The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy

Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now sh...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 20; no. 4; pp. 854 - 867
Main Authors Zingg, Daniel, Arenas-Ramirez, Natalia, Sahin, Dilara, Rosalia, Rodney A., Antunes, Ana T., Haeusel, Jessica, Sommer, Lukas, Boyman, Onur
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 25.07.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies. [Display omitted] •Intratumoral T cells and TNF-α cause Ezh2 upregulation in melanoma cells•Ezh2 silences immunogenicity and antigen presentation in melanoma•Ezh2 blockade reverses melanoma resistance mechanisms•Ezh2 inactivation synergizes with anti-CTLA-4 and IL-2 immunotherapy Zingg et al. investigate the mechanisms of adaptive resistance to tumor immunotherapy. They find that intratumoral TNF-α production and T cell accumulation promote Ezh2 upregulation in melanoma cells, resulting in loss of immunogenicity and antigen presentation. Ezh2 inactivation reverses these effects and synergizes with anti-CTLA-4 and IL-2 immunotherapies.
AbstractList Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies. [Display omitted] •Intratumoral T cells and TNF-α cause Ezh2 upregulation in melanoma cells•Ezh2 silences immunogenicity and antigen presentation in melanoma•Ezh2 blockade reverses melanoma resistance mechanisms•Ezh2 inactivation synergizes with anti-CTLA-4 and IL-2 immunotherapy Zingg et al. investigate the mechanisms of adaptive resistance to tumor immunotherapy. They find that intratumoral TNF-α production and T cell accumulation promote Ezh2 upregulation in melanoma cells, resulting in loss of immunogenicity and antigen presentation. Ezh2 inactivation reverses these effects and synergizes with anti-CTLA-4 and IL-2 immunotherapies.
Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1 CD8 T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies.
Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies.
Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies.Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most cancers develop resistance to immunotherapy. The molecular mechanisms of tumor resistance to immunotherapy remain poorly understood. We now show that induction of the histone methyltransferase Ezh2 controls several tumor cell-intrinsic and extrinsic resistance mechanisms. Notably, T cell infiltration selectively correlated with high EZH2-PRC2 complex activity in human skin cutaneous melanoma. During anti-CTLA-4 or IL-2 immunotherapy in mice, intratumoral tumor necrosis factor-α (TNF-α) production and T cell accumulation resulted in increased Ezh2 expression in melanoma cells, which in turn silenced their own immunogenicity and antigen presentation. Ezh2 inactivation reversed this resistance and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth. These anti-tumor effects depended on intratumorally accumulating interferon-γ (IFN-γ)-producing PD-1low CD8+ T cells and PD-L1 downregulation on melanoma cells. Hence, Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies.
Author Boyman, Onur
Zingg, Daniel
Sahin, Dilara
Antunes, Ana T.
Sommer, Lukas
Arenas-Ramirez, Natalia
Rosalia, Rodney A.
Haeusel, Jessica
Author_xml – sequence: 1
  givenname: Daniel
  surname: Zingg
  fullname: Zingg, Daniel
  organization: Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
– sequence: 2
  givenname: Natalia
  surname: Arenas-Ramirez
  fullname: Arenas-Ramirez, Natalia
  organization: Department of Immunology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
– sequence: 3
  givenname: Dilara
  surname: Sahin
  fullname: Sahin, Dilara
  organization: Department of Immunology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
– sequence: 4
  givenname: Rodney A.
  surname: Rosalia
  fullname: Rosalia, Rodney A.
  organization: Department of Immunology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
– sequence: 5
  givenname: Ana T.
  surname: Antunes
  fullname: Antunes, Ana T.
  organization: Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
– sequence: 6
  givenname: Jessica
  surname: Haeusel
  fullname: Haeusel, Jessica
  organization: Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
– sequence: 7
  givenname: Lukas
  surname: Sommer
  fullname: Sommer, Lukas
  email: lukas.sommer@anatom.uzh.ch
  organization: Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
– sequence: 8
  givenname: Onur
  surname: Boyman
  fullname: Boyman, Onur
  email: onur.boyman@uzh.ch
  organization: Department of Immunology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28746871$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFrFDEUhQep2Fr7D0Ty6MuuSSabzPgglKXahYog63O4k7lxssxMxiRT2P56s04r4oOGCwnJOV_gnJfF2ehHLIrXjK4ZZfLdYW2wDzitOWVqTfNQ9ay44JyxFeNCnf1xPi-uYjzQvCRlrBYvinNeKSErxS6Kdt8huXUxZT75jKk79inAGC0GiEhuHjpOtn5Mwfcxv5sORheHSLwl1y1Myd0j-YoxA2A0SJIn-3nwgeyGYR596jJmOr4qnlvoI1497pfFt483--3t6u7Lp932-m5lNoKmlVQ1tK0CjqyygorGWihtRdtyY41s1MYYxBoYVCCNsCVjnCsr6xqZFZza8rLYLdzWw0FPwQ0QjtqD078ufPiuISRnetS1VErVjVS8FKI0bUMBlbA1M5uy5IJm1tuFNQX_Y8aY9OBiDr2HEf0cNau5kLRkimXpm0fp3AzY_v74KeUseL8ITPAxBrTauATJnXIF12tG9alVfdBLq_rUqqZ5qMpm8Zf5if8f24fFhjnwe4dBR-Mwd9S6gCblRNy_AT8BSje9uw
CitedBy_id crossref_primary_10_1007_s12185_022_03466_x
crossref_primary_10_3390_cancers13020319
crossref_primary_10_1186_s13075_020_02225_9
crossref_primary_10_1016_j_celrep_2024_114724
crossref_primary_10_1016_j_intimp_2023_110068
crossref_primary_10_1016_j_ccell_2018_06_001
crossref_primary_10_1038_s41467_022_34253_1
crossref_primary_10_1097_CMR_0000000000000926
crossref_primary_10_1186_s40364_018_0122_2
crossref_primary_10_1136_jitc_2020_001179
crossref_primary_10_1038_s41467_021_22720_0
crossref_primary_10_3390_cancers12082154
crossref_primary_10_1631_jzus_B2300492
crossref_primary_10_3389_fmed_2023_1096615
crossref_primary_10_1016_j_celrep_2021_109410
crossref_primary_10_3389_fphar_2022_965244
crossref_primary_10_1136_gutjnl_2024_332350
crossref_primary_10_1016_j_celrep_2018_05_050
crossref_primary_10_1080_14656566_2023_2224500
crossref_primary_10_2217_epi_2022_0454
crossref_primary_10_1016_j_ccell_2019_08_008
crossref_primary_10_1016_j_trecan_2022_07_002
crossref_primary_10_1126_science_aat0383
crossref_primary_10_1016_j_molimm_2020_01_006
crossref_primary_10_1016_j_cmet_2021_04_001
crossref_primary_10_1016_j_gendis_2019_06_006
crossref_primary_10_1186_s13046_021_02234_9
crossref_primary_10_1016_j_prp_2024_155485
crossref_primary_10_3389_fcell_2021_641469
crossref_primary_10_2147_CMAR_S272031
crossref_primary_10_1146_annurev_immunol_070621_030155
crossref_primary_10_1073_pnas_2102718118
crossref_primary_10_1186_s12929_022_00893_0
crossref_primary_10_1158_1535_7163_MCT_21_0743
crossref_primary_10_3390_cancers14194865
crossref_primary_10_1038_s41580_019_0143_1
crossref_primary_10_3390_cancers13246180
crossref_primary_10_3390_epigenomes4030022
crossref_primary_10_1038_s43018_021_00185_w
crossref_primary_10_1016_j_jpha_2022_11_009
crossref_primary_10_1038_s41467_024_46422_5
crossref_primary_10_1172_JCI140281
crossref_primary_10_1016_j_ymthe_2021_08_003
crossref_primary_10_1038_s41571_019_0204_6
crossref_primary_10_1083_jcb_201908224
crossref_primary_10_1080_21678707_2020_1809377
crossref_primary_10_1038_s41467_020_20220_1
crossref_primary_10_1371_journal_pone_0242191
crossref_primary_10_2217_imt_2017_0164
crossref_primary_10_3390_cancers12113194
crossref_primary_10_1016_j_isci_2022_104752
crossref_primary_10_1186_s13148_019_0763_5
crossref_primary_10_3390_biomedicines10030650
crossref_primary_10_1016_j_ccell_2018_06_005
crossref_primary_10_1186_s13046_018_0777_4
crossref_primary_10_1016_j_chom_2023_04_010
crossref_primary_10_3389_fonc_2023_1196448
crossref_primary_10_1016_j_critrevonc_2021_103547
crossref_primary_10_3390_epigenomes6030028
crossref_primary_10_1186_s13045_024_01580_3
crossref_primary_10_3892_ijo_2022_5424
crossref_primary_10_1016_j_ccell_2020_11_009
crossref_primary_10_1016_j_it_2021_03_006
crossref_primary_10_1016_j_cytogfr_2023_06_001
crossref_primary_10_3389_fimmu_2021_770080
crossref_primary_10_1371_journal_pone_0245287
crossref_primary_10_1002_ddr_21796
crossref_primary_10_1038_s41571_019_0266_5
crossref_primary_10_1038_s41467_023_43290_3
crossref_primary_10_1158_0008_5472_CAN_19_0428
crossref_primary_10_1186_s13148_025_01856_6
crossref_primary_10_1186_s13045_020_00868_4
crossref_primary_10_2217_fon_2020_0781
crossref_primary_10_2217_imt_2020_0283
crossref_primary_10_1007_s10142_025_01563_8
crossref_primary_10_1016_j_jgg_2021_03_013
crossref_primary_10_1016_j_bbcan_2022_188700
crossref_primary_10_1186_s13148_021_01046_0
crossref_primary_10_1158_2767_9764_CRC_23_0399
crossref_primary_10_3389_fmolb_2023_1170026
crossref_primary_10_1038_s41573_020_00108_x
crossref_primary_10_3390_ijms21114071
crossref_primary_10_1038_s41392_024_01979_x
crossref_primary_10_3390_ijms22094391
crossref_primary_10_1126_sciimmunol_abk1692
crossref_primary_10_3390_ijms25052745
crossref_primary_10_1016_j_biopha_2024_116624
crossref_primary_10_1016_S1877_1203_22_00010_6
crossref_primary_10_1158_1078_0432_CCR_19_1351
crossref_primary_10_1158_2326_6066_CIR_18_0697
crossref_primary_10_1111_imr_12644
crossref_primary_10_3390_jpm11090901
crossref_primary_10_3390_ijms26031255
crossref_primary_10_1111_bjd_20421
crossref_primary_10_4103_tcmj_tcmj_220_20
crossref_primary_10_4155_fmc_2020_0072
crossref_primary_10_1186_s12943_025_02265_2
crossref_primary_10_1038_s41417_022_00555_1
crossref_primary_10_3390_cells10082048
crossref_primary_10_1038_s12276_023_01014_z
crossref_primary_10_1016_j_immuni_2023_09_004
crossref_primary_10_1038_s41418_019_0278_9
crossref_primary_10_3390_ijms22136741
crossref_primary_10_1038_s41573_020_0077_5
crossref_primary_10_3390_ijms21176176
crossref_primary_10_1186_s40425_019_0690_1
crossref_primary_10_1186_s13046_022_02529_5
crossref_primary_10_3389_fimmu_2019_01818
crossref_primary_10_1016_j_iotech_2021_100035
crossref_primary_10_3390_cancers13246247
crossref_primary_10_1186_s40425_019_0602_4
crossref_primary_10_3390_cancers16162919
crossref_primary_10_1016_S1470_2045_20_30441_1
crossref_primary_10_4062_biomolther_2019_135
crossref_primary_10_31083_j_fbl2806125
crossref_primary_10_1038_s41388_021_02173_x
crossref_primary_10_1002_JLB_1RU0520_311R
crossref_primary_10_1158_2326_6066_CIR_20_0586
crossref_primary_10_3389_fonc_2020_568059
crossref_primary_10_1002_sctm_20_0351
crossref_primary_10_1016_j_ymeth_2025_01_004
crossref_primary_10_1177_10732748211038424
crossref_primary_10_1016_j_jcmgh_2024_101407
crossref_primary_10_1136_jitc_2021_003484
crossref_primary_10_1126_scitranslmed_aba5464
crossref_primary_10_1186_s13073_018_0605_7
crossref_primary_10_1172_jci_insight_177545
crossref_primary_10_1016_j_athoracsur_2018_08_056
crossref_primary_10_1016_j_jid_2020_02_042
crossref_primary_10_3389_fgene_2021_680633
crossref_primary_10_1016_j_tranon_2020_01_002
crossref_primary_10_1038_s41388_020_1347_8
crossref_primary_10_1080_21645515_2024_2385654
crossref_primary_10_1016_j_it_2020_06_002
crossref_primary_10_1016_j_ccell_2024_09_010
crossref_primary_10_1016_j_immuni_2020_11_002
crossref_primary_10_1038_s41417_024_00732_4
crossref_primary_10_1016_j_jid_2021_03_003
crossref_primary_10_3390_cancers13010134
crossref_primary_10_1186_s12885_022_09934_1
crossref_primary_10_4110_in_2024_24_e5
crossref_primary_10_1016_j_ejphar_2019_172452
crossref_primary_10_3389_fimmu_2023_1152572
crossref_primary_10_1016_j_critrevonc_2024_104532
crossref_primary_10_1038_s41388_018_0459_x
crossref_primary_10_1186_s12943_020_1144_6
crossref_primary_10_1016_j_trecan_2024_08_004
crossref_primary_10_1111_cge_14576
crossref_primary_10_3389_fmolb_2020_00172
crossref_primary_10_3389_fonc_2021_719091
crossref_primary_10_1016_j_jtho_2022_05_014
crossref_primary_10_1186_s13578_023_01073_9
crossref_primary_10_1186_s40364_024_00621_w
crossref_primary_10_1158_2326_6066_CIR_22_0814
crossref_primary_10_1038_s41388_019_0729_2
crossref_primary_10_1016_j_ejmech_2024_116774
crossref_primary_10_1016_j_hoc_2020_08_010
crossref_primary_10_1016_j_intimp_2023_110918
crossref_primary_10_3389_fimmu_2017_01597
crossref_primary_10_1038_s41388_022_02492_7
crossref_primary_10_1158_1078_0432_CCR_20_2984
crossref_primary_10_1186_s12885_024_12244_3
crossref_primary_10_1186_s13148_020_0818_7
crossref_primary_10_2217_fon_2020_0967
crossref_primary_10_1016_j_ejca_2020_08_014
crossref_primary_10_1080_2162402X_2019_1703449
crossref_primary_10_1038_s41422_021_00606_6
crossref_primary_10_1126_sciadv_abo8043
crossref_primary_10_2217_epi_2020_0186
crossref_primary_10_3389_fimmu_2021_652160
crossref_primary_10_1016_j_semcancer_2019_12_019
crossref_primary_10_1186_s12935_023_02902_0
crossref_primary_10_1007_s11654_017_0036_8
crossref_primary_10_3390_cancers15051537
crossref_primary_10_1016_j_ymthe_2022_02_006
crossref_primary_10_1158_1535_7163_MCT_17_0437
crossref_primary_10_2139_ssrn_4129851
crossref_primary_10_1016_j_carbpol_2024_122645
crossref_primary_10_1038_s41388_019_0855_x
crossref_primary_10_1080_2162402X_2017_1386829
crossref_primary_10_14348_molcells_2021_0044
crossref_primary_10_1016_j_xjidi_2021_100090
crossref_primary_10_1111_imm_13058
crossref_primary_10_1038_s41577_024_01111_8
crossref_primary_10_1172_jci_insight_128474
crossref_primary_10_1038_s41437_022_00533_1
crossref_primary_10_1016_j_intimp_2024_113365
crossref_primary_10_1172_JCI163450
crossref_primary_10_1038_s43018_023_00553_8
crossref_primary_10_1053_j_seminoncol_2022_06_005
crossref_primary_10_1158_1078_0432_CCR_18_3133
crossref_primary_10_1007_s10555_020_09944_0
crossref_primary_10_3389_fimmu_2022_873116
crossref_primary_10_1158_0008_5472_CAN_20_0524
crossref_primary_10_1016_j_jid_2021_08_437
crossref_primary_10_1093_annonc_mdy032
crossref_primary_10_1038_s41423_021_00756_y
crossref_primary_10_1016_j_pharmthera_2022_108301
crossref_primary_10_3389_fphar_2018_01413
crossref_primary_10_1158_0008_5472_CAN_20_2147
crossref_primary_10_1111_pcmr_12643
crossref_primary_10_1016_j_xcrm_2023_101287
crossref_primary_10_1172_JCI99760
crossref_primary_10_1016_j_semcancer_2020_01_001
crossref_primary_10_1158_2326_6066_CIR_22_0184
crossref_primary_10_2217_epi_2022_0320
crossref_primary_10_1016_j_cbpa_2019_11_009
crossref_primary_10_1158_1541_7786_MCR_18_0246
crossref_primary_10_1158_1541_7786_MCR_18_0368
crossref_primary_10_1186_s40164_022_00356_0
crossref_primary_10_1126_science_abq1053
crossref_primary_10_1186_s40364_020_00206_3
crossref_primary_10_3390_cells10040831
crossref_primary_10_1038_s41467_017_02358_7
crossref_primary_10_3389_fonc_2022_943806
crossref_primary_10_3389_fimmu_2020_593203
crossref_primary_10_3390_biom10071061
crossref_primary_10_1016_j_trecan_2018_06_004
crossref_primary_10_3390_genes11030287
crossref_primary_10_3389_fimmu_2020_01469
crossref_primary_10_3389_fonc_2023_1200646
crossref_primary_10_1186_s13046_020_01682_z
crossref_primary_10_2147_IJN_S290346
crossref_primary_10_1016_j_canlet_2024_216661
crossref_primary_10_1007_s00018_018_2908_7
crossref_primary_10_1007_s00345_020_03200_4
crossref_primary_10_3390_cancers13030564
crossref_primary_10_1016_j_it_2019_02_004
crossref_primary_10_1016_j_it_2020_08_010
crossref_primary_10_1002_ctm2_835
crossref_primary_10_1016_j_bbcan_2023_188865
crossref_primary_10_1038_s41423_018_0086_z
crossref_primary_10_1038_s41388_023_02631_8
Cites_doi 10.1016/j.it.2015.10.003
10.1186/gb-2006-7-10-r100
10.1126/scitranslmed.3006504
10.1016/j.it.2016.03.009
10.1038/nm.4036
10.1186/1479-5876-12-68
10.1038/nature15520
10.1038/nature14011
10.1126/science.1122927
10.1038/onc.2014.362
10.1158/0008-5472.CAN-15-1938
10.1158/2326-6066.CIR-14-0190
10.1016/j.immuni.2015.01.007
10.1038/ni.3313
10.1016/j.ccr.2013.08.018
10.1016/j.immuni.2013.10.003
10.1038/ncomms6241
10.1038/cdd.2014.44
10.1073/pnas.1002569107
10.1016/j.ccell.2015.03.001
10.1038/ncb2535
10.1038/nature10975
10.1016/j.ccr.2013.04.011
10.1016/j.cell.2016.02.065
10.1158/1078-0432.CCR-15-1434
10.1073/pnas.1521812113
10.1016/j.cell.2015.05.044
10.1126/science.aad0095
10.1158/2159-8290.CD-13-0005
10.1038/nri3862
10.1126/science.1203486
10.1056/NEJMoa1504030
10.1126/scitranslmed.aag3187
10.4049/jimmunol.1490019
10.1038/nature13954
10.1038/ncomms7051
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2017.07.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 867
ExternalDocumentID oai_doaj_org_article_967779b6723443cdb0ae74f91c533240
28746871
10_1016_j_celrep_2017_07_007
S2211124717309464
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c540t-679add7a2e18f404bffa3f80d35fc6b75ccee9a1a8a6c4f311227f699e1f420f3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:16:50 EDT 2025
Thu Jul 10 23:43:44 EDT 2025
Wed Feb 19 02:44:22 EST 2025
Tue Jul 01 03:07:40 EDT 2025
Thu Apr 24 23:08:06 EDT 2025
Wed May 17 00:03:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords tumor resistance
PRC2
immunotherapy
melanoma
tumor immune escape
anti-CTLA-4
anti-PD-1
IL-2 complexes
epigenetics
EZH2
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-679add7a2e18f404bffa3f80d35fc6b75ccee9a1a8a6c4f311227f699e1f420f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124717309464
PMID 28746871
PQID 1924603171
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_967779b6723443cdb0ae74f91c533240
proquest_miscellaneous_1924603171
pubmed_primary_28746871
crossref_citationtrail_10_1016_j_celrep_2017_07_007
crossref_primary_10_1016_j_celrep_2017_07_007
elsevier_sciencedirect_doi_10_1016_j_celrep_2017_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-25
PublicationDateYYYYMMDD 2017-07-25
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat (bib8) 2006; 7
Rosenberg (bib24) 2014; 192
Topalian, Drake, Pardoll (bib28) 2015; 27
Kim, Roberts (bib15) 2016; 22
Zingg, Debbache, Schaefer, Tuncer, Frommel, Cheng, Arenas-Ramirez, Haeusel, Zhang, Bonalli (bib36) 2015; 6
O’Connell, Marchbank, Webster, Valiga, Kaur, Vultur, Li, Herlyn, Villanueva, Liu (bib22) 2013; 3
Hugo, Zaretsky, Sun, Song, Moreno, Hu-Lieskovan, Berent-Maoz, Pang, Chmielowski, Cherry (bib14) 2016; 165
Lou, Diao, Cuentas, Denning, Chen, Fan, Byers, Wang, Papadimitrakopoulou, Behrens (bib19) 2016; 22
Herbst, Soria, Kowanetz, Fine, Hamid, Gordon, Sosman, McDermott, Powderly, Gettinger (bib12) 2014; 515
Levin, Bates, Ring, Krieg, Lin, Su, Moraga, Raeber, Bowman, Novick (bib18) 2012; 484
Peng, Kryczek, Nagarsheth, Zhao, Wei, Wang, Sun, Zhao, Vatan, Szeliga (bib23) 2015; 527
Schreiber, Old, Smyth (bib25) 2011; 331
Van Allen, Miao, Schilling, Shukla, Blank, Zimmer, Sucker, Hillen, Geukes Foppen, Goldinger (bib32) 2015; 350
Bindea, Mlecnik, Tosolini, Kirilovsky, Waldner, Obenauf, Angell, Fredriksen, Lafontaine, Berger (bib4) 2013; 39
Chen, Gibbons, Goswami, Cortez, Ahn, Byers, Zhang, Yi, Dwyer, Lin (bib9) 2014; 5
(bib6) 2015; 161
Manning, Hooper, Sahai (bib20) 2015; 34
DuPage, Chopra, Quiros, Rosenthal, Morar, Holohan, Zhang, Turka, Marson, Bluestone (bib11) 2015; 42
Wang, He, Zhao, Wang, Zhang, Shi, Zhang, Cai, Dou (bib33) 2014; 12
Zhao, Maj, Kryczek, Li, Wu, Zhao, Wei, Crespo, Wan, Vatan (bib35) 2016; 17
Béguelin, Popovic, Teater, Jiang, Bunting, Rosen, Shen, Yang, Wang, Ezponda (bib3) 2013; 23
Arenas-Ramirez, Woytschak, Boyman (bib1) 2015; 36
Caramel, Papadogeorgakis, Hill, Browne, Richard, Wierinckx, Saldanha, Osborne, Hutchinson, Tse (bib7) 2013; 24
Denecker, Vandamme, Akay, Koludrovic, Taminau, Lemeire, Gheldof, De Craene, Van Gele, Brochez (bib10) 2014; 21
Larkin, Chiarion-Sileni, Gonzalez, Grob, Cowey, Lao, Schadendorf, Dummer, Smylie, Rutkowski (bib17) 2015; 373
Shakhova, Zingg, Schaefer, Hari, Civenni, Blunschi, Claudinot, Okoniewski, Beermann, Mihic-Probst (bib26) 2012; 14
Nagarsheth, Peng, Kryczek, Wu, Li, Zhao, Zhao, Wei, Frankel, Vatan (bib21) 2016; 76
Hölzel, Tüting (bib13) 2016; 37
Tripathi, Peters, Taguchi, Katayama, Wang, Momin, Jolly, Celiktas, Rodriguez-Canales, Liu (bib29) 2016; 113
Arenas-Ramirez, Zou, Popp, Zingg, Brannetti, Wirth, Calzascia, Kovarik, Sommer, Zenke (bib2) 2016; 8
Ueha, Yokochi, Ishiwata, Ogiwara, Chand, Nakajima, Hachiga, Shichino, Terashima, Toda (bib31) 2015; 3
Wherry, Kurachi (bib34) 2015; 15
Boyman, Kovar, Rubinstein, Surh, Sprent (bib5) 2006; 311
Krieg, Létourneau, Pantaleo, Boyman (bib16) 2010; 107
Spranger, Spaapen, Zha, Williams, Meng, Ha, Gajewski (bib27) 2013; 5
Tumeh, Harview, Yearley, Shintaku, Taylor, Robert, Chmielowski, Spasic, Henry, Ciobanu (bib30) 2014; 515
Kim (10.1016/j.celrep.2017.07.007_bib15) 2016; 22
O’Connell (10.1016/j.celrep.2017.07.007_bib22) 2013; 3
Wang (10.1016/j.celrep.2017.07.007_bib33) 2014; 12
Levin (10.1016/j.celrep.2017.07.007_bib18) 2012; 484
Wherry (10.1016/j.celrep.2017.07.007_bib34) 2015; 15
Zingg (10.1016/j.celrep.2017.07.007_bib36) 2015; 6
Krieg (10.1016/j.celrep.2017.07.007_bib16) 2010; 107
Van Allen (10.1016/j.celrep.2017.07.007_bib32) 2015; 350
Larkin (10.1016/j.celrep.2017.07.007_bib17) 2015; 373
Nagarsheth (10.1016/j.celrep.2017.07.007_bib21) 2016; 76
Tumeh (10.1016/j.celrep.2017.07.007_bib30) 2014; 515
Zhao (10.1016/j.celrep.2017.07.007_bib35) 2016; 17
Bindea (10.1016/j.celrep.2017.07.007_bib4) 2013; 39
Lou (10.1016/j.celrep.2017.07.007_bib19) 2016; 22
Schreiber (10.1016/j.celrep.2017.07.007_bib25) 2011; 331
Rosenberg (10.1016/j.celrep.2017.07.007_bib24) 2014; 192
Arenas-Ramirez (10.1016/j.celrep.2017.07.007_bib2) 2016; 8
Arenas-Ramirez (10.1016/j.celrep.2017.07.007_bib1) 2015; 36
Carpenter (10.1016/j.celrep.2017.07.007_bib8) 2006; 7
Spranger (10.1016/j.celrep.2017.07.007_bib27) 2013; 5
Caramel (10.1016/j.celrep.2017.07.007_bib7) 2013; 24
Boyman (10.1016/j.celrep.2017.07.007_bib5) 2006; 311
Tripathi (10.1016/j.celrep.2017.07.007_bib29) 2016; 113
Manning (10.1016/j.celrep.2017.07.007_bib20) 2015; 34
Topalian (10.1016/j.celrep.2017.07.007_bib28) 2015; 27
Herbst (10.1016/j.celrep.2017.07.007_bib12) 2014; 515
Shakhova (10.1016/j.celrep.2017.07.007_bib26) 2012; 14
Hölzel (10.1016/j.celrep.2017.07.007_bib13) 2016; 37
Béguelin (10.1016/j.celrep.2017.07.007_bib3) 2013; 23
Chen (10.1016/j.celrep.2017.07.007_bib9) 2014; 5
(10.1016/j.celrep.2017.07.007_bib6) 2015; 161
DuPage (10.1016/j.celrep.2017.07.007_bib11) 2015; 42
Hugo (10.1016/j.celrep.2017.07.007_bib14) 2016; 165
Ueha (10.1016/j.celrep.2017.07.007_bib31) 2015; 3
Peng (10.1016/j.celrep.2017.07.007_bib23) 2015; 527
Denecker (10.1016/j.celrep.2017.07.007_bib10) 2014; 21
References_xml – volume: 527
  start-page: 249
  year: 2015
  end-page: 253
  ident: bib23
  article-title: Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy
  publication-title: Nature
– volume: 6
  start-page: 6051
  year: 2015
  ident: bib36
  article-title: The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors
  publication-title: Nat. Commun.
– volume: 165
  start-page: 35
  year: 2016
  end-page: 44
  ident: bib14
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
– volume: 113
  start-page: E1555
  year: 2016
  end-page: E1564
  ident: bib29
  article-title: Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 350
  start-page: 207
  year: 2015
  end-page: 211
  ident: bib32
  article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
  publication-title: Science
– volume: 7
  start-page: R100
  year: 2006
  ident: bib8
  article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
– volume: 23
  start-page: 677
  year: 2013
  end-page: 692
  ident: bib3
  article-title: EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation
  publication-title: Cancer Cell
– volume: 515
  start-page: 568
  year: 2014
  end-page: 571
  ident: bib30
  article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance
  publication-title: Nature
– volume: 39
  start-page: 782
  year: 2013
  end-page: 795
  ident: bib4
  article-title: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer
  publication-title: Immunity
– volume: 34
  start-page: 4320
  year: 2015
  end-page: 4332
  ident: bib20
  article-title: Intravital imaging of SRF and Notch signalling identifies a key role for EZH2 in invasive melanoma cells
  publication-title: Oncogene
– volume: 331
  start-page: 1565
  year: 2011
  end-page: 1570
  ident: bib25
  article-title: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion
  publication-title: Science
– volume: 36
  start-page: 763
  year: 2015
  end-page: 777
  ident: bib1
  article-title: Interleukin-2: biology, design and application
  publication-title: Trends Immunol.
– volume: 22
  start-page: 128
  year: 2016
  end-page: 134
  ident: bib15
  article-title: Targeting EZH2 in cancer
  publication-title: Nat. Med.
– volume: 107
  start-page: 11906
  year: 2010
  end-page: 11911
  ident: bib16
  article-title: Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 486
  year: 2015
  end-page: 499
  ident: bib34
  article-title: Molecular and cellular insights into T cell exhaustion
  publication-title: Nat. Rev. Immunol.
– volume: 17
  start-page: 95
  year: 2016
  end-page: 103
  ident: bib35
  article-title: Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction
  publication-title: Nat. Immunol.
– volume: 192
  start-page: 5451
  year: 2014
  end-page: 5458
  ident: bib24
  article-title: IL-2: the first effective immunotherapy for human cancer
  publication-title: J. Immunol.
– volume: 3
  start-page: 1378
  year: 2013
  end-page: 1393
  ident: bib22
  article-title: Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2
  publication-title: Cancer Discov.
– volume: 3
  start-page: 631
  year: 2015
  end-page: 640
  ident: bib31
  article-title: Robust antitumor effects of combined anti-CD4-depleting antibody and anti-PD-1/PD-L1 immune checkpoint antibody treatment in mice
  publication-title: Cancer Immunol. Res.
– volume: 373
  start-page: 23
  year: 2015
  end-page: 34
  ident: bib17
  article-title: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma
  publication-title: N. Engl. J. Med.
– volume: 14
  start-page: 882
  year: 2012
  end-page: 890
  ident: bib26
  article-title: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma
  publication-title: Nat. Cell Biol.
– volume: 311
  start-page: 1924
  year: 2006
  end-page: 1927
  ident: bib5
  article-title: Selective stimulation of T cell subsets with antibody-cytokine immune complexes
  publication-title: Science
– volume: 515
  start-page: 563
  year: 2014
  end-page: 567
  ident: bib12
  article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
  publication-title: Nature
– volume: 12
  start-page: 68
  year: 2014
  ident: bib33
  article-title: Regulation gene expression of miR200c and ZEB1 positively enhances effect of tumor vaccine B16F10/GPI-IL-21 on inhibition of melanoma growth and metastasis
  publication-title: J. Transl. Med.
– volume: 5
  start-page: 200ra116
  year: 2013
  ident: bib27
  article-title: Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells
  publication-title: Sci. Transl. Med.
– volume: 76
  start-page: 275
  year: 2016
  end-page: 282
  ident: bib21
  article-title: PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer
  publication-title: Cancer Res.
– volume: 484
  start-page: 529
  year: 2012
  end-page: 533
  ident: bib18
  article-title: Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’
  publication-title: Nature
– volume: 5
  start-page: 5241
  year: 2014
  ident: bib9
  article-title: Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression
  publication-title: Nat. Commun.
– volume: 24
  start-page: 466
  year: 2013
  end-page: 480
  ident: bib7
  article-title: A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma
  publication-title: Cancer Cell
– volume: 42
  start-page: 227
  year: 2015
  end-page: 238
  ident: bib11
  article-title: The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation
  publication-title: Immunity
– volume: 37
  start-page: 364
  year: 2016
  end-page: 374
  ident: bib13
  article-title: Inflammation-induced plasticity in melanoma therapy and metastasis
  publication-title: Trends Immunol.
– volume: 22
  start-page: 3630
  year: 2016
  end-page: 3642
  ident: bib19
  article-title: Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma
  publication-title: Clin. Cancer Res.
– volume: 8
  start-page: 367ra166
  year: 2016
  ident: bib2
  article-title: Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2
  publication-title: Sci. Transl. Med.
– volume: 161
  start-page: 1681
  year: 2015
  end-page: 1696
  ident: bib6
  article-title: Genomic classification of cutaneous melanoma
  publication-title: Cell
– volume: 27
  start-page: 450
  year: 2015
  end-page: 461
  ident: bib28
  article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy
  publication-title: Cancer Cell
– volume: 21
  start-page: 1250
  year: 2014
  end-page: 1261
  ident: bib10
  article-title: Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression
  publication-title: Cell Death Differ.
– volume: 36
  start-page: 763
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib1
  article-title: Interleukin-2: biology, design and application
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.10.003
– volume: 7
  start-page: R100
  year: 2006
  ident: 10.1016/j.celrep.2017.07.007_bib8
  article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
  doi: 10.1186/gb-2006-7-10-r100
– volume: 5
  start-page: 200ra116
  year: 2013
  ident: 10.1016/j.celrep.2017.07.007_bib27
  article-title: Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3006504
– volume: 37
  start-page: 364
  year: 2016
  ident: 10.1016/j.celrep.2017.07.007_bib13
  article-title: Inflammation-induced plasticity in melanoma therapy and metastasis
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2016.03.009
– volume: 22
  start-page: 128
  year: 2016
  ident: 10.1016/j.celrep.2017.07.007_bib15
  article-title: Targeting EZH2 in cancer
  publication-title: Nat. Med.
  doi: 10.1038/nm.4036
– volume: 12
  start-page: 68
  year: 2014
  ident: 10.1016/j.celrep.2017.07.007_bib33
  article-title: Regulation gene expression of miR200c and ZEB1 positively enhances effect of tumor vaccine B16F10/GPI-IL-21 on inhibition of melanoma growth and metastasis
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-12-68
– volume: 527
  start-page: 249
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib23
  article-title: Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy
  publication-title: Nature
  doi: 10.1038/nature15520
– volume: 515
  start-page: 563
  year: 2014
  ident: 10.1016/j.celrep.2017.07.007_bib12
  article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
  publication-title: Nature
  doi: 10.1038/nature14011
– volume: 311
  start-page: 1924
  year: 2006
  ident: 10.1016/j.celrep.2017.07.007_bib5
  article-title: Selective stimulation of T cell subsets with antibody-cytokine immune complexes
  publication-title: Science
  doi: 10.1126/science.1122927
– volume: 34
  start-page: 4320
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib20
  article-title: Intravital imaging of SRF and Notch signalling identifies a key role for EZH2 in invasive melanoma cells
  publication-title: Oncogene
  doi: 10.1038/onc.2014.362
– volume: 76
  start-page: 275
  year: 2016
  ident: 10.1016/j.celrep.2017.07.007_bib21
  article-title: PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-1938
– volume: 3
  start-page: 631
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib31
  article-title: Robust antitumor effects of combined anti-CD4-depleting antibody and anti-PD-1/PD-L1 immune checkpoint antibody treatment in mice
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-14-0190
– volume: 42
  start-page: 227
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib11
  article-title: The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.01.007
– volume: 17
  start-page: 95
  year: 2016
  ident: 10.1016/j.celrep.2017.07.007_bib35
  article-title: Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3313
– volume: 24
  start-page: 466
  year: 2013
  ident: 10.1016/j.celrep.2017.07.007_bib7
  article-title: A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.08.018
– volume: 39
  start-page: 782
  year: 2013
  ident: 10.1016/j.celrep.2017.07.007_bib4
  article-title: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.10.003
– volume: 5
  start-page: 5241
  year: 2014
  ident: 10.1016/j.celrep.2017.07.007_bib9
  article-title: Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6241
– volume: 21
  start-page: 1250
  year: 2014
  ident: 10.1016/j.celrep.2017.07.007_bib10
  article-title: Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.44
– volume: 107
  start-page: 11906
  year: 2010
  ident: 10.1016/j.celrep.2017.07.007_bib16
  article-title: Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1002569107
– volume: 27
  start-page: 450
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib28
  article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.03.001
– volume: 14
  start-page: 882
  year: 2012
  ident: 10.1016/j.celrep.2017.07.007_bib26
  article-title: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2535
– volume: 484
  start-page: 529
  year: 2012
  ident: 10.1016/j.celrep.2017.07.007_bib18
  article-title: Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’
  publication-title: Nature
  doi: 10.1038/nature10975
– volume: 23
  start-page: 677
  year: 2013
  ident: 10.1016/j.celrep.2017.07.007_bib3
  article-title: EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.04.011
– volume: 165
  start-page: 35
  year: 2016
  ident: 10.1016/j.celrep.2017.07.007_bib14
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.065
– volume: 22
  start-page: 3630
  year: 2016
  ident: 10.1016/j.celrep.2017.07.007_bib19
  article-title: Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-1434
– volume: 113
  start-page: E1555
  year: 2016
  ident: 10.1016/j.celrep.2017.07.007_bib29
  article-title: Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1521812113
– volume: 161
  start-page: 1681
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib6
  article-title: Genomic classification of cutaneous melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.044
– volume: 350
  start-page: 207
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib32
  article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
  publication-title: Science
  doi: 10.1126/science.aad0095
– volume: 3
  start-page: 1378
  year: 2013
  ident: 10.1016/j.celrep.2017.07.007_bib22
  article-title: Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0005
– volume: 15
  start-page: 486
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib34
  article-title: Molecular and cellular insights into T cell exhaustion
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3862
– volume: 331
  start-page: 1565
  year: 2011
  ident: 10.1016/j.celrep.2017.07.007_bib25
  article-title: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion
  publication-title: Science
  doi: 10.1126/science.1203486
– volume: 373
  start-page: 23
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib17
  article-title: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504030
– volume: 8
  start-page: 367ra166
  year: 2016
  ident: 10.1016/j.celrep.2017.07.007_bib2
  article-title: Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aag3187
– volume: 192
  start-page: 5451
  year: 2014
  ident: 10.1016/j.celrep.2017.07.007_bib24
  article-title: IL-2: the first effective immunotherapy for human cancer
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1490019
– volume: 515
  start-page: 568
  year: 2014
  ident: 10.1016/j.celrep.2017.07.007_bib30
  article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance
  publication-title: Nature
  doi: 10.1038/nature13954
– volume: 6
  start-page: 6051
  year: 2015
  ident: 10.1016/j.celrep.2017.07.007_bib36
  article-title: The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7051
SSID ssj0000601194
Score 2.5901442
Snippet Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most...
Immunotherapy and particularly immune checkpoint inhibitors have resulted in remarkable clinical responses in patients with immunogenic tumors, although most...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 854
SubjectTerms Animals
anti-CTLA-4
anti-PD-1
Blotting, Western
Cell Line
Chromatin Immunoprecipitation
CTLA-4 Antigen - metabolism
Enhancer of Zeste Homolog 2 Protein - genetics
Enhancer of Zeste Homolog 2 Protein - metabolism
Enzyme-Linked Immunosorbent Assay
epigenetics
EZH2
Female
Flow Cytometry
Fluorescent Antibody Technique
Humans
IL-2 complexes
Immunotherapy
Interleukin-2 - metabolism
melanoma
Melanoma - metabolism
Melanoma - therapy
Mice
Mice, Inbred C57BL
Mice, Mutant Strains
PRC2
T-Lymphocytes - metabolism
tumor immune escape
Tumor Necrosis Factor-alpha - metabolism
tumor resistance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuCCgfW6AyEteIxHHs9bFUrQpSOaBW6s2ynRlRtN2tNtlD-fXMxMlqOaC99Jo4ycgz9nuOx2-E-IzWARLMFFrHVGgEKFyjUqFaIECAyJtDnG3xw1xc6-83zc1OqS_OCcvywLnjvjhjrXXRWFVrXac2lgGsRlclIioERzz7EubtLKbyHMxaZrylrBTnbCltp3NzQ3JXgsUaWK6ysoN2J1eT3cGlQb7_H3j6H_0cYOj8hXg-8kd5ku1-KZ7A8pV4mitKPhyKltwuB-mPJchLIC8s-oGawprgSp79-aXkac5O7-g-H_u97e46uUJ50oZ7nvvkT-iYVFI0yH4lrzZ3q7X8xsdIxsNaD6_F9fnZ1elFMRZSKBIRsr4w1tE0ZoOCao661BEx1Dgv27rBZKJtEkGlC1WYB5M01sTBlEXjHFSoVYn1G3GwJLvfCYnWNibNqVmjNJM7qMtYYoomILnBzEQ9daNPo8o4F7tY-Cmd7LfPne-5833J2992JortU_dZZWNP-6_soW1b1sgeLlDk-DFy_L7ImQk7-dePdCPTCHrV7Z7Pf5rCwdNo5C2WsITVpvO8nOW63baaibc5TrZGcmUBQ-vTo8cw_r14xgbxX2bVfBAH_XoDH4ke9fF4GAl_AfIOCeM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhEOilNP3cNi0q9GrWlmTJOiZLQlpoD20CexOSLLVbNuvF9h6SX58Z2V6SQwn0aFm2xGg882TNvCHkS1Q6RHAzmRDOZyKGkOmS-YzVARxCcHg4hNEWP-Tltfi2LJcHZDHlwmBY5Wj7B5uerPXYMh-lOd-uVvNfDPYu4J3wGBn2KBI5QbmoUhLf8mz_nwX5RopUDxH7Z_jAlEGXwrx8WLcBiSsLlVg8sa7sAw-ViPwfOap_AdHkkC5ekOcjkqSnw2SPyUHYvCRHQ23J21ekBgWgiQRkE-j3AOux7hNIDS04Lnp-94fRxRCn3sF9TABedTcdbSI9re0WrSD9GTqElyAT2jf0anfTtPQrJpSMaVu3r8n1xfnV4jIbSypkHqBZn0mlwaApy0JRRZELF6PlscprXkYvnSo9OE1tC1tZ6UXkIGCmotQ6FFGwPPI35HAD835HaFSqlL6CbiUTCPMCz10evZM2AgiRM8InMRo_8o1j2Yu1mQLL_ppB-AaFb3I8CFczku2f2g58G0_0P8MV2vdFtuzU0LS_zaguRkullHZSMS4E97XLbVAi6sID2AVIMyNqWl_zSPngVasnhv88qYOB7xIPW-wmNLvO4MYWK3irYkbeDnqynyTWGJCwU33_3-N-IM_wCn8ys_KEHPbtLnwEdNS7T0n97wFp6Qx0
  priority: 102
  providerName: Elsevier
Title The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy
URI https://dx.doi.org/10.1016/j.celrep.2017.07.007
https://www.ncbi.nlm.nih.gov/pubmed/28746871
https://www.proquest.com/docview/1924603171
https://doaj.org/article/967779b6723443cdb0ae74f91c533240
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhodBLafrcpg0q9Opiy7K0OoSShISkkB5KFvYmJHnUpmzWqe2Fbn59ZvzYEmgIvRhsy7Y8mtF80rwY-xS1gYhqJpHSh0RGgMQUIiSiBFQI4Mk4RN4W39TZTH6dF_MtNtZsHQjY_HNpR_WkZvXi85_f6y8o8Ad_fbUCLGqg7JOZ7lJxUnj5DuomTaJ6MQD-fm6mHGdkahaCfLmE1GM83QMvuqevurT-99TWQ7C0U0-nz9mzAVfyw54RdtkWLF-wJ32lyfVLViI78C4lyBL4BeDoLNoOskKNaoyf3P4U_Lj3Wm_wPoUDXzXXDa8iPyzdDc2J_Ds0BDaRS3hb8cvVdVXzcwovGYK41q_Y7PTk8vgsGQosJAGBWpsobXB6005ANo0ylT5Gl8dpWuZFDMrrIqAKNS5zU6eCjDliM6GjMgayKEUa89dse4n9fst41LpQYYrNCiEJ9EGe-jQGr1xESKImLB_JaMOQfZyKYCzs6Gb2y_bEt0R8m5JZXE9Ysnnqps--8Uj7IxqhTVvKnd1dqOofdhBFa5TW2nilRS5lHkqfOtAymiwg9EWAM2F6HF87wJAeXuCrrh75_MeRHSxKKZle3BKqVWNpmUv1vHU2YW96Ptl0kioOKFy3vvvPn91jT-mMNppF8Z5tt_UKPiBCav1-t7OAx_P50X4nAHesyQ8H
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSFEW7FH3XfbJAV8ISRZHWmBgJ7DbJ0DqAN4KkyNaFYxmSPCS_PneUZDRDEaArHxJxPN595L0I-RpU4QOoGSaEdUwE71mRc8d46UEheIvGIfS2uJCzS_FtmS8PyHSIhUG3yl72dzI9Suu-ZdxTc7xdrcY_OdxdQDuhGRnuKFI8IA8BDSis3zBfHu8fWjDhSBoLIuIEhjOGELro5-X8uvaYuTJVMY0nFpb9S0XFTP53NNW_kGjUSKfPyNMeStKjbrXPyYHfvCCPuuKS1y9JCRxAYxaQjafnHjZk3UaU6mvQXPTk5jen085RvYF-jABeNVcNrQI9Ks0WxSD94RvEl0AU2lZ0sbuqajrHiJI-buv6Fbk8PVlMZ6yvqcAcYLOWSVWARFOG-3QSRCJsCCYLk6TM8uCkVbkDrVmY1EyMdCJkQGGugiwKnwbBk5C9JocbWPdbQoNSuXQTGJZzgTjPZ4lNgrPSBEAhckSygYza9QnHse7FWg-eZX90R3yNxNcJWsLViLD9rG2XcOOe8ce4Q_uxmC47NlT1L93ziy6kUqqwUvFMiMyVNjFeiVCkDtAuYJoRUcP-6jvcB59a3fP7LwM7aDiYaG0xG1_tGo03WyzhrdIRedPxyX6RWGRAwlX13X__9zN5PFucn-mz-cX39-QJ9uCLM88_kMO23vmPAJVa-ykehVvmfA-T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Histone+Methyltransferase+Ezh2+Controls+Mechanisms+of+Adaptive+Resistance+to+Tumor+Immunotherapy&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Zingg%2C+Daniel&rft.au=Arenas-Ramirez%2C+Natalia&rft.au=Sahin%2C+Dilara&rft.au=Rosalia%2C+Rodney+A.&rft.date=2017-07-25&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=20&rft.issue=4&rft.spage=854&rft.epage=867&rft_id=info:doi/10.1016%2Fj.celrep.2017.07.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2017_07_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon