Comparisons of Four Protein-Binding Models Characterizing the Pharmacokinetics of Unbound Phenytoin in Adult Patients Using Non-Linear Mixed-Effects Modeling

Background and objective Phenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total concentrations are routinely measured in clinical practice. The relationship between free and total phenytoin has been described by various bi...

Full description

Saved in:
Bibliographic Details
Published inDrugs in R&D Vol. 20; no. 4; pp. 343 - 358
Main Authors Jun, Heajin, Rong, Yan, Yih, Catharina, Ho, Jordan, Cheng, Wendy, Kiang, Tony K. L.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2020
Springer Nature B.V
Adis, Springer Healthcare
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and objective Phenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total concentrations are routinely measured in clinical practice. The relationship between free and total phenytoin has been described by various binding models with inconsistent findings. Systematic comparison of these binding models in a single experimental setting is warranted to determine the optimal binding behaviors. Methods Non-linear mixed-effects modeling was conducted on retrospectively collected data ( n  = 37 adults receiving oral or intravenous phenytoin) using a stochastic approximation expectation–maximization algorithm in MonolixSuite-2019R2. The optimal base structural model was initially developed and utilized to compare four binding models: Winter–Tozer, linear binding, non-linear single-binding site, and non-linear multiple-binding site. Each binding model was subjected to error and covariate modeling. The final model was evaluated using relative standard errors (RSEs), goodness-of-fit plots, visual predictive check, and bootstrapping. Results A one-compartment, first-order absorption, Michaelis–Menten elimination, and linear protein-binding model best described the population pharmacokinetics of free phenytoin at typical clinical concentrations. The non-linear single-binding-site model also adequately described phenytoin binding but generated larger RSEs. The non-linear multiple-binding-site model performed the worst, with no identified covariates. The optimal linear binding model suggested a relatively high binding capacity using a single albumin site. Covariate modeling indicated a positive relationship between albumin concentration and the binding proportionality constant. Conclusions The linear binding model best described the population pharmacokinetics of unbound phenytoin in adult subjects and may be used to improve the prediction of free phenytoin concentrations.
AbstractList Phenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total concentrations are routinely measured in clinical practice. The relationship between free and total phenytoin has been described by various binding models with inconsistent findings. Systematic comparison of these binding models in a single experimental setting is warranted to determine the optimal binding behaviors.BACKGROUND AND OBJECTIVEPhenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total concentrations are routinely measured in clinical practice. The relationship between free and total phenytoin has been described by various binding models with inconsistent findings. Systematic comparison of these binding models in a single experimental setting is warranted to determine the optimal binding behaviors.Non-linear mixed-effects modeling was conducted on retrospectively collected data (n = 37 adults receiving oral or intravenous phenytoin) using a stochastic approximation expectation-maximization algorithm in MonolixSuite-2019R2. The optimal base structural model was initially developed and utilized to compare four binding models: Winter-Tozer, linear binding, non-linear single-binding site, and non-linear multiple-binding site. Each binding model was subjected to error and covariate modeling. The final model was evaluated using relative standard errors (RSEs), goodness-of-fit plots, visual predictive check, and bootstrapping.METHODSNon-linear mixed-effects modeling was conducted on retrospectively collected data (n = 37 adults receiving oral or intravenous phenytoin) using a stochastic approximation expectation-maximization algorithm in MonolixSuite-2019R2. The optimal base structural model was initially developed and utilized to compare four binding models: Winter-Tozer, linear binding, non-linear single-binding site, and non-linear multiple-binding site. Each binding model was subjected to error and covariate modeling. The final model was evaluated using relative standard errors (RSEs), goodness-of-fit plots, visual predictive check, and bootstrapping.A one-compartment, first-order absorption, Michaelis-Menten elimination, and linear protein-binding model best described the population pharmacokinetics of free phenytoin at typical clinical concentrations. The non-linear single-binding-site model also adequately described phenytoin binding but generated larger RSEs. The non-linear multiple-binding-site model performed the worst, with no identified covariates. The optimal linear binding model suggested a relatively high binding capacity using a single albumin site. Covariate modeling indicated a positive relationship between albumin concentration and the binding proportionality constant.RESULTSA one-compartment, first-order absorption, Michaelis-Menten elimination, and linear protein-binding model best described the population pharmacokinetics of free phenytoin at typical clinical concentrations. The non-linear single-binding-site model also adequately described phenytoin binding but generated larger RSEs. The non-linear multiple-binding-site model performed the worst, with no identified covariates. The optimal linear binding model suggested a relatively high binding capacity using a single albumin site. Covariate modeling indicated a positive relationship between albumin concentration and the binding proportionality constant.The linear binding model best described the population pharmacokinetics of unbound phenytoin in adult subjects and may be used to improve the prediction of free phenytoin concentrations.CONCLUSIONSThe linear binding model best described the population pharmacokinetics of unbound phenytoin in adult subjects and may be used to improve the prediction of free phenytoin concentrations.
Phenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total concentrations are routinely measured in clinical practice. The relationship between free and total phenytoin has been described by various binding models with inconsistent findings. Systematic comparison of these binding models in a single experimental setting is warranted to determine the optimal binding behaviors. Non-linear mixed-effects modeling was conducted on retrospectively collected data (n = 37 adults receiving oral or intravenous phenytoin) using a stochastic approximation expectation-maximization algorithm in MonolixSuite-2019R2. The optimal base structural model was initially developed and utilized to compare four binding models: Winter-Tozer, linear binding, non-linear single-binding site, and non-linear multiple-binding site. Each binding model was subjected to error and covariate modeling. The final model was evaluated using relative standard errors (RSEs), goodness-of-fit plots, visual predictive check, and bootstrapping. A one-compartment, first-order absorption, Michaelis-Menten elimination, and linear protein-binding model best described the population pharmacokinetics of free phenytoin at typical clinical concentrations. The non-linear single-binding-site model also adequately described phenytoin binding but generated larger RSEs. The non-linear multiple-binding-site model performed the worst, with no identified covariates. The optimal linear binding model suggested a relatively high binding capacity using a single albumin site. Covariate modeling indicated a positive relationship between albumin concentration and the binding proportionality constant. The linear binding model best described the population pharmacokinetics of unbound phenytoin in adult subjects and may be used to improve the prediction of free phenytoin concentrations.
Background and objectivePhenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total concentrations are routinely measured in clinical practice. The relationship between free and total phenytoin has been described by various binding models with inconsistent findings. Systematic comparison of these binding models in a single experimental setting is warranted to determine the optimal binding behaviors.MethodsNon-linear mixed-effects modeling was conducted on retrospectively collected data (n = 37 adults receiving oral or intravenous phenytoin) using a stochastic approximation expectation–maximization algorithm in MonolixSuite-2019R2. The optimal base structural model was initially developed and utilized to compare four binding models: Winter–Tozer, linear binding, non-linear single-binding site, and non-linear multiple-binding site. Each binding model was subjected to error and covariate modeling. The final model was evaluated using relative standard errors (RSEs), goodness-of-fit plots, visual predictive check, and bootstrapping.ResultsA one-compartment, first-order absorption, Michaelis–Menten elimination, and linear protein-binding model best described the population pharmacokinetics of free phenytoin at typical clinical concentrations. The non-linear single-binding-site model also adequately described phenytoin binding but generated larger RSEs. The non-linear multiple-binding-site model performed the worst, with no identified covariates. The optimal linear binding model suggested a relatively high binding capacity using a single albumin site. Covariate modeling indicated a positive relationship between albumin concentration and the binding proportionality constant.ConclusionsThe linear binding model best described the population pharmacokinetics of unbound phenytoin in adult subjects and may be used to improve the prediction of free phenytoin concentrations.
Background and objective Phenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total concentrations are routinely measured in clinical practice. The relationship between free and total phenytoin has been described by various binding models with inconsistent findings. Systematic comparison of these binding models in a single experimental setting is warranted to determine the optimal binding behaviors. Methods Non-linear mixed-effects modeling was conducted on retrospectively collected data ( n  = 37 adults receiving oral or intravenous phenytoin) using a stochastic approximation expectation–maximization algorithm in MonolixSuite-2019R2. The optimal base structural model was initially developed and utilized to compare four binding models: Winter–Tozer, linear binding, non-linear single-binding site, and non-linear multiple-binding site. Each binding model was subjected to error and covariate modeling. The final model was evaluated using relative standard errors (RSEs), goodness-of-fit plots, visual predictive check, and bootstrapping. Results A one-compartment, first-order absorption, Michaelis–Menten elimination, and linear protein-binding model best described the population pharmacokinetics of free phenytoin at typical clinical concentrations. The non-linear single-binding-site model also adequately described phenytoin binding but generated larger RSEs. The non-linear multiple-binding-site model performed the worst, with no identified covariates. The optimal linear binding model suggested a relatively high binding capacity using a single albumin site. Covariate modeling indicated a positive relationship between albumin concentration and the binding proportionality constant. Conclusions The linear binding model best described the population pharmacokinetics of unbound phenytoin in adult subjects and may be used to improve the prediction of free phenytoin concentrations.
Abstract Background and objective Phenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total concentrations are routinely measured in clinical practice. The relationship between free and total phenytoin has been described by various binding models with inconsistent findings. Systematic comparison of these binding models in a single experimental setting is warranted to determine the optimal binding behaviors. Methods Non-linear mixed-effects modeling was conducted on retrospectively collected data (n = 37 adults receiving oral or intravenous phenytoin) using a stochastic approximation expectation–maximization algorithm in MonolixSuite-2019R2. The optimal base structural model was initially developed and utilized to compare four binding models: Winter–Tozer, linear binding, non-linear single-binding site, and non-linear multiple-binding site. Each binding model was subjected to error and covariate modeling. The final model was evaluated using relative standard errors (RSEs), goodness-of-fit plots, visual predictive check, and bootstrapping. Results A one-compartment, first-order absorption, Michaelis–Menten elimination, and linear protein-binding model best described the population pharmacokinetics of free phenytoin at typical clinical concentrations. The non-linear single-binding-site model also adequately described phenytoin binding but generated larger RSEs. The non-linear multiple-binding-site model performed the worst, with no identified covariates. The optimal linear binding model suggested a relatively high binding capacity using a single albumin site. Covariate modeling indicated a positive relationship between albumin concentration and the binding proportionality constant. Conclusions The linear binding model best described the population pharmacokinetics of unbound phenytoin in adult subjects and may be used to improve the prediction of free phenytoin concentrations.
Author Cheng, Wendy
Ho, Jordan
Jun, Heajin
Kiang, Tony K. L.
Rong, Yan
Yih, Catharina
Author_xml – sequence: 1
  givenname: Heajin
  surname: Jun
  fullname: Jun, Heajin
  organization: College of Pharmacy, Seoul National University, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Katz Group Centre for Pharmacy and Health Research
– sequence: 2
  givenname: Yan
  surname: Rong
  fullname: Rong, Yan
  organization: Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Katz Group Centre for Pharmacy and Health Research
– sequence: 3
  givenname: Catharina
  surname: Yih
  fullname: Yih, Catharina
  organization: Department of Pharmacy, Vancouver General Hospital
– sequence: 4
  givenname: Jordan
  surname: Ho
  fullname: Ho, Jordan
  organization: Department of Pharmacy, Vancouver General Hospital
– sequence: 5
  givenname: Wendy
  surname: Cheng
  fullname: Cheng, Wendy
  organization: Department of Pharmacy, Vancouver General Hospital
– sequence: 6
  givenname: Tony K. L.
  orcidid: 0000-0003-4548-9746
  surname: Kiang
  fullname: Kiang, Tony K. L.
  email: tkiang@ualberta.ca
  organization: Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Katz Group Centre for Pharmacy and Health Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33026608$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_YA_wAFF4sIl4I_Edi5IZdVCpS3sgT1bjj3e9ZK1FztBlP_Cf8WbLYX2UMmSrZn33sx43mlx5IOHoniJ0VuMEH-XakSYqBBBFUKU0Io8KU4w5m3FWoSPpnddNUKw4-I0pQ1CCFMmnhXHlGYmQ-Kk-D0L252KLgWfymDLyzDGchHDAM5XH5w3zq_K62CgT-VsraLSA0T3ax8d1lAucmirdPjmPAxOTxJL34XRm5wDfzME58t8zs3YD-VCDQ78kMpl2it8Dr6aZ6aK5bX7Caa6sBZ0Tk8FM-J58dSqPsGL2_usWF5efJ19quZfPl7NzueVbmo0VHkUCkBxzWjXMowp6UA31hJeQwMdbZpaW94YbVWjmak7Ay3TCiwXQDKInhVXB10T1EbuotuqeCODcnIKhLiSKub5epC01YprZCznrKaatS1HFLVGaAMGrM1a7w9au7HbgtF53qj6e6L3M96t5Sr8kJy1uMYsC7y5FYjh-whpkFuXNPS98hDGJEldt1hgJvbQ1w-gm7w_n79KUkJoK7hAPKNe_d_RXSt_XZAB5ADQMaQUwd5BMJJ7q8mD1WS2mpysJkkmiQck7Ya837CfyvWPU-mBmnIdv4L4r-1HWH8AA1vrNQ
CitedBy_id crossref_primary_10_1111_pan_14631
crossref_primary_10_3390_pharmaceutics14102226
crossref_primary_10_1007_s40262_023_01280_0
crossref_primary_10_1080_17425255_2025_2470792
crossref_primary_10_3390_pharmaceutics13081208
Cites_doi 10.2165/11595650-000000000-00000
10.1001/archneur.1974.00490410037002
10.1111/j.1365-2125.1991.tb05499.x
10.1248/bpb.19.444
10.4103/jrpp.JRPP_17_58
10.1111/j.1742-7843.2006.pto_309.x
10.1038/sj.clpt.6100241
10.1002/jcph.417
10.1111/bcp.14053
10.1177/0883073813486294
10.5858/arpa.2014-0464-CP
10.1097/00007691-199802000-00011
10.1016/0006-291X(91)91680-B
10.1002/phar.2273
10.1007/BF03261932
10.1097/FTD.0000000000000546
10.1038/psp.2013.14
10.1016/j.bbagen.2013.03.026
10.1111/j.1528-1167.2012.03671.x
10.1007/s13318-018-0525-3
10.1159/000500314
10.1046/j.1365-2885.2002.00442.x
10.1046/j.1468-1331.1999.630331.x
10.1016/j.cbi.2016.04.040
10.1016/j.xphs.2018.03.023
10.2165/00003088-199018010-00003
10.1684/epd.2014.0714
10.1177/106002809703100301
10.1016/j.jchromb.2004.06.012
10.1345/aph.1R651
10.1177/2042098611411127
10.1177/0091270009343006
10.1007/s40262-019-00771-3
10.1111/j.1528-1157.1959.tb04274.x
10.1097/01.ftd.0000184161.52573.0e
10.3390/nu6115280
10.1016/j.arcmed.2004.11.006
10.1038/clpt.1981.10
10.2165/00003088-198308040-00006
10.1001/archneur.1964.00460240074010
10.4103/0975-8453.59514
10.1159/000168708
10.1186/1472-6947-12-7
10.1007/BF03261928
10.1007/BF03189395
10.1007/s00228-014-1709-7
10.1111/j.1365-2710.1994.tb00681.x
10.1038/clpt.2014.159
10.1007/s00228-010-0817-2
10.2165/00003088-197904030-00001
10.1016/S0920-1211(99)00017-0
10.1007/s00228-008-0553-z
10.1177/1060028017707541
10.7326/0003-4819-150-9-200905050-00006
10.1002/cpt1976192135
10.1159/000184949
10.1097/FTD.0000000000000354
10.1111/j.1468-1331.2011.03361.x
10.9740/mhc.2015.01.008
10.5698/1535-7597.18.4s1.1
10.1517/17425255.2015.1111871
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1007/s40268-020-00323-2
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest One Academic Middle East (New)


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1179-6901
EndPage 358
ExternalDocumentID oai_doaj_org_article_39ca7c0df77643c69970309d8cdedeff
PMC7691416
33026608
10_1007_s40268_020_00323_2
Genre Journal Article
Comparative Study
GrantInformation_xml – fundername: Mitacs Globalink
  grantid: #FR41232; #FR41232
– fundername: National Research Foundation of Korea
  grantid: #2019K1A3A1A73079569
– fundername: Mitacs Globalink
  grantid: #FR41232
– fundername: ;
  grantid: #FR41232; #FR41232
– fundername: ;
  grantid: #2019K1A3A1A73079569
GroupedDBID ---
-A0
.XZ
0R~
29G
2JY
36B
3V.
4.4
53G
5GY
6I2
7X7
88E
8FI
8FJ
8R4
8R5
AAKAS
AAKKN
ABDBF
ABEEZ
ABUWG
ABWHX
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADRAZ
ADZCM
AEYRQ
AFGXO
AFKRA
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
AVWKF
A~4
BAPOH
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
BYPQX
C24
C6C
CAG
CCPQU
COF
CS3
DIK
DU5
EAP
EBC
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
M1P
M48
MK0
O9-
OAC
OB2
OK1
OVD
PQQKQ
PROAC
PSQYO
Q2X
R2J
RNS
RPM
RSV
RZALA
SISQX
SOJ
SV3
TEORI
TUS
UKHRP
W1D
YFH
~JE
AAYXX
ADGHP
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-6603ee31463b961132bec5ff274e5eb3554cf75dcfa5c6d4bde96caef78e22743
IEDL.DBID 7X7
ISSN 1174-5886
1179-6901
IngestDate Wed Aug 27 01:29:13 EDT 2025
Thu Aug 21 13:58:38 EDT 2025
Mon Jul 21 10:43:43 EDT 2025
Sat Aug 23 12:43:37 EDT 2025
Thu Apr 03 06:57:31 EDT 2025
Tue Jul 01 01:30:36 EDT 2025
Thu Apr 24 22:56:36 EDT 2025
Fri Feb 21 02:37:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-6603ee31463b961132bec5ff274e5eb3554cf75dcfa5c6d4bde96caef78e22743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-4548-9746
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1007/s40268-020-00323-2
PMID 33026608
PQID 3223987807
PQPubID 2034452
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_39ca7c0df77643c69970309d8cdedeff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7691416
proquest_miscellaneous_2449181686
proquest_journals_3223987807
pubmed_primary_33026608
crossref_primary_10_1007_s40268_020_00323_2
crossref_citationtrail_10_1007_s40268_020_00323_2
springer_journals_10_1007_s40268_020_00323_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New Zealand
– name: Auckland
PublicationTitle Drugs in R&D
PublicationTitleAbbrev Drugs R D
PublicationTitleAlternate Drugs R D
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Adis, Springer Healthcare
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Adis, Springer Healthcare
References Kesavan, Narayan, Adithan (CR74) 2010; 66
ter Heine, van Maarseveen, van der Westerlaken, Braun, Koudijs, ten Berg, Malingre (CR27) 2014; 29
Alimardani, Sadrai, Masoumi, Salari, Najafi, Eftekhar, Mojtahedzadeh (CR56) 2017; 6
Abduljabbar, Al-Khamis, Ogunniyi, Daif, Al-Yamani (CR55) 1999; 6
Buchthal, Svensmark (CR14) 1960; 1
Patsalos, Spencer, Berry (CR37) 2018; 40
Dasgupta, Malik (CR64) 1994; 14
Zaccara, Perucca (CR67) 2014; 16
Odani, Hashimoto, Takayanagi, Otsuki, Koue, Takano, Yasuhara, Hattori, Furusho, Inui (CR53) 1996; 19
Kozelka, Hine (CR9) 1943; 77
CR34
Ebadi, Mazurak (CR58) 2014; 6
Anderson, Pak, Doane, Griffy, Temkin, Wilensky, Winn (CR21) 1997; 31
Marvanova (CR12) 2016; 6
CR73
Brodie, Mintzer, Pack, Gidal, Vecht, Schmidt (CR11) 2013; 54
CR70
Krasowski, Penrod (CR18) 2012; 12
Aarons, Ahmed, Deleu (CR44) 2005; 36
Hennessy, Leonard, Freeman, Metlay, Chu, Strom, Bilker (CR76) 2009; 49
Montgomery, Chou, McPharlin, Baird, Anderson (CR48) 2019; 39
Miller, Rheeders, Klein, Suchet (CR50) 1987; 72
Kutt, Winters, Kokenge, McDowell (CR15) 1964; 11
Lecomte, Zini, d'Athis, Tillement (CR69) 1979; 4
CR4
CR3
ter Heine, Kane, Huitema, Krasowski, van Maarseveen (CR25) 2019; 85
Kragh-Hansen, Minchiotti, Galliano, Peters (CR77) 2013; 1830
Ismail, Rahman, Chand (CR54) 1994; 19
Weber, Leonard, Zemel (CR59) 2012; 10
CR43
French, Gazzola (CR1) 2011; 2
Chetty, Miller, Seymour (CR17) 1998; 20
Musteata (CR32) 2012; 51
Rong, Mayo, Ensom, Kiang (CR35) 2019; 58
Leonard, Knott, Rankin, Robinson, Melnick (CR66) 1981; 29
Rettie, Haining, Bajpai, Levy (CR71) 1999; 35
Cheng, Kiang, Bring, Ensom (CR22) 2016; 69
Gugler, Manion, Azarnoff (CR45) 1976; 19
Karlsson, Savic (CR47) 2007; 82
Deitchman, Singh, Derendorf (CR60) 2018; 107
Hennig, Norris, Tu, van Breda, Riney, Foster, Lister, Charles (CR24) 2015; 55
Rong, Mayo, Ensom, Kiang (CR36) 2019; 44
Gerber, Wagner (CR10) 1972; 3
Depondt, Godard, Espel, Da Cruz, Lienard, Pandolfo (CR75) 2011; 18
Sellers, Koch-Weser, Rosenoer, Oratz, Rothschild (CR61) 1977
Sherwin, Kiang, Spigarelli, Ensom (CR40) 2012; 51
Mould, Upton (CR46) 2013; 2
Chen, Ohnmacht, Hage (CR30) 2004; 809
Howanitz, Darcy, Meier, Bashleben (CR42) 2015; 139
Doecke, Veronese, Pond, Miners, Birkett, Sansom, McManus (CR8) 1991; 31
Chavda, Patel, Anand (CR57) 2010; 1
Barnes, Rowland, Polasek, Miners (CR65) 2014; 70
CR16
CR13
Bajpai, Roskos, Shen, Levy (CR6) 1996; 24
Tozer, Winter, Evans, Schentag, Jusko (CR19) 1992
Alqahtani, Alzaidi, Alotaibi, Alsultan (CR52) 2019; 104
Richens (CR5) 1979; 4
Kiang, Sherwin, Spigarelli, Ensom (CR39) 2012; 51
Mabuchi, Nakahashi (CR63) 1988; 48
Toutain, Bousquet-Melou (CR31) 2002; 25
Joerger, Huitema, Boogerd, van der Sande, Schellens, Beijnen (CR26) 2006; 99
Nation, Evans, Milne (CR68) 1990; 18
Abou-Khalil (CR2) 2019; 25
CR29
CR28
Kane, Bress, Tesoro (CR23) 2013; 47
Winter, Murphy (CR38) 2017
Chen, Wang, Zhu, Xiong, Sun, Dai, Cai, Hu (CR72) 2016; 253
Verbeeck (CR62) 2008; 64
Charles, Norris, Xiao, Hague (CR33) 2006; 28
Grasela, Sheiner, Rambeck, Boenigk, Dunlop, Mullen, Wadsworth, Richens, Ishizaki, Chiba, Miura, Minagawa, Blain, Mucklow, Bacon, Rawlins (CR49) 1983; 8
Veronese, Mackenzie, Doecke, McManus, Miners, Birkett (CR7) 1991; 175
Appendix, Chisholm-Burns, Wells, Schwinghammer, Malone, Kolesar, Dipiro (CR41) 2013
Soriano, Tesoro, Kane (CR20) 2017; 51
Ku, Wu, Greenberg, Hill, Gonzalez, Hornik, Berezny, Guptill, Jiang, Zheng, Cohen-Wolkowiez, Melloni (CR51) 2016; 38
FL Kozelka (323_CR9) 1943; 77
PL Toutain (323_CR31) 2002; 25
R Ismail (323_CR54) 1994; 19
323_CR73
A Odani (323_CR53) 1996; 19
S Hennessy (323_CR76) 2009; 49
323_CR70
N Gerber (323_CR10) 1972; 3
MD Krasowski (323_CR18) 2012; 12
R Miller (323_CR50) 1987; 72
M Chetty (323_CR17) 1998; 20
FM Musteata (323_CR32) 2012; 51
323_CR34
R Kesavan (323_CR74) 2010; 66
323_CR29
323_CR28
R ter Heine (323_CR25) 2019; 85
MJ Brodie (323_CR11) 2013; 54
S Alqahtani (323_CR52) 2019; 104
CMT Sherwin (323_CR40) 2012; 51
CJ Doecke (323_CR8) 1991; 31
TN Tozer (323_CR19) 1992
A Dasgupta (323_CR64) 1994; 14
BW Abou-Khalil (323_CR2) 2019; 25
R Gugler (323_CR45) 1976; 19
R ter Heine (323_CR27) 2014; 29
DR Weber (323_CR59) 2012; 10
323_CR4
323_CR3
J Chen (323_CR30) 2004; 809
AN Deitchman (323_CR60) 2018; 107
RK Verbeeck (323_CR62) 2008; 64
M Lecomte (323_CR69) 1979; 4
W Cheng (323_CR22) 2016; 69
M Marvanova (323_CR12) 2016; 6
EM Sellers (323_CR61) 1977
A Richens (323_CR5) 1979; 4
VV Soriano (323_CR20) 2017; 51
ME Veronese (323_CR7) 1991; 175
G Zaccara (323_CR67) 2014; 16
F Buchthal (323_CR14) 1960; 1
DR Mould (323_CR46) 2013; 2
323_CR13
JA French (323_CR1) 2011; 2
323_CR16
MO Karlsson (323_CR47) 2007; 82
TKL Kiang (323_CR39) 2012; 51
LG Chen (323_CR72) 2016; 253
SP Kane (323_CR23) 2013; 47
M Ebadi (323_CR58) 2014; 6
TH Grasela (323_CR49) 1983; 8
M Abduljabbar (323_CR55) 1999; 6
HV Chavda (323_CR57) 2010; 1
C Depondt (323_CR75) 2011; 18
PJ Howanitz (323_CR42) 2015; 139
S Alimardani (323_CR56) 2017; 6
KJ Barnes (323_CR65) 2014; 70
MC Montgomery (323_CR48) 2019; 39
H Mabuchi (323_CR63) 1988; 48
LC Ku (323_CR51) 2016; 38
Y Rong (323_CR36) 2019; 44
PN Patsalos (323_CR37) 2018; 40
GD Anderson (323_CR21) 1997; 31
RL Nation (323_CR68) 1990; 18
H Kutt (323_CR15) 1964; 11
S Hennig (323_CR24) 2015; 55
Y Rong (323_CR35) 2019; 58
AE Rettie (323_CR71) 1999; 35
U Kragh-Hansen (323_CR77) 2013; 1830
M Bajpai (323_CR6) 1996; 24
L Aarons (323_CR44) 2005; 36
323_CR43
ME Winter (323_CR38) 2017
RF Leonard (323_CR66) 1981; 29
B Charles (323_CR33) 2006; 28
M Joerger (323_CR26) 2006; 99
B Appendix (323_CR41) 2013
References_xml – ident: CR70
– volume: 8
  start-page: 355
  year: 1983
  end-page: 364
  ident: CR49
  article-title: Steady-state pharmacokinetics of phenytoin from routinely collected patient data
  publication-title: Clin Pharmacokinet
– volume: 175
  start-page: 1112
  year: 1991
  end-page: 1118
  ident: CR7
  article-title: Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9
  publication-title: Biochem Biophys Res Commun
– volume: 6
  start-page: 5280
  year: 2014
  end-page: 5297
  ident: CR58
  article-title: Evidence and mechanisms of fat depletion in cancer
  publication-title: Nutrients
– volume: 4
  start-page: 23
  year: 1979
  end-page: 28
  ident: CR69
  article-title: Phenytoin binding to human albumin
  publication-title: Eur J Drug Metab Pharmacokinet
– volume: 44
  start-page: 409
  year: 2019
  end-page: 422
  ident: CR36
  article-title: Population pharmacokinetic analysis of immediate-release oral tacrolimus co-administered with mycophenolate mofetil in corticosteroid-free adult kidney transplant recipients
  publication-title: Eur J Drug Metab Pharmacokinet
– volume: 139
  start-page: 1108
  year: 2015
  end-page: 1114
  ident: CR42
  article-title: Assessing clinical laboratory quality: a College of American Pathologists Q-Probes study of prothrombin time INR structures, processes, and outcomes in 98 laboratories
  publication-title: Arch Pathol Lab Med
– volume: 14
  start-page: 162
  year: 1994
  end-page: 168
  ident: CR64
  article-title: Fast atom bombardment mass spectrometric determination of the molecular weight range of uremic compounds that displace phenytoin from protein binding: absence of midmolecular uremic toxins
  publication-title: Am J Nephrol
– ident: CR4
– volume: 38
  start-page: 728
  year: 2016
  end-page: 737
  ident: CR51
  article-title: Use of therapeutic drug monitoring, electronic health record data, and pharmacokinetic modeling to determine the therapeutic index of phenytoin and lamotrigine
  publication-title: Ther Drug Monit
– ident: CR16
– volume: 253
  start-page: 93
  year: 2016
  end-page: 99
  ident: CR72
  article-title: In vitro metabolism of phenytoin in 36 CYP2C9 variants found in the Chinese population
  publication-title: Chem Biol Interact
– volume: 31
  start-page: 279
  year: 1997
  end-page: 284
  ident: CR21
  article-title: Revised Winter-Tozer equation for normalized phenytoin concentrations in trauma and elderly patients with hypoalbuminemia
  publication-title: Ann Pharmacother
– volume: 107
  start-page: 1754
  year: 2018
  end-page: 1760
  ident: CR60
  article-title: Nonlinear protein binding: not what you think
  publication-title: J Pharm Sci
– volume: 29
  start-page: 803
  year: 2014
  end-page: 810
  ident: CR27
  article-title: The quantitative effect of serum albumin, serum urea, and valproic acid on unbound phenytoin concentrations in children
  publication-title: J Child Neurol
– volume: 29
  start-page: 56
  year: 1981
  end-page: 60
  ident: CR66
  article-title: Phenytoin-salicylate interaction
  publication-title: Clin Pharmacol Ther
– start-page: 1
  year: 1992
  end-page: 44
  ident: CR19
  article-title: Phenytoin
  publication-title: Applied pharmacokinetics: principles of therapeutic drug monitoring
– ident: CR29
– volume: 19
  start-page: 444
  year: 1996
  end-page: 448
  ident: CR53
  article-title: Population pharmacokinetics of phenytoin in Japanese patients with epilepsy: analysis with a dose-dependent clearance model
  publication-title: Biol Pharm Bull
– volume: 1830
  start-page: 5405
  year: 2013
  end-page: 5417
  ident: CR77
  article-title: Human serum albumin isoforms: genetic and molecular aspects and functional consequences
  publication-title: Biochim Biophys Acta
– volume: 6
  start-page: 8
  year: 2016
  end-page: 20
  ident: CR12
  article-title: Pharmacokinetic characteristics of antiepileptic drugs (AEDs)
  publication-title: Ment Health Clin
– volume: 51
  start-page: 515
  year: 2012
  end-page: 525
  ident: CR39
  article-title: Fundamentals of population pharmacokinetic modelling: modelling and software
  publication-title: Clin Pharmacokinet
– volume: 19
  start-page: 135
  year: 1976
  end-page: 142
  ident: CR45
  article-title: Phenytoin: pharmacokinetics and bioavailability
  publication-title: Clin Pharmacol Ther
– volume: 31
  start-page: 125
  year: 1991
  end-page: 130
  ident: CR8
  article-title: Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes
  publication-title: Br J Clin Pharmacol
– volume: 6
  start-page: 331
  year: 1999
  end-page: 334
  ident: CR55
  article-title: Phenytoin dosage adjustment in Saudi epileptics: utilization of steady-state pharmacokinetic parameters
  publication-title: Eur J Neurol
– volume: 48
  start-page: 310
  year: 1988
  end-page: 314
  ident: CR63
  article-title: A major inhibitor of phenytoin binding to serum protein in uremia
  publication-title: Nephron
– volume: 809
  start-page: 137
  year: 2004
  end-page: 145
  ident: CR30
  article-title: Studies of phenytoin binding to human serum albumin by high-performance affinity chromatography
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– start-page: 159
  year: 1977
  end-page: 182
  ident: CR61
  article-title: Clinical implications of drug-albumin interaction
  publication-title: Albumin: structure, function and uses
– volume: 69
  start-page: 269
  year: 2016
  end-page: 279
  ident: CR22
  article-title: Predictive performance of the Winter-Tozer and derivative equations for estimating free phenytoin concentration
  publication-title: Can J Hosp Pharm
– volume: 10
  start-page: 130
  year: 2012
  end-page: 139
  ident: CR59
  article-title: Body composition analysis in the pediatric population
  publication-title: Pediatr Endocrinol Rev
– volume: 51
  start-page: 55
  year: 2012
  end-page: 68
  ident: CR32
  article-title: Calculation of normalized drug concentrations in the presence of altered plasma protein binding
  publication-title: Clin Pharmacokinet
– volume: 66
  start-page: 689
  year: 2010
  end-page: 696
  ident: CR74
  article-title: Influence of CYP2C9 and CYP2C19 genetic polymorphisms on phenytoin-induced neurological toxicity in Indian epileptic patients
  publication-title: Eur J Clin Pharmacol
– volume: 18
  start-page: 1159
  year: 2011
  end-page: 1164
  ident: CR75
  article-title: A candidate gene study of antiepileptic drug tolerability and efficacy identifies an association of CYP2C9 variants with phenytoin toxicity
  publication-title: Eur J Neurol
– volume: 2
  start-page: e38
  year: 2013
  ident: CR46
  article-title: Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods
  publication-title: CPT Pharmacometrics Syst Pharmacol
– volume: 77
  start-page: 175
  year: 1943
  end-page: 179
  ident: CR9
  article-title: Degradation products of dilantin
  publication-title: J Pharmacol Exp Ther
– volume: 39
  start-page: 756
  year: 2019
  end-page: 766
  ident: CR48
  article-title: Predicting unbound phenytoin concentrations: effects of albumin concentration and kidney dysfunction
  publication-title: Pharmacotherapy
– volume: 2
  start-page: 141
  year: 2011
  end-page: 158
  ident: CR1
  article-title: New generation antiepileptic drugs: what do they offer in terms of improved tolerability and safety?
  publication-title: Ther Adv Drug Saf
– volume: 3
  start-page: 455
  year: 1972
  end-page: 466
  ident: CR10
  article-title: Explanation of dose-dependent decline of diphenylhydantoin plasma levels by fitting to the integrated form of the Michaelis-Menten equation
  publication-title: Res Commun Chem Pathol Pharmacol
– volume: 49
  start-page: 1483
  year: 2009
  end-page: 1487
  ident: CR76
  article-title: CYP2C9, CYP2C19, and ABCB1 genotype and hospitalization for phenytoin toxicity
  publication-title: J Clin Pharmacol
– volume: 16
  start-page: 409
  year: 2014
  end-page: 431
  ident: CR67
  article-title: Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs
  publication-title: Epileptic Disord
– volume: 12
  start-page: 7
  year: 2012
  ident: CR18
  article-title: Clinical decision support of therapeutic drug monitoring of phenytoin: measured versus adjusted phenytoin plasma concentrations
  publication-title: BMC Med Inform Decis Mak
– volume: 24
  start-page: 1401
  year: 1996
  end-page: 1403
  ident: CR6
  article-title: Roles of cytochrome P4502C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite
  publication-title: Drug Metab Dispos
– volume: 51
  start-page: 669
  year: 2017
  end-page: 674
  ident: CR20
  article-title: Characterization of free phenytoin concentrations in end-stage renal disease using the Winter-Tozer equation
  publication-title: Ann Pharmacother
– volume: 58
  start-page: 1483
  year: 2019
  end-page: 1495
  ident: CR35
  article-title: Population pharmacokinetics of mycophenolic acid co-administered with tacrolimus in corticosteroid-free adult kidney transplant patients
  publication-title: Clin Pharmacokinet
– volume: 82
  start-page: 17
  year: 2007
  end-page: 20
  ident: CR47
  article-title: Diagnosing model diagnostics
  publication-title: Clin Pharmacol Ther
– ident: CR43
– volume: 54
  start-page: 11
  year: 2013
  end-page: 27
  ident: CR11
  article-title: Enzyme induction with antiepileptic drugs: cause for concern?
  publication-title: Epilepsia
– volume: 64
  start-page: 1147
  year: 2008
  end-page: 1161
  ident: CR62
  article-title: Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction
  publication-title: Eur J Clin Pharmacol
– volume: 70
  start-page: 1097
  year: 2014
  end-page: 1106
  ident: CR65
  article-title: Inhibition of human drug-metabolising cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in vitro by uremic toxins
  publication-title: Eur J Clin Pharmacol
– volume: 11
  start-page: 642
  year: 1964
  end-page: 648
  ident: CR15
  article-title: Diphenylhydantoin metabolism, blood levels, and toxicity
  publication-title: Arch Neurol
– volume: 55
  start-page: 355
  year: 2015
  end-page: 364
  ident: CR24
  article-title: Population pharmacokinetics of phenytoin in critically ill children
  publication-title: J Clin Pharmacol
– volume: 72
  start-page: 188
  year: 1987
  end-page: 190
  ident: CR50
  article-title: Population pharmacokinetics of phenytoin in South African black patients
  publication-title: S Afr Med J
– volume: 25
  start-page: 508
  year: 2019
  end-page: 536
  ident: CR2
  article-title: Update on antiepileptic drugs 2019
  publication-title: Continuum (Minneap Minn)
– volume: 51
  start-page: 573
  year: 2012
  end-page: 590
  ident: CR40
  article-title: Fundamentals of population pharmacokinetic modelling: validation methods
  publication-title: Clin Pharmacokinet
– volume: 19
  start-page: 245
  year: 1994
  end-page: 248
  ident: CR54
  article-title: Pharmacokinetics of phenytoin in routine clinic patients in Malaysia
  publication-title: J Clin Pharm Ther
– volume: 20
  start-page: 60
  year: 1998
  end-page: 62
  ident: CR17
  article-title: Phenytoin auto-induction
  publication-title: Ther Drug Monit
– volume: 99
  start-page: 133
  year: 2006
  end-page: 140
  ident: CR26
  article-title: Interactions of serum albumin, valproic acid and carbamazepine with the pharmacokinetics of phenytoin in cancer patients
  publication-title: Basic Clin Pharmacol Toxicol
– volume: 4
  start-page: 153
  year: 1979
  end-page: 169
  ident: CR5
  article-title: Clinical pharmacokinetics of phenytoin
  publication-title: Clin Pharmacokinet
– volume: 25
  start-page: 460
  year: 2002
  end-page: 463
  ident: CR31
  article-title: Free drug fraction vs free drug concentration: a matter of frequent confusion
  publication-title: J Vet Pharmacol Ther
– volume: 6
  start-page: 217
  year: 2017
  end-page: 222
  ident: CR56
  article-title: Pharmacokinetic behavior of phenytoin in head trauma and cerebrovascular accident patients in an Iranian population
  publication-title: J Res Pharm Pract
– ident: CR73
– ident: CR3
– volume: 104
  start-page: 60
  year: 2019
  end-page: 66
  ident: CR52
  article-title: Estimation of phenytoin pharmacokinetic parameters in Saudi epileptic patients
  publication-title: Pharmacology
– ident: CR13
– volume: 40
  start-page: 526
  year: 2018
  end-page: 548
  ident: CR37
  article-title: Therapeutic drug monitoring of antiepileptic drugs in epilepsy: a 2018 update
  publication-title: Ther Drug Monit
– start-page: 333
  year: 2017
  end-page: 350
  ident: CR38
  article-title: Phenytoin and fosphenytoin
  publication-title: Clinical pharmacokinetics
– volume: 28
  start-page: 67
  year: 2006
  end-page: 72
  ident: CR33
  article-title: Population pharmacokinetics of metformin in late pregnancy
  publication-title: Ther Drug Monit
– ident: CR34
– start-page: 1813
  year: 2013
  end-page: 1818
  ident: CR41
  article-title: Common Laboratory Tests
  publication-title: Pharmacotherapy: principles and practice
– volume: 1
  start-page: 62
  year: 2010
  end-page: 69
  ident: CR57
  article-title: Biopharmaceutics classification system
  publication-title: Sys Rev Pharm
– volume: 35
  start-page: 253
  year: 1999
  end-page: 255
  ident: CR71
  article-title: A common genetic basis for idiosyncratic toxicity of warfarin and phenytoin
  publication-title: Epilepsy Res
– ident: CR28
– volume: 36
  start-page: 49
  year: 2005
  end-page: 53
  ident: CR44
  article-title: Estimation of population pharmacokinetic parameters of free-phenytoin in adult epileptic patients
  publication-title: Arch Med Res
– volume: 1
  start-page: 373
  year: 1960
  end-page: 384
  ident: CR14
  article-title: Aspects of the pharmacology of phenytoin (Dilantin) and phenobarbital relevant to their dosage in the treatment of epilepsy
  publication-title: Epilepsia
– volume: 47
  start-page: 628
  year: 2013
  end-page: 636
  ident: CR23
  article-title: Characterization of unbound phenytoin concentrations in neurointensive care unit patients using a revised Winter-Tozer equation
  publication-title: Ann Pharmacother
– volume: 18
  start-page: 37
  year: 1990
  end-page: 60
  ident: CR68
  article-title: Pharmacokinetic drug interactions with phenytoin (Part I)
  publication-title: Clin Pharmacokinet
– volume: 85
  start-page: 2360
  year: 2019
  end-page: 2368
  ident: CR25
  article-title: Nonlinear protein binding of phenytoin in clinical practice: development and validation of a mechanistic prediction model
  publication-title: Br J Clin Pharmacol
– ident: 323_CR29
– volume: 51
  start-page: 55
  year: 2012
  ident: 323_CR32
  publication-title: Clin Pharmacokinet
  doi: 10.2165/11595650-000000000-00000
– ident: 323_CR16
  doi: 10.1001/archneur.1974.00490410037002
– volume: 31
  start-page: 125
  year: 1991
  ident: 323_CR8
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.1991.tb05499.x
– volume: 19
  start-page: 444
  year: 1996
  ident: 323_CR53
  publication-title: Biol Pharm Bull
  doi: 10.1248/bpb.19.444
– volume: 6
  start-page: 217
  year: 2017
  ident: 323_CR56
  publication-title: J Res Pharm Pract
  doi: 10.4103/jrpp.JRPP_17_58
– volume: 99
  start-page: 133
  year: 2006
  ident: 323_CR26
  publication-title: Basic Clin Pharmacol Toxicol
  doi: 10.1111/j.1742-7843.2006.pto_309.x
– volume: 69
  start-page: 269
  year: 2016
  ident: 323_CR22
  publication-title: Can J Hosp Pharm
– volume: 82
  start-page: 17
  year: 2007
  ident: 323_CR47
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/sj.clpt.6100241
– volume: 72
  start-page: 188
  year: 1987
  ident: 323_CR50
  publication-title: S Afr Med J
– volume: 55
  start-page: 355
  year: 2015
  ident: 323_CR24
  publication-title: J Clin Pharmacol
  doi: 10.1002/jcph.417
– volume: 85
  start-page: 2360
  year: 2019
  ident: 323_CR25
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.14053
– ident: 323_CR3
– volume: 29
  start-page: 803
  year: 2014
  ident: 323_CR27
  publication-title: J Child Neurol
  doi: 10.1177/0883073813486294
– volume: 139
  start-page: 1108
  year: 2015
  ident: 323_CR42
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2014-0464-CP
– volume: 20
  start-page: 60
  year: 1998
  ident: 323_CR17
  publication-title: Ther Drug Monit
  doi: 10.1097/00007691-199802000-00011
– volume: 175
  start-page: 1112
  year: 1991
  ident: 323_CR7
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/0006-291X(91)91680-B
– volume: 39
  start-page: 756
  year: 2019
  ident: 323_CR48
  publication-title: Pharmacotherapy
  doi: 10.1002/phar.2273
– volume: 51
  start-page: 573
  year: 2012
  ident: 323_CR40
  publication-title: Clin Pharmacokinet
  doi: 10.1007/BF03261932
– volume: 40
  start-page: 526
  year: 2018
  ident: 323_CR37
  publication-title: Ther Drug Monit
  doi: 10.1097/FTD.0000000000000546
– volume: 2
  start-page: e38
  year: 2013
  ident: 323_CR46
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1038/psp.2013.14
– volume: 1830
  start-page: 5405
  year: 2013
  ident: 323_CR77
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2013.03.026
– volume: 54
  start-page: 11
  year: 2013
  ident: 323_CR11
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2012.03671.x
– volume: 44
  start-page: 409
  year: 2019
  ident: 323_CR36
  publication-title: Eur J Drug Metab Pharmacokinet
  doi: 10.1007/s13318-018-0525-3
– volume: 104
  start-page: 60
  year: 2019
  ident: 323_CR52
  publication-title: Pharmacology
  doi: 10.1159/000500314
– volume: 25
  start-page: 460
  year: 2002
  ident: 323_CR31
  publication-title: J Vet Pharmacol Ther
  doi: 10.1046/j.1365-2885.2002.00442.x
– volume: 6
  start-page: 331
  year: 1999
  ident: 323_CR55
  publication-title: Eur J Neurol
  doi: 10.1046/j.1468-1331.1999.630331.x
– volume: 253
  start-page: 93
  year: 2016
  ident: 323_CR72
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2016.04.040
– ident: 323_CR4
– volume: 107
  start-page: 1754
  year: 2018
  ident: 323_CR60
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2018.03.023
– start-page: 1
  volume-title: Applied pharmacokinetics: principles of therapeutic drug monitoring
  year: 1992
  ident: 323_CR19
– volume: 18
  start-page: 37
  year: 1990
  ident: 323_CR68
  publication-title: Clin Pharmacokinet
  doi: 10.2165/00003088-199018010-00003
– volume: 25
  start-page: 508
  year: 2019
  ident: 323_CR2
  publication-title: Continuum (Minneap Minn)
– volume: 10
  start-page: 130
  year: 2012
  ident: 323_CR59
  publication-title: Pediatr Endocrinol Rev
– volume: 16
  start-page: 409
  year: 2014
  ident: 323_CR67
  publication-title: Epileptic Disord
  doi: 10.1684/epd.2014.0714
– volume: 31
  start-page: 279
  year: 1997
  ident: 323_CR21
  publication-title: Ann Pharmacother
  doi: 10.1177/106002809703100301
– volume: 809
  start-page: 137
  year: 2004
  ident: 323_CR30
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2004.06.012
– volume: 47
  start-page: 628
  year: 2013
  ident: 323_CR23
  publication-title: Ann Pharmacother
  doi: 10.1345/aph.1R651
– volume: 2
  start-page: 141
  year: 2011
  ident: 323_CR1
  publication-title: Ther Adv Drug Saf
  doi: 10.1177/2042098611411127
– volume: 49
  start-page: 1483
  year: 2009
  ident: 323_CR76
  publication-title: J Clin Pharmacol
  doi: 10.1177/0091270009343006
– volume: 58
  start-page: 1483
  year: 2019
  ident: 323_CR35
  publication-title: Clin Pharmacokinet
  doi: 10.1007/s40262-019-00771-3
– volume: 1
  start-page: 373
  year: 1960
  ident: 323_CR14
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1959.tb04274.x
– volume: 28
  start-page: 67
  year: 2006
  ident: 323_CR33
  publication-title: Ther Drug Monit
  doi: 10.1097/01.ftd.0000184161.52573.0e
– volume: 6
  start-page: 5280
  year: 2014
  ident: 323_CR58
  publication-title: Nutrients
  doi: 10.3390/nu6115280
– volume: 36
  start-page: 49
  year: 2005
  ident: 323_CR44
  publication-title: Arch Med Res
  doi: 10.1016/j.arcmed.2004.11.006
– volume: 29
  start-page: 56
  year: 1981
  ident: 323_CR66
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.1981.10
– volume: 8
  start-page: 355
  year: 1983
  ident: 323_CR49
  publication-title: Clin Pharmacokinet
  doi: 10.2165/00003088-198308040-00006
– volume: 77
  start-page: 175
  year: 1943
  ident: 323_CR9
  publication-title: J Pharmacol Exp Ther
– volume: 11
  start-page: 642
  year: 1964
  ident: 323_CR15
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1964.00460240074010
– volume: 1
  start-page: 62
  year: 2010
  ident: 323_CR57
  publication-title: Sys Rev Pharm
  doi: 10.4103/0975-8453.59514
– volume: 14
  start-page: 162
  year: 1994
  ident: 323_CR64
  publication-title: Am J Nephrol
  doi: 10.1159/000168708
– volume: 12
  start-page: 7
  year: 2012
  ident: 323_CR18
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-12-7
– volume: 51
  start-page: 515
  year: 2012
  ident: 323_CR39
  publication-title: Clin Pharmacokinet
  doi: 10.1007/BF03261928
– volume: 4
  start-page: 23
  year: 1979
  ident: 323_CR69
  publication-title: Eur J Drug Metab Pharmacokinet
  doi: 10.1007/BF03189395
– start-page: 1813
  volume-title: Pharmacotherapy: principles and practice
  year: 2013
  ident: 323_CR41
– volume: 70
  start-page: 1097
  year: 2014
  ident: 323_CR65
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-014-1709-7
– volume: 19
  start-page: 245
  year: 1994
  ident: 323_CR54
  publication-title: J Clin Pharm Ther
  doi: 10.1111/j.1365-2710.1994.tb00681.x
– start-page: 159
  volume-title: Albumin: structure, function and uses
  year: 1977
  ident: 323_CR61
– ident: 323_CR73
  doi: 10.1038/clpt.2014.159
– volume: 66
  start-page: 689
  year: 2010
  ident: 323_CR74
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-010-0817-2
– volume: 4
  start-page: 153
  year: 1979
  ident: 323_CR5
  publication-title: Clin Pharmacokinet
  doi: 10.2165/00003088-197904030-00001
– volume: 35
  start-page: 253
  year: 1999
  ident: 323_CR71
  publication-title: Epilepsy Res
  doi: 10.1016/S0920-1211(99)00017-0
– ident: 323_CR34
– ident: 323_CR13
– volume: 24
  start-page: 1401
  year: 1996
  ident: 323_CR6
  publication-title: Drug Metab Dispos
– volume: 3
  start-page: 455
  year: 1972
  ident: 323_CR10
  publication-title: Res Commun Chem Pathol Pharmacol
– volume: 64
  start-page: 1147
  year: 2008
  ident: 323_CR62
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-008-0553-z
– volume: 51
  start-page: 669
  year: 2017
  ident: 323_CR20
  publication-title: Ann Pharmacother
  doi: 10.1177/1060028017707541
– ident: 323_CR28
  doi: 10.7326/0003-4819-150-9-200905050-00006
– volume: 19
  start-page: 135
  year: 1976
  ident: 323_CR45
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt1976192135
– volume: 48
  start-page: 310
  year: 1988
  ident: 323_CR63
  publication-title: Nephron
  doi: 10.1159/000184949
– start-page: 333
  volume-title: Clinical pharmacokinetics
  year: 2017
  ident: 323_CR38
– volume: 38
  start-page: 728
  year: 2016
  ident: 323_CR51
  publication-title: Ther Drug Monit
  doi: 10.1097/FTD.0000000000000354
– volume: 18
  start-page: 1159
  year: 2011
  ident: 323_CR75
  publication-title: Eur J Neurol
  doi: 10.1111/j.1468-1331.2011.03361.x
– volume: 6
  start-page: 8
  year: 2016
  ident: 323_CR12
  publication-title: Ment Health Clin
  doi: 10.9740/mhc.2015.01.008
– ident: 323_CR43
  doi: 10.5698/1535-7597.18.4s1.1
– ident: 323_CR70
  doi: 10.1517/17425255.2015.1111871
SSID ssj0001368
Score 2.2475028
Snippet Background and objective Phenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total...
Phenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total concentrations are...
Background and objectivePhenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active, but total...
Abstract Background and objective Phenytoin is extensively protein bound with a narrow therapeutic range. The unbound phenytoin is pharmacologically active,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 343
SubjectTerms Adult
Aged
Aged, 80 and over
Anticoagulants
Anticonvulsants - administration & dosage
Anticonvulsants - blood
Anticonvulsants - pharmacokinetics
Binding sites
Critical care
Drug dosages
Drug interactions
Drug Monitoring
Enzymes
Female
Humans
Internal Medicine
Male
Medical laboratories
Medicine
Medicine & Public Health
Middle Aged
Models, Biological
Nonlinear Dynamics
Original
Original Research Article
Pharmacokinetics
Pharmacology/Toxicology
Pharmacotherapy
Phenytoin - administration & dosage
Phenytoin - blood
Phenytoin - pharmacokinetics
Plasma
Protein Binding
Proteins
Retrospective Studies
Serum Albumin - metabolism
Software
Therapeutic drug monitoring
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQlFegICOhXliLJF7b8bFdsaqQWu2hK_UWJX6IiMpbka3E8l_6X5mxs1mW5wUpp9hxvJ7P488bzzeEvBW20NZyzqxWgsEKZVibi4rljXdF3ihdNfjXwPmFPFtOP16Jqx9SfeGZsCQPnAbuPdemUSa3XilYPI3UGjGqMemOs8579L6w5m03U4MPLngKggO-zURVySFcJgbNwY5JQmdKjKjmJWfl3pIUlft_Rzd_PTX506fTuCLNH5IHA5WkJ-knPCL3XDgkx4ukRb2Z0MtdaFU_ocd0sVOp3jwmd7MxA2FPV57OoTm6QNWGLrDTLga7UMyUdt3T2ajq_A3vAmccG_sMLBVfgE0sQ4tJmqDMhc161QUK1wkKfNBFkm_taTyiQC9WgcEuGGYZPe--OsuSiHKfXgg1npDl_MPl7IwNuRqYAc63ZlLm3DkOfpe3WmL6egCH8B42vU7Ahh1Yi_FKWOMbYaSdttZpaRrnVeVKqMSfkoOwCu45oUoUABcrcs_baeGBE1oDBueN9nxaSZeRYmuu2gxC5phP47oeJZijiWswcR1NXJcZeTc-c5NkPP5a-xRRMNZECe54A4BZD8Cs_wXMjBxtMVQPfqGvwX1yXakqVxl5MxbDjMbPNE1wq9u-BsKlC0yHIjPyLEFu7Ann0FeZVxlRe2Dc6-p-Seg-RdVwJXUB7Dsjky1sd93681C8-B9D8ZLcL3G-xVNAR-Rg_eXWvQIut25fx2n7HXy7RqM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLam8cIL4k5gICOhvVCjJI7t-AGhraKakDr1YZX2ZiW-QESVQNNJK_-F_8qxc6kKZVKeYsdx4nPs7yQ-34fQO2YSaQylxEjBCKxQmpQxy0lcOJvEhZB54T8NzC_5xTL7cs2uj9Agd9S_wPZgaOf1pJbr1Yfbn9tP4PAfxzQ4iIE4NJ_6HGmaUgJT8j1YmYR31Hm2Yw9PKM_7xJnD1-0tToHD_xDw_Hf_5F8_UcPaNHuIHvSgEp91VvAIHdn6MTpddKzU2wm-2iVZtRN8ihc7vurtE_R7OmoRtrhxeAbN4YXnb6hqcl6FtBfsNdNWLZ6O_M6__FlAj2Nj3wGv-hv4JpZ16eWaoMzW201T1RiOM0_1gRcdkWuLw2YFfNnUBOJh8Dc8r26tIR2dctvdEGo8RcvZ56vpBelVG4gG9LchnMfUWgozMC0l90L2YCbMOQh_LYPQHfCLdoIZ7QqmuclKYyXXhXUitylUos_Qcd3U9gXCgiVgOIbFjpZZ4gAdGh1LQwvpaJZzG6FkGC6le0pzr6yxUiMZcxhiBUOswhCrNELvx2t-dIQed9Y-91Yw1vRk3OFEs_6qet9WVOpC6Ng4IQDfaS6ln0al14WyxjoXoZPBhtRg4AomUipzkcciQm_HYvBt_8OmqG1z0yqAXjLxwig8Qs87kxt7Qin0lcd5hMSeMe51db-krr4F_nDBZQI4PEKTwWx33fr_q3h591O8QvdT70lhp88JOt6sb-xrwGub8k1wwj_eLj5T
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBajg7GXsXU3b93QYPRlEdhRJFmPbVgog5Q8NNA3Y-uymRV51Cks_S_9rztHvoRs3WDgJ0uWRM5F34l0vkPIR2EzbS3nzGolGOxQhlWpyFlaepelpdJ5iX8NLM_l2Xr25VJc9klh7XDbfTiSjJ56THaDSEfCIFPMhOZTzsDxPhQQu6NezzHHofe_Ge8S4ABrM5Hnsk-VuX-Mve0osvbfBzX_vDH527Fp3I0WT8mTHkbSk07uz8gDFw7Jo2V_UH5IjlcdJfV2Qi92GVbthB7T1Y6sevuc3M3HQoQtbTxdwMh0heQNdWCndcx5oVgw7aql85Hc-RbfAnQcB_sOs-IEOMQ6VFirCdpc2G6aOlB4TpDng646FteWxpsK9LwJDIJhMDa6rH86yzou5babEHq8IOvF54v5GetLNjAD0G_DpEy5cxzcL6-0xCr2oCPCe4h9nYC4HcCL8UpY40thpJ1V1mlpSudV7qbQib8kB6EJ7jWhSmSgNVaknlezzAM0tCbVlpfa81kuXUKyQXKF6fnMsazGVTEyMUdpFyDtIkq7mCbk0_jNj47N45-9T1Ehxp7IxB1fNNdfi96wC65NqUxqvVIA7ozUGn2oxqJQzjrvE3I0qFPRu4e2AC_Kda7yVCXkw9gMho2nNWVwzU1bAO7SGVZFkQl51WnfuBLOYa0yzROi9vRyb6n7LaH-FsnDldQZgPCETAYN3i3r7z_Fm__r_pY8nqKRxWs_R-Rgc33j3gF421Tvo63-An1gPOU
  priority: 102
  providerName: Springer Nature
Title Comparisons of Four Protein-Binding Models Characterizing the Pharmacokinetics of Unbound Phenytoin in Adult Patients Using Non-Linear Mixed-Effects Modeling
URI https://link.springer.com/article/10.1007/s40268-020-00323-2
https://www.ncbi.nlm.nih.gov/pubmed/33026608
https://www.proquest.com/docview/3223987807
https://www.proquest.com/docview/2449181686
https://pubmed.ncbi.nlm.nih.gov/PMC7691416
https://doaj.org/article/39ca7c0df77643c69970309d8cdedeff
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Li9swEBbt7qWX0nfdboMKZS-NqG3ZknUqm7BhKSSEsoHcjK1Ha7rY23UWmv6X_tfOyI5D-lgIhliKPM7MSN_o8Q0h71ITKWM4Z0bJlMEIpVkZphkLC2ejsJAqK3BqYL4QF6vk0zpd9xNubb-tctcn-o7aNBrnyD-A4XGIj7NQfrz-zjBrFK6u9ik07pNjpC7DLV1yPQRcSEeW9Qdl_HE5iJUEiBHjWWoecxYfDEaes_9fQPPv_ZJ_LJr6sWj2iDzsQSQ967T-mNyz9RNyuuxYqLdjerk_VNWO6Sld7vmpt0_Jr-mQe7CljaMzaI4uka-hqtmk8sdcKOZIu2rpdOBz_ol3AS0OjX0DfIoPwCZWdYnpmaDM1ttNU9UUPmdI7UGXHXFrS_3mBLpoagbxL_gXnVc_rGEdfXLbPRBqPCOr2fnl9IL1WRqYBrS3YUKE3FoOPS4vlcDE9WAWqXMQ7toUQnXAK9rJ1GhXpFqYpDRWCV1YJzMbQyX-nBzVTW1fEirTCAzFpKHjZRI5QINGh8rwQjmeZMIGJNqpK9c9hTlm0rjKB_Jlr-IcVJx7FedxQN4Pv7nuCDzurD1BKxhqIvm2v9HcfMl7X8650oXUoXFSAp7TQinsNhXmgbLGOheQk50N5X2P0OZ7-w3I26EYfBkXaIraNrdtDlBLRZgIRQTkRWdygyScg6wizAIiD4zxQNTDkrr66vnCpVAR4O6AjHdmuxfr_3_Fq7vf4jV5EKMn-Z09J-Roc3Nr3wA-25Qj74Qjcjw5Xyw_w7dpnOBVTEd-xgOu8yT7DRTHQFg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a3QO8IO5kDDAS7IVaJHHjxA8IrWVVx9aqQq20t5D4AtWmZCydoPwX_gK_kePcqnLZ26Q8xY5j5xwfnxP7fB_Ay0B5QinGqBJhQHGFkjR1g4i6idGem4QiSuyvgfGEj-a9DyfByRb8anJh7LHKxiaWhlrl0v4jf4OKxzA-jtzw3flXalmj7O5qQ6FRqcWRXn3DkK14e_ge5fvK94cHs8GI1qwCVKJ3sqScu0xrhhaCpYJbonUcRmAMhmc6wNAS11dpwkBJkwSSq16qtOAy0SaMtI-VGLZ7A7Z7DEOZDmz3DybTj63t9xiP6tScMkEPozOOA_dt9jbzGfU3lr-SJeBfru3fJzT_2KYtV7_hHbhdu61kv9Kzu7Cls3uwN61wr1ddMluncRVdskema0Ts1X34OWjZDguSGzLE5sjUIkQsMtpflIk1xLKynRVk0CJI_7B30T9tGztFj9i-wDYxz1JLCIVlOlst80VG8Nq3YCJkWkHFFqQ8DkEmeUYx4kbRkfHiu1a0AmwuqhdijQcwvxYJPoROlmf6MZAw8FA1VeAalvY8g_6nkq5QLBGG9SKuHfAaccWyBk233B1ncQv3XIo4RhHHpYhj34HX7TPnFWTIlbX7Vgvamhbuu7yRX3yOa-sRMyGTULrKhCF6kJILYQ21sMxTWmljHNhtdCiubVARr2eMAy_aYrQedksoyXR-WcTo3AnPUq9wBx5VKtf2hDHsK3cjB8INZdzo6mZJtvhSIpSHXHjo6TvQbdR23a3_f4qdq0fxHG6OZuPj-PhwcvQEbvl2VpXninahs7y41E_RO1ymz-opSeDTdVuB36rqen8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkBAviG8CA4wEe6HWkrix4weEto5qY6zqwyr1LST-gIopGUsnKP8L_wh_HXdOmqp87G1Sn2LXcXLn81189_sR8jIxkTKGc2aUTBjsUJoVYZKyMHc2CnOp0hw_DRyPxMGk_36aTDfIr2UtDKZVLm2iN9Sm0viNfAcUj0N8nIZyx7VpEeP94duzrwwZpPCkdUmn0ajIkV18g_CtfnO4D7J-FcfDdyeDA9YyDDANnsqcCRFyazlYC14ogaTr8EiJcxCq2QTCTNhrtZOJ0S5PtDD9wlgldG6dTG0MnTiMe41clzyJcI3JaRfsIRRa2hbp-FI9iNMEvIIY67h5zFm8thF6voB_Obl_52r-cWDr98HhbXKrdWDpbqNxd8iGLe-S7XGDgL3o0ZNVQVfdo9t0vMLGXtwjPwcd72FNK0eHMBwdI1bErGR7M19iQ5Gf7bSmgw5L-gdeBU-1G-wL-MZ4AxxiUhZIDQVttlzMq1lJ4beLsCJ03IDG1tQnRtBRVTKIvUFw9Hj23RrWQDfXzQ2hx30yuRL5PSCbZVXaR4TKJAIlNUnoeNGPHHiiRofK8Fw53k-FDUi0FFemW_h0ZPE4zTrgZy_iDESceRFncUBed_85a8BDLu29h1rQ9UTgb3-hOv-UtXYk40rnUofGSQm-pBZKoclWyEFljXUuIFtLHcpaa1Rnq7UTkBddM9gRPBzKS1td1Bm4eSpCEhYRkIeNynUz4RzmKsI0IHJNGdemut5Szj57rHIpVAQ-f0B6S7VdTev_r-Lx5U_xnNyAtZ99OBwdPSE3Y1xUPsFoi2zOzy_sU3AT58Uzvx4p-XjVBuA33Gt9Tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparisons+of+Four+Protein-Binding+Models+Characterizing+the+Pharmacokinetics+of+Unbound+Phenytoin+in+Adult+Patients+Using+Non-Linear+Mixed-Effects+Modeling&rft.jtitle=Drugs+in+R%26D&rft.au=Jun%2C+Heajin&rft.au=Rong%2C+Yan&rft.au=Yih%2C+Catharina&rft.au=Ho%2C+Jordan&rft.date=2020-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=1179-6901&rft.volume=20&rft.issue=4&rft.spage=343&rft.epage=358&rft_id=info:doi/10.1007%2Fs40268-020-00323-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1174-5886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1174-5886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1174-5886&client=summon