 218_CR17
  publication-title: Crit. Care.
  doi: 10.1186/cc9309
– ident: 218_CR18
– volume: 35
  start-page: 2121
  year: 2015
  ident: 218_CR5
  publication-title: Liver Int.
  doi: 10.1111/liv.12795
– volume: 24
  start-page: 478
  year: 2020
  ident: 218_CR10
  publication-title: Crit. Care.
  doi: 10.1186/s13054-020-03179-9
– volume: 9
  start-page: 343
  year: 2020
  ident: 218_CR9
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9020343
– volume: 39
  start-page: 6161
  year: 2012
  ident: 218_CR2
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-011-1432-8
– volume: 15
  start-page: 157
  issue: 9
  year: 2017
  ident: 218_CR22
  publication-title: Clin. Epidemiol.
  doi: 10.2147/CLEP.S129785
– volume: 19
  start-page: 146
  year: 2019
  ident: 218_CR20
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-0874-0
SSID ssj0000529419
Score 2.3750741
Snippet Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning...
Abstract Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21639
SubjectTerms 631/114/1305
631/114/2397
692/4020/4021/1607/1604
Adult
Algorithms
Ascites
Ascites - complications
Bacterial Infections - epidemiology
C-reactive protein
C-Reactive Protein - metabolism
Cholinesterase
Cirrhosis
Female
Fibrosis - complications
Forecasting - methods
Humanities and Social Sciences
Humans
Learning algorithms
Liver cirrhosis
Liver Cirrhosis - complications
Liver Cirrhosis - microbiology
Lymphocytes
Machine Learning
Male
Middle Aged
Models, Theoretical
multidisciplinary
Peritonitis
Peritonitis - microbiology
Prediction models
Predictive Value of Tests
Prothrombin
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kQPBF_LZ6SgTftNw2SZPmUcXjEPTJg3sLmTb1FrR7bPcE_3tnkux66-eLr21Kw3x0ftPM_AbgeRilxWgUaSBgrV2DNS4GV3e6GYLRhiIMNye__2BOTvW7s_bsyqgvrgnL9MBZcEcYG3TGGuyR7Kunr6cdbRhiy0hB69S6RzHvSjKVWb2l040rXTIL1R3NFKm4m0xS9sxxrW73IlEi7P8dyvy1WPKnE9MUiI5vwc2CIMWrvPPbcC1Od-B6nin57S585aq60hIlvqRSySjKbIhPIg2-EQRUxcWaj2i46FlwlSxhxLi6nAVm9mZ6AVMgb9jjl7NYTqJfrtfnK3qnKFSss-B_uCJQDCW4eg9Oj99-fHNSl-EKdU8gbVNbyWOrGoeyJ8hEed5gFYODiJoyNE0SbmRwQ5QGx1FSJG3bQHFsYFCB4-DUfTiYVlN8CAKlUhiCw86gRmNCbKMdY0e5iutC01bQbAXt-8I8zgMwPvt0Aq46n5XjSS8-KcfTMy92z1xk3o2_rn7N-tutZM7sdIEsyRdL8v-ypAoOt9r3xZFnT9mhUgR5lK7g2e42uSCfq2TN8BqK6pTrmwoeZGPZ7URpngNkFxXYPTPa2-r-nWl5nmi-u9YQdpcVvNwa3I9t_VkUj_6HKB7DDcmewr_P9SEcbNaX8QmBrw0-TX72HXB1K1M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojzTFmQkbhB1Yzt2fEKAWlVIcKLS3ixP4rQr0WRJtkj8e2Ycb6rl0WviKE5mxt_nmfEMY298KwwELVECHnJlC8hh0di8UkXjtdKIMHQ4-ctXfXauPi_LZXK4jSmtcrsmxoW66WvykR8jTZcSsUeq9-sfOXWNouhqaqFxl92j0mWk1WZpZh8LRbFUYdNZmYWsjkfEKzpTJnAPTeiWlzt4FMv2_4tr_p0y-UfcNMLR6SP2MPFI_mES_D67E7rH7P7UWfLXE_aTcuvSwSh-FRMmA08dIi54bH_Dka7y9UCBGkp95pQri0wx9Ncjh6mGM76ACiFvyO5XI191vF4Nw2WP7-SpIOvIyZPLPSIpktan7Pz05Nunszy1WMhrpGqb3AhqXlVYEDUSJ9ztNUYSRQigcJ-mfBMK4W0ThIa2FYinZekRzRqiFtA2Vj5je13fhReMg5ASvLdQaVCgtQ9lMG2ocMdiK1-UGSu2P9rVqf44tcH47mIcXFZuEo5DubgoHIfPvJ2fWU_VN24d_ZHkN4-kytnxQj9cuGSIDkIBVhsNNeB6VSMam9bgd5bEPJWyGTvaSt8lcx7djfJl7PV8Gw2RoiuTZGgMYjvu-HXGnk_KMs9EKuoGZBYZMztqtDPV3Tvd6jIW-65KjQxeZOzdVuFupvX_X3Fw-1ccsgeCbIDc4-qI7W2G6_ASydUGXkUL-g13_iMP
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9zQ_BF_LZzSgTftHibpEnzeBXHuKAvOthbyGnT7YLrHe2d4H-_c9K0cnUKvrYJTXtO-vudnC_G3vhWGAhaogQ85MoWkMOisXmlisZrpRFhKDn58xd9cqpWZ-XZHhNTLkwM2o8lLeNveooOez8g0FAymEDjl2ApL--wAyrVjrp9sFyuvq7mkxXyXanCpgyZhaxumbyDQrFY_20M889Ayd-8pRGEjh-w-4k98uW43odsL3SP2N2xn-TPx-wHRdSldCh-GcMkA099Ic55bHrDkaTyq57cMxTwzClCFvlh2FwPHMbKzfgAKn-8pd2-Hvi64_W67y82-EyeyrAOnM5vuUf8RKr6hJ0ef_r28SRPjRXyGgnaNjeCWlYVFkSNdAltvMZIIgYBFFpnyjehEN42QWhoW4EoWpYeMawhQgFtY-VTtt9tuvCccRBSgvcWKg0KtPahDKYNFdoptvJFmbFi-tCuTlXHqfnFdxe937Jyo3AcysVF4Tic83aeczXW3Pjn6A8kv3kk1cuOFzb9uUv64yAUYLXRUAP-pWrEYNMafM-S-KZSNmNHk_Rd2sSDQ8tQSqQ7UmXs9Xwbtx_5VEbJ0BhEdLTzdcaejcoyr0Qq6gFkFhkzO2q0s9TdO936Ipb4rkqNvF1k7N2kcL-W9fdPcfh_w1-we4L2BB2SqyO2v-2vw0ukWFt4lfbUDW5AIiw
  priority: 102
  providerName: Springer Nature
Title Explainable machine learning model for predicting spontaneous bacterial peritonitis in cirrhotic patients with ascites
URI https://link.springer.com/article/10.1038/s41598-021-00218-5
https://www.ncbi.nlm.nih.gov/pubmed/34737270
https://www.proquest.com/docview/2593361334
https://www.proquest.com/docview/2594293386
https://pubmed.ncbi.nlm.nih.gov/PMC8569162
https://doaj.org/article/be1b9676bcb042c2997f7ade55112449
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY9_11gUN9rZ5qyVZsh7GSENLCbSMbYG8GcmW20DndHZa2v9-d7aSkS0b7MlgS1jW3fn3O0l3B_DGVlw7rwRKwLpYmsTF7qA0cSaT0iqpEGEoOPn0TJ1M5HiaTrdgWe4oTGC70bWjelKT5vL97Y-7T2jwH_uQ8exDiyBEgWIcHWOCrDjdhl1EJk0VDU4D3e9zfXMjExNiZzZ3XcOnLo3_Ju755xHK3_ZRO3g6fggPAq9kw14RHsGWrx_Dvb7S5N0TuKGzdiFQin3vDlB6FipGnLOuHA5D-squGtq4oaPQjM7OInP08-uWuT6nM76AEiMv6D8wa9msZsWsaS7m-E4WErS2jFZ2mUVkRRL7FCbHR99GJ3EouRAXSN0WseZUzCoxjhdIpND7K7UgyuCdRL9N2tIn3JrSc-WqiiO-pqlFdCuJariqNOIZ7NTz2u8Bc1wIZ61xmXLSKWV96nXlM_RgTGaTNIJkOdF5EfKRU1mMy7zbFxdZ3gsnR7nknXBy7PN21eeqz8bxz9aHJL9VS8qk3d2YN-d5MMzc-cQZpZUrHP6_CkRnXWn8zpSYqJQmgv2l9POlduboMwqBREjICF6vHqNh0m5LLxlqg1gvRKYieN4ry2okQlJ1IH0QgV5To7Whrj-pZxdd8u8sVcjoeQTvlgr3a1h_n4oX_9f8JdznZBO0fC73YWfRXPtXSL4WbgDbeqoHsDscjr-O8Xp4dPb5C94dqdGgW9AYdDb3E0tTME4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiHdDCxgJThB1Yzt2ckCIV7Wlj1Mr7c3YidOuBMk22YL6p_iNzORVLY_eek1sxfGM55vxvABe2oJr55VAClgXyjRyoZvkaZjIKLdKKkQYSk4-OFTTY_llFs_W4NeQC0NhlYNMbAV1XmV0R76NaroQiD1CvluchdQ1iryrQwuNji32_MVPNNmat7ufkL6vON_5fPRxGvZdBcIMtZNlqDn1a4pSxzPUFdDAybUgVPROomkibe4jbtPcc-WKgiOExLFFAZ4Tmroip-JLKPJv4NQJGXt6psc7HfKaySjtc3MmItluEB8ph42jzU5oGsYr-Ne2CfiXbvt3iOYfftoW_nbuwp1eb2XvO0a7B2u-vA83u06WFw_gB8Xy9YlY7HsboOlZ35HihLXtdhiqx2xRk2OIQq0ZxeaiZuqr84a5rmY0foAKLy9JzswbNi9ZNq_r0wq_yfoCsA2jm2NmEblRSX4Ix9ey-Y9gvaxKvwHMcSGctalLlJNOKetjrwufoIWUJjaKA4iGjTZZX--c2m58M63fXSSmI45BupiWOAbnvB7nLLpqH1eO_kD0G0dSpe72QVWfmP7gG-cjlyqtXOZQPmaI_rrQ-J8xabpSpgFsDdQ3vfhozCWzB_BifI0Hn7w5HWVoDOoSQiQqgMcds4wrEZK6D-lJAHqFjVaWuvqmnJ-2xcWTWKHFwAN4MzDc5bL-vxVPrv6L53BrenSwb_Z3D_c24Tan80BX83IL1pf1uX-Kit3SPWtPE4Ov1318fwMdNl68
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN5NKWAkOEG0G9txkgNClHbVUlhViEq9GTtx2pXoZtlsQf1r_DpmEifV8uit18RWHM945hvPC-CFKXlinRJIAWNDmUU2tKMiC1MZFUZJhRqGkpM_TdTekfxwHB-vwa8uF4bCKjuZ2AjqosrpjnyIMF0I1D1CDksfFnG4M347_x5SBynytHbtNFoWOXAXP9F8q9_s7yCtX3I-3v3yfi_0HQbCHJHKMkw49W6KMstzxA1o7BSJIA3prEQzRZrCRdxkhePKliVHdRLHBoV5QZrVlgUVYkLxv56QVTSA9e3dyeHn_oaHfGgyynymzkikwxq1JWW0cbTgSbeG8Yo2bJoG_Avp_h2w-YfXtlGG4ztw26NY9q5lu7uw5mb34Ebb1_LiPvygyD6flsXOmnBNx3x_ihPWNN9hCJbZfEFuIgq8ZhSpizjVVec1s20FafwAlWFektSZ1mw6Y_l0sTit8JvMl4OtGd0jM4N6HCHzAzi6lu1_CINZNXMbwCwXwhqT2VRZaZUyLnZJ6VK0l7LURHEAUbfROvfVz6kJxzfdeOFFqlviaKSLboijcc6rfs68rf1x5ehtol8_kup2Nw-qxYn2YkBbF9lMJcrmFqVljlggKRP8z5hwr5RZAFsd9bUXJrW-ZP0AnvevUQyQb6elDI1BZCFEqgJ41DJLvxIhqRdRMgogWWGjlaWuvplNT5tS42ms0H7gAbzuGO5yWf_fis2r_-IZ3MSjqz_uTw4ewy1Ox4Hu6eUWDJaLc_cEUd7SPvXHicHX6z7BvwGJ5mRX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+machine+learning+model+for+predicting+spontaneous+bacterial+peritonitis+in+cirrhotic+patients+with+ascites&rft.jtitle=Scientific+reports&rft.au=Hu%2C+Yingying&rft.au=Chen%2C+Ruijia&rft.au=Gao%2C+Haibing&rft.au=Lin%2C+Haitao&rft.date=2021-11-04&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-00218-5&rft.externalDocID=10_1038_s41598_021_00218_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon