Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media

Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 2880 - 11
Main Authors Zhang, Xiao, Zhao, Xunhua, Zhu, Peng, Adler, Zachary, Wu, Zhen-Yu, Liu, Yuanyue, Wang, Haotian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.05.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H 2 O 2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm −2 ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H 2 O 2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H 2 O 2 via implementing this cation effect for practical applications. Electrochemical oxygen reduction to H 2 O 2 in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a cation-regulated “shielding effect” to promote the H 2 O 2 selectivity under industrial-relevant current in strong acid.
AbstractList Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H2O2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm-2) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a "shielding effect" of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H2O2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H2O2 via implementing this cation effect for practical applications.Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H2O2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm-2) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a "shielding effect" of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H2O2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H2O2 via implementing this cation effect for practical applications.
Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H 2 O 2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm −2 ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H 2 O 2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H 2 O 2 via implementing this cation effect for practical applications. Electrochemical oxygen reduction to H 2 O 2 in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a cation-regulated “shielding effect” to promote the H 2 O 2 selectivity under industrial-relevant current in strong acid.
Electrochemical oxygen reduction to H2O2 in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a cation-regulated “shielding effect” to promote the H2O2 selectivity under industrial-relevant current in strong acid.
Electrochemical oxygen reduction to hydrogen peroxide (H O ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H O selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a "shielding effect" of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H O to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H O via implementing this cation effect for practical applications.
Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H2O2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm−2) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H2O2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H2O2 via implementing this cation effect for practical applications.Electrochemical oxygen reduction to H2O2 in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a cation-regulated “shielding effect” to promote the H2O2 selectivity under industrial-relevant current in strong acid.
Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H 2 O 2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm −2 ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H 2 O 2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H 2 O 2 via implementing this cation effect for practical applications.
ArticleNumber 2880
Author Zhang, Xiao
Adler, Zachary
Liu, Yuanyue
Zhao, Xunhua
Zhu, Peng
Wang, Haotian
Wu, Zhen-Yu
Author_xml – sequence: 1
  givenname: Xiao
  orcidid: 0000-0002-4780-2161
  surname: Zhang
  fullname: Zhang, Xiao
  email: xiao1.zhang@polyu.edu.hk
  organization: Department of Chemical and Biomolecular Engineering, Rice University
– sequence: 2
  givenname: Xunhua
  orcidid: 0000-0002-2234-5830
  surname: Zhao
  fullname: Zhao, Xunhua
  organization: Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin
– sequence: 3
  givenname: Peng
  orcidid: 0000-0002-8855-0335
  surname: Zhu
  fullname: Zhu, Peng
  organization: Department of Chemical and Biomolecular Engineering, Rice University
– sequence: 4
  givenname: Zachary
  orcidid: 0000-0003-0929-5696
  surname: Adler
  fullname: Adler, Zachary
  organization: Department of Chemical and Biomolecular Engineering, Rice University
– sequence: 5
  givenname: Zhen-Yu
  orcidid: 0000-0001-9198-003X
  surname: Wu
  fullname: Wu, Zhen-Yu
  organization: Department of Chemical and Biomolecular Engineering, Rice University
– sequence: 6
  givenname: Yuanyue
  orcidid: 0000-0002-5880-8649
  surname: Liu
  fullname: Liu, Yuanyue
  email: yuanyue.liu@austin.utexas.edu
  organization: Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin
– sequence: 7
  givenname: Haotian
  surname: Wang
  fullname: Wang, Haotian
  email: htwang@rice.edu
  organization: Department of Chemical and Biomolecular Engineering, Rice University, Department of Chemistry, Rice University, Department of Materials Science and NanoEngineering, Rice University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35610199$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1URH_oC7BAkdiwCfgvTrJBQlWhlSqxgbV141xnPMrYg52gztvjNC20XTSbWM53Ph3H95Qc-eCRkHeMfmJUNJ-TZFLVJeW8FFSIvHpFTjiVrGQ1F0eP1sfkPKUtzY9oWSPlG3IsKsUoa9sToi9HNFMMZoM7Z2Aswu1hQF9E7GczueCLKRSbQx_DsrvHGG5djwVMxT5CBpZIhAlT4XyRssgPBRjXO1PssHfwlry2MCY8v3-fkV_fLn9eXJU3P75fX3y9KU0l6VQqaSteCwBrec870zXGghJGKoVKSeQAtG0t7SwFZTlXrO1prZjl2EErpDgj16u3D7DV--h2EA86gNN3GyEOGmKuO6KuWJYBWtZ1ViomgVa0YcxWfd10knXZ9WV17ecuH8KgnyKMT6RPv3i30UP4o1smKK9VFny8F8Twe8Y06Z1LBscRPIY5aa5UW1HO2jqjH56h2zBHn3_VQjWVajKbqfePG_2r8nCPGWhWwMSQUkSrjZtgub9c0I2aUb1MjV6nRuep0XdTo2mO8mfRB_uLIbGGUob9gPF_7RdSfwFpFdU2
CitedBy_id crossref_primary_10_1002_ange_202418713
crossref_primary_10_1016_j_apcata_2024_119803
crossref_primary_10_1016_j_apsusc_2025_162676
crossref_primary_10_1016_j_cej_2023_141866
crossref_primary_10_1021_acs_langmuir_4c04757
crossref_primary_10_1039_D3SU00386H
crossref_primary_10_1155_2023_4440117
crossref_primary_10_1007_s12274_024_6505_9
crossref_primary_10_1016_j_jece_2024_112972
crossref_primary_10_1016_j_checat_2023_100568
crossref_primary_10_1016_j_nanoen_2024_110592
crossref_primary_10_1002_adma_202414490
crossref_primary_10_1016_j_cej_2024_153211
crossref_primary_10_1039_D4TA04113E
crossref_primary_10_1016_j_ceramint_2024_02_243
crossref_primary_10_1021_jacs_4c02031
crossref_primary_10_1002_ange_202408508
crossref_primary_10_1039_D3SC06534K
crossref_primary_10_1002_cjoc_202400458
crossref_primary_10_1021_acs_est_4c11612
crossref_primary_10_1007_s12598_023_02467_x
crossref_primary_10_1016_j_jallcom_2023_171264
crossref_primary_10_1021_acs_chemrev_2c00684
crossref_primary_10_1126_science_adm8902
crossref_primary_10_1016_j_cclet_2024_110277
crossref_primary_10_1021_acs_iecr_4c01988
crossref_primary_10_1016_j_gerr_2023_100031
crossref_primary_10_31857_S0424857023100092
crossref_primary_10_1038_s41929_023_00977_6
crossref_primary_10_3390_s25010264
crossref_primary_10_1002_adma_202400140
crossref_primary_10_1002_anie_202403023
crossref_primary_10_1007_s11082_024_07003_4
crossref_primary_10_1016_j_mattod_2023_02_004
crossref_primary_10_1021_acsami_3c04772
crossref_primary_10_1021_jacs_3c14186
crossref_primary_10_1016_j_cej_2024_157125
crossref_primary_10_1002_aenm_202300628
crossref_primary_10_1515_chem_2023_0177
crossref_primary_10_1021_acsenergylett_2c01945
crossref_primary_10_1016_j_jece_2025_116260
crossref_primary_10_1002_cssc_202400873
crossref_primary_10_1038_s41467_024_48256_7
crossref_primary_10_1016_j_xcrp_2023_101643
crossref_primary_10_1021_jacs_3c05114
crossref_primary_10_1073_pnas_2408205121
crossref_primary_10_1007_s10971_024_06331_x
crossref_primary_10_1002_advs_202405474
crossref_primary_10_1038_s41467_025_57116_x
crossref_primary_10_1038_s41467_025_58019_7
crossref_primary_10_1016_j_jclepro_2024_144066
crossref_primary_10_1002_ange_202317512
crossref_primary_10_1002_smll_202410612
crossref_primary_10_1063_5_0210995
crossref_primary_10_1039_D2NR06352B
crossref_primary_10_1002_cey2_378
crossref_primary_10_1063_5_0185619
crossref_primary_10_1016_j_seppur_2024_126863
crossref_primary_10_1021_prechem_3c00096
crossref_primary_10_1016_j_jelechem_2024_118700
crossref_primary_10_1039_D4EE05796A
crossref_primary_10_1016_j_chemosphere_2024_141456
crossref_primary_10_1007_s12274_024_6641_2
crossref_primary_10_1002_adfm_202212087
crossref_primary_10_1002_smll_202406235
crossref_primary_10_1002_smll_202302338
crossref_primary_10_1038_s41467_024_53714_3
crossref_primary_10_1021_acs_est_3c06156
crossref_primary_10_1016_j_mtener_2023_101430
crossref_primary_10_1021_jacs_4c11564
crossref_primary_10_1002_sstr_202200387
crossref_primary_10_1002_adma_202420236
crossref_primary_10_1016_j_cej_2024_152854
crossref_primary_10_1016_j_chemosphere_2023_138147
crossref_primary_10_1016_j_chemosphere_2023_138423
crossref_primary_10_1088_2515_7655_ad15e7
crossref_primary_10_1039_D3TA03813K
crossref_primary_10_1002_adma_202412039
crossref_primary_10_1039_D4SC02853H
crossref_primary_10_1039_D3TA04453J
crossref_primary_10_1021_acscatal_4c04734
crossref_primary_10_1016_j_cplett_2024_141236
crossref_primary_10_1021_acsenergylett_2c02021
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1002_aenm_202403841
crossref_primary_10_1016_j_ijhydene_2024_11_100
crossref_primary_10_1016_j_electacta_2024_144533
crossref_primary_10_1007_s10854_023_11597_y
crossref_primary_10_1016_j_cej_2024_154221
crossref_primary_10_1016_j_chempr_2024_11_001
crossref_primary_10_1016_j_jcis_2024_09_025
crossref_primary_10_1021_acsmaterialsau_3c00070
crossref_primary_10_1016_j_cej_2024_155677
crossref_primary_10_1016_j_gee_2023_05_003
crossref_primary_10_1039_D3EE00509G
crossref_primary_10_1039_D4NJ03228D
crossref_primary_10_1016_j_nanoen_2024_109600
crossref_primary_10_1021_acs_cgd_3c00343
crossref_primary_10_1002_anie_202218669
crossref_primary_10_1016_j_cej_2023_148452
crossref_primary_10_1016_j_joule_2023_06_022
crossref_primary_10_1002_anie_202417403
crossref_primary_10_1002_aenm_202304418
crossref_primary_10_1016_j_jwpe_2024_105297
crossref_primary_10_1002_adma_202415712
crossref_primary_10_3390_ma17174277
crossref_primary_10_1021_acs_energyfuels_3c02602
crossref_primary_10_1002_smll_202403029
crossref_primary_10_1016_j_checat_2024_100997
crossref_primary_10_1039_D3DT01676E
crossref_primary_10_1016_j_electacta_2025_145990
crossref_primary_10_1002_anie_202317512
crossref_primary_10_1021_acs_jctc_3c00571
crossref_primary_10_1002_ange_202403023
crossref_primary_10_1007_s12209_024_00406_0
crossref_primary_10_1002_anie_202408508
crossref_primary_10_1007_s40820_023_01067_9
crossref_primary_10_1007_s42823_022_00420_z
crossref_primary_10_1016_j_apcatb_2025_125109
crossref_primary_10_1021_acscatal_4c06491
crossref_primary_10_1021_acsenergylett_3c02743
crossref_primary_10_1021_acscatal_3c00449
crossref_primary_10_1021_acsnano_4c11307
crossref_primary_10_1039_D3EE03223J
crossref_primary_10_1002_celc_202300234
crossref_primary_10_1039_D3TA01986A
crossref_primary_10_1021_acsphyschemau_2c00054
crossref_primary_10_11648_j_sf_20240503_13
crossref_primary_10_1002_smll_202302380
crossref_primary_10_1016_j_jechem_2025_01_059
crossref_primary_10_1021_acscatal_3c03893
crossref_primary_10_1021_jacsau_4c01183
crossref_primary_10_1039_D3SC06904D
crossref_primary_10_1002_smll_202400564
crossref_primary_10_1016_j_chempr_2025_102461
crossref_primary_10_1002_smll_202204757
crossref_primary_10_1016_j_jmst_2024_12_017
crossref_primary_10_1021_jacs_4c00875
crossref_primary_10_1021_jacs_3c13660
crossref_primary_10_1016_j_mtener_2023_101364
crossref_primary_10_1021_acscatal_4c07033
crossref_primary_10_1016_j_cej_2022_140515
crossref_primary_10_1038_s41929_024_01200_w
crossref_primary_10_1038_s44286_025_00186_x
crossref_primary_10_1016_j_cej_2024_156502
crossref_primary_10_1039_D4CS00412D
crossref_primary_10_1016_j_coelec_2023_101224
crossref_primary_10_1002_smll_202410371
crossref_primary_10_1002_aenm_202301047
crossref_primary_10_1016_j_cej_2023_142691
crossref_primary_10_1021_acscatal_4c06189
crossref_primary_10_1002_anie_202418713
crossref_primary_10_1021_acssuschemeng_2c04746
crossref_primary_10_53941_see_2024_100004
crossref_primary_10_1016_j_cej_2023_142443
crossref_primary_10_1016_j_apcatb_2023_123380
crossref_primary_10_1002_adsu_202400934
crossref_primary_10_1021_acs_est_4c05481
crossref_primary_10_1007_s12274_022_5067_y
crossref_primary_10_1002_adma_202208533
crossref_primary_10_1002_ange_202218669
crossref_primary_10_1016_j_cej_2022_140649
crossref_primary_10_1038_s41467_024_55091_3
crossref_primary_10_1039_D4EY00232F
crossref_primary_10_1039_D2TA07761B
crossref_primary_10_1002_adma_202418489
crossref_primary_10_1002_aesr_202300284
crossref_primary_10_1038_s41467_023_35839_z
crossref_primary_10_1039_D4CC01476F
crossref_primary_10_1016_j_flatc_2024_100728
crossref_primary_10_1021_acscatal_4c05425
crossref_primary_10_1016_j_apcatb_2025_125128
crossref_primary_10_1002_ange_202417403
crossref_primary_10_1016_j_carbon_2024_119881
crossref_primary_10_1073_pnas_2409620121
crossref_primary_10_1002_smll_202309448
Cites_doi 10.1002/adma.202104891
10.1023/A:1026398025991
10.1016/j.chempr.2019.12.008
10.1038/s41560-019-0451-x
10.1038/s41467-020-17584-9
10.1038/s41570-019-0110-6
10.1038/s41467-019-11992-2
10.1016/j.chempr.2019.04.024
10.1016/j.chempr.2017.10.013
10.1063/1.5132354
10.1038/s41929-018-0044-2
10.1002/aenm.201801909
10.1134/S1070427206050107
10.1016/0927-0256(96)00008-0
10.1002/anie.202003842
10.1039/C6RE00195E
10.1063/1.3382344
10.1021/jacs.9b05576
10.1126/science.aay1844
10.1038/nmat3795
10.1002/anie.200503779
10.1021/acscatal.8b00217
10.1021/nl500037x
10.1016/j.electacta.2008.02.009
10.1021/jacs.9b13872
10.1016/S0043-1354(01)00235-4
10.1021/jacs.1c02186
10.1038/s41929-017-0017-x
10.1021/jacs.8b02798
10.1126/science.abg6582
10.1038/s41467-020-15843-3
10.1002/anie.202104480
10.1039/D0TA08894C
10.1038/s41563-019-0571-5
10.1016/j.trechm.2020.07.007
10.1002/adma.201802920
10.1063/1.476928
10.1038/s41467-020-15782-z
10.1021/acscatal.6b02899
10.1103/PhysRevA.31.1695
10.1002/cssc.201600895
10.1103/PhysRevB.47.558
10.1038/s41467-020-17782-5
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-30337-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_51aa0aef1bbf4614a050811f5d78b41b
PMC9130276
35610199
10_1038_s41467_022_30337_0
Genre Journal Article
GrantInformation_xml – fundername: David and Lucile Packard Foundation (David & Lucile Packard Foundation)
  grantid: 2020-71371
  funderid: https://doi.org/10.13039/100000008
– fundername: Welch Foundation
  grantid: C-2051-20200401
  funderid: https://doi.org/10.13039/100000928
– fundername: Welch Foundation
  grantid: C-2051-20200401
– fundername: David and Lucile Packard Foundation (David & Lucile Packard Foundation)
  grantid: 2020-71371
– fundername: ;
  grantid: 2020-71371
– fundername: ;
  grantid: C-2051-20200401
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-64f5273aaff2d2bcb8cfa63c466e664e2aa099f0bf0a6f22619d0761f2eba9343
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:28 EDT 2025
Thu Aug 21 18:06:01 EDT 2025
Thu Jul 10 22:17:03 EDT 2025
Wed Aug 13 05:15:20 EDT 2025
Wed Feb 19 02:23:42 EST 2025
Tue Jul 01 00:58:13 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Fri Feb 21 02:38:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-64f5273aaff2d2bcb8cfa63c466e664e2aa099f0bf0a6f22619d0761f2eba9343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4780-2161
0000-0002-8855-0335
0000-0002-5880-8649
0000-0001-9198-003X
0000-0002-2234-5830
0000-0003-0929-5696
OpenAccessLink https://doaj.org/article/51aa0aef1bbf4614a050811f5d78b41b
PMID 35610199
PQID 2668568669
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_51aa0aef1bbf4614a050811f5d78b41b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9130276
proquest_miscellaneous_2669502197
proquest_journals_2668568669
pubmed_primary_35610199
crossref_citationtrail_10_1038_s41467_022_30337_0
crossref_primary_10_1038_s41467_022_30337_0
springer_journals_10_1038_s41467_022_30337_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-24
PublicationDateYYYYMMDD 2022-05-24
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References HuangJELiFOzdenARasouliASCO2 electrolysis to multicarbon products in strong acidScience2021372107410782021Sci...372.1074H1:CAS:528:DC%2BB3MXht1GmsLnN3408348510.1126/science.abg6582
PerrySCElectrochemical synthesis of hydrogen peroxide from water and oxygenNat. Rev. Chem.201934424581:CAS:528:DC%2BC1MXht1Klu7bK10.1038/s41570-019-0110-6
XiaCContinuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devicesNat. Energy201947767852019NatEn...4..776X1:CAS:528:DC%2BC1MXhs12gurvL10.1038/s41560-019-0451-x
DongKNoble-metal-free electrocatalysts toward H2O2 productionJ. Mater. Chem. A2020823123231411:CAS:528:DC%2BB3cXitVOqtbjL10.1039/D0TA08894C
SunYActivity–selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal–nitrogen–carbon catalystsJ. Am. Chem. Soc.201914112372123811:CAS:528:DC%2BC1MXhtlOhurfL3130601610.1021/jacs.9b05576
Verdaguer-CasadevallATrends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineeringNano Lett.201414160316082014NanoL..14.1603V1:CAS:528:DC%2BC2cXitVygtrw%3D2450622910.1021/nl500037x
GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.33823441:CAS:528:DC%2BC3cXkvVyks7o%3D
JiangYSelective electrochemical H2O2 production through two-electron oxygenElectrochem. Adv. Energ. Mater.20188180190910.1002/aenm.2018019091:CAS:528:DC%2BC1cXhslGms77I
Li, X. et al. Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater., 2021, 2104891.
KolyaginGAKornienkoVLEffect of trialkylammonium salts and current density on the electrosynthesis of hydrogen peroxide from oxygen in a gas-diffusion electrode in acid solutionsRuss. J. Appl. Chem.2006797467511:CAS:528:DC%2BD28XmsFSnt74%3D10.1134/S1070427206050107
HooverWGCanonical dynamics: equilibrium phase-space distributionsPhys. Rev. A198531169516971985PhRvA..31.1695H1:STN:280:DC%2BC2sjotlWltA%3D%3D10.1103/PhysRevA.31.1695
KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
ZhangQDirect insights into the role of epoxy groups on cobalt sites for acidic H2O2 productionNat. Commun.2020112020NatCo..11.4181Z32826877744282410.1038/s41467-020-17782-5
GaoJEnabling direct H2O2 production in acidic media through rational design of transition metal single atom catalystChem.202066586741:CAS:528:DC%2BB3cXkvFygtb4%3D10.1016/j.chempr.2019.12.008
ChenZDevelopment of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2React. Chem. Eng.2017223924510.1039/C6RE00195E
Pulidindi, K. & Pandey, H. Hydrogen peroxide market size by end-user Industry (Paper & Pulp, Chemical, Waste Water Treatment, Mining), Industry Analysis Report, Regional Outlook, Application Potential, Price Trends, Competitive Market Share & Forecast, 2020–2026, https://www.gminsights.com/industry-analysis/hydrogen-peroxide-market (2016).
ShenRHigh-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solutionChem20195209921101:CAS:528:DC%2BC1MXhsFKktrnP10.1016/j.chempr.2019.04.024
ChenSChemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxideAngew. Chem. Int. Ed.20216016607166142021shsl.book.....C1:CAS:528:DC%2BB3MXhsVKmu77E10.1002/anie.202104480
ErnzerhofMPerdewJPGeneralized gradient approximation to the angle- and system-averaged exchange holeJ. Chem. Phys.1998109331333201998JChPh.109.3313E1:CAS:528:DyaK1cXltFCnu7k%3D10.1063/1.476928
MelchionnaMFornasieroPPratoMThe rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductionsAdv. Mater.201931180292010.1002/adma.2018029201:CAS:528:DC%2BC1cXhsFCksbvF
ChenSDesigning boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxideJ. Am. Chem. Soc.2018140785178591:CAS:528:DC%2BC1cXhtFGisr%2FM2987406210.1021/jacs.8b02798
YangSTakYJKimJSoonALeeHSupport effects in single-atom platinum catalysts for electrochemical oxygen reductionACS Catal.20177130113071:CAS:528:DC%2BC28XitFaitb3I10.1021/acscatal.6b02899
LiHScalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathwaysNat. Commun.2020112020NatCo..11.3928L1:CAS:528:DC%2BB3cXhsFGmtLnP32764644741104410.1038/s41467-020-17584-9
ZhaoXLiuYOrigin of selective production of hydrogen peroxide by electrochemical oxygen reductionJ. Am. Chem. Soc.2021143942394281:CAS:528:DC%2BB3MXhtlWltLnL10.1021/jacs.1c02186
LuZHigh-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materialsNat. Catal.201811561621:CAS:528:DC%2BC1MXhtFGisLnF10.1038/s41929-017-0017-x
HanG-FBuilding and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2Nat. Commun.2020112020NatCo..11.2209H1:CAS:528:DC%2BB3cXovFGkurc%3D32371867720077810.1038/s41467-020-15782-z
JiangKHighly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordinationNat. Commun.2019102019NatCo..10.3997J31488826672832810.1038/s41467-019-11992-21:CAS:528:DC%2BC1MXhslCgsrjF
YamanakaIHashimotoTIchihashiROtsukaKDirect synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cellElectrochim. Acta200853482448321:CAS:528:DC%2BD1cXjvFOiu7s%3D10.1016/j.electacta.2008.02.009
XiaCXiaYZhuPFanLWangHDirect electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyteScience20193662262312019Sci...366..226X1:CAS:528:DC%2BC1MXhvFKhsLvL3160176710.1126/science.aay1844
ZhangXXiaYXiaCWangHInsights into practical-scale electrochemical H2O2 synthesisTrends Chem.2020294295310.1016/j.trechm.2020.07.0071:CAS:528:DC%2BB3cXit1Kqur%2FI
Campos-MartinJMBlanco-BrievaGFierroJLGHydrogen peroxide synthesis: an outlook beyond the anthraquinone processAngew. Chem. Int. Ed.200645696269841:CAS:528:DC%2BD28Xht1antb%2FL10.1002/anie.200503779
ChangQPromoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbonNat. Commun.2020112020NatCo..11.2178C1:CAS:528:DC%2BB3cXhtVGmt7zN32358548719549010.1038/s41467-020-15843-3
YangSToward the decentralized electrochemical production of H2O2: a focus on the catalysisACS Catal.20188406440811:CAS:528:DC%2BC1cXmtFCntr0%3D10.1021/acscatal.8b00217
MathewKKolluruVSCMulaSSteinmannSNHennigRGImplicit self-consistent electrolyte model in plane-wave density-functional theoryJ. Chem. Phys.20191512341012019JChPh.151w4101M3186423910.1063/1.51323541:CAS:528:DC%2BC1MXisVertb%2FN
CiriminnaRAlbaneseLMeneguzzoFPagliaroMHydrogen peroxide: a key chemical for today’s sustainable developmentChemSusChem20169337433811:CAS:528:DC%2BC28Xhsl2itrrP2781328510.1002/cssc.201600895
KolyaginGAKornienkoVLKinetics of hydrogen peroxide accumulation in electrosynthesis from oxygen in gas-diffusion electrode in acidic and alkaline solutionsRuss. J. Appl. Chem.200376107010751:CAS:528:DC%2BD3sXosFCns7s%3D10.1023/A:1026398025991
https://www.energy.gov/sites/prod/files/2015/08/f26/chemical_bandwidth_report.pdf.
KimHWEfficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalystsNat. Catal.2018128229010.1038/s41929-018-0044-2
QiangZChangJ-HHuangC-PElectrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutionsWater Res.20023685941:CAS:528:DC%2BD3MXot1Khtbo%3D1176682010.1016/S0043-1354(01)00235-4
KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
JungEAtomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 productionNat. Mater.2020194364422020NatMa..19..436J1:CAS:528:DC%2BB3cXpsFOqsg%3D%3D3193267110.1038/s41563-019-0571-5
ZhaoXLiuYUnveiling the active structure of single Nickel atom catalysis: critical roles of charge capacity and hydrogen bondingJ. Am. Chem. Soc.2020142577357771:CAS:528:DC%2BB3cXktlOmur8%3D3212213210.1021/jacs.9b13872
TangCCoordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalystsAngew. Chem. Int. Ed.202059917191761:CAS:528:DC%2BB3cXmsVOks70%3D10.1002/anie.202003842
SiahrostamiSEnabling direct H2O2 production through rational electrocatalyst designNat. Mater.20131213771143.10.1038/nmat37951:CAS:528:DC%2BC3sXhslygsbrO
IglesiasDN-Doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2Chem.201841061231:CAS:528:DC%2BC1cXosFyhsg%3D%3D10.1016/j.chempr.2017.10.013
JM Campos-Martin (30337_CR3) 2006; 45
G Kresse (30337_CR41) 1993; 47
D Iglesias (30337_CR29) 2018; 4
Y Sun (30337_CR27) 2019; 141
C Xia (30337_CR38) 2019; 366
K Mathew (30337_CR42) 2019; 151
30337_CR1
H Li (30337_CR37) 2020; 11
X Zhao (30337_CR36) 2020; 142
X Zhao (30337_CR35) 2021; 143
J Gao (30337_CR26) 2020; 6
HW Kim (30337_CR8) 2018; 1
S Siahrostami (30337_CR23) 2013; 12
Z Chen (30337_CR17) 2017; 2
30337_CR20
R Shen (30337_CR24) 2019; 5
R Ciriminna (30337_CR2) 2016; 9
X Zhang (30337_CR7) 2020; 2
SC Perry (30337_CR5) 2019; 3
GA Kolyagin (30337_CR32) 2006; 79
K Jiang (30337_CR11) 2019; 10
G-F Han (30337_CR14) 2020; 11
E Jung (30337_CR10) 2020; 19
I Yamanaka (30337_CR31) 2008; 53
M Melchionna (30337_CR30) 2019; 31
Y Jiang (30337_CR6) 2018; 8
S Chen (30337_CR13) 2018; 140
S Grimme (30337_CR44) 2010; 132
GA Kolyagin (30337_CR33) 2003; 76
Z Lu (30337_CR9) 2018; 1
S Chen (30337_CR16) 2021; 60
Q Zhang (30337_CR28) 2020; 11
WG Hoover (30337_CR45) 1985; 31
JE Huang (30337_CR34) 2021; 372
C Tang (30337_CR15) 2020; 59
Z Qiang (30337_CR19) 2002; 36
A Verdaguer-Casadevall (30337_CR22) 2014; 14
K Dong (30337_CR25) 2020; 8
S Yang (30337_CR4) 2018; 8
M Ernzerhof (30337_CR43) 1998; 109
C Xia (30337_CR39) 2019; 4
Q Chang (30337_CR12) 2020; 11
G Kresse (30337_CR40) 1996; 6
30337_CR18
S Yang (30337_CR21) 2017; 7
References_xml – reference: JiangYSelective electrochemical H2O2 production through two-electron oxygenElectrochem. Adv. Energ. Mater.20188180190910.1002/aenm.2018019091:CAS:528:DC%2BC1cXhslGms77I
– reference: ZhaoXLiuYUnveiling the active structure of single Nickel atom catalysis: critical roles of charge capacity and hydrogen bondingJ. Am. Chem. Soc.2020142577357771:CAS:528:DC%2BB3cXktlOmur8%3D3212213210.1021/jacs.9b13872
– reference: KolyaginGAKornienkoVLEffect of trialkylammonium salts and current density on the electrosynthesis of hydrogen peroxide from oxygen in a gas-diffusion electrode in acid solutionsRuss. J. Appl. Chem.2006797467511:CAS:528:DC%2BD28XmsFSnt74%3D10.1134/S1070427206050107
– reference: ChenSDesigning boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxideJ. Am. Chem. Soc.2018140785178591:CAS:528:DC%2BC1cXhtFGisr%2FM2987406210.1021/jacs.8b02798
– reference: https://www.energy.gov/sites/prod/files/2015/08/f26/chemical_bandwidth_report.pdf.
– reference: YamanakaIHashimotoTIchihashiROtsukaKDirect synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cellElectrochim. Acta200853482448321:CAS:528:DC%2BD1cXjvFOiu7s%3D10.1016/j.electacta.2008.02.009
– reference: ShenRHigh-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solutionChem20195209921101:CAS:528:DC%2BC1MXhsFKktrnP10.1016/j.chempr.2019.04.024
– reference: HooverWGCanonical dynamics: equilibrium phase-space distributionsPhys. Rev. A198531169516971985PhRvA..31.1695H1:STN:280:DC%2BC2sjotlWltA%3D%3D10.1103/PhysRevA.31.1695
– reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
– reference: Verdaguer-CasadevallATrends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineeringNano Lett.201414160316082014NanoL..14.1603V1:CAS:528:DC%2BC2cXitVygtrw%3D2450622910.1021/nl500037x
– reference: ErnzerhofMPerdewJPGeneralized gradient approximation to the angle- and system-averaged exchange holeJ. Chem. Phys.1998109331333201998JChPh.109.3313E1:CAS:528:DyaK1cXltFCnu7k%3D10.1063/1.476928
– reference: YangSToward the decentralized electrochemical production of H2O2: a focus on the catalysisACS Catal.20188406440811:CAS:528:DC%2BC1cXmtFCntr0%3D10.1021/acscatal.8b00217
– reference: HanG-FBuilding and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2Nat. Commun.2020112020NatCo..11.2209H1:CAS:528:DC%2BB3cXovFGkurc%3D32371867720077810.1038/s41467-020-15782-z
– reference: ChenSChemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxideAngew. Chem. Int. Ed.20216016607166142021shsl.book.....C1:CAS:528:DC%2BB3MXhsVKmu77E10.1002/anie.202104480
– reference: KimHWEfficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalystsNat. Catal.2018128229010.1038/s41929-018-0044-2
– reference: Campos-MartinJMBlanco-BrievaGFierroJLGHydrogen peroxide synthesis: an outlook beyond the anthraquinone processAngew. Chem. Int. Ed.200645696269841:CAS:528:DC%2BD28Xht1antb%2FL10.1002/anie.200503779
– reference: PerrySCElectrochemical synthesis of hydrogen peroxide from water and oxygenNat. Rev. Chem.201934424581:CAS:528:DC%2BC1MXht1Klu7bK10.1038/s41570-019-0110-6
– reference: GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.33823441:CAS:528:DC%2BC3cXkvVyks7o%3D
– reference: JiangKHighly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordinationNat. Commun.2019102019NatCo..10.3997J31488826672832810.1038/s41467-019-11992-21:CAS:528:DC%2BC1MXhslCgsrjF
– reference: MathewKKolluruVSCMulaSSteinmannSNHennigRGImplicit self-consistent electrolyte model in plane-wave density-functional theoryJ. Chem. Phys.20191512341012019JChPh.151w4101M3186423910.1063/1.51323541:CAS:528:DC%2BC1MXisVertb%2FN
– reference: Li, X. et al. Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater., 2021, 2104891.
– reference: SunYActivity–selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal–nitrogen–carbon catalystsJ. Am. Chem. Soc.201914112372123811:CAS:528:DC%2BC1MXhtlOhurfL3130601610.1021/jacs.9b05576
– reference: ChangQPromoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbonNat. Commun.2020112020NatCo..11.2178C1:CAS:528:DC%2BB3cXhtVGmt7zN32358548719549010.1038/s41467-020-15843-3
– reference: ChenZDevelopment of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2React. Chem. Eng.2017223924510.1039/C6RE00195E
– reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
– reference: ZhangQDirect insights into the role of epoxy groups on cobalt sites for acidic H2O2 productionNat. Commun.2020112020NatCo..11.4181Z32826877744282410.1038/s41467-020-17782-5
– reference: SiahrostamiSEnabling direct H2O2 production through rational electrocatalyst designNat. Mater.20131213771143.10.1038/nmat37951:CAS:528:DC%2BC3sXhslygsbrO
– reference: DongKNoble-metal-free electrocatalysts toward H2O2 productionJ. Mater. Chem. A2020823123231411:CAS:528:DC%2BB3cXitVOqtbjL10.1039/D0TA08894C
– reference: Pulidindi, K. & Pandey, H. Hydrogen peroxide market size by end-user Industry (Paper & Pulp, Chemical, Waste Water Treatment, Mining), Industry Analysis Report, Regional Outlook, Application Potential, Price Trends, Competitive Market Share & Forecast, 2020–2026, https://www.gminsights.com/industry-analysis/hydrogen-peroxide-market (2016).
– reference: XiaCXiaYZhuPFanLWangHDirect electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyteScience20193662262312019Sci...366..226X1:CAS:528:DC%2BC1MXhvFKhsLvL3160176710.1126/science.aay1844
– reference: HuangJELiFOzdenARasouliASCO2 electrolysis to multicarbon products in strong acidScience2021372107410782021Sci...372.1074H1:CAS:528:DC%2BB3MXht1GmsLnN3408348510.1126/science.abg6582
– reference: ZhaoXLiuYOrigin of selective production of hydrogen peroxide by electrochemical oxygen reductionJ. Am. Chem. Soc.2021143942394281:CAS:528:DC%2BB3MXhtlWltLnL10.1021/jacs.1c02186
– reference: CiriminnaRAlbaneseLMeneguzzoFPagliaroMHydrogen peroxide: a key chemical for today’s sustainable developmentChemSusChem20169337433811:CAS:528:DC%2BC28Xhsl2itrrP2781328510.1002/cssc.201600895
– reference: YangSTakYJKimJSoonALeeHSupport effects in single-atom platinum catalysts for electrochemical oxygen reductionACS Catal.20177130113071:CAS:528:DC%2BC28XitFaitb3I10.1021/acscatal.6b02899
– reference: JungEAtomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 productionNat. Mater.2020194364422020NatMa..19..436J1:CAS:528:DC%2BB3cXpsFOqsg%3D%3D3193267110.1038/s41563-019-0571-5
– reference: ZhangXXiaYXiaCWangHInsights into practical-scale electrochemical H2O2 synthesisTrends Chem.2020294295310.1016/j.trechm.2020.07.0071:CAS:528:DC%2BB3cXit1Kqur%2FI
– reference: LiHScalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathwaysNat. Commun.2020112020NatCo..11.3928L1:CAS:528:DC%2BB3cXhsFGmtLnP32764644741104410.1038/s41467-020-17584-9
– reference: MelchionnaMFornasieroPPratoMThe rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductionsAdv. Mater.201931180292010.1002/adma.2018029201:CAS:528:DC%2BC1cXhsFCksbvF
– reference: IglesiasDN-Doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2Chem.201841061231:CAS:528:DC%2BC1cXosFyhsg%3D%3D10.1016/j.chempr.2017.10.013
– reference: LuZHigh-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materialsNat. Catal.201811561621:CAS:528:DC%2BC1MXhtFGisLnF10.1038/s41929-017-0017-x
– reference: KolyaginGAKornienkoVLKinetics of hydrogen peroxide accumulation in electrosynthesis from oxygen in gas-diffusion electrode in acidic and alkaline solutionsRuss. J. Appl. Chem.200376107010751:CAS:528:DC%2BD3sXosFCns7s%3D10.1023/A:1026398025991
– reference: QiangZChangJ-HHuangC-PElectrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutionsWater Res.20023685941:CAS:528:DC%2BD3MXot1Khtbo%3D1176682010.1016/S0043-1354(01)00235-4
– reference: TangCCoordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalystsAngew. Chem. Int. Ed.202059917191761:CAS:528:DC%2BB3cXmsVOks70%3D10.1002/anie.202003842
– reference: GaoJEnabling direct H2O2 production in acidic media through rational design of transition metal single atom catalystChem.202066586741:CAS:528:DC%2BB3cXkvFygtb4%3D10.1016/j.chempr.2019.12.008
– reference: XiaCContinuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devicesNat. Energy201947767852019NatEn...4..776X1:CAS:528:DC%2BC1MXhs12gurvL10.1038/s41560-019-0451-x
– ident: 30337_CR18
  doi: 10.1002/adma.202104891
– volume: 76
  start-page: 1070
  year: 2003
  ident: 30337_CR33
  publication-title: Russ. J. Appl. Chem.
  doi: 10.1023/A:1026398025991
– volume: 6
  start-page: 658
  year: 2020
  ident: 30337_CR26
  publication-title: Chem.
  doi: 10.1016/j.chempr.2019.12.008
– volume: 4
  start-page: 776
  year: 2019
  ident: 30337_CR39
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0451-x
– volume: 11
  year: 2020
  ident: 30337_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17584-9
– volume: 3
  start-page: 442
  year: 2019
  ident: 30337_CR5
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0110-6
– volume: 10
  year: 2019
  ident: 30337_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11992-2
– volume: 5
  start-page: 2099
  year: 2019
  ident: 30337_CR24
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.04.024
– volume: 4
  start-page: 106
  year: 2018
  ident: 30337_CR29
  publication-title: Chem.
  doi: 10.1016/j.chempr.2017.10.013
– volume: 151
  start-page: 234101
  year: 2019
  ident: 30337_CR42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5132354
– volume: 1
  start-page: 282
  year: 2018
  ident: 30337_CR8
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0044-2
– volume: 8
  start-page: 1801909
  year: 2018
  ident: 30337_CR6
  publication-title: Electrochem. Adv. Energ. Mater.
  doi: 10.1002/aenm.201801909
– volume: 79
  start-page: 746
  year: 2006
  ident: 30337_CR32
  publication-title: Russ. J. Appl. Chem.
  doi: 10.1134/S1070427206050107
– volume: 6
  start-page: 15
  year: 1996
  ident: 30337_CR40
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– ident: 30337_CR1
– volume: 59
  start-page: 9171
  year: 2020
  ident: 30337_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003842
– volume: 2
  start-page: 239
  year: 2017
  ident: 30337_CR17
  publication-title: React. Chem. Eng.
  doi: 10.1039/C6RE00195E
– volume: 132
  start-page: 154104
  year: 2010
  ident: 30337_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 141
  start-page: 12372
  year: 2019
  ident: 30337_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05576
– volume: 366
  start-page: 226
  year: 2019
  ident: 30337_CR38
  publication-title: Science
  doi: 10.1126/science.aay1844
– volume: 12
  start-page: 1377
  year: 2013
  ident: 30337_CR23
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3795
– volume: 45
  start-page: 6962
  year: 2006
  ident: 30337_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503779
– volume: 8
  start-page: 4064
  year: 2018
  ident: 30337_CR4
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00217
– volume: 14
  start-page: 1603
  year: 2014
  ident: 30337_CR22
  publication-title: Nano Lett.
  doi: 10.1021/nl500037x
– volume: 53
  start-page: 4824
  year: 2008
  ident: 30337_CR31
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.02.009
– volume: 142
  start-page: 5773
  year: 2020
  ident: 30337_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13872
– volume: 36
  start-page: 85
  year: 2002
  ident: 30337_CR19
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00235-4
– volume: 143
  start-page: 9423
  year: 2021
  ident: 30337_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02186
– volume: 1
  start-page: 156
  year: 2018
  ident: 30337_CR9
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0017-x
– volume: 140
  start-page: 7851
  year: 2018
  ident: 30337_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02798
– volume: 372
  start-page: 1074
  year: 2021
  ident: 30337_CR34
  publication-title: Science
  doi: 10.1126/science.abg6582
– volume: 11
  year: 2020
  ident: 30337_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15843-3
– volume: 60
  start-page: 16607
  year: 2021
  ident: 30337_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202104480
– volume: 8
  start-page: 23123
  year: 2020
  ident: 30337_CR25
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08894C
– volume: 19
  start-page: 436
  year: 2020
  ident: 30337_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0571-5
– volume: 2
  start-page: 942
  year: 2020
  ident: 30337_CR7
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2020.07.007
– ident: 30337_CR20
– volume: 31
  start-page: 1802920
  year: 2019
  ident: 30337_CR30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802920
– volume: 109
  start-page: 3313
  year: 1998
  ident: 30337_CR43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476928
– volume: 11
  year: 2020
  ident: 30337_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15782-z
– volume: 7
  start-page: 1301
  year: 2017
  ident: 30337_CR21
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02899
– volume: 31
  start-page: 1695
  year: 1985
  ident: 30337_CR45
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 9
  start-page: 3374
  year: 2016
  ident: 30337_CR2
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600895
– volume: 47
  start-page: 558
  year: 1993
  ident: 30337_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 11
  year: 2020
  ident: 30337_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17782-5
SSID ssj0000391844
Score 2.6860816
Snippet Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors,...
Electrochemical oxygen reduction to hydrogen peroxide (H O ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers...
Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers...
Electrochemical oxygen reduction to H2O2 in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2880
SubjectTerms 147/135
639/166/898
639/301/299/886
639/638/161/886
639/638/77/885
Additives
Alkali metals
Black carbon
Carbon black
Catalysts
Cations
Density functional theory
Electrochemistry
Electrolytes
Humanities and Social Sciences
Hydrogen peroxide
Metal ions
multidisciplinary
Oxygen
Protons
Reactors
Science
Science (multidisciplinary)
Selectivity
Shielding
Solid electrolytes
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EXyR-V03JYJvWtY2aZo-icrGEPTJwX0L-dwK0m63Hez-956T5nZcP0ZfQpNAknOS_HJO8juEvGdCM8fLMq8CgwMKa00uS0gF51rJHGyADl8jf_8hTs_4t1W9Sga3MV2r3K6JcaF2g0Ub-RFsJLIWUoj20-VVjlGj0LuaQmjcJw-QugyvdDWrZrGxIPu55Dy9lSmYPBp5XBniFfaCMUjt7EeRtv9fWPPvK5N_-E3jdnSyTx4nHEk_z4J_Qu75_il5OEeW3Dwj6ngOb2MTHwAdbjagKnSNTK0oCzoN9GLj1gP-RbLwm855qieank1BFSSRGGnX0xHN5edU2851lsa3Js_J2cnxz6-neYqlkFvAZFMueECqNa1DqFxlrJE2aMEsF8ILwX2lNWDFUJhQaBEqPFc5NHGEyhvdMs5ekL1-6P0rQq0UsDB428DHBQugBbUxbWBweAJ0VWWk3I6osoloHONd_FLR4c2kmqWgQAoqSkEVGfmw1LmcaTbuLP0FBbWURIrs-GNYn6s041RdQpe0D6UxgQMI0QVg0bIMtWuk4aXJyOFWzCrN21HdallG3i3ZMOPQjaJ7P1zHMm0N0KhtMvJy1oqlJQzhaNlC7WZHX3aaupvTdxeR1buNLmSRkY9bzbpt1v-H4vXdvTggjypU9qLOK35I9qb1tX8DKGoyb-NU-Q0neBpu
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_OE8EX8dvqKRF802rTpGnzIKJyxyGcTy7cW8jnXeFotduD3f_eSdpdWV19kr6UfECamUl-k3R-A_CKCc0cpzQvA0MHhUmTNxTfgnOyYQ43QBejkc--itMF_3JenR_AJt3RPIHLva5dzCe1GK7ern6sP6DBv59Cxpt3S57MPf2XXjCGbzfgJu5MdTTUsxnup5WZSXRo-Bw7s7_rzv6UaPz3Yc8_f6H87R41bU8nd-HOjCvJx0kR7sGB7-7DrSnT5PoBqOMp3Y2d-QFIv1qj6pAhMrdG2ZCxJ5drN_SxNJKHr1rniR7JHEaFXSKpxJK0HVnG4_MLom3rWktS7MlDWJwcf_t8ms-5FXKLGG3MBQ-Rek3rEEpXGmsaG7RglgvhheC-1BqxYyhMKLQIZfSzXDzyCKU3WjLOHsFh13f-CRDbCFwovK3x4YIF1IrKGBkYOlOItsoM6GZGlZ2Jx2P-iyuVLsBZoyYpKJSCSlJQRQavt32-T7Qb_2z9KQpq2zJSZqeCfrhQswWqiuInaR-oMYEjKNEFYlNKQ-XqxnBqMjjaiFlt1FAhfGkq0QghM3i5rUYLjNcquvP9dWojK4RKss7g8aQV25GwCE-pxN71jr7sDHW3pmsvE8u3TFfKIoM3G836Nay_T8XT_zEVz-B2GU2iqPKSH8HhOFz754i9RvMiGdRP5cMqhw
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61Ivgi3l2tEsE3XdxcNif7qIeWIuiThb6FXNsF2S3nbKHn3zuTvcjRKsi-hGQC2cwk-XKZbwh5J5QVQTJW8iRggyIaV2oGqRRCo0WABTCgN_LXb-r0TH45r88PCJ99YfKj_Uxpmafp-XXYx63MQzq_Pa-EgNQdchep29Gq12q9nKsg47mWcvKPqYS-pereGpSp-m_Dl38-k_ztrjQvQScPyYMJO9JPY2sfkYPYPSb3xmiSuyfEHI8hbfzEAUD7mx2YB90gOyv2Px16erkLmx5zkSD8pg2R2oFOrlJQBYkjtrTt6BaPyC-o9W1oPc3-JU_J2cnx9_VpOcVPKD3gsKFUMiG9mrUp8cCdd9onq4SXSkWlZOTWAj5MlUuVVYnjXirgsUbi0dlGSPGMHHZ9F18Q6rWCySD6FXxSiQSar51rkoANEyAqXhA296jxE7k4xrj4YfIlt9Bm1IIBLZisBVMV5P1S52qk1vin9GdU1CKJtNg5o99cmMlMTM3gl2xMzLkkAXjYCvAnY6kOK-0kcwU5mtVsprG6NQBRdK20Uk1B3i7FMMrw6sR2sb_OMk0NcKhZFeT5aBVLSwRCUNZA7dWevew1db-kay8zk3eTr41VQT7MlvWrWX_vipf_J_6K3Odo_FVdcnlEDofNdXwNSGpwb_LQ-QkNsBf6
  priority: 102
  providerName: Springer Nature
Title Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media
URI https://link.springer.com/article/10.1038/s41467-022-30337-0
https://www.ncbi.nlm.nih.gov/pubmed/35610199
https://www.proquest.com/docview/2668568669
https://www.proquest.com/docview/2669502197
https://pubmed.ncbi.nlm.nih.gov/PMC9130276
https://doaj.org/article/51aa0aef1bbf4614a050811f5d78b41b
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY99z1wUN9raZWpYsS49pSFYCLWNbIW9Cn6th2CNJofnve5KdrNnnyzDYRpZA3J10v7Ok3yH0lnJNHSMkLwOFAIVKkwsCb8E5KagDB-jiaeSzc356weaLanEr1VfcE9bTA_eCO66I1oX2gRgTGPgSXQCkICRUrhaGERNnX_B5t4KpNAdTCaELG07JFFQcr1iaE9Lm9YJSeNvzRImw_3co89fNkj-tmCZHNHuEHg4IEo_7nj9Gd3z7BN3vc0puniI17RPb2IEJAHfXGzASvIwcrVELeN3hy41bdrE00oRfN85jvcbDgSloEukjVrhp8Sr-KP-KtW1cY3E6ZfIMXcymXyan-ZBFIbeAxtY5ZyGSrGkdQulKY42wQXNqGeeec-ZLkK-UoTCh0DyUMaJy8edGKL3RkjL6HB20XetfImwFhynB2xouxmkA_VfGyEAhbAJcVWaIbCWq7EAxHjNdfFNpqZsK1WtBgRZU0oIqMvRu1-Z7T7Dx19onUVG7mpEcOxWAyajBZNS_TCZDR1s1q2HErhQAFVFxwbnM0JvdZxhrcQFFt767SnVkBaBI1hl60VvFric0AlEioXW9Zy97Xd3_0jaXic9bpsVjnqH3W8v60a0_i-Lwf4jiFXpQxiFRVHnJjtDBennlXwPKWpsRulsvariL2YcRujcezz_P4XkyPf_4CUonfDJKQw7uZ0zcAMmHKas
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4ia2I6THBDi0WpLH6dW2pvxs10JJWV3K7p_it_IjJNstTx6q3KJEjtyPA_PeDzfEPKaS82dyPOUBQ4OCq9NWuVwF5yrK-5gAXSYjXxwKEfH4uu4GK-RX0MuDB6rHHRiVNSutbhHvgULSVXISsr6w9mPFKtGYXR1KKHRscWeX_wEl232fvcL0PcNYzvbR59HaV9VILVgncxTKQKCjmkdAnPMWFPZoCW3QkovpfBMa7CaQmZCpmVg6GE4dPYD80bXXHD47g1yExbeDCWqHJfLPR1EW6-E6HNzMl5tzUTURPHIfMY53K2sf7FMwL9s27-PaP4Rp43L3849cre3W-nHjtHukzXfPCC3ukqWi4dEbXfldGyPP0DbiwWwJp0iMizSns5berpw0xafIjj5xcR5que0T9OCLghaMaOThs5we_6EajtxE0tjbssjcnwts_yYrDdt458QaisJisjbEi4heQCuK4ypAwdnDaw5lpB8mFFle2BzrK_xXcUAO69URwUFVFCRCipLyNtln7MO1uPK1p-QUMuWCMkdH7TTE9VLuCpy-CXtQ25MEGD06Axs3zwPhSsrI3KTkM2BzKrXEzN1ydUJebV8DRKOYRvd-PY8tqkLMMXqMiEbHVcsR8LR_M1r6F2u8MvKUFffNJPTiCJex5C1TMi7gbMuh_X_qXh69V-8JLdHRwf7an_3cO8ZucOQ8bMiZWKTrM-n5_45WHBz8yKKDSXfrltOfwNe0VgX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNHGjzjJASGgXbUUKg5U2puxY7tdCSVldyu6f41fx4yTbLU8eqtyiRI7cjwPf-PxzBDyQigjnGQs5UGAgSIqm5YM7oJzVSkcLIAOo5E_H6jdQ_lxkk82yK8hFgaPVQ46MSpq19a4Rz6ChaTMValUNQr9sYgv2-O3Jz9SrCCFntahnEbHIvt--RPMt_mbvW2g9UvOxztfP-ymfYWBtAakskiVDJiAzJgQuOO2tmUdjBK1VMorJT03BhBUyGzIjAocrQ2Hhn_g3ppKSAHfvUKuFiJnKGPFpFjt72Dm9VLKPk4nE-VoLqNWisfnMyHgbm0tjCUD_oVz_z6u-YfPNi6F41vkZo9h6buO6W6TDd_cIde6qpbLu0TvdKV16j4XAW3PlsCmdIZZYpEP6KKlx0s3a_EpJio_mzpPzYL2IVvQBRNYzOm0oXPcqj-ipp66aU1jnMs9cngps3yfbDZt4x8SWpcKlJKvC7ikEgE4MLe2CgIMN0B2PCFsmFFd90nOsdbGdx2d7aLUHRU0UEFHKugsIa9WfU66FB8Xtn6PhFq1xPTc8UE7O9K9tOucwS8ZH5i1QQIAMhngYMZC7orSSmYTsjWQWfc6Y67POTwhz1evQdrRhWMa357GNlUOsKwqEvKg44rVSARCYVZB72KNX9aGuv6mmR7HjOJVdF-rhLweOOt8WP-fikcX_8Uzch0kVH_aO9h_TG5w5PssT7ncIpuL2al_AmBuYZ9GqaHk22WL6W9pAVxN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+oxygen+reduction+to+hydrogen+peroxide+at+practical+rates+in+strong+acidic+media&rft.jtitle=Nature+communications&rft.au=Xiao+Zhang&rft.au=Xunhua+Zhao&rft.au=Peng+Zhu&rft.au=Zachary+Adler&rft.date=2022-05-24&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-022-30337-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_51aa0aef1bbf4614a050811f5d78b41b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon