McElcheran, C. E., Golestanirad, L., Iacono, M. I., Wei, P., Yang, B., Anderson, K. J. T., . . . Graham, S. J. (2019). Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI. Scientific reports, 9(1), 2124. https://doi.org/10.1038/s41598-018-38099-w
Chicago Style (17th ed.) CitationMcElcheran, C. E., L. Golestanirad, M. I. Iacono, P.-S Wei, B. Yang, K. J. T. Anderson, G. Bonmassar, and S. J. Graham. "Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants During MRI." Scientific Reports 9, no. 1 (2019): 2124. https://doi.org/10.1038/s41598-018-38099-w.
MLA (9th ed.) CitationMcElcheran, C. E., et al. "Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants During MRI." Scientific Reports, vol. 9, no. 1, 2019, p. 2124, https://doi.org/10.1038/s41598-018-38099-w.