The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy
Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now sh...
Saved in:
Published in | Cell reports (Cambridge) Vol. 20; no. 4; pp. 854 - 867 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
25.07.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies.
[Display omitted]
•Intratumoral T cells and TNF-α cause Ezh2 upregulation in melanoma cells•Ezh2 silences immunogenicity and antigen presentation in melanoma•Ezh2 blockade reverses melanoma resistance mechanisms•Ezh2 inactivation synergizes with anti-CTLA-4 and IL-2 immunotherapy
Zingg et al. investigate the mechanisms of adaptive resistance to tumor immunotherapy. They find that intratumoral TNF-α production and T cell accumulation promote Ezh2 upregulation in melanoma cells, resulting in loss of immunogenicity and antigen presentation. Ezh2 inactivation reverses these effects and synergizes with anti-CTLA-4 and IL-2 immunotherapies. |
---|---|
AbstractList | Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies.
[Display omitted]
•Intratumoral T cells and TNF-α cause Ezh2 upregulation in melanoma cells•Ezh2 silences immunogenicity and antigen presentation in melanoma•Ezh2 blockade reverses melanoma resistance mechanisms•Ezh2 inactivation synergizes with anti-CTLA-4 and IL-2 immunotherapy
Zingg et al. investigate the mechanisms of adaptive resistance to tumor immunotherapy. They find that intratumoral TNF-α production and T cell accumulation promote Ezh2 upregulation in melanoma cells, resulting in loss of immunogenicity and antigen presentation. Ezh2 inactivation reverses these effects and synergizes with anti-CTLA-4 and IL-2 immunotherapies. Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1 CD8 T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies. Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies. Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies.Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies. |
Author | Boyman, Onur Zingg, Daniel Sahin, Dilara Antunes, Ana T. Sommer, Lukas Arenas-Ramirez, Natalia Rosalia, Rodney A. Haeusel, Jessica |
Author_xml | – sequence: 1 givenname: Daniel surname: Zingg fullname: Zingg, Daniel organization: Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland – sequence: 2 givenname: Natalia surname: Arenas-Ramirez fullname: Arenas-Ramirez, Natalia organization: Department of Immunology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland – sequence: 3 givenname: Dilara surname: Sahin fullname: Sahin, Dilara organization: Department of Immunology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland – sequence: 4 givenname: Rodney A. surname: Rosalia fullname: Rosalia, Rodney A. organization: Department of Immunology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland – sequence: 5 givenname: Ana T. surname: Antunes fullname: Antunes, Ana T. organization: Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland – sequence: 6 givenname: Jessica surname: Haeusel fullname: Haeusel, Jessica organization: Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland – sequence: 7 givenname: Lukas surname: Sommer fullname: Sommer, Lukas email: lukas.sommer@anatom.uzh.ch organization: Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland – sequence: 8 givenname: Onur surname: Boyman fullname: Boyman, Onur email: onur.boyman@uzh.ch organization: Department of Immunology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28746871$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFrFDEUhQep2Fr7D0Ty6MuuSSabzPgglKXahYog63O4k7lxssxMxiRT2P56s04r4oOGCwnJOV_gnJfF2ehHLIrXjK4ZZfLdYW2wDzitOWVqTfNQ9ay44JyxFeNCnf1xPi-uYjzQvCRlrBYvinNeKSErxS6Kdt8huXUxZT75jKk79inAGC0GiEhuHjpOtn5Mwfcxv5sORheHSLwl1y1Myd0j-YoxA2A0SJIn-3nwgeyGYR596jJmOr4qnlvoI1497pfFt483--3t6u7Lp932-m5lNoKmlVQ1tK0CjqyygorGWihtRdtyY41s1MYYxBoYVCCNsCVjnCsr6xqZFZza8rLYLdzWw0FPwQ0QjtqD078ufPiuISRnetS1VErVjVS8FKI0bUMBlbA1M5uy5IJm1tuFNQX_Y8aY9OBiDr2HEf0cNau5kLRkimXpm0fp3AzY_v74KeUseL8ITPAxBrTauATJnXIF12tG9alVfdBLq_rUqqZ5qMpm8Zf5if8f24fFhjnwe4dBR-Mwd9S6gCblRNy_AT8BSje9uw |
CitedBy_id | crossref_primary_10_1007_s12185_022_03466_x crossref_primary_10_3390_cancers13020319 crossref_primary_10_1186_s13075_020_02225_9 crossref_primary_10_1016_j_celrep_2024_114724 crossref_primary_10_1016_j_intimp_2023_110068 crossref_primary_10_1016_j_ccell_2018_06_001 crossref_primary_10_1038_s41467_022_34253_1 crossref_primary_10_1097_CMR_0000000000000926 crossref_primary_10_1186_s40364_018_0122_2 crossref_primary_10_1136_jitc_2020_001179 crossref_primary_10_1038_s41467_021_22720_0 crossref_primary_10_3390_cancers12082154 crossref_primary_10_1631_jzus_B2300492 crossref_primary_10_3389_fmed_2023_1096615 crossref_primary_10_1016_j_celrep_2021_109410 crossref_primary_10_3389_fphar_2022_965244 crossref_primary_10_1136_gutjnl_2024_332350 crossref_primary_10_1016_j_celrep_2018_05_050 crossref_primary_10_1080_14656566_2023_2224500 crossref_primary_10_2217_epi_2022_0454 crossref_primary_10_1016_j_ccell_2019_08_008 crossref_primary_10_1016_j_trecan_2022_07_002 crossref_primary_10_1126_science_aat0383 crossref_primary_10_1016_j_molimm_2020_01_006 crossref_primary_10_1016_j_cmet_2021_04_001 crossref_primary_10_1016_j_gendis_2019_06_006 crossref_primary_10_1186_s13046_021_02234_9 crossref_primary_10_1016_j_prp_2024_155485 crossref_primary_10_3389_fcell_2021_641469 crossref_primary_10_2147_CMAR_S272031 crossref_primary_10_1146_annurev_immunol_070621_030155 crossref_primary_10_1073_pnas_2102718118 crossref_primary_10_1186_s12929_022_00893_0 crossref_primary_10_1158_1535_7163_MCT_21_0743 crossref_primary_10_3390_cancers14194865 crossref_primary_10_1038_s41580_019_0143_1 crossref_primary_10_3390_cancers13246180 crossref_primary_10_3390_epigenomes4030022 crossref_primary_10_1038_s43018_021_00185_w crossref_primary_10_1016_j_jpha_2022_11_009 crossref_primary_10_1038_s41467_024_46422_5 crossref_primary_10_1172_JCI140281 crossref_primary_10_1016_j_ymthe_2021_08_003 crossref_primary_10_1038_s41571_019_0204_6 crossref_primary_10_1083_jcb_201908224 crossref_primary_10_1080_21678707_2020_1809377 crossref_primary_10_1038_s41467_020_20220_1 crossref_primary_10_1371_journal_pone_0242191 crossref_primary_10_2217_imt_2017_0164 crossref_primary_10_3390_cancers12113194 crossref_primary_10_1016_j_isci_2022_104752 crossref_primary_10_1186_s13148_019_0763_5 crossref_primary_10_3390_biomedicines10030650 crossref_primary_10_1016_j_ccell_2018_06_005 crossref_primary_10_1186_s13046_018_0777_4 crossref_primary_10_1016_j_chom_2023_04_010 crossref_primary_10_3389_fonc_2023_1196448 crossref_primary_10_1016_j_critrevonc_2021_103547 crossref_primary_10_3390_epigenomes6030028 crossref_primary_10_1186_s13045_024_01580_3 crossref_primary_10_3892_ijo_2022_5424 crossref_primary_10_1016_j_ccell_2020_11_009 crossref_primary_10_1016_j_it_2021_03_006 crossref_primary_10_1016_j_cytogfr_2023_06_001 crossref_primary_10_3389_fimmu_2021_770080 crossref_primary_10_1371_journal_pone_0245287 crossref_primary_10_1002_ddr_21796 crossref_primary_10_1038_s41571_019_0266_5 crossref_primary_10_1038_s41467_023_43290_3 crossref_primary_10_1158_0008_5472_CAN_19_0428 crossref_primary_10_1186_s13148_025_01856_6 crossref_primary_10_1186_s13045_020_00868_4 crossref_primary_10_2217_fon_2020_0781 crossref_primary_10_2217_imt_2020_0283 crossref_primary_10_1007_s10142_025_01563_8 crossref_primary_10_1016_j_jgg_2021_03_013 crossref_primary_10_1016_j_bbcan_2022_188700 crossref_primary_10_1186_s13148_021_01046_0 crossref_primary_10_1158_2767_9764_CRC_23_0399 crossref_primary_10_3389_fmolb_2023_1170026 crossref_primary_10_1038_s41573_020_00108_x crossref_primary_10_3390_ijms21114071 crossref_primary_10_1038_s41392_024_01979_x crossref_primary_10_3390_ijms22094391 crossref_primary_10_1126_sciimmunol_abk1692 crossref_primary_10_3390_ijms25052745 crossref_primary_10_1016_j_biopha_2024_116624 crossref_primary_10_1016_S1877_1203_22_00010_6 crossref_primary_10_1158_1078_0432_CCR_19_1351 crossref_primary_10_1158_2326_6066_CIR_18_0697 crossref_primary_10_1111_imr_12644 crossref_primary_10_3390_jpm11090901 crossref_primary_10_3390_ijms26031255 crossref_primary_10_1111_bjd_20421 crossref_primary_10_4103_tcmj_tcmj_220_20 crossref_primary_10_4155_fmc_2020_0072 crossref_primary_10_1186_s12943_025_02265_2 crossref_primary_10_1038_s41417_022_00555_1 crossref_primary_10_3390_cells10082048 crossref_primary_10_1038_s12276_023_01014_z crossref_primary_10_1016_j_immuni_2023_09_004 crossref_primary_10_1038_s41418_019_0278_9 crossref_primary_10_3390_ijms22136741 crossref_primary_10_1038_s41573_020_0077_5 crossref_primary_10_3390_ijms21176176 crossref_primary_10_1186_s40425_019_0690_1 crossref_primary_10_1186_s13046_022_02529_5 crossref_primary_10_3389_fimmu_2019_01818 crossref_primary_10_1016_j_iotech_2021_100035 crossref_primary_10_3390_cancers13246247 crossref_primary_10_1186_s40425_019_0602_4 crossref_primary_10_3390_cancers16162919 crossref_primary_10_1016_S1470_2045_20_30441_1 crossref_primary_10_4062_biomolther_2019_135 crossref_primary_10_31083_j_fbl2806125 crossref_primary_10_1038_s41388_021_02173_x crossref_primary_10_1002_JLB_1RU0520_311R crossref_primary_10_1158_2326_6066_CIR_20_0586 crossref_primary_10_3389_fonc_2020_568059 crossref_primary_10_1002_sctm_20_0351 crossref_primary_10_1016_j_ymeth_2025_01_004 crossref_primary_10_1177_10732748211038424 crossref_primary_10_1016_j_jcmgh_2024_101407 crossref_primary_10_1136_jitc_2021_003484 crossref_primary_10_1126_scitranslmed_aba5464 crossref_primary_10_1186_s13073_018_0605_7 crossref_primary_10_1172_jci_insight_177545 crossref_primary_10_1016_j_athoracsur_2018_08_056 crossref_primary_10_1016_j_jid_2020_02_042 crossref_primary_10_3389_fgene_2021_680633 crossref_primary_10_1016_j_tranon_2020_01_002 crossref_primary_10_1038_s41388_020_1347_8 crossref_primary_10_1080_21645515_2024_2385654 crossref_primary_10_1016_j_it_2020_06_002 crossref_primary_10_1016_j_ccell_2024_09_010 crossref_primary_10_1016_j_immuni_2020_11_002 crossref_primary_10_1038_s41417_024_00732_4 crossref_primary_10_1016_j_jid_2021_03_003 crossref_primary_10_3390_cancers13010134 crossref_primary_10_1186_s12885_022_09934_1 crossref_primary_10_4110_in_2024_24_e5 crossref_primary_10_1016_j_ejphar_2019_172452 crossref_primary_10_3389_fimmu_2023_1152572 crossref_primary_10_1016_j_critrevonc_2024_104532 crossref_primary_10_1038_s41388_018_0459_x crossref_primary_10_1186_s12943_020_1144_6 crossref_primary_10_1016_j_trecan_2024_08_004 crossref_primary_10_1111_cge_14576 crossref_primary_10_3389_fmolb_2020_00172 crossref_primary_10_3389_fonc_2021_719091 crossref_primary_10_1016_j_jtho_2022_05_014 crossref_primary_10_1186_s13578_023_01073_9 crossref_primary_10_1186_s40364_024_00621_w crossref_primary_10_1158_2326_6066_CIR_22_0814 crossref_primary_10_1038_s41388_019_0729_2 crossref_primary_10_1016_j_ejmech_2024_116774 crossref_primary_10_1016_j_hoc_2020_08_010 crossref_primary_10_1016_j_intimp_2023_110918 crossref_primary_10_3389_fimmu_2017_01597 crossref_primary_10_1038_s41388_022_02492_7 crossref_primary_10_1158_1078_0432_CCR_20_2984 crossref_primary_10_1186_s12885_024_12244_3 crossref_primary_10_1186_s13148_020_0818_7 crossref_primary_10_2217_fon_2020_0967 crossref_primary_10_1016_j_ejca_2020_08_014 crossref_primary_10_1080_2162402X_2019_1703449 crossref_primary_10_1038_s41422_021_00606_6 crossref_primary_10_1126_sciadv_abo8043 crossref_primary_10_2217_epi_2020_0186 crossref_primary_10_3389_fimmu_2021_652160 crossref_primary_10_1016_j_semcancer_2019_12_019 crossref_primary_10_1186_s12935_023_02902_0 crossref_primary_10_1007_s11654_017_0036_8 crossref_primary_10_3390_cancers15051537 crossref_primary_10_1016_j_ymthe_2022_02_006 crossref_primary_10_1158_1535_7163_MCT_17_0437 crossref_primary_10_2139_ssrn_4129851 crossref_primary_10_1016_j_carbpol_2024_122645 crossref_primary_10_1038_s41388_019_0855_x crossref_primary_10_1080_2162402X_2017_1386829 crossref_primary_10_14348_molcells_2021_0044 crossref_primary_10_1016_j_xjidi_2021_100090 crossref_primary_10_1111_imm_13058 crossref_primary_10_1038_s41577_024_01111_8 crossref_primary_10_1172_jci_insight_128474 crossref_primary_10_1038_s41437_022_00533_1 crossref_primary_10_1016_j_intimp_2024_113365 crossref_primary_10_1172_JCI163450 crossref_primary_10_1038_s43018_023_00553_8 crossref_primary_10_1053_j_seminoncol_2022_06_005 crossref_primary_10_1158_1078_0432_CCR_18_3133 crossref_primary_10_1007_s10555_020_09944_0 crossref_primary_10_3389_fimmu_2022_873116 crossref_primary_10_1158_0008_5472_CAN_20_0524 crossref_primary_10_1016_j_jid_2021_08_437 crossref_primary_10_1093_annonc_mdy032 crossref_primary_10_1038_s41423_021_00756_y crossref_primary_10_1016_j_pharmthera_2022_108301 crossref_primary_10_3389_fphar_2018_01413 crossref_primary_10_1158_0008_5472_CAN_20_2147 crossref_primary_10_1111_pcmr_12643 crossref_primary_10_1016_j_xcrm_2023_101287 crossref_primary_10_1172_JCI99760 crossref_primary_10_1016_j_semcancer_2020_01_001 crossref_primary_10_1158_2326_6066_CIR_22_0184 crossref_primary_10_2217_epi_2022_0320 crossref_primary_10_1016_j_cbpa_2019_11_009 crossref_primary_10_1158_1541_7786_MCR_18_0246 crossref_primary_10_1158_1541_7786_MCR_18_0368 crossref_primary_10_1186_s40164_022_00356_0 crossref_primary_10_1126_science_abq1053 crossref_primary_10_1186_s40364_020_00206_3 crossref_primary_10_3390_cells10040831 crossref_primary_10_1038_s41467_017_02358_7 crossref_primary_10_3389_fonc_2022_943806 crossref_primary_10_3389_fimmu_2020_593203 crossref_primary_10_3390_biom10071061 crossref_primary_10_1016_j_trecan_2018_06_004 crossref_primary_10_3390_genes11030287 crossref_primary_10_3389_fimmu_2020_01469 crossref_primary_10_3389_fonc_2023_1200646 crossref_primary_10_1186_s13046_020_01682_z crossref_primary_10_2147_IJN_S290346 crossref_primary_10_1016_j_canlet_2024_216661 crossref_primary_10_1007_s00018_018_2908_7 crossref_primary_10_1007_s00345_020_03200_4 crossref_primary_10_3390_cancers13030564 crossref_primary_10_1016_j_it_2019_02_004 crossref_primary_10_1016_j_it_2020_08_010 crossref_primary_10_1002_ctm2_835 crossref_primary_10_1016_j_bbcan_2023_188865 crossref_primary_10_1038_s41423_018_0086_z crossref_primary_10_1038_s41388_023_02631_8 |
Cites_doi | 10.1016/j.it.2015.10.003 10.1186/gb-2006-7-10-r100 10.1126/scitranslmed.3006504 10.1016/j.it.2016.03.009 10.1038/nm.4036 10.1186/1479-5876-12-68 10.1038/nature15520 10.1038/nature14011 10.1126/science.1122927 10.1038/onc.2014.362 10.1158/0008-5472.CAN-15-1938 10.1158/2326-6066.CIR-14-0190 10.1016/j.immuni.2015.01.007 10.1038/ni.3313 10.1016/j.ccr.2013.08.018 10.1016/j.immuni.2013.10.003 10.1038/ncomms6241 10.1038/cdd.2014.44 10.1073/pnas.1002569107 10.1016/j.ccell.2015.03.001 10.1038/ncb2535 10.1038/nature10975 10.1016/j.ccr.2013.04.011 10.1016/j.cell.2016.02.065 10.1158/1078-0432.CCR-15-1434 10.1073/pnas.1521812113 10.1016/j.cell.2015.05.044 10.1126/science.aad0095 10.1158/2159-8290.CD-13-0005 10.1038/nri3862 10.1126/science.1203486 10.1056/NEJMoa1504030 10.1126/scitranslmed.aag3187 10.4049/jimmunol.1490019 10.1038/nature13954 10.1038/ncomms7051 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2017.07.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 867 |
ExternalDocumentID | oai_doaj_org_article_967779b6723443cdb0ae74f91c533240 28746871 10_1016_j_celrep_2017_07_007 S2211124717309464 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c540t-679add7a2e18f404bffa3f80d35fc6b75ccee9a1a8a6c4f311227f699e1f420f3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:16:50 EDT 2025 Thu Jul 10 23:43:44 EDT 2025 Wed Feb 19 02:44:22 EST 2025 Tue Jul 01 03:07:40 EDT 2025 Thu Apr 24 23:08:06 EDT 2025 Wed May 17 00:03:08 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | tumor resistance PRC2 immunotherapy melanoma tumor immune escape anti-CTLA-4 anti-PD-1 IL-2 complexes epigenetics EZH2 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-679add7a2e18f404bffa3f80d35fc6b75ccee9a1a8a6c4f311227f699e1f420f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124717309464 |
PMID | 28746871 |
PQID | 1924603171 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_967779b6723443cdb0ae74f91c533240 proquest_miscellaneous_1924603171 pubmed_primary_28746871 crossref_citationtrail_10_1016_j_celrep_2017_07_007 crossref_primary_10_1016_j_celrep_2017_07_007 elsevier_sciencedirect_doi_10_1016_j_celrep_2017_07_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-25 |
PublicationDateYYYYMMDD | 2017-07-25 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat (bib8) 2006; 7 Rosenberg (bib24) 2014; 192 Topalian, Drake, Pardoll (bib28) 2015; 27 Kim, Roberts (bib15) 2016; 22 Zingg, Debbache, Schaefer, Tuncer, Frommel, Cheng, Arenas-Ramirez, Haeusel, Zhang, Bonalli (bib36) 2015; 6 O’Connell, Marchbank, Webster, Valiga, Kaur, Vultur, Li, Herlyn, Villanueva, Liu (bib22) 2013; 3 Hugo, Zaretsky, Sun, Song, Moreno, Hu-Lieskovan, Berent-Maoz, Pang, Chmielowski, Cherry (bib14) 2016; 165 Lou, Diao, Cuentas, Denning, Chen, Fan, Byers, Wang, Papadimitrakopoulou, Behrens (bib19) 2016; 22 Herbst, Soria, Kowanetz, Fine, Hamid, Gordon, Sosman, McDermott, Powderly, Gettinger (bib12) 2014; 515 Levin, Bates, Ring, Krieg, Lin, Su, Moraga, Raeber, Bowman, Novick (bib18) 2012; 484 Peng, Kryczek, Nagarsheth, Zhao, Wei, Wang, Sun, Zhao, Vatan, Szeliga (bib23) 2015; 527 Schreiber, Old, Smyth (bib25) 2011; 331 Van Allen, Miao, Schilling, Shukla, Blank, Zimmer, Sucker, Hillen, Geukes Foppen, Goldinger (bib32) 2015; 350 Bindea, Mlecnik, Tosolini, Kirilovsky, Waldner, Obenauf, Angell, Fredriksen, Lafontaine, Berger (bib4) 2013; 39 Chen, Gibbons, Goswami, Cortez, Ahn, Byers, Zhang, Yi, Dwyer, Lin (bib9) 2014; 5 (bib6) 2015; 161 Manning, Hooper, Sahai (bib20) 2015; 34 DuPage, Chopra, Quiros, Rosenthal, Morar, Holohan, Zhang, Turka, Marson, Bluestone (bib11) 2015; 42 Wang, He, Zhao, Wang, Zhang, Shi, Zhang, Cai, Dou (bib33) 2014; 12 Zhao, Maj, Kryczek, Li, Wu, Zhao, Wei, Crespo, Wan, Vatan (bib35) 2016; 17 Béguelin, Popovic, Teater, Jiang, Bunting, Rosen, Shen, Yang, Wang, Ezponda (bib3) 2013; 23 Arenas-Ramirez, Woytschak, Boyman (bib1) 2015; 36 Caramel, Papadogeorgakis, Hill, Browne, Richard, Wierinckx, Saldanha, Osborne, Hutchinson, Tse (bib7) 2013; 24 Denecker, Vandamme, Akay, Koludrovic, Taminau, Lemeire, Gheldof, De Craene, Van Gele, Brochez (bib10) 2014; 21 Larkin, Chiarion-Sileni, Gonzalez, Grob, Cowey, Lao, Schadendorf, Dummer, Smylie, Rutkowski (bib17) 2015; 373 Shakhova, Zingg, Schaefer, Hari, Civenni, Blunschi, Claudinot, Okoniewski, Beermann, Mihic-Probst (bib26) 2012; 14 Nagarsheth, Peng, Kryczek, Wu, Li, Zhao, Zhao, Wei, Frankel, Vatan (bib21) 2016; 76 Hölzel, Tüting (bib13) 2016; 37 Tripathi, Peters, Taguchi, Katayama, Wang, Momin, Jolly, Celiktas, Rodriguez-Canales, Liu (bib29) 2016; 113 Arenas-Ramirez, Zou, Popp, Zingg, Brannetti, Wirth, Calzascia, Kovarik, Sommer, Zenke (bib2) 2016; 8 Ueha, Yokochi, Ishiwata, Ogiwara, Chand, Nakajima, Hachiga, Shichino, Terashima, Toda (bib31) 2015; 3 Wherry, Kurachi (bib34) 2015; 15 Boyman, Kovar, Rubinstein, Surh, Sprent (bib5) 2006; 311 Krieg, Létourneau, Pantaleo, Boyman (bib16) 2010; 107 Spranger, Spaapen, Zha, Williams, Meng, Ha, Gajewski (bib27) 2013; 5 Tumeh, Harview, Yearley, Shintaku, Taylor, Robert, Chmielowski, Spasic, Henry, Ciobanu (bib30) 2014; 515 Kim (10.1016/j.celrep.2017.07.007_bib15) 2016; 22 O’Connell (10.1016/j.celrep.2017.07.007_bib22) 2013; 3 Wang (10.1016/j.celrep.2017.07.007_bib33) 2014; 12 Levin (10.1016/j.celrep.2017.07.007_bib18) 2012; 484 Wherry (10.1016/j.celrep.2017.07.007_bib34) 2015; 15 Zingg (10.1016/j.celrep.2017.07.007_bib36) 2015; 6 Krieg (10.1016/j.celrep.2017.07.007_bib16) 2010; 107 Van Allen (10.1016/j.celrep.2017.07.007_bib32) 2015; 350 Larkin (10.1016/j.celrep.2017.07.007_bib17) 2015; 373 Nagarsheth (10.1016/j.celrep.2017.07.007_bib21) 2016; 76 Tumeh (10.1016/j.celrep.2017.07.007_bib30) 2014; 515 Zhao (10.1016/j.celrep.2017.07.007_bib35) 2016; 17 Bindea (10.1016/j.celrep.2017.07.007_bib4) 2013; 39 Lou (10.1016/j.celrep.2017.07.007_bib19) 2016; 22 Schreiber (10.1016/j.celrep.2017.07.007_bib25) 2011; 331 Rosenberg (10.1016/j.celrep.2017.07.007_bib24) 2014; 192 Arenas-Ramirez (10.1016/j.celrep.2017.07.007_bib2) 2016; 8 Arenas-Ramirez (10.1016/j.celrep.2017.07.007_bib1) 2015; 36 Carpenter (10.1016/j.celrep.2017.07.007_bib8) 2006; 7 Spranger (10.1016/j.celrep.2017.07.007_bib27) 2013; 5 Caramel (10.1016/j.celrep.2017.07.007_bib7) 2013; 24 Boyman (10.1016/j.celrep.2017.07.007_bib5) 2006; 311 Tripathi (10.1016/j.celrep.2017.07.007_bib29) 2016; 113 Manning (10.1016/j.celrep.2017.07.007_bib20) 2015; 34 Topalian (10.1016/j.celrep.2017.07.007_bib28) 2015; 27 Herbst (10.1016/j.celrep.2017.07.007_bib12) 2014; 515 Shakhova (10.1016/j.celrep.2017.07.007_bib26) 2012; 14 Hölzel (10.1016/j.celrep.2017.07.007_bib13) 2016; 37 Béguelin (10.1016/j.celrep.2017.07.007_bib3) 2013; 23 Chen (10.1016/j.celrep.2017.07.007_bib9) 2014; 5 (10.1016/j.celrep.2017.07.007_bib6) 2015; 161 DuPage (10.1016/j.celrep.2017.07.007_bib11) 2015; 42 Hugo (10.1016/j.celrep.2017.07.007_bib14) 2016; 165 Ueha (10.1016/j.celrep.2017.07.007_bib31) 2015; 3 Peng (10.1016/j.celrep.2017.07.007_bib23) 2015; 527 Denecker (10.1016/j.celrep.2017.07.007_bib10) 2014; 21 |
References_xml | – volume: 527 start-page: 249 year: 2015 end-page: 253 ident: bib23 article-title: Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy publication-title: Nature – volume: 6 start-page: 6051 year: 2015 ident: bib36 article-title: The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors publication-title: Nat. Commun. – volume: 165 start-page: 35 year: 2016 end-page: 44 ident: bib14 article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma publication-title: Cell – volume: 113 start-page: E1555 year: 2016 end-page: E1564 ident: bib29 article-title: Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome publication-title: Proc. Natl. Acad. Sci. USA – volume: 350 start-page: 207 year: 2015 end-page: 211 ident: bib32 article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma publication-title: Science – volume: 7 start-page: R100 year: 2006 ident: bib8 article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol. – volume: 23 start-page: 677 year: 2013 end-page: 692 ident: bib3 article-title: EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation publication-title: Cancer Cell – volume: 515 start-page: 568 year: 2014 end-page: 571 ident: bib30 article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance publication-title: Nature – volume: 39 start-page: 782 year: 2013 end-page: 795 ident: bib4 article-title: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer publication-title: Immunity – volume: 34 start-page: 4320 year: 2015 end-page: 4332 ident: bib20 article-title: Intravital imaging of SRF and Notch signalling identifies a key role for EZH2 in invasive melanoma cells publication-title: Oncogene – volume: 331 start-page: 1565 year: 2011 end-page: 1570 ident: bib25 article-title: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion publication-title: Science – volume: 36 start-page: 763 year: 2015 end-page: 777 ident: bib1 article-title: Interleukin-2: biology, design and application publication-title: Trends Immunol. – volume: 22 start-page: 128 year: 2016 end-page: 134 ident: bib15 article-title: Targeting EZH2 in cancer publication-title: Nat. Med. – volume: 107 start-page: 11906 year: 2010 end-page: 11911 ident: bib16 article-title: Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 486 year: 2015 end-page: 499 ident: bib34 article-title: Molecular and cellular insights into T cell exhaustion publication-title: Nat. Rev. Immunol. – volume: 17 start-page: 95 year: 2016 end-page: 103 ident: bib35 article-title: Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction publication-title: Nat. Immunol. – volume: 192 start-page: 5451 year: 2014 end-page: 5458 ident: bib24 article-title: IL-2: the first effective immunotherapy for human cancer publication-title: J. Immunol. – volume: 3 start-page: 1378 year: 2013 end-page: 1393 ident: bib22 article-title: Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2 publication-title: Cancer Discov. – volume: 3 start-page: 631 year: 2015 end-page: 640 ident: bib31 article-title: Robust antitumor effects of combined anti-CD4-depleting antibody and anti-PD-1/PD-L1 immune checkpoint antibody treatment in mice publication-title: Cancer Immunol. Res. – volume: 373 start-page: 23 year: 2015 end-page: 34 ident: bib17 article-title: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma publication-title: N. Engl. J. Med. – volume: 14 start-page: 882 year: 2012 end-page: 890 ident: bib26 article-title: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma publication-title: Nat. Cell Biol. – volume: 311 start-page: 1924 year: 2006 end-page: 1927 ident: bib5 article-title: Selective stimulation of T cell subsets with antibody-cytokine immune complexes publication-title: Science – volume: 515 start-page: 563 year: 2014 end-page: 567 ident: bib12 article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients publication-title: Nature – volume: 12 start-page: 68 year: 2014 ident: bib33 article-title: Regulation gene expression of miR200c and ZEB1 positively enhances effect of tumor vaccine B16F10/GPI-IL-21 on inhibition of melanoma growth and metastasis publication-title: J. Transl. Med. – volume: 5 start-page: 200ra116 year: 2013 ident: bib27 article-title: Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells publication-title: Sci. Transl. Med. – volume: 76 start-page: 275 year: 2016 end-page: 282 ident: bib21 article-title: PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer publication-title: Cancer Res. – volume: 484 start-page: 529 year: 2012 end-page: 533 ident: bib18 article-title: Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’ publication-title: Nature – volume: 5 start-page: 5241 year: 2014 ident: bib9 article-title: Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression publication-title: Nat. Commun. – volume: 24 start-page: 466 year: 2013 end-page: 480 ident: bib7 article-title: A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma publication-title: Cancer Cell – volume: 42 start-page: 227 year: 2015 end-page: 238 ident: bib11 article-title: The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation publication-title: Immunity – volume: 37 start-page: 364 year: 2016 end-page: 374 ident: bib13 article-title: Inflammation-induced plasticity in melanoma therapy and metastasis publication-title: Trends Immunol. – volume: 22 start-page: 3630 year: 2016 end-page: 3642 ident: bib19 article-title: Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma publication-title: Clin. Cancer Res. – volume: 8 start-page: 367ra166 year: 2016 ident: bib2 article-title: Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2 publication-title: Sci. Transl. Med. – volume: 161 start-page: 1681 year: 2015 end-page: 1696 ident: bib6 article-title: Genomic classification of cutaneous melanoma publication-title: Cell – volume: 27 start-page: 450 year: 2015 end-page: 461 ident: bib28 article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy publication-title: Cancer Cell – volume: 21 start-page: 1250 year: 2014 end-page: 1261 ident: bib10 article-title: Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression publication-title: Cell Death Differ. – volume: 36 start-page: 763 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib1 article-title: Interleukin-2: biology, design and application publication-title: Trends Immunol. doi: 10.1016/j.it.2015.10.003 – volume: 7 start-page: R100 year: 2006 ident: 10.1016/j.celrep.2017.07.007_bib8 article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol. doi: 10.1186/gb-2006-7-10-r100 – volume: 5 start-page: 200ra116 year: 2013 ident: 10.1016/j.celrep.2017.07.007_bib27 article-title: Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3006504 – volume: 37 start-page: 364 year: 2016 ident: 10.1016/j.celrep.2017.07.007_bib13 article-title: Inflammation-induced plasticity in melanoma therapy and metastasis publication-title: Trends Immunol. doi: 10.1016/j.it.2016.03.009 – volume: 22 start-page: 128 year: 2016 ident: 10.1016/j.celrep.2017.07.007_bib15 article-title: Targeting EZH2 in cancer publication-title: Nat. Med. doi: 10.1038/nm.4036 – volume: 12 start-page: 68 year: 2014 ident: 10.1016/j.celrep.2017.07.007_bib33 article-title: Regulation gene expression of miR200c and ZEB1 positively enhances effect of tumor vaccine B16F10/GPI-IL-21 on inhibition of melanoma growth and metastasis publication-title: J. Transl. Med. doi: 10.1186/1479-5876-12-68 – volume: 527 start-page: 249 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib23 article-title: Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy publication-title: Nature doi: 10.1038/nature15520 – volume: 515 start-page: 563 year: 2014 ident: 10.1016/j.celrep.2017.07.007_bib12 article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients publication-title: Nature doi: 10.1038/nature14011 – volume: 311 start-page: 1924 year: 2006 ident: 10.1016/j.celrep.2017.07.007_bib5 article-title: Selective stimulation of T cell subsets with antibody-cytokine immune complexes publication-title: Science doi: 10.1126/science.1122927 – volume: 34 start-page: 4320 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib20 article-title: Intravital imaging of SRF and Notch signalling identifies a key role for EZH2 in invasive melanoma cells publication-title: Oncogene doi: 10.1038/onc.2014.362 – volume: 76 start-page: 275 year: 2016 ident: 10.1016/j.celrep.2017.07.007_bib21 article-title: PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1938 – volume: 3 start-page: 631 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib31 article-title: Robust antitumor effects of combined anti-CD4-depleting antibody and anti-PD-1/PD-L1 immune checkpoint antibody treatment in mice publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-14-0190 – volume: 42 start-page: 227 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib11 article-title: The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation publication-title: Immunity doi: 10.1016/j.immuni.2015.01.007 – volume: 17 start-page: 95 year: 2016 ident: 10.1016/j.celrep.2017.07.007_bib35 article-title: Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction publication-title: Nat. Immunol. doi: 10.1038/ni.3313 – volume: 24 start-page: 466 year: 2013 ident: 10.1016/j.celrep.2017.07.007_bib7 article-title: A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.08.018 – volume: 39 start-page: 782 year: 2013 ident: 10.1016/j.celrep.2017.07.007_bib4 article-title: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer publication-title: Immunity doi: 10.1016/j.immuni.2013.10.003 – volume: 5 start-page: 5241 year: 2014 ident: 10.1016/j.celrep.2017.07.007_bib9 article-title: Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression publication-title: Nat. Commun. doi: 10.1038/ncomms6241 – volume: 21 start-page: 1250 year: 2014 ident: 10.1016/j.celrep.2017.07.007_bib10 article-title: Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.44 – volume: 107 start-page: 11906 year: 2010 ident: 10.1016/j.celrep.2017.07.007_bib16 article-title: Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1002569107 – volume: 27 start-page: 450 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib28 article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.03.001 – volume: 14 start-page: 882 year: 2012 ident: 10.1016/j.celrep.2017.07.007_bib26 article-title: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma publication-title: Nat. Cell Biol. doi: 10.1038/ncb2535 – volume: 484 start-page: 529 year: 2012 ident: 10.1016/j.celrep.2017.07.007_bib18 article-title: Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’ publication-title: Nature doi: 10.1038/nature10975 – volume: 23 start-page: 677 year: 2013 ident: 10.1016/j.celrep.2017.07.007_bib3 article-title: EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.04.011 – volume: 165 start-page: 35 year: 2016 ident: 10.1016/j.celrep.2017.07.007_bib14 article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma publication-title: Cell doi: 10.1016/j.cell.2016.02.065 – volume: 22 start-page: 3630 year: 2016 ident: 10.1016/j.celrep.2017.07.007_bib19 article-title: Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-1434 – volume: 113 start-page: E1555 year: 2016 ident: 10.1016/j.celrep.2017.07.007_bib29 article-title: Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1521812113 – volume: 161 start-page: 1681 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib6 article-title: Genomic classification of cutaneous melanoma publication-title: Cell doi: 10.1016/j.cell.2015.05.044 – volume: 350 start-page: 207 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib32 article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma publication-title: Science doi: 10.1126/science.aad0095 – volume: 3 start-page: 1378 year: 2013 ident: 10.1016/j.celrep.2017.07.007_bib22 article-title: Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0005 – volume: 15 start-page: 486 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib34 article-title: Molecular and cellular insights into T cell exhaustion publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3862 – volume: 331 start-page: 1565 year: 2011 ident: 10.1016/j.celrep.2017.07.007_bib25 article-title: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion publication-title: Science doi: 10.1126/science.1203486 – volume: 373 start-page: 23 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib17 article-title: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1504030 – volume: 8 start-page: 367ra166 year: 2016 ident: 10.1016/j.celrep.2017.07.007_bib2 article-title: Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aag3187 – volume: 192 start-page: 5451 year: 2014 ident: 10.1016/j.celrep.2017.07.007_bib24 article-title: IL-2: the first effective immunotherapy for human cancer publication-title: J. Immunol. doi: 10.4049/jimmunol.1490019 – volume: 515 start-page: 568 year: 2014 ident: 10.1016/j.celrep.2017.07.007_bib30 article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance publication-title: Nature doi: 10.1038/nature13954 – volume: 6 start-page: 6051 year: 2015 ident: 10.1016/j.celrep.2017.07.007_bib36 article-title: The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors publication-title: Nat. Commun. doi: 10.1038/ncomms7051 |
SSID | ssj0000601194 |
Score | 2.5901442 |
Snippet | Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most... Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 854 |
SubjectTerms | Animals anti-CTLA-4 anti-PD-1 Blotting, Western Cell Line Chromatin Immunoprecipitation CTLA-4 Antigen - metabolism Enhancer of Zeste Homolog 2 Protein - genetics Enhancer of Zeste Homolog 2 Protein - metabolism Enzyme-Linked Immunosorbent Assay epigenetics EZH2 Female Flow Cytometry Fluorescent Antibody Technique Humans IL-2 complexes Immunotherapy Interleukin-2 - metabolism melanoma Melanoma - metabolism Melanoma - therapy Mice Mice, Inbred C57BL Mice, Mutant Strains PRC2 T-Lymphocytes - metabolism tumor immune escape Tumor Necrosis Factor-alpha - metabolism tumor resistance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuCCgfW6AyEteIxHHs9bFUrQpSOaBW6s2ynRlRtN2tNtlD-fXMxMlqOaC99Jo4ycgz9nuOx2-E-IzWARLMFFrHVGgEKFyjUqFaIECAyJtDnG3xw1xc6-83zc1OqS_OCcvywLnjvjhjrXXRWFVrXac2lgGsRlclIioERzz7EubtLKbyHMxaZrylrBTnbCltp3NzQ3JXgsUaWK6ysoN2J1eT3cGlQb7_H3j6H_0cYOj8hXg-8kd5ku1-KZ7A8pV4mitKPhyKltwuB-mPJchLIC8s-oGawprgSp79-aXkac5O7-g-H_u97e46uUJ50oZ7nvvkT-iYVFI0yH4lrzZ3q7X8xsdIxsNaD6_F9fnZ1elFMRZSKBIRsr4w1tE0ZoOCao661BEx1Dgv27rBZKJtEkGlC1WYB5M01sTBlEXjHFSoVYn1G3GwJLvfCYnWNibNqVmjNJM7qMtYYoomILnBzEQ9daNPo8o4F7tY-Cmd7LfPne-5833J2992JortU_dZZWNP-6_soW1b1sgeLlDk-DFy_L7ImQk7-dePdCPTCHrV7Z7Pf5rCwdNo5C2WsITVpvO8nOW63baaibc5TrZGcmUBQ-vTo8cw_r14xgbxX2bVfBAH_XoDH4ke9fF4GAl_AfIOCeM priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhEOilNP3cNi0q9GrWlmTJOiZLQlpoD20CexOSLLVbNuvF9h6SX58Z2V6SQwn0aFm2xGg882TNvCHkS1Q6RHAzmRDOZyKGkOmS-YzVARxCcHg4hNEWP-Tltfi2LJcHZDHlwmBY5Wj7B5uerPXYMh-lOd-uVvNfDPYu4J3wGBn2KBI5QbmoUhLf8mz_nwX5RopUDxH7Z_jAlEGXwrx8WLcBiSsLlVg8sa7sAw-ViPwfOap_AdHkkC5ekOcjkqSnw2SPyUHYvCRHQ23J21ekBgWgiQRkE-j3AOux7hNIDS04Lnp-94fRxRCn3sF9TABedTcdbSI9re0WrSD9GTqElyAT2jf0anfTtPQrJpSMaVu3r8n1xfnV4jIbSypkHqBZn0mlwaApy0JRRZELF6PlscprXkYvnSo9OE1tC1tZ6UXkIGCmotQ6FFGwPPI35HAD835HaFSqlL6CbiUTCPMCz10evZM2AgiRM8InMRo_8o1j2Yu1mQLL_ppB-AaFb3I8CFczku2f2g58G0_0P8MV2vdFtuzU0LS_zaguRkullHZSMS4E97XLbVAi6sID2AVIMyNqWl_zSPngVasnhv88qYOB7xIPW-wmNLvO4MYWK3irYkbeDnqynyTWGJCwU33_3-N-IM_wCn8ys_KEHPbtLnwEdNS7T0n97wFp6Qx0 priority: 102 providerName: Elsevier |
Title | The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy |
URI | https://dx.doi.org/10.1016/j.celrep.2017.07.007 https://www.ncbi.nlm.nih.gov/pubmed/28746871 https://www.proquest.com/docview/1924603171 https://doaj.org/article/967779b6723443cdb0ae74f91c533240 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhodBLafrcpg0q9Opiy7K0OoSShISkkB5KFvYmJHnUpmzWqe2Fbn59ZvzYEmgIvRhsy7Y8mtF80rwY-xS1gYhqJpHSh0RGgMQUIiSiBFQI4Mk4RN4W39TZTH6dF_MtNtZsHQjY_HNpR_WkZvXi85_f6y8o8Ad_fbUCLGqg7JOZ7lJxUnj5DuomTaJ6MQD-fm6mHGdkahaCfLmE1GM83QMvuqevurT-99TWQ7C0U0-nz9mzAVfyw54RdtkWLF-wJ32lyfVLViI78C4lyBL4BeDoLNoOskKNaoyf3P4U_Lj3Wm_wPoUDXzXXDa8iPyzdDc2J_Ds0BDaRS3hb8cvVdVXzcwovGYK41q_Y7PTk8vgsGQosJAGBWpsobXB6005ANo0ylT5Gl8dpWuZFDMrrIqAKNS5zU6eCjDliM6GjMgayKEUa89dse4n9fst41LpQYYrNCiEJ9EGe-jQGr1xESKImLB_JaMOQfZyKYCzs6Gb2y_bEt0R8m5JZXE9Ysnnqps--8Uj7IxqhTVvKnd1dqOofdhBFa5TW2nilRS5lHkqfOtAymiwg9EWAM2F6HF87wJAeXuCrrh75_MeRHSxKKZle3BKqVWNpmUv1vHU2YW96Ptl0kioOKFy3vvvPn91jT-mMNppF8Z5tt_UKPiBCav1-t7OAx_P50X4nAHesyQ8H |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSFEW7FH3XfbJAV8ISRZHWmBgJ7DbJ0DqAN4KkyNaFYxmSPCS_PneUZDRDEaArHxJxPN595L0I-RpU4QOoGSaEdUwE71mRc8d46UEheIvGIfS2uJCzS_FtmS8PyHSIhUG3yl72dzI9Suu-ZdxTc7xdrcY_OdxdQDuhGRnuKFI8IA8BDSis3zBfHu8fWjDhSBoLIuIEhjOGELro5-X8uvaYuTJVMY0nFpb9S0XFTP53NNW_kGjUSKfPyNMeStKjbrXPyYHfvCCPuuKS1y9JCRxAYxaQjafnHjZk3UaU6mvQXPTk5jen085RvYF-jABeNVcNrQI9Ks0WxSD94RvEl0AU2lZ0sbuqajrHiJI-buv6Fbk8PVlMZ6yvqcAcYLOWSVWARFOG-3QSRCJsCCYLk6TM8uCkVbkDrVmY1EyMdCJkQGGugiwKnwbBk5C9JocbWPdbQoNSuXQTGJZzgTjPZ4lNgrPSBEAhckSygYza9QnHse7FWg-eZX90R3yNxNcJWsLViLD9rG2XcOOe8ce4Q_uxmC47NlT1L93ziy6kUqqwUvFMiMyVNjFeiVCkDtAuYJoRUcP-6jvcB59a3fP7LwM7aDiYaG0xG1_tGo03WyzhrdIRedPxyX6RWGRAwlX13X__9zN5PFucn-mz-cX39-QJ9uCLM88_kMO23vmPAJVa-ykehVvmfA-T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Histone+Methyltransferase+Ezh2+Controls+Mechanisms+of+Adaptive+Resistance+to+Tumor+Immunotherapy&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Zingg%2C+Daniel&rft.au=Arenas-Ramirez%2C+Natalia&rft.au=Sahin%2C+Dilara&rft.au=Rosalia%2C+Rodney+A.&rft.date=2017-07-25&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=20&rft.issue=4&rft.spage=854&rft.epage=867&rft_id=info:doi/10.1016%2Fj.celrep.2017.07.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2017_07_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |