Explainable machine learning model for predicting spontaneous bacterial peritonitis in cirrhotic patients with ascites
Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 21639 - 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.11.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model’s outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783–0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784–0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP. |
---|---|
AbstractList | Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model's outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783-0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784-0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP.Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model's outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783-0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784-0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP. Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model’s outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783–0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784–0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP. Abstract Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model’s outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783–0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784–0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP. |
ArticleNumber | 21639 |
Author | Liu, Jingfeng Zeng, Yongyi Wang, Xiaowei Hu, Yingying Wang, Jinye Lin, Haitao Chen, Ruijia Gao, Haibing |
Author_xml | – sequence: 1 givenname: Yingying surname: Hu fullname: Hu, Yingying organization: Department of Pharmacy, Mengchao Hepatobiliary Hospital of Fujian Medical University – sequence: 2 givenname: Ruijia surname: Chen fullname: Chen, Ruijia organization: Department of Pharmacy, Mengchao Hepatobiliary Hospital of Fujian Medical University – sequence: 3 givenname: Haibing surname: Gao fullname: Gao, Haibing organization: Department of Infection and Liver Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University – sequence: 4 givenname: Haitao surname: Lin fullname: Lin, Haitao organization: The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University – sequence: 5 givenname: Jinye surname: Wang fullname: Wang, Jinye organization: Department of Pharmacy, Mengchao Hepatobiliary Hospital of Fujian Medical University – sequence: 6 givenname: Xiaowei surname: Wang fullname: Wang, Xiaowei organization: The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University – sequence: 7 givenname: Jingfeng surname: Liu fullname: Liu, Jingfeng email: drjingfeng@126.com organization: Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University – sequence: 8 givenname: Yongyi surname: Zeng fullname: Zeng, Yongyi email: lamp197311@126.com organization: Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34737270$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOyxIVLwJ9xfEFCVYFKlbjA2XKcya5XXjvY3gL_Hqdpoe2hPnis8XvPb8bzsjkKMUDTvCb4PcGs_5A5EapvMSUtrlvfimfNCcVctJRRenTvfNyc5bzDdQmqOFEvmmPGJZNU4pPm-uL37I0LZvCA9sZuXQDkwaTgwgbt4wgeTTGhOcHobFmSeY6hmADxkNFgbIHkjEdzDSUGV1xGLiDrUtrG4iyaTXEQSka_XNkik60rkF81zyfjM5zdxtPmx-eL7-df26tvXy7PP121VnBcWkkxVZKogVrCGen5KBlRmMDACebcjECoUSPQbpgmCjAKYSTpx1qrHKZRsdPmctUdo9npObm9SX90NE7fJGLaaJOqSw96ADKoTnaDHTCnliolJ1lfEIIQyvmi9XHVmg_DHkZbi0rGPxB9eBPcVm_ite5Fp0hHq8C7W4EUfx4gF7132YL3azM1FYpTxVjfVejbR9BdPKRQW7WgGOsIY7yi3tx39M_K3fdWQL8CbIo5J5h07X79j7gYdF4TrJdh0usw6TpH-maYtKhU-oh6p_4kia2kXMFhA-m_7SdYfwHr792J |
CitedBy_id | crossref_primary_10_1186_s12967_024_05726_2 crossref_primary_10_3390_diagnostics12112847 crossref_primary_10_1186_s12876_023_02949_3 crossref_primary_10_3389_fmars_2024_1503292 |
Cites_doi | 10.1016/j.mayocp.2019.02.027 10.1186/s12911-019-0874-0 10.3390/jcm9020343 10.1111/liv.13283 10.2147/CLEP.S129785 10.1007/s11033-011-1432-8 10.14218/JCTH.2018.00001 10.2196/23458 10.1186/cc9309 10.1016/0016-5085(93)90284-J 10.14309/ajg.0000000000000632 10.1111/liv.12795 10.1200/CCI.20.00002 10.1038/s41551-018-0304-0 10.21037/atm.2016.10.67 10.1186/s13054-020-03179-9 10.1111/j.1572-0241.2007.01485.x 10.11604/pamj.2019.33.35.18029 10.3109/00365521.2013.848471 10.1007/s12072-018-09923-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-00218-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_be1b9676bcb042c2997f7ade55112449 PMC8569162 34737270 10_1038_s41598_021_00218_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fujian Medical University Qihang Project grantid: 2019QH1301 – fundername: Open Project of Fujian Key Laboratory of Natural Pharmacology in 2019 grantid: FJNMP-201905 – fundername: ; grantid: 2019QH1301 – fundername: ; grantid: FJNMP-201905 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD COVID K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-72029719b2c143184d731901eb41044ade12a9de26bff2eed55a718d0007bfd93 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:33 EDT 2025 Thu Aug 21 18:31:08 EDT 2025 Mon Jul 21 10:10:23 EDT 2025 Wed Aug 13 09:50:33 EDT 2025 Thu Jan 02 22:56:26 EST 2025 Tue Jul 01 01:33:41 EDT 2025 Thu Apr 24 22:51:39 EDT 2025 Fri Feb 21 02:39:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-72029719b2c143184d731901eb41044ade12a9de26bff2eed55a718d0007bfd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-00218-5 |
PMID | 34737270 |
PQID | 2593361334 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_be1b9676bcb042c2997f7ade55112449 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8569162 proquest_miscellaneous_2594293386 proquest_journals_2593361334 pubmed_primary_34737270 crossref_citationtrail_10_1038_s41598_021_00218_5 crossref_primary_10_1038_s41598_021_00218_5 springer_journals_10_1038_s41598_021_00218_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-04 |
PublicationDateYYYYMMDD | 2021-11-04 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Khan, Ravi, Chirapongsathorn, Jennings, Salameh, Russ, Skinner, Mudumbi, Simonetto, Kuo, Kamath, Singal (CR8) 2019; 94 Deshmukh, Merchant (CR11) 2020; 115 Xu, Duan, Ding, Li, Jia, Wei, Linghu, Zhuang (CR13) 2019; 13 Fernández, Acevedo, Arroyo (CR1) 2017; 37 Tseng, Chen, Wang, Chiu, Peng, Hsu, Chen, Yang, Lee (CR10) 2020; 24 CR18 Wehmeyer, Krohm, Kastein, Lohse, Lüth (CR3) 2014; 49 de Jager, van Wijk, Mathoera (CR17) 2010; 14 Zhang (CR21) 2016; 4 Kia, Timsina, Joshi, Klang, Gupta, Freeman, Reich, Tomlinson, Dudley, Kohli-Seth, Mazumdar, Levin (CR9) 2020; 9 Wu, Chen, Sun, Meng, Hou (CR16) 2016; 326 Li, Shinde, Liu, Glaser, Lyou, Yuh, Wong, Amini (CR23) 2020; 4 Schwabl, Bucsics, Soucek, Mandorfer, Bota, Blacky, Hirschl, Ferlitsch, Trauner, Peck-Radosavljevic, Reiberger (CR5) 2015; 35 Lundberg, Nair, Vavilala (CR19) 2018; 2 Shi, Fan, Ying, Lin, Song, Li, Yu, Chen, Zheng (CR2) 2012; 39 Wang, Zhang (CR6) 2018; 47 Elshawi, Al-Mallah, Sakr (CR20) 2019; 19 Obstein, Campbell, Reddy, Yang (CR7) 2007; 102 Ikemura, Bellin, Yagi, Billett, Saada, Simone, Stahl, Szymanski, Goldstein, Reyes (CR12) 2021; 23 Andreu, Sola, Sitges-Serra, Alia, Gallen, Vila, Coll, Oliver (CR15) 1993; 104 Pedersen, Mikkelsen, Cronin-Fenton, Kristensen, Pham, Pedersen, Petersen (CR22) 2017; 15 Metwally, Fouad, Assem, Abdelsameea, Yousery (CR4) 2018; 6 Duah, Nkrumah (CR14) 2019; 33 A Duah (218_CR14) 2019; 33 R Li (218_CR23) 2020; 4 M Andreu (218_CR15) 1993; 104 K Ikemura (218_CR12) 2021; 23 KL Obstein (218_CR7) 2007; 102 Z Zhang (218_CR21) 2016; 4 MH Wehmeyer (218_CR3) 2014; 49 CP de Jager (218_CR17) 2010; 14 218_CR18 A Kia (218_CR9) 2020; 9 K Metwally (218_CR4) 2018; 6 R Elshawi (218_CR20) 2019; 19 R Khan (218_CR8) 2019; 94 PY Tseng (218_CR10) 2020; 24 H Wu (218_CR16) 2016; 326 P Schwabl (218_CR5) 2015; 35 F Deshmukh (218_CR11) 2020; 115 Y Wang (218_CR6) 2018; 47 Xu (218_CR13) 2019; 13 SM Lundberg (218_CR19) 2018; 2 AB Pedersen (218_CR22) 2017; 15 KQ Shi (218_CR2) 2012; 39 J Fernández (218_CR1) 2017; 37 |
References_xml | – volume: 94 start-page: 1799 year: 2019 end-page: 1806 ident: CR8 article-title: Model for end-stage liver disease score predicts development of first episode of spontaneous bacterial peritonitis in patients with cirrhosis publication-title: Mayo Clin. Proc. doi: 10.1016/j.mayocp.2019.02.027 – volume: 19 start-page: 146 year: 2019 ident: CR20 article-title: On the interpretability of machine learning-based model for predicting hypertension publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-0874-0 – volume: 47 start-page: 1883 year: 2018 end-page: 1890 ident: CR6 article-title: Analysis of risk factors for patients with liver cirrhosis complicated with spontaneous bacterial peritonitis publication-title: Iran. J. Public Health. – volume: 9 start-page: 343 year: 2020 ident: CR9 article-title: MEWS++: Enhancing the prediction of clinical deterioration in admitted patients through a machine learning model publication-title: J. Clin. Med. doi: 10.3390/jcm9020343 – ident: CR18 – volume: 37 start-page: 623 year: 2017 ident: CR1 article-title: Response to the clinical course and short-term mortality of cirrhotic patients with non-spontaneous bacterial peritonitis infections publication-title: Liver Int. doi: 10.1111/liv.13283 – volume: 15 start-page: 157 issue: 9 year: 2017 end-page: 166 ident: CR22 article-title: Missing data and multiple imputation in clinical epidemiological research publication-title: Clin. Epidemiol. doi: 10.2147/CLEP.S129785 – volume: 13 start-page: 1 year: 2019 end-page: 21 ident: CR13 article-title: Chinese guidelines on the management of ascites and its related complications in cirrhosis publication-title: Hepatol. Int. – volume: 39 start-page: 6161 year: 2012 end-page: 6169 ident: CR2 article-title: Risk stratification of spontaneous bacterial peritonitis in cirrhosis with ascites based on classification and regression tree analysis publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-011-1432-8 – volume: 6 start-page: 372 year: 2018 end-page: 376 ident: CR4 article-title: Predictors of spontaneous bacterial peritonitis in patients with cirrhotic ascites publication-title: J. Clin. Transl. Hepatol. doi: 10.14218/JCTH.2018.00001 – volume: 23 start-page: e23458 year: 2021 ident: CR12 article-title: Using automated machine learning to predict the mortality of patients with COVID-19: Prediction model development study publication-title: J. Med. Internet Res. doi: 10.2196/23458 – volume: 326 start-page: 1484 issue: 6 year: 2016 ident: CR16 article-title: The role of serum procalcitonin and C-reactive protein levels in predicting spontaneous bacterial peritonitis in patients with advanced liver cirrhosis publication-title: Pak. J. Med. Sci. – volume: 14 start-page: R192 issue: 5 year: 2010 ident: CR17 article-title: Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit publication-title: Crit. Care. doi: 10.1186/cc9309 – volume: 104 start-page: 1133 year: 1993 end-page: 1138 ident: CR15 article-title: Risk factors for spontaneous bacterial peritonitis in cirrhotic patients with ascites publication-title: Gastroenterology doi: 10.1016/0016-5085(93)90284-J – volume: 115 start-page: 1657 year: 2020 end-page: 1668 ident: CR11 article-title: Explainable machine learning model for predicting GI bleed mortality in the intensive care unit publication-title: Am. J. Gastroenterol. doi: 10.14309/ajg.0000000000000632 – volume: 35 start-page: 2121 year: 2015 end-page: 2128 ident: CR5 article-title: Risk factors for development of spontaneous bacterial peritonitis and subsequent mortality in cirrhotic patients with ascites publication-title: Liver Int. doi: 10.1111/liv.12795 – volume: 4 start-page: 637 year: 2020 end-page: 646 ident: CR23 article-title: Machine learning-based interpretation and visualization of nonlinear interactions in prostate cancer survival publication-title: JCO Clin. Cancer Inform. doi: 10.1200/CCI.20.00002 – volume: 2 start-page: 749 year: 2018 end-page: 760 ident: CR19 article-title: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0304-0 – volume: 4 start-page: 30 year: 2016 ident: CR21 article-title: Multiple imputation with multivariate imputation by chained equation (MICE) package publication-title: Ann. Transl. Med. doi: 10.21037/atm.2016.10.67 – volume: 24 start-page: 478 year: 2020 ident: CR10 article-title: Prediction of the development of acute kidney injury following cardiac surgery by machine learning publication-title: Crit. Care. doi: 10.1186/s13054-020-03179-9 – volume: 102 start-page: 2732 year: 2007 end-page: 2736 ident: CR7 article-title: Association between model for end-stage liver disease and spontaneous bacterial peritonitis publication-title: Am. J. Gastroenterol. doi: 10.1111/j.1572-0241.2007.01485.x – volume: 33 start-page: 35 year: 2019 ident: CR14 article-title: Prevalence and predictors for spontaneous bacterial peritonitis in cirrhotic patients with ascites admitted at medical block in Korle–Bu Teaching Hospital, Ghana publication-title: Pan. Afr. Med J. doi: 10.11604/pamj.2019.33.35.18029 – volume: 49 start-page: 595 year: 2014 end-page: 603 ident: CR3 article-title: Prediction of spontaneous bacterial peritonitis in cirrhotic ascites by a simple scoring system publication-title: Scand. J. Gastroenterol. doi: 10.3109/00365521.2013.848471 – volume: 326 start-page: 1484 issue: 6 year: 2016 ident: 218_CR16 publication-title: Pak. J. Med. Sci. – volume: 4 start-page: 30 year: 2016 ident: 218_CR21 publication-title: Ann. Transl. Med. doi: 10.21037/atm.2016.10.67 – volume: 2 start-page: 749 year: 2018 ident: 218_CR19 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0304-0 – volume: 47 start-page: 1883 year: 2018 ident: 218_CR6 publication-title: Iran. J. Public Health. – volume: 104 start-page: 1133 year: 1993 ident: 218_CR15 publication-title: Gastroenterology doi: 10.1016/0016-5085(93)90284-J – volume: 37 start-page: 623 year: 2017 ident: 218_CR1 publication-title: Liver Int. doi: 10.1111/liv.13283 – volume: 94 start-page: 1799 year: 2019 ident: 218_CR8 publication-title: Mayo Clin. Proc. doi: 10.1016/j.mayocp.2019.02.027 – volume: 23 start-page: e23458 year: 2021 ident: 218_CR12 publication-title: J. Med. Internet Res. doi: 10.2196/23458 – volume: 49 start-page: 595 year: 2014 ident: 218_CR3 publication-title: Scand. J. Gastroenterol. doi: 10.3109/00365521.2013.848471 – volume: 33 start-page: 35 year: 2019 ident: 218_CR14 publication-title: Pan. Afr. Med J. doi: 10.11604/pamj.2019.33.35.18029 – volume: 13 start-page: 1 year: 2019 ident: 218_CR13 publication-title: Hepatol. Int. doi: 10.1007/s12072-018-09923-2 – volume: 4 start-page: 637 year: 2020 ident: 218_CR23 publication-title: JCO Clin. Cancer Inform. doi: 10.1200/CCI.20.00002 – volume: 6 start-page: 372 year: 2018 ident: 218_CR4 publication-title: J. Clin. Transl. Hepatol. doi: 10.14218/JCTH.2018.00001 – volume: 115 start-page: 1657 year: 2020 ident: 218_CR11 publication-title: Am. J. Gastroenterol. doi: 10.14309/ajg.0000000000000632 – volume: 102 start-page: 2732 year: 2007 ident: 218_CR7 publication-title: Am. J. Gastroenterol. doi: 10.1111/j.1572-0241.2007.01485.x – volume: 14 start-page: R192 issue: 5 year: 2010 ident: 218_CR17 publication-title: Crit. Care. doi: 10.1186/cc9309 – ident: 218_CR18 – volume: 35 start-page: 2121 year: 2015 ident: 218_CR5 publication-title: Liver Int. doi: 10.1111/liv.12795 – volume: 24 start-page: 478 year: 2020 ident: 218_CR10 publication-title: Crit. Care. doi: 10.1186/s13054-020-03179-9 – volume: 9 start-page: 343 year: 2020 ident: 218_CR9 publication-title: J. Clin. Med. doi: 10.3390/jcm9020343 – volume: 39 start-page: 6161 year: 2012 ident: 218_CR2 publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-011-1432-8 – volume: 15 start-page: 157 issue: 9 year: 2017 ident: 218_CR22 publication-title: Clin. Epidemiol. doi: 10.2147/CLEP.S129785 – volume: 19 start-page: 146 year: 2019 ident: 218_CR20 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-0874-0 |
SSID | ssj0000529419 |
Score | 2.3750741 |
Snippet | Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning... Abstract Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21639 |
SubjectTerms | 631/114/1305 631/114/2397 692/4020/4021/1607/1604 Adult Algorithms Ascites Ascites - complications Bacterial Infections - epidemiology C-reactive protein C-Reactive Protein - metabolism Cholinesterase Cirrhosis Female Fibrosis - complications Forecasting - methods Humanities and Social Sciences Humans Learning algorithms Liver cirrhosis Liver Cirrhosis - complications Liver Cirrhosis - microbiology Lymphocytes Machine Learning Male Middle Aged Models, Theoretical multidisciplinary Peritonitis Peritonitis - microbiology Prediction models Predictive Value of Tests Prothrombin Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kQPBF_LZ6SgTftNw2SZPmUcXjEPTJg3sLmTb1FrR7bPcE_3tnkux66-eLr21Kw3x0ftPM_AbgeRilxWgUaSBgrV2DNS4GV3e6GYLRhiIMNye__2BOTvW7s_bsyqgvrgnL9MBZcEcYG3TGGuyR7Kunr6cdbRhiy0hB69S6RzHvSjKVWb2l040rXTIL1R3NFKm4m0xS9sxxrW73IlEi7P8dyvy1WPKnE9MUiI5vwc2CIMWrvPPbcC1Od-B6nin57S585aq60hIlvqRSySjKbIhPIg2-EQRUxcWaj2i46FlwlSxhxLi6nAVm9mZ6AVMgb9jjl7NYTqJfrtfnK3qnKFSss-B_uCJQDCW4eg9Oj99-fHNSl-EKdU8gbVNbyWOrGoeyJ8hEed5gFYODiJoyNE0SbmRwQ5QGx1FSJG3bQHFsYFCB4-DUfTiYVlN8CAKlUhiCw86gRmNCbKMdY0e5iutC01bQbAXt-8I8zgMwPvt0Aq46n5XjSS8-KcfTMy92z1xk3o2_rn7N-tutZM7sdIEsyRdL8v-ypAoOt9r3xZFnT9mhUgR5lK7g2e42uSCfq2TN8BqK6pTrmwoeZGPZ7URpngNkFxXYPTPa2-r-nWl5nmi-u9YQdpcVvNwa3I9t_VkUj_6HKB7DDcmewr_P9SEcbNaX8QmBrw0-TX72HXB1K1M priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojzTFmQkbhB1Yzt2fEKAWlVIcKLS3ixP4rQr0WRJtkj8e2Ycb6rl0WviKE5mxt_nmfEMY298KwwELVECHnJlC8hh0di8UkXjtdKIMHQ4-ctXfXauPi_LZXK4jSmtcrsmxoW66WvykR8jTZcSsUeq9-sfOXWNouhqaqFxl92j0mWk1WZpZh8LRbFUYdNZmYWsjkfEKzpTJnAPTeiWlzt4FMv2_4tr_p0y-UfcNMLR6SP2MPFI_mES_D67E7rH7P7UWfLXE_aTcuvSwSh-FRMmA08dIi54bH_Dka7y9UCBGkp95pQri0wx9Ncjh6mGM76ACiFvyO5XI191vF4Nw2WP7-SpIOvIyZPLPSIpktan7Pz05Nunszy1WMhrpGqb3AhqXlVYEDUSJ9ztNUYSRQigcJ-mfBMK4W0ThIa2FYinZekRzRqiFtA2Vj5je13fhReMg5ASvLdQaVCgtQ9lMG2ocMdiK1-UGSu2P9rVqf44tcH47mIcXFZuEo5DubgoHIfPvJ2fWU_VN24d_ZHkN4-kytnxQj9cuGSIDkIBVhsNNeB6VSMam9bgd5bEPJWyGTvaSt8lcx7djfJl7PV8Gw2RoiuTZGgMYjvu-HXGnk_KMs9EKuoGZBYZMztqtDPV3Tvd6jIW-65KjQxeZOzdVuFupvX_X3Fw-1ccsgeCbIDc4-qI7W2G6_ASydUGXkUL-g13_iMP priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9zQ_BF_LZzSgTftHibpEnzeBXHuKAvOthbyGnT7YLrHe2d4H-_c9K0cnUKvrYJTXtO-vudnC_G3vhWGAhaogQ85MoWkMOisXmlisZrpRFhKDn58xd9cqpWZ-XZHhNTLkwM2o8lLeNveooOez8g0FAymEDjl2ApL--wAyrVjrp9sFyuvq7mkxXyXanCpgyZhaxumbyDQrFY_20M889Ayd-8pRGEjh-w-4k98uW43odsL3SP2N2xn-TPx-wHRdSldCh-GcMkA099Ic55bHrDkaTyq57cMxTwzClCFvlh2FwPHMbKzfgAKn-8pd2-Hvi64_W67y82-EyeyrAOnM5vuUf8RKr6hJ0ef_r28SRPjRXyGgnaNjeCWlYVFkSNdAltvMZIIgYBFFpnyjehEN42QWhoW4EoWpYeMawhQgFtY-VTtt9tuvCccRBSgvcWKg0KtPahDKYNFdoptvJFmbFi-tCuTlXHqfnFdxe937Jyo3AcysVF4Tic83aeczXW3Pjn6A8kv3kk1cuOFzb9uUv64yAUYLXRUAP-pWrEYNMafM-S-KZSNmNHk_Rd2sSDQ8tQSqQ7UmXs9Xwbtx_5VEbJ0BhEdLTzdcaejcoyr0Qq6gFkFhkzO2q0s9TdO936Ipb4rkqNvF1k7N2kcL-W9fdPcfh_w1-we4L2BB2SqyO2v-2vw0ukWFt4lfbUDW5AIiw priority: 102 providerName: Springer Nature |
Title | Explainable machine learning model for predicting spontaneous bacterial peritonitis in cirrhotic patients with ascites |
URI | https://link.springer.com/article/10.1038/s41598-021-00218-5 https://www.ncbi.nlm.nih.gov/pubmed/34737270 https://www.proquest.com/docview/2593361334 https://www.proquest.com/docview/2594293386 https://pubmed.ncbi.nlm.nih.gov/PMC8569162 https://doaj.org/article/be1b9676bcb042c2997f7ade55112449 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY9_11gUN9rZ5qyVZsh7GSENLCbSMbYG8GcmW20DndHZa2v9-d7aSkS0b7MlgS1jW3fn3O0l3B_DGVlw7rwRKwLpYmsTF7qA0cSaT0iqpEGEoOPn0TJ1M5HiaTrdgWe4oTGC70bWjelKT5vL97Y-7T2jwH_uQ8exDiyBEgWIcHWOCrDjdhl1EJk0VDU4D3e9zfXMjExNiZzZ3XcOnLo3_Ju755xHK3_ZRO3g6fggPAq9kw14RHsGWrx_Dvb7S5N0TuKGzdiFQin3vDlB6FipGnLOuHA5D-squGtq4oaPQjM7OInP08-uWuT6nM76AEiMv6D8wa9msZsWsaS7m-E4WErS2jFZ2mUVkRRL7FCbHR99GJ3EouRAXSN0WseZUzCoxjhdIpND7K7UgyuCdRL9N2tIn3JrSc-WqiiO-pqlFdCuJariqNOIZ7NTz2u8Bc1wIZ61xmXLSKWV96nXlM_RgTGaTNIJkOdF5EfKRU1mMy7zbFxdZ3gsnR7nknXBy7PN21eeqz8bxz9aHJL9VS8qk3d2YN-d5MMzc-cQZpZUrHP6_CkRnXWn8zpSYqJQmgv2l9POlduboMwqBREjICF6vHqNh0m5LLxlqg1gvRKYieN4ry2okQlJ1IH0QgV5To7Whrj-pZxdd8u8sVcjoeQTvlgr3a1h_n4oX_9f8JdznZBO0fC73YWfRXPtXSL4WbgDbeqoHsDscjr-O8Xp4dPb5C94dqdGgW9AYdDb3E0tTME4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiHdDCxgJThB1Yzt2ckCIV7Wlj1Mr7c3YidOuBMk22YL6p_iNzORVLY_eek1sxfGM55vxvABe2oJr55VAClgXyjRyoZvkaZjIKLdKKkQYSk4-OFTTY_llFs_W4NeQC0NhlYNMbAV1XmV0R76NaroQiD1CvluchdQ1iryrQwuNji32_MVPNNmat7ufkL6vON_5fPRxGvZdBcIMtZNlqDn1a4pSxzPUFdDAybUgVPROomkibe4jbtPcc-WKgiOExLFFAZ4Tmroip-JLKPJv4NQJGXt6psc7HfKaySjtc3MmItluEB8ph42jzU5oGsYr-Ne2CfiXbvt3iOYfftoW_nbuwp1eb2XvO0a7B2u-vA83u06WFw_gB8Xy9YlY7HsboOlZ35HihLXtdhiqx2xRk2OIQq0ZxeaiZuqr84a5rmY0foAKLy9JzswbNi9ZNq_r0wq_yfoCsA2jm2NmEblRSX4Ix9ey-Y9gvaxKvwHMcSGctalLlJNOKetjrwufoIWUJjaKA4iGjTZZX--c2m58M63fXSSmI45BupiWOAbnvB7nLLpqH1eO_kD0G0dSpe72QVWfmP7gG-cjlyqtXOZQPmaI_rrQ-J8xabpSpgFsDdQ3vfhozCWzB_BifI0Hn7w5HWVoDOoSQiQqgMcds4wrEZK6D-lJAHqFjVaWuvqmnJ-2xcWTWKHFwAN4MzDc5bL-vxVPrv6L53BrenSwb_Z3D_c24Tan80BX83IL1pf1uX-Kit3SPWtPE4Ov1318fwMdNl68 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN5NKWAkOEG0G9txkgNClHbVUlhViEq9GTtx2pXoZtlsQf1r_DpmEifV8uit18RWHM945hvPC-CFKXlinRJIAWNDmUU2tKMiC1MZFUZJhRqGkpM_TdTekfxwHB-vwa8uF4bCKjuZ2AjqosrpjnyIMF0I1D1CDksfFnG4M347_x5SBynytHbtNFoWOXAXP9F8q9_s7yCtX3I-3v3yfi_0HQbCHJHKMkw49W6KMstzxA1o7BSJIA3prEQzRZrCRdxkhePKliVHdRLHBoV5QZrVlgUVYkLxv56QVTSA9e3dyeHn_oaHfGgyynymzkikwxq1JWW0cbTgSbeG8Yo2bJoG_Avp_h2w-YfXtlGG4ztw26NY9q5lu7uw5mb34Ebb1_LiPvygyD6flsXOmnBNx3x_ihPWNN9hCJbZfEFuIgq8ZhSpizjVVec1s20FafwAlWFektSZ1mw6Y_l0sTit8JvMl4OtGd0jM4N6HCHzAzi6lu1_CINZNXMbwCwXwhqT2VRZaZUyLnZJ6VK0l7LURHEAUbfROvfVz6kJxzfdeOFFqlviaKSLboijcc6rfs68rf1x5ehtol8_kup2Nw-qxYn2YkBbF9lMJcrmFqVljlggKRP8z5hwr5RZAFsd9bUXJrW-ZP0AnvevUQyQb6elDI1BZCFEqgJ41DJLvxIhqRdRMgogWWGjlaWuvplNT5tS42ms0H7gAbzuGO5yWf_fis2r_-IZ3MSjqz_uTw4ewy1Ox4Hu6eUWDJaLc_cEUd7SPvXHicHX6z7BvwGJ5mRX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+machine+learning+model+for+predicting+spontaneous+bacterial+peritonitis+in+cirrhotic+patients+with+ascites&rft.jtitle=Scientific+reports&rft.au=Hu%2C+Yingying&rft.au=Chen%2C+Ruijia&rft.au=Gao%2C+Haibing&rft.au=Lin%2C+Haitao&rft.date=2021-11-04&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-00218-5&rft.externalDocID=10_1038_s41598_021_00218_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |