Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media
Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 2880 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.05.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical oxygen reduction to hydrogen peroxide (H
2
O
2
) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H
2
O
2
selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm
−2
) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H
2
O
2
to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H
2
O
2
via implementing this cation effect for practical applications.
Electrochemical oxygen reduction to H
2
O
2
in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a cation-regulated “shielding effect” to promote the H
2
O
2
selectivity under industrial-relevant current in strong acid. |
---|---|
AbstractList | Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H2O2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm-2) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a "shielding effect" of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H2O2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H2O2 via implementing this cation effect for practical applications.Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H2O2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm-2) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a "shielding effect" of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H2O2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H2O2 via implementing this cation effect for practical applications. Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H 2 O 2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm −2 ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H 2 O 2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H 2 O 2 via implementing this cation effect for practical applications. Electrochemical oxygen reduction to H 2 O 2 in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a cation-regulated “shielding effect” to promote the H 2 O 2 selectivity under industrial-relevant current in strong acid. Electrochemical oxygen reduction to H2O2 in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a cation-regulated “shielding effect” to promote the H2O2 selectivity under industrial-relevant current in strong acid. Electrochemical oxygen reduction to hydrogen peroxide (H O ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H O selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a "shielding effect" of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H O to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H O via implementing this cation effect for practical applications. Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H2O2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm−2) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H2O2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H2O2 via implementing this cation effect for practical applications.Electrochemical oxygen reduction to H2O2 in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a cation-regulated “shielding effect” to promote the H2O2 selectivity under industrial-relevant current in strong acid. Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H 2 O 2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm −2 ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H 2 O 2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H 2 O 2 via implementing this cation effect for practical applications. |
ArticleNumber | 2880 |
Author | Zhang, Xiao Adler, Zachary Liu, Yuanyue Zhao, Xunhua Zhu, Peng Wang, Haotian Wu, Zhen-Yu |
Author_xml | – sequence: 1 givenname: Xiao orcidid: 0000-0002-4780-2161 surname: Zhang fullname: Zhang, Xiao email: xiao1.zhang@polyu.edu.hk organization: Department of Chemical and Biomolecular Engineering, Rice University – sequence: 2 givenname: Xunhua orcidid: 0000-0002-2234-5830 surname: Zhao fullname: Zhao, Xunhua organization: Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin – sequence: 3 givenname: Peng orcidid: 0000-0002-8855-0335 surname: Zhu fullname: Zhu, Peng organization: Department of Chemical and Biomolecular Engineering, Rice University – sequence: 4 givenname: Zachary orcidid: 0000-0003-0929-5696 surname: Adler fullname: Adler, Zachary organization: Department of Chemical and Biomolecular Engineering, Rice University – sequence: 5 givenname: Zhen-Yu orcidid: 0000-0001-9198-003X surname: Wu fullname: Wu, Zhen-Yu organization: Department of Chemical and Biomolecular Engineering, Rice University – sequence: 6 givenname: Yuanyue orcidid: 0000-0002-5880-8649 surname: Liu fullname: Liu, Yuanyue email: yuanyue.liu@austin.utexas.edu organization: Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin – sequence: 7 givenname: Haotian surname: Wang fullname: Wang, Haotian email: htwang@rice.edu organization: Department of Chemical and Biomolecular Engineering, Rice University, Department of Chemistry, Rice University, Department of Materials Science and NanoEngineering, Rice University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35610199$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhS1URH_oC7BAkdiwCfgvTrJBQlWhlSqxgbV141xnPMrYg52gztvjNC20XTSbWM53Ph3H95Qc-eCRkHeMfmJUNJ-TZFLVJeW8FFSIvHpFTjiVrGQ1F0eP1sfkPKUtzY9oWSPlG3IsKsUoa9sToi9HNFMMZoM7Z2Aswu1hQF9E7GczueCLKRSbQx_DsrvHGG5djwVMxT5CBpZIhAlT4XyRssgPBRjXO1PssHfwlry2MCY8v3-fkV_fLn9eXJU3P75fX3y9KU0l6VQqaSteCwBrec870zXGghJGKoVKSeQAtG0t7SwFZTlXrO1prZjl2EErpDgj16u3D7DV--h2EA86gNN3GyEOGmKuO6KuWJYBWtZ1ViomgVa0YcxWfd10knXZ9WV17ecuH8KgnyKMT6RPv3i30UP4o1smKK9VFny8F8Twe8Y06Z1LBscRPIY5aa5UW1HO2jqjH56h2zBHn3_VQjWVajKbqfePG_2r8nCPGWhWwMSQUkSrjZtgub9c0I2aUb1MjV6nRuep0XdTo2mO8mfRB_uLIbGGUob9gPF_7RdSfwFpFdU2 |
CitedBy_id | crossref_primary_10_1002_ange_202418713 crossref_primary_10_1016_j_apcata_2024_119803 crossref_primary_10_1016_j_apsusc_2025_162676 crossref_primary_10_1016_j_cej_2023_141866 crossref_primary_10_1021_acs_langmuir_4c04757 crossref_primary_10_1039_D3SU00386H crossref_primary_10_1155_2023_4440117 crossref_primary_10_1007_s12274_024_6505_9 crossref_primary_10_1016_j_jece_2024_112972 crossref_primary_10_1016_j_checat_2023_100568 crossref_primary_10_1016_j_nanoen_2024_110592 crossref_primary_10_1002_adma_202414490 crossref_primary_10_1016_j_cej_2024_153211 crossref_primary_10_1039_D4TA04113E crossref_primary_10_1016_j_ceramint_2024_02_243 crossref_primary_10_1021_jacs_4c02031 crossref_primary_10_1002_ange_202408508 crossref_primary_10_1039_D3SC06534K crossref_primary_10_1002_cjoc_202400458 crossref_primary_10_1021_acs_est_4c11612 crossref_primary_10_1007_s12598_023_02467_x crossref_primary_10_1016_j_jallcom_2023_171264 crossref_primary_10_1021_acs_chemrev_2c00684 crossref_primary_10_1126_science_adm8902 crossref_primary_10_1016_j_cclet_2024_110277 crossref_primary_10_1021_acs_iecr_4c01988 crossref_primary_10_1016_j_gerr_2023_100031 crossref_primary_10_31857_S0424857023100092 crossref_primary_10_1038_s41929_023_00977_6 crossref_primary_10_3390_s25010264 crossref_primary_10_1002_adma_202400140 crossref_primary_10_1002_anie_202403023 crossref_primary_10_1007_s11082_024_07003_4 crossref_primary_10_1016_j_mattod_2023_02_004 crossref_primary_10_1021_acsami_3c04772 crossref_primary_10_1021_jacs_3c14186 crossref_primary_10_1016_j_cej_2024_157125 crossref_primary_10_1002_aenm_202300628 crossref_primary_10_1515_chem_2023_0177 crossref_primary_10_1021_acsenergylett_2c01945 crossref_primary_10_1016_j_jece_2025_116260 crossref_primary_10_1002_cssc_202400873 crossref_primary_10_1038_s41467_024_48256_7 crossref_primary_10_1016_j_xcrp_2023_101643 crossref_primary_10_1021_jacs_3c05114 crossref_primary_10_1073_pnas_2408205121 crossref_primary_10_1007_s10971_024_06331_x crossref_primary_10_1002_advs_202405474 crossref_primary_10_1038_s41467_025_57116_x crossref_primary_10_1038_s41467_025_58019_7 crossref_primary_10_1016_j_jclepro_2024_144066 crossref_primary_10_1002_ange_202317512 crossref_primary_10_1002_smll_202410612 crossref_primary_10_1063_5_0210995 crossref_primary_10_1039_D2NR06352B crossref_primary_10_1002_cey2_378 crossref_primary_10_1063_5_0185619 crossref_primary_10_1016_j_seppur_2024_126863 crossref_primary_10_1021_prechem_3c00096 crossref_primary_10_1016_j_jelechem_2024_118700 crossref_primary_10_1039_D4EE05796A crossref_primary_10_1016_j_chemosphere_2024_141456 crossref_primary_10_1007_s12274_024_6641_2 crossref_primary_10_1002_adfm_202212087 crossref_primary_10_1002_smll_202406235 crossref_primary_10_1002_smll_202302338 crossref_primary_10_1038_s41467_024_53714_3 crossref_primary_10_1021_acs_est_3c06156 crossref_primary_10_1016_j_mtener_2023_101430 crossref_primary_10_1021_jacs_4c11564 crossref_primary_10_1002_sstr_202200387 crossref_primary_10_1002_adma_202420236 crossref_primary_10_1016_j_cej_2024_152854 crossref_primary_10_1016_j_chemosphere_2023_138147 crossref_primary_10_1016_j_chemosphere_2023_138423 crossref_primary_10_1088_2515_7655_ad15e7 crossref_primary_10_1039_D3TA03813K crossref_primary_10_1002_adma_202412039 crossref_primary_10_1039_D4SC02853H crossref_primary_10_1039_D3TA04453J crossref_primary_10_1021_acscatal_4c04734 crossref_primary_10_1016_j_cplett_2024_141236 crossref_primary_10_1021_acsenergylett_2c02021 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1002_aenm_202403841 crossref_primary_10_1016_j_ijhydene_2024_11_100 crossref_primary_10_1016_j_electacta_2024_144533 crossref_primary_10_1007_s10854_023_11597_y crossref_primary_10_1016_j_cej_2024_154221 crossref_primary_10_1016_j_chempr_2024_11_001 crossref_primary_10_1016_j_jcis_2024_09_025 crossref_primary_10_1021_acsmaterialsau_3c00070 crossref_primary_10_1016_j_cej_2024_155677 crossref_primary_10_1016_j_gee_2023_05_003 crossref_primary_10_1039_D3EE00509G crossref_primary_10_1039_D4NJ03228D crossref_primary_10_1016_j_nanoen_2024_109600 crossref_primary_10_1021_acs_cgd_3c00343 crossref_primary_10_1002_anie_202218669 crossref_primary_10_1016_j_cej_2023_148452 crossref_primary_10_1016_j_joule_2023_06_022 crossref_primary_10_1002_anie_202417403 crossref_primary_10_1002_aenm_202304418 crossref_primary_10_1016_j_jwpe_2024_105297 crossref_primary_10_1002_adma_202415712 crossref_primary_10_3390_ma17174277 crossref_primary_10_1021_acs_energyfuels_3c02602 crossref_primary_10_1002_smll_202403029 crossref_primary_10_1016_j_checat_2024_100997 crossref_primary_10_1039_D3DT01676E crossref_primary_10_1016_j_electacta_2025_145990 crossref_primary_10_1002_anie_202317512 crossref_primary_10_1021_acs_jctc_3c00571 crossref_primary_10_1002_ange_202403023 crossref_primary_10_1007_s12209_024_00406_0 crossref_primary_10_1002_anie_202408508 crossref_primary_10_1007_s40820_023_01067_9 crossref_primary_10_1007_s42823_022_00420_z crossref_primary_10_1016_j_apcatb_2025_125109 crossref_primary_10_1021_acscatal_4c06491 crossref_primary_10_1021_acsenergylett_3c02743 crossref_primary_10_1021_acscatal_3c00449 crossref_primary_10_1021_acsnano_4c11307 crossref_primary_10_1039_D3EE03223J crossref_primary_10_1002_celc_202300234 crossref_primary_10_1039_D3TA01986A crossref_primary_10_1021_acsphyschemau_2c00054 crossref_primary_10_11648_j_sf_20240503_13 crossref_primary_10_1002_smll_202302380 crossref_primary_10_1016_j_jechem_2025_01_059 crossref_primary_10_1021_acscatal_3c03893 crossref_primary_10_1021_jacsau_4c01183 crossref_primary_10_1039_D3SC06904D crossref_primary_10_1002_smll_202400564 crossref_primary_10_1016_j_chempr_2025_102461 crossref_primary_10_1002_smll_202204757 crossref_primary_10_1016_j_jmst_2024_12_017 crossref_primary_10_1021_jacs_4c00875 crossref_primary_10_1021_jacs_3c13660 crossref_primary_10_1016_j_mtener_2023_101364 crossref_primary_10_1021_acscatal_4c07033 crossref_primary_10_1016_j_cej_2022_140515 crossref_primary_10_1038_s41929_024_01200_w crossref_primary_10_1038_s44286_025_00186_x crossref_primary_10_1016_j_cej_2024_156502 crossref_primary_10_1039_D4CS00412D crossref_primary_10_1016_j_coelec_2023_101224 crossref_primary_10_1002_smll_202410371 crossref_primary_10_1002_aenm_202301047 crossref_primary_10_1016_j_cej_2023_142691 crossref_primary_10_1021_acscatal_4c06189 crossref_primary_10_1002_anie_202418713 crossref_primary_10_1021_acssuschemeng_2c04746 crossref_primary_10_53941_see_2024_100004 crossref_primary_10_1016_j_cej_2023_142443 crossref_primary_10_1016_j_apcatb_2023_123380 crossref_primary_10_1002_adsu_202400934 crossref_primary_10_1021_acs_est_4c05481 crossref_primary_10_1007_s12274_022_5067_y crossref_primary_10_1002_adma_202208533 crossref_primary_10_1002_ange_202218669 crossref_primary_10_1016_j_cej_2022_140649 crossref_primary_10_1038_s41467_024_55091_3 crossref_primary_10_1039_D4EY00232F crossref_primary_10_1039_D2TA07761B crossref_primary_10_1002_adma_202418489 crossref_primary_10_1002_aesr_202300284 crossref_primary_10_1038_s41467_023_35839_z crossref_primary_10_1039_D4CC01476F crossref_primary_10_1016_j_flatc_2024_100728 crossref_primary_10_1021_acscatal_4c05425 crossref_primary_10_1016_j_apcatb_2025_125128 crossref_primary_10_1002_ange_202417403 crossref_primary_10_1016_j_carbon_2024_119881 crossref_primary_10_1073_pnas_2409620121 crossref_primary_10_1002_smll_202309448 |
Cites_doi | 10.1002/adma.202104891 10.1023/A:1026398025991 10.1016/j.chempr.2019.12.008 10.1038/s41560-019-0451-x 10.1038/s41467-020-17584-9 10.1038/s41570-019-0110-6 10.1038/s41467-019-11992-2 10.1016/j.chempr.2019.04.024 10.1016/j.chempr.2017.10.013 10.1063/1.5132354 10.1038/s41929-018-0044-2 10.1002/aenm.201801909 10.1134/S1070427206050107 10.1016/0927-0256(96)00008-0 10.1002/anie.202003842 10.1039/C6RE00195E 10.1063/1.3382344 10.1021/jacs.9b05576 10.1126/science.aay1844 10.1038/nmat3795 10.1002/anie.200503779 10.1021/acscatal.8b00217 10.1021/nl500037x 10.1016/j.electacta.2008.02.009 10.1021/jacs.9b13872 10.1016/S0043-1354(01)00235-4 10.1021/jacs.1c02186 10.1038/s41929-017-0017-x 10.1021/jacs.8b02798 10.1126/science.abg6582 10.1038/s41467-020-15843-3 10.1002/anie.202104480 10.1039/D0TA08894C 10.1038/s41563-019-0571-5 10.1016/j.trechm.2020.07.007 10.1002/adma.201802920 10.1063/1.476928 10.1038/s41467-020-15782-z 10.1021/acscatal.6b02899 10.1103/PhysRevA.31.1695 10.1002/cssc.201600895 10.1103/PhysRevB.47.558 10.1038/s41467-020-17782-5 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-30337-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_51aa0aef1bbf4614a050811f5d78b41b PMC9130276 35610199 10_1038_s41467_022_30337_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: David and Lucile Packard Foundation (David & Lucile Packard Foundation) grantid: 2020-71371 funderid: https://doi.org/10.13039/100000008 – fundername: Welch Foundation grantid: C-2051-20200401 funderid: https://doi.org/10.13039/100000928 – fundername: Welch Foundation grantid: C-2051-20200401 – fundername: David and Lucile Packard Foundation (David & Lucile Packard Foundation) grantid: 2020-71371 – fundername: ; grantid: 2020-71371 – fundername: ; grantid: C-2051-20200401 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-64f5273aaff2d2bcb8cfa63c466e664e2aa099f0bf0a6f22619d0761f2eba9343 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:28 EDT 2025 Thu Aug 21 18:06:01 EDT 2025 Thu Jul 10 22:17:03 EDT 2025 Wed Aug 13 05:15:20 EDT 2025 Wed Feb 19 02:23:42 EST 2025 Tue Jul 01 00:58:13 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Fri Feb 21 02:38:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-64f5273aaff2d2bcb8cfa63c466e664e2aa099f0bf0a6f22619d0761f2eba9343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4780-2161 0000-0002-8855-0335 0000-0002-5880-8649 0000-0001-9198-003X 0000-0002-2234-5830 0000-0003-0929-5696 |
OpenAccessLink | https://doaj.org/article/51aa0aef1bbf4614a050811f5d78b41b |
PMID | 35610199 |
PQID | 2668568669 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_51aa0aef1bbf4614a050811f5d78b41b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9130276 proquest_miscellaneous_2669502197 proquest_journals_2668568669 pubmed_primary_35610199 crossref_citationtrail_10_1038_s41467_022_30337_0 crossref_primary_10_1038_s41467_022_30337_0 springer_journals_10_1038_s41467_022_30337_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-24 |
PublicationDateYYYYMMDD | 2022-05-24 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | HuangJELiFOzdenARasouliASCO2 electrolysis to multicarbon products in strong acidScience2021372107410782021Sci...372.1074H1:CAS:528:DC%2BB3MXht1GmsLnN3408348510.1126/science.abg6582 PerrySCElectrochemical synthesis of hydrogen peroxide from water and oxygenNat. Rev. Chem.201934424581:CAS:528:DC%2BC1MXht1Klu7bK10.1038/s41570-019-0110-6 XiaCContinuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devicesNat. Energy201947767852019NatEn...4..776X1:CAS:528:DC%2BC1MXhs12gurvL10.1038/s41560-019-0451-x DongKNoble-metal-free electrocatalysts toward H2O2 productionJ. Mater. Chem. A2020823123231411:CAS:528:DC%2BB3cXitVOqtbjL10.1039/D0TA08894C SunYActivity–selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal–nitrogen–carbon catalystsJ. Am. Chem. Soc.201914112372123811:CAS:528:DC%2BC1MXhtlOhurfL3130601610.1021/jacs.9b05576 Verdaguer-CasadevallATrends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineeringNano Lett.201414160316082014NanoL..14.1603V1:CAS:528:DC%2BC2cXitVygtrw%3D2450622910.1021/nl500037x GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.33823441:CAS:528:DC%2BC3cXkvVyks7o%3D JiangYSelective electrochemical H2O2 production through two-electron oxygenElectrochem. Adv. Energ. Mater.20188180190910.1002/aenm.2018019091:CAS:528:DC%2BC1cXhslGms77I Li, X. et al. Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater., 2021, 2104891. KolyaginGAKornienkoVLEffect of trialkylammonium salts and current density on the electrosynthesis of hydrogen peroxide from oxygen in a gas-diffusion electrode in acid solutionsRuss. J. Appl. Chem.2006797467511:CAS:528:DC%2BD28XmsFSnt74%3D10.1134/S1070427206050107 HooverWGCanonical dynamics: equilibrium phase-space distributionsPhys. Rev. A198531169516971985PhRvA..31.1695H1:STN:280:DC%2BC2sjotlWltA%3D%3D10.1103/PhysRevA.31.1695 KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 ZhangQDirect insights into the role of epoxy groups on cobalt sites for acidic H2O2 productionNat. Commun.2020112020NatCo..11.4181Z32826877744282410.1038/s41467-020-17782-5 GaoJEnabling direct H2O2 production in acidic media through rational design of transition metal single atom catalystChem.202066586741:CAS:528:DC%2BB3cXkvFygtb4%3D10.1016/j.chempr.2019.12.008 ChenZDevelopment of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2React. Chem. Eng.2017223924510.1039/C6RE00195E Pulidindi, K. & Pandey, H. Hydrogen peroxide market size by end-user Industry (Paper & Pulp, Chemical, Waste Water Treatment, Mining), Industry Analysis Report, Regional Outlook, Application Potential, Price Trends, Competitive Market Share & Forecast, 2020–2026, https://www.gminsights.com/industry-analysis/hydrogen-peroxide-market (2016). ShenRHigh-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solutionChem20195209921101:CAS:528:DC%2BC1MXhsFKktrnP10.1016/j.chempr.2019.04.024 ChenSChemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxideAngew. Chem. Int. Ed.20216016607166142021shsl.book.....C1:CAS:528:DC%2BB3MXhsVKmu77E10.1002/anie.202104480 ErnzerhofMPerdewJPGeneralized gradient approximation to the angle- and system-averaged exchange holeJ. Chem. Phys.1998109331333201998JChPh.109.3313E1:CAS:528:DyaK1cXltFCnu7k%3D10.1063/1.476928 MelchionnaMFornasieroPPratoMThe rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductionsAdv. Mater.201931180292010.1002/adma.2018029201:CAS:528:DC%2BC1cXhsFCksbvF ChenSDesigning boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxideJ. Am. Chem. Soc.2018140785178591:CAS:528:DC%2BC1cXhtFGisr%2FM2987406210.1021/jacs.8b02798 YangSTakYJKimJSoonALeeHSupport effects in single-atom platinum catalysts for electrochemical oxygen reductionACS Catal.20177130113071:CAS:528:DC%2BC28XitFaitb3I10.1021/acscatal.6b02899 LiHScalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathwaysNat. Commun.2020112020NatCo..11.3928L1:CAS:528:DC%2BB3cXhsFGmtLnP32764644741104410.1038/s41467-020-17584-9 ZhaoXLiuYOrigin of selective production of hydrogen peroxide by electrochemical oxygen reductionJ. Am. Chem. Soc.2021143942394281:CAS:528:DC%2BB3MXhtlWltLnL10.1021/jacs.1c02186 LuZHigh-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materialsNat. Catal.201811561621:CAS:528:DC%2BC1MXhtFGisLnF10.1038/s41929-017-0017-x HanG-FBuilding and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2Nat. Commun.2020112020NatCo..11.2209H1:CAS:528:DC%2BB3cXovFGkurc%3D32371867720077810.1038/s41467-020-15782-z JiangKHighly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordinationNat. Commun.2019102019NatCo..10.3997J31488826672832810.1038/s41467-019-11992-21:CAS:528:DC%2BC1MXhslCgsrjF YamanakaIHashimotoTIchihashiROtsukaKDirect synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cellElectrochim. Acta200853482448321:CAS:528:DC%2BD1cXjvFOiu7s%3D10.1016/j.electacta.2008.02.009 XiaCXiaYZhuPFanLWangHDirect electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyteScience20193662262312019Sci...366..226X1:CAS:528:DC%2BC1MXhvFKhsLvL3160176710.1126/science.aay1844 ZhangXXiaYXiaCWangHInsights into practical-scale electrochemical H2O2 synthesisTrends Chem.2020294295310.1016/j.trechm.2020.07.0071:CAS:528:DC%2BB3cXit1Kqur%2FI Campos-MartinJMBlanco-BrievaGFierroJLGHydrogen peroxide synthesis: an outlook beyond the anthraquinone processAngew. Chem. Int. Ed.200645696269841:CAS:528:DC%2BD28Xht1antb%2FL10.1002/anie.200503779 ChangQPromoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbonNat. Commun.2020112020NatCo..11.2178C1:CAS:528:DC%2BB3cXhtVGmt7zN32358548719549010.1038/s41467-020-15843-3 YangSToward the decentralized electrochemical production of H2O2: a focus on the catalysisACS Catal.20188406440811:CAS:528:DC%2BC1cXmtFCntr0%3D10.1021/acscatal.8b00217 MathewKKolluruVSCMulaSSteinmannSNHennigRGImplicit self-consistent electrolyte model in plane-wave density-functional theoryJ. Chem. Phys.20191512341012019JChPh.151w4101M3186423910.1063/1.51323541:CAS:528:DC%2BC1MXisVertb%2FN CiriminnaRAlbaneseLMeneguzzoFPagliaroMHydrogen peroxide: a key chemical for today’s sustainable developmentChemSusChem20169337433811:CAS:528:DC%2BC28Xhsl2itrrP2781328510.1002/cssc.201600895 KolyaginGAKornienkoVLKinetics of hydrogen peroxide accumulation in electrosynthesis from oxygen in gas-diffusion electrode in acidic and alkaline solutionsRuss. J. Appl. Chem.200376107010751:CAS:528:DC%2BD3sXosFCns7s%3D10.1023/A:1026398025991 https://www.energy.gov/sites/prod/files/2015/08/f26/chemical_bandwidth_report.pdf. KimHWEfficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalystsNat. Catal.2018128229010.1038/s41929-018-0044-2 QiangZChangJ-HHuangC-PElectrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutionsWater Res.20023685941:CAS:528:DC%2BD3MXot1Khtbo%3D1176682010.1016/S0043-1354(01)00235-4 KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 JungEAtomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 productionNat. Mater.2020194364422020NatMa..19..436J1:CAS:528:DC%2BB3cXpsFOqsg%3D%3D3193267110.1038/s41563-019-0571-5 ZhaoXLiuYUnveiling the active structure of single Nickel atom catalysis: critical roles of charge capacity and hydrogen bondingJ. Am. Chem. Soc.2020142577357771:CAS:528:DC%2BB3cXktlOmur8%3D3212213210.1021/jacs.9b13872 TangCCoordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalystsAngew. Chem. Int. Ed.202059917191761:CAS:528:DC%2BB3cXmsVOks70%3D10.1002/anie.202003842 SiahrostamiSEnabling direct H2O2 production through rational electrocatalyst designNat. Mater.20131213771143.10.1038/nmat37951:CAS:528:DC%2BC3sXhslygsbrO IglesiasDN-Doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2Chem.201841061231:CAS:528:DC%2BC1cXosFyhsg%3D%3D10.1016/j.chempr.2017.10.013 JM Campos-Martin (30337_CR3) 2006; 45 G Kresse (30337_CR41) 1993; 47 D Iglesias (30337_CR29) 2018; 4 Y Sun (30337_CR27) 2019; 141 C Xia (30337_CR38) 2019; 366 K Mathew (30337_CR42) 2019; 151 30337_CR1 H Li (30337_CR37) 2020; 11 X Zhao (30337_CR36) 2020; 142 X Zhao (30337_CR35) 2021; 143 J Gao (30337_CR26) 2020; 6 HW Kim (30337_CR8) 2018; 1 S Siahrostami (30337_CR23) 2013; 12 Z Chen (30337_CR17) 2017; 2 30337_CR20 R Shen (30337_CR24) 2019; 5 R Ciriminna (30337_CR2) 2016; 9 X Zhang (30337_CR7) 2020; 2 SC Perry (30337_CR5) 2019; 3 GA Kolyagin (30337_CR32) 2006; 79 K Jiang (30337_CR11) 2019; 10 G-F Han (30337_CR14) 2020; 11 E Jung (30337_CR10) 2020; 19 I Yamanaka (30337_CR31) 2008; 53 M Melchionna (30337_CR30) 2019; 31 Y Jiang (30337_CR6) 2018; 8 S Chen (30337_CR13) 2018; 140 S Grimme (30337_CR44) 2010; 132 GA Kolyagin (30337_CR33) 2003; 76 Z Lu (30337_CR9) 2018; 1 S Chen (30337_CR16) 2021; 60 Q Zhang (30337_CR28) 2020; 11 WG Hoover (30337_CR45) 1985; 31 JE Huang (30337_CR34) 2021; 372 C Tang (30337_CR15) 2020; 59 Z Qiang (30337_CR19) 2002; 36 A Verdaguer-Casadevall (30337_CR22) 2014; 14 K Dong (30337_CR25) 2020; 8 S Yang (30337_CR4) 2018; 8 M Ernzerhof (30337_CR43) 1998; 109 C Xia (30337_CR39) 2019; 4 Q Chang (30337_CR12) 2020; 11 G Kresse (30337_CR40) 1996; 6 30337_CR18 S Yang (30337_CR21) 2017; 7 |
References_xml | – reference: JiangYSelective electrochemical H2O2 production through two-electron oxygenElectrochem. Adv. Energ. Mater.20188180190910.1002/aenm.2018019091:CAS:528:DC%2BC1cXhslGms77I – reference: ZhaoXLiuYUnveiling the active structure of single Nickel atom catalysis: critical roles of charge capacity and hydrogen bondingJ. Am. Chem. Soc.2020142577357771:CAS:528:DC%2BB3cXktlOmur8%3D3212213210.1021/jacs.9b13872 – reference: KolyaginGAKornienkoVLEffect of trialkylammonium salts and current density on the electrosynthesis of hydrogen peroxide from oxygen in a gas-diffusion electrode in acid solutionsRuss. J. Appl. Chem.2006797467511:CAS:528:DC%2BD28XmsFSnt74%3D10.1134/S1070427206050107 – reference: ChenSDesigning boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxideJ. Am. Chem. Soc.2018140785178591:CAS:528:DC%2BC1cXhtFGisr%2FM2987406210.1021/jacs.8b02798 – reference: https://www.energy.gov/sites/prod/files/2015/08/f26/chemical_bandwidth_report.pdf. – reference: YamanakaIHashimotoTIchihashiROtsukaKDirect synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cellElectrochim. Acta200853482448321:CAS:528:DC%2BD1cXjvFOiu7s%3D10.1016/j.electacta.2008.02.009 – reference: ShenRHigh-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solutionChem20195209921101:CAS:528:DC%2BC1MXhsFKktrnP10.1016/j.chempr.2019.04.024 – reference: HooverWGCanonical dynamics: equilibrium phase-space distributionsPhys. Rev. A198531169516971985PhRvA..31.1695H1:STN:280:DC%2BC2sjotlWltA%3D%3D10.1103/PhysRevA.31.1695 – reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 – reference: Verdaguer-CasadevallATrends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineeringNano Lett.201414160316082014NanoL..14.1603V1:CAS:528:DC%2BC2cXitVygtrw%3D2450622910.1021/nl500037x – reference: ErnzerhofMPerdewJPGeneralized gradient approximation to the angle- and system-averaged exchange holeJ. Chem. Phys.1998109331333201998JChPh.109.3313E1:CAS:528:DyaK1cXltFCnu7k%3D10.1063/1.476928 – reference: YangSToward the decentralized electrochemical production of H2O2: a focus on the catalysisACS Catal.20188406440811:CAS:528:DC%2BC1cXmtFCntr0%3D10.1021/acscatal.8b00217 – reference: HanG-FBuilding and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2Nat. Commun.2020112020NatCo..11.2209H1:CAS:528:DC%2BB3cXovFGkurc%3D32371867720077810.1038/s41467-020-15782-z – reference: ChenSChemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxideAngew. Chem. Int. Ed.20216016607166142021shsl.book.....C1:CAS:528:DC%2BB3MXhsVKmu77E10.1002/anie.202104480 – reference: KimHWEfficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalystsNat. Catal.2018128229010.1038/s41929-018-0044-2 – reference: Campos-MartinJMBlanco-BrievaGFierroJLGHydrogen peroxide synthesis: an outlook beyond the anthraquinone processAngew. Chem. Int. Ed.200645696269841:CAS:528:DC%2BD28Xht1antb%2FL10.1002/anie.200503779 – reference: PerrySCElectrochemical synthesis of hydrogen peroxide from water and oxygenNat. Rev. Chem.201934424581:CAS:528:DC%2BC1MXht1Klu7bK10.1038/s41570-019-0110-6 – reference: GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.33823441:CAS:528:DC%2BC3cXkvVyks7o%3D – reference: JiangKHighly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordinationNat. Commun.2019102019NatCo..10.3997J31488826672832810.1038/s41467-019-11992-21:CAS:528:DC%2BC1MXhslCgsrjF – reference: MathewKKolluruVSCMulaSSteinmannSNHennigRGImplicit self-consistent electrolyte model in plane-wave density-functional theoryJ. Chem. Phys.20191512341012019JChPh.151w4101M3186423910.1063/1.51323541:CAS:528:DC%2BC1MXisVertb%2FN – reference: Li, X. et al. Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater., 2021, 2104891. – reference: SunYActivity–selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal–nitrogen–carbon catalystsJ. Am. Chem. Soc.201914112372123811:CAS:528:DC%2BC1MXhtlOhurfL3130601610.1021/jacs.9b05576 – reference: ChangQPromoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbonNat. Commun.2020112020NatCo..11.2178C1:CAS:528:DC%2BB3cXhtVGmt7zN32358548719549010.1038/s41467-020-15843-3 – reference: ChenZDevelopment of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2React. Chem. Eng.2017223924510.1039/C6RE00195E – reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 – reference: ZhangQDirect insights into the role of epoxy groups on cobalt sites for acidic H2O2 productionNat. Commun.2020112020NatCo..11.4181Z32826877744282410.1038/s41467-020-17782-5 – reference: SiahrostamiSEnabling direct H2O2 production through rational electrocatalyst designNat. Mater.20131213771143.10.1038/nmat37951:CAS:528:DC%2BC3sXhslygsbrO – reference: DongKNoble-metal-free electrocatalysts toward H2O2 productionJ. Mater. Chem. A2020823123231411:CAS:528:DC%2BB3cXitVOqtbjL10.1039/D0TA08894C – reference: Pulidindi, K. & Pandey, H. Hydrogen peroxide market size by end-user Industry (Paper & Pulp, Chemical, Waste Water Treatment, Mining), Industry Analysis Report, Regional Outlook, Application Potential, Price Trends, Competitive Market Share & Forecast, 2020–2026, https://www.gminsights.com/industry-analysis/hydrogen-peroxide-market (2016). – reference: XiaCXiaYZhuPFanLWangHDirect electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyteScience20193662262312019Sci...366..226X1:CAS:528:DC%2BC1MXhvFKhsLvL3160176710.1126/science.aay1844 – reference: HuangJELiFOzdenARasouliASCO2 electrolysis to multicarbon products in strong acidScience2021372107410782021Sci...372.1074H1:CAS:528:DC%2BB3MXht1GmsLnN3408348510.1126/science.abg6582 – reference: ZhaoXLiuYOrigin of selective production of hydrogen peroxide by electrochemical oxygen reductionJ. Am. Chem. Soc.2021143942394281:CAS:528:DC%2BB3MXhtlWltLnL10.1021/jacs.1c02186 – reference: CiriminnaRAlbaneseLMeneguzzoFPagliaroMHydrogen peroxide: a key chemical for today’s sustainable developmentChemSusChem20169337433811:CAS:528:DC%2BC28Xhsl2itrrP2781328510.1002/cssc.201600895 – reference: YangSTakYJKimJSoonALeeHSupport effects in single-atom platinum catalysts for electrochemical oxygen reductionACS Catal.20177130113071:CAS:528:DC%2BC28XitFaitb3I10.1021/acscatal.6b02899 – reference: JungEAtomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 productionNat. Mater.2020194364422020NatMa..19..436J1:CAS:528:DC%2BB3cXpsFOqsg%3D%3D3193267110.1038/s41563-019-0571-5 – reference: ZhangXXiaYXiaCWangHInsights into practical-scale electrochemical H2O2 synthesisTrends Chem.2020294295310.1016/j.trechm.2020.07.0071:CAS:528:DC%2BB3cXit1Kqur%2FI – reference: LiHScalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathwaysNat. Commun.2020112020NatCo..11.3928L1:CAS:528:DC%2BB3cXhsFGmtLnP32764644741104410.1038/s41467-020-17584-9 – reference: MelchionnaMFornasieroPPratoMThe rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductionsAdv. Mater.201931180292010.1002/adma.2018029201:CAS:528:DC%2BC1cXhsFCksbvF – reference: IglesiasDN-Doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2Chem.201841061231:CAS:528:DC%2BC1cXosFyhsg%3D%3D10.1016/j.chempr.2017.10.013 – reference: LuZHigh-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materialsNat. Catal.201811561621:CAS:528:DC%2BC1MXhtFGisLnF10.1038/s41929-017-0017-x – reference: KolyaginGAKornienkoVLKinetics of hydrogen peroxide accumulation in electrosynthesis from oxygen in gas-diffusion electrode in acidic and alkaline solutionsRuss. J. Appl. Chem.200376107010751:CAS:528:DC%2BD3sXosFCns7s%3D10.1023/A:1026398025991 – reference: QiangZChangJ-HHuangC-PElectrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutionsWater Res.20023685941:CAS:528:DC%2BD3MXot1Khtbo%3D1176682010.1016/S0043-1354(01)00235-4 – reference: TangCCoordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalystsAngew. Chem. Int. Ed.202059917191761:CAS:528:DC%2BB3cXmsVOks70%3D10.1002/anie.202003842 – reference: GaoJEnabling direct H2O2 production in acidic media through rational design of transition metal single atom catalystChem.202066586741:CAS:528:DC%2BB3cXkvFygtb4%3D10.1016/j.chempr.2019.12.008 – reference: XiaCContinuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devicesNat. Energy201947767852019NatEn...4..776X1:CAS:528:DC%2BC1MXhs12gurvL10.1038/s41560-019-0451-x – ident: 30337_CR18 doi: 10.1002/adma.202104891 – volume: 76 start-page: 1070 year: 2003 ident: 30337_CR33 publication-title: Russ. J. Appl. Chem. doi: 10.1023/A:1026398025991 – volume: 6 start-page: 658 year: 2020 ident: 30337_CR26 publication-title: Chem. doi: 10.1016/j.chempr.2019.12.008 – volume: 4 start-page: 776 year: 2019 ident: 30337_CR39 publication-title: Nat. Energy doi: 10.1038/s41560-019-0451-x – volume: 11 year: 2020 ident: 30337_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17584-9 – volume: 3 start-page: 442 year: 2019 ident: 30337_CR5 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0110-6 – volume: 10 year: 2019 ident: 30337_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11992-2 – volume: 5 start-page: 2099 year: 2019 ident: 30337_CR24 publication-title: Chem doi: 10.1016/j.chempr.2019.04.024 – volume: 4 start-page: 106 year: 2018 ident: 30337_CR29 publication-title: Chem. doi: 10.1016/j.chempr.2017.10.013 – volume: 151 start-page: 234101 year: 2019 ident: 30337_CR42 publication-title: J. Chem. Phys. doi: 10.1063/1.5132354 – volume: 1 start-page: 282 year: 2018 ident: 30337_CR8 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0044-2 – volume: 8 start-page: 1801909 year: 2018 ident: 30337_CR6 publication-title: Electrochem. Adv. Energ. Mater. doi: 10.1002/aenm.201801909 – volume: 79 start-page: 746 year: 2006 ident: 30337_CR32 publication-title: Russ. J. Appl. Chem. doi: 10.1134/S1070427206050107 – volume: 6 start-page: 15 year: 1996 ident: 30337_CR40 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – ident: 30337_CR1 – volume: 59 start-page: 9171 year: 2020 ident: 30337_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003842 – volume: 2 start-page: 239 year: 2017 ident: 30337_CR17 publication-title: React. Chem. Eng. doi: 10.1039/C6RE00195E – volume: 132 start-page: 154104 year: 2010 ident: 30337_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 141 start-page: 12372 year: 2019 ident: 30337_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05576 – volume: 366 start-page: 226 year: 2019 ident: 30337_CR38 publication-title: Science doi: 10.1126/science.aay1844 – volume: 12 start-page: 1377 year: 2013 ident: 30337_CR23 publication-title: Nat. Mater. doi: 10.1038/nmat3795 – volume: 45 start-page: 6962 year: 2006 ident: 30337_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503779 – volume: 8 start-page: 4064 year: 2018 ident: 30337_CR4 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00217 – volume: 14 start-page: 1603 year: 2014 ident: 30337_CR22 publication-title: Nano Lett. doi: 10.1021/nl500037x – volume: 53 start-page: 4824 year: 2008 ident: 30337_CR31 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.02.009 – volume: 142 start-page: 5773 year: 2020 ident: 30337_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13872 – volume: 36 start-page: 85 year: 2002 ident: 30337_CR19 publication-title: Water Res. doi: 10.1016/S0043-1354(01)00235-4 – volume: 143 start-page: 9423 year: 2021 ident: 30337_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02186 – volume: 1 start-page: 156 year: 2018 ident: 30337_CR9 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0017-x – volume: 140 start-page: 7851 year: 2018 ident: 30337_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02798 – volume: 372 start-page: 1074 year: 2021 ident: 30337_CR34 publication-title: Science doi: 10.1126/science.abg6582 – volume: 11 year: 2020 ident: 30337_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15843-3 – volume: 60 start-page: 16607 year: 2021 ident: 30337_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104480 – volume: 8 start-page: 23123 year: 2020 ident: 30337_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08894C – volume: 19 start-page: 436 year: 2020 ident: 30337_CR10 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0571-5 – volume: 2 start-page: 942 year: 2020 ident: 30337_CR7 publication-title: Trends Chem. doi: 10.1016/j.trechm.2020.07.007 – ident: 30337_CR20 – volume: 31 start-page: 1802920 year: 2019 ident: 30337_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.201802920 – volume: 109 start-page: 3313 year: 1998 ident: 30337_CR43 publication-title: J. Chem. Phys. doi: 10.1063/1.476928 – volume: 11 year: 2020 ident: 30337_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15782-z – volume: 7 start-page: 1301 year: 2017 ident: 30337_CR21 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02899 – volume: 31 start-page: 1695 year: 1985 ident: 30337_CR45 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 9 start-page: 3374 year: 2016 ident: 30337_CR2 publication-title: ChemSusChem doi: 10.1002/cssc.201600895 – volume: 47 start-page: 558 year: 1993 ident: 30337_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 11 year: 2020 ident: 30337_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17782-5 |
SSID | ssj0000391844 |
Score | 2.6860816 |
Snippet | Electrochemical oxygen reduction to hydrogen peroxide (H
2
O
2
) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors,... Electrochemical oxygen reduction to hydrogen peroxide (H O ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers... Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers... Electrochemical oxygen reduction to H2O2 in acidic media suffers from low selectivity, especially at high current densities. Here, the authors report a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2880 |
SubjectTerms | 147/135 639/166/898 639/301/299/886 639/638/161/886 639/638/77/885 Additives Alkali metals Black carbon Carbon black Catalysts Cations Density functional theory Electrochemistry Electrolytes Humanities and Social Sciences Hydrogen peroxide Metal ions multidisciplinary Oxygen Protons Reactors Science Science (multidisciplinary) Selectivity Shielding Solid electrolytes |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EXyR-V03JYJvWtY2aZo-icrGEPTJwX0L-dwK0m63Hez-956T5nZcP0ZfQpNAknOS_HJO8juEvGdCM8fLMq8CgwMKa00uS0gF51rJHGyADl8jf_8hTs_4t1W9Sga3MV2r3K6JcaF2g0Ub-RFsJLIWUoj20-VVjlGj0LuaQmjcJw-QugyvdDWrZrGxIPu55Dy9lSmYPBp5XBniFfaCMUjt7EeRtv9fWPPvK5N_-E3jdnSyTx4nHEk_z4J_Qu75_il5OEeW3Dwj6ngOb2MTHwAdbjagKnSNTK0oCzoN9GLj1gP-RbLwm855qieank1BFSSRGGnX0xHN5edU2851lsa3Js_J2cnxz6-neYqlkFvAZFMueECqNa1DqFxlrJE2aMEsF8ILwX2lNWDFUJhQaBEqPFc5NHGEyhvdMs5ekL1-6P0rQq0UsDB428DHBQugBbUxbWBweAJ0VWWk3I6osoloHONd_FLR4c2kmqWgQAoqSkEVGfmw1LmcaTbuLP0FBbWURIrs-GNYn6s041RdQpe0D6UxgQMI0QVg0bIMtWuk4aXJyOFWzCrN21HdallG3i3ZMOPQjaJ7P1zHMm0N0KhtMvJy1oqlJQzhaNlC7WZHX3aaupvTdxeR1buNLmSRkY9bzbpt1v-H4vXdvTggjypU9qLOK35I9qb1tX8DKGoyb-NU-Q0neBpu priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_OE8EX8dvqKRF802rTpGnzIKJyxyGcTy7cW8jnXeFotduD3f_eSdpdWV19kr6UfECamUl-k3R-A_CKCc0cpzQvA0MHhUmTNxTfgnOyYQ43QBejkc--itMF_3JenR_AJt3RPIHLva5dzCe1GK7ern6sP6DBv59Cxpt3S57MPf2XXjCGbzfgJu5MdTTUsxnup5WZSXRo-Bw7s7_rzv6UaPz3Yc8_f6H87R41bU8nd-HOjCvJx0kR7sGB7-7DrSnT5PoBqOMp3Y2d-QFIv1qj6pAhMrdG2ZCxJ5drN_SxNJKHr1rniR7JHEaFXSKpxJK0HVnG4_MLom3rWktS7MlDWJwcf_t8ms-5FXKLGG3MBQ-Rek3rEEpXGmsaG7RglgvhheC-1BqxYyhMKLQIZfSzXDzyCKU3WjLOHsFh13f-CRDbCFwovK3x4YIF1IrKGBkYOlOItsoM6GZGlZ2Jx2P-iyuVLsBZoyYpKJSCSlJQRQavt32-T7Qb_2z9KQpq2zJSZqeCfrhQswWqiuInaR-oMYEjKNEFYlNKQ-XqxnBqMjjaiFlt1FAhfGkq0QghM3i5rUYLjNcquvP9dWojK4RKss7g8aQV25GwCE-pxN71jr7sDHW3pmsvE8u3TFfKIoM3G836Nay_T8XT_zEVz-B2GU2iqPKSH8HhOFz754i9RvMiGdRP5cMqhw priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61Ivgi3l2tEsE3XdxcNif7qIeWIuiThb6FXNsF2S3nbKHn3zuTvcjRKsi-hGQC2cwk-XKZbwh5J5QVQTJW8iRggyIaV2oGqRRCo0WABTCgN_LXb-r0TH45r88PCJ99YfKj_Uxpmafp-XXYx63MQzq_Pa-EgNQdchep29Gq12q9nKsg47mWcvKPqYS-pereGpSp-m_Dl38-k_ztrjQvQScPyYMJO9JPY2sfkYPYPSb3xmiSuyfEHI8hbfzEAUD7mx2YB90gOyv2Px16erkLmx5zkSD8pg2R2oFOrlJQBYkjtrTt6BaPyC-o9W1oPc3-JU_J2cnx9_VpOcVPKD3gsKFUMiG9mrUp8cCdd9onq4SXSkWlZOTWAj5MlUuVVYnjXirgsUbi0dlGSPGMHHZ9F18Q6rWCySD6FXxSiQSar51rkoANEyAqXhA296jxE7k4xrj4YfIlt9Bm1IIBLZisBVMV5P1S52qk1vin9GdU1CKJtNg5o99cmMlMTM3gl2xMzLkkAXjYCvAnY6kOK-0kcwU5mtVsprG6NQBRdK20Uk1B3i7FMMrw6sR2sb_OMk0NcKhZFeT5aBVLSwRCUNZA7dWevew1db-kay8zk3eTr41VQT7MlvWrWX_vipf_J_6K3Odo_FVdcnlEDofNdXwNSGpwb_LQ-QkNsBf6 priority: 102 providerName: Springer Nature |
Title | Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media |
URI | https://link.springer.com/article/10.1038/s41467-022-30337-0 https://www.ncbi.nlm.nih.gov/pubmed/35610199 https://www.proquest.com/docview/2668568669 https://www.proquest.com/docview/2669502197 https://pubmed.ncbi.nlm.nih.gov/PMC9130276 https://doaj.org/article/51aa0aef1bbf4614a050811f5d78b41b |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY99z1wUN9raZWpYsS49pSFYCLWNbIW9Cn6th2CNJofnve5KdrNnnyzDYRpZA3J10v7Ok3yH0lnJNHSMkLwOFAIVKkwsCb8E5KagDB-jiaeSzc356weaLanEr1VfcE9bTA_eCO66I1oX2gRgTGPgSXQCkICRUrhaGERNnX_B5t4KpNAdTCaELG07JFFQcr1iaE9Lm9YJSeNvzRImw_3co89fNkj-tmCZHNHuEHg4IEo_7nj9Gd3z7BN3vc0puniI17RPb2IEJAHfXGzASvIwcrVELeN3hy41bdrE00oRfN85jvcbDgSloEukjVrhp8Sr-KP-KtW1cY3E6ZfIMXcymXyan-ZBFIbeAxtY5ZyGSrGkdQulKY42wQXNqGeeec-ZLkK-UoTCh0DyUMaJy8edGKL3RkjL6HB20XetfImwFhynB2xouxmkA_VfGyEAhbAJcVWaIbCWq7EAxHjNdfFNpqZsK1WtBgRZU0oIqMvRu1-Z7T7Dx19onUVG7mpEcOxWAyajBZNS_TCZDR1s1q2HErhQAFVFxwbnM0JvdZxhrcQFFt767SnVkBaBI1hl60VvFric0AlEioXW9Zy97Xd3_0jaXic9bpsVjnqH3W8v60a0_i-Lwf4jiFXpQxiFRVHnJjtDBennlXwPKWpsRulsvariL2YcRujcezz_P4XkyPf_4CUonfDJKQw7uZ0zcAMmHKas |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4ia2I6THBDi0WpLH6dW2pvxs10JJWV3K7p_it_IjJNstTx6q3KJEjtyPA_PeDzfEPKaS82dyPOUBQ4OCq9NWuVwF5yrK-5gAXSYjXxwKEfH4uu4GK-RX0MuDB6rHHRiVNSutbhHvgULSVXISsr6w9mPFKtGYXR1KKHRscWeX_wEl232fvcL0PcNYzvbR59HaV9VILVgncxTKQKCjmkdAnPMWFPZoCW3QkovpfBMa7CaQmZCpmVg6GE4dPYD80bXXHD47g1yExbeDCWqHJfLPR1EW6-E6HNzMl5tzUTURPHIfMY53K2sf7FMwL9s27-PaP4Rp43L3849cre3W-nHjtHukzXfPCC3ukqWi4dEbXfldGyPP0DbiwWwJp0iMizSns5berpw0xafIjj5xcR5que0T9OCLghaMaOThs5we_6EajtxE0tjbssjcnwts_yYrDdt458QaisJisjbEi4heQCuK4ypAwdnDaw5lpB8mFFle2BzrK_xXcUAO69URwUFVFCRCipLyNtln7MO1uPK1p-QUMuWCMkdH7TTE9VLuCpy-CXtQ25MEGD06Axs3zwPhSsrI3KTkM2BzKrXEzN1ydUJebV8DRKOYRvd-PY8tqkLMMXqMiEbHVcsR8LR_M1r6F2u8MvKUFffNJPTiCJex5C1TMi7gbMuh_X_qXh69V-8JLdHRwf7an_3cO8ZucOQ8bMiZWKTrM-n5_45WHBz8yKKDSXfrltOfwNe0VgX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNHGjzjJASGgXbUUKg5U2puxY7tdCSVldyu6f41fx4yTbLU8eqtyiRI7cjwPf-PxzBDyQigjnGQs5UGAgSIqm5YM7oJzVSkcLIAOo5E_H6jdQ_lxkk82yK8hFgaPVQ46MSpq19a4Rz6ChaTMValUNQr9sYgv2-O3Jz9SrCCFntahnEbHIvt--RPMt_mbvW2g9UvOxztfP-ymfYWBtAakskiVDJiAzJgQuOO2tmUdjBK1VMorJT03BhBUyGzIjAocrQ2Hhn_g3ppKSAHfvUKuFiJnKGPFpFjt72Dm9VLKPk4nE-VoLqNWisfnMyHgbm0tjCUD_oVz_z6u-YfPNi6F41vkZo9h6buO6W6TDd_cIde6qpbLu0TvdKV16j4XAW3PlsCmdIZZYpEP6KKlx0s3a_EpJio_mzpPzYL2IVvQBRNYzOm0oXPcqj-ipp66aU1jnMs9cngps3yfbDZt4x8SWpcKlJKvC7ikEgE4MLe2CgIMN0B2PCFsmFFd90nOsdbGdx2d7aLUHRU0UEFHKugsIa9WfU66FB8Xtn6PhFq1xPTc8UE7O9K9tOucwS8ZH5i1QQIAMhngYMZC7orSSmYTsjWQWfc6Y67POTwhz1evQdrRhWMa357GNlUOsKwqEvKg44rVSARCYVZB72KNX9aGuv6mmR7HjOJVdF-rhLweOOt8WP-fikcX_8Uzch0kVH_aO9h_TG5w5PssT7ncIpuL2al_AmBuYZ9GqaHk22WL6W9pAVxN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+oxygen+reduction+to+hydrogen+peroxide+at+practical+rates+in+strong+acidic+media&rft.jtitle=Nature+communications&rft.au=Xiao+Zhang&rft.au=Xunhua+Zhao&rft.au=Peng+Zhu&rft.au=Zachary+Adler&rft.date=2022-05-24&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-022-30337-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_51aa0aef1bbf4614a050811f5d78b41b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |