Sociodemographic characteristics of missing data in digital phenotyping
The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphone...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 15408 - 11 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.07.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies. |
---|---|
AbstractList | The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies. The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies. The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for "digital phenotyping," the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies.The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for "digital phenotyping," the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies. Abstract The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies. |
ArticleNumber | 15408 |
Author | Coombs, Garth Kiang, Mathew V. Chen, Jarvis T. Buckee, Caroline O. Onnela, Jukka-Pekka Buckner, Randy L. Rich-Edwards, Janet W. Baker, Justin T. Alexander, Monica J. Carlson, Kenzie W. Krieger, Nancy |
Author_xml | – sequence: 1 givenname: Mathew V. surname: Kiang fullname: Kiang, Mathew V. organization: Department of Epidemiology and Population Health, Stanford University School of Medicine – sequence: 2 givenname: Jarvis T. surname: Chen fullname: Chen, Jarvis T. organization: Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health – sequence: 3 givenname: Nancy surname: Krieger fullname: Krieger, Nancy organization: Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health – sequence: 4 givenname: Caroline O. surname: Buckee fullname: Buckee, Caroline O. organization: Department of Epidemiology, Harvard T.H. Chan School of Public Health – sequence: 5 givenname: Monica J. surname: Alexander fullname: Alexander, Monica J. organization: Department of Sociology, University of Toronto, Department of Statistical Sciences, University of Toronto – sequence: 6 givenname: Justin T. surname: Baker fullname: Baker, Justin T. organization: Department of Psychiatry, Harvard Medical School, Institute for Technology in Psychiatry, McLean Hospital – sequence: 7 givenname: Randy L. surname: Buckner fullname: Buckner, Randy L. organization: Department of Psychology, Harvard University, Department of Psychiatry, Massachusetts General Hospital, Department of Radiology, Massachusetts General Hospital – sequence: 8 givenname: Garth surname: Coombs fullname: Coombs, Garth organization: Department of Psychology, Harvard University – sequence: 9 givenname: Janet W. surname: Rich-Edwards fullname: Rich-Edwards, Janet W. organization: Department of Epidemiology, Harvard T.H. Chan School of Public Health, Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical – sequence: 10 givenname: Kenzie W. surname: Carlson fullname: Carlson, Kenzie W. organization: Department of Biostatistics, Harvard T.H. Chan School of Public Health – sequence: 11 givenname: Jukka-Pekka surname: Onnela fullname: Onnela, Jukka-Pekka email: onnela@hsph.harvard.edu organization: Department of Biostatistics, Harvard T.H. Chan School of Public Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34326370$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1P3DAUtBAVUMof6KGK1EsvKf5OfKlUoZYiIXFoe7ZeHDvrVdZO7SwS_74OoRQ44Istv3nj8bx5iw5DDBah9wR_Jpi155kTodoaU1IrLoismwN0QjEXNWWUHj45H6OznLe4LEEVJ-oIHTPOqGQNPkGXP6Pxsbe7OCSYNt5UZgMJzGyTz7M3uYqu2vmcfRiqHmaofKh6P_gZxmra2BDnu6nU3qE3DsZszx72U_T7-7dfFz_q65vLq4uv17URHM-1MI4KBtC7VkHjDKVOYUWpakCJRuEWOoVZxxuQ0FGuVC-NwhJLRfpGuoadoquVt4-w1VPyO0h3OoLX9xcxDRpS0T1azYjhwCyHruOcubaTjhBHrCROmBZ44fqyck37bmd7Y8OcYHxG-rwS_EYP8Va3xVUmZSH49ECQ4p-9zbMuThk7jhBs3GdNhWgoJS3DBfrxBXQb9ykUqxaUJFwRvqA-PFX0KOXfvAqArgCTYs7JukcIwXrJhV5zoUsu9H0u9OJZ-6LJlPHNPi6_8uPrrWxtzeWdMNj0X_YrXX8BoorL8A |
CitedBy_id | crossref_primary_10_1038_s41746_025_01451_2 crossref_primary_10_1038_s44159_023_00235_3 crossref_primary_10_1186_s44247_024_00116_6 crossref_primary_10_1016_j_chb_2024_108422 crossref_primary_10_2196_39546 crossref_primary_10_1111_cdev_14125 crossref_primary_10_3390_s24196246 crossref_primary_10_1038_s41467_022_29766_8 crossref_primary_10_2196_59974 crossref_primary_10_1089_tmj_2024_0023 crossref_primary_10_1177_20552076231222097 crossref_primary_10_2196_31877 crossref_primary_10_2196_52831 crossref_primary_10_2196_57439 crossref_primary_10_3758_s13428_024_02474_5 crossref_primary_10_1002_acn3_52050 crossref_primary_10_1016_j_invent_2023_100657 crossref_primary_10_1007_s41347_023_00310_9 crossref_primary_10_1038_s41746_024_01343_x crossref_primary_10_1136_bmjment_2023_300718 crossref_primary_10_2196_42866 crossref_primary_10_1038_s42256_022_00596_z crossref_primary_10_2196_55170 |
Cites_doi | 10.1097/HRP.0000000000000133 10.2196/publichealth.5814 10.1001/jamasurg.2019.4702 10.1371/journal.pcbi.1002616 10.1093/jamia/ocaa201 10.1097/EDE.0000000000000239 10.1038/npp.2016.7 10.7717/peerj.2537 10.1038/nbt.3223 10.1016/s2589-7500(20)30193-x 10.2196/mental.5165 10.1038/s41746-018-0022-8 10.1001/jama.2017.11295 10.1007/s11920-015-0602-0 10.1093/biostatistics/kxy059 10.1200/CCI.17.00149 10.2196/publichealth.8950 10.1038/s41386-020-0771-3 10.1038/tp.2017.25 10.1126/science.1223467 10.18637/jss.v076.i01 10.1038/s41386-018-0030-z 10.1093/jamia/ocab069 10.1007/s11222-016-9696-4 10.1038/s41598-020-79438-0 10.18637/jss.v080.i01 10.1186/s40504-017-0065-7 10.1007/s10586-020-03061-x 10.1038/s41537-017-0038-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-94516-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Education |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_31c4a3e4abb443f8b6f11f1e61f5c8a4 PMC8322366 34326370 10_1038_s41598_021_94516_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article Observational Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Harvard Catalyst grantid: 3UL1TR001102 funderid: http://dx.doi.org/10.13039/100007299 – fundername: National Institute on Drug Abuse grantid: T90DA022759 funderid: http://dx.doi.org/10.13039/100000026 – fundername: National Institute of Mental Health grantid: DP2MH103909; U01MH116925; DP2MH103909; DP2MH103909 funderid: http://dx.doi.org/10.13039/100000025 – fundername: NIMH NIH HHS grantid: DP2 MH103909 – fundername: NIDA NIH HHS grantid: T90 DA022759 – fundername: NIMH NIH HHS grantid: U01 MH116925 – fundername: NCATS NIH HHS grantid: UL1 TR001102 – fundername: NIDA NIH HHS grantid: K99 DA051534 – fundername: ; grantid: DP2MH103909; U01MH116925; DP2MH103909; DP2MH103909 – fundername: ; grantid: 3UL1TR001102 – fundername: ; grantid: T90DA022759 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-5cf253aadf89a7fc22f9092297a957908ab903b47a6ab2499d6c9060691d76f73 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:22 EDT 2025 Thu Aug 21 14:14:26 EDT 2025 Tue Aug 05 09:52:15 EDT 2025 Wed Aug 13 11:26:23 EDT 2025 Mon Jul 21 05:24:33 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Tue Jul 01 03:48:59 EDT 2025 Fri Feb 21 02:39:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-5cf253aadf89a7fc22f9092297a957908ab903b47a6ab2499d6c9060691d76f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.proquest.com/docview/2556149140?pq-origsite=%requestingapplication% |
PMID | 34326370 |
PQID | 2556149140 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31c4a3e4abb443f8b6f11f1e61f5c8a4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8322366 proquest_miscellaneous_2557221830 proquest_journals_2556149140 pubmed_primary_34326370 crossref_primary_10_1038_s41598_021_94516_7 crossref_citationtrail_10_1038_s41598_021_94516_7 springer_journals_10_1038_s41598_021_94516_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-29 |
PublicationDateYYYYMMDD | 2021-07-29 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2018). iPhone Users Earn Higher Income, Engage More on Apps than Android Users (2014). https://www.comscore.com/ita/Public-Relations/Infographics/iPhone-Users-Earn-Higher-Income-Engage-More-on-Apps-than-Android-Users (accessed Sept 20, 2020). VehtariAGelmanAGabryJPractical Bayesian model evaluation using leave-one-out cross-validation and WAICStat. Comput.20172714131432364710510.1007/s11222-016-9696-4 DeGusta. M. Are smart phones spreading faster than any technology in human history? MIT Technology Review (2012). LuFHouSBaltrusaitisKAccurate influenza monitoring and forecasting using novel internet data streams: A case study in the boston metropolisJMIR Public Health Surveillance20184e410.2196/publichealth.8950 Kemp, S. Global digital report 2018. We Are Social (2018). CarpenterBGelmanAHoffmanMDStan: A probabilistic programming languageJ. Stat. Softw.201710.18637/jss.v076.i01 SalathéMBengtssonLBodnarTJDigital epidemiologyPLoS Comput. Biol.20128e100261610.1371/journal.pcbi.1002616 WesolowskiAEagleNTatemAJQuantifying the impact of human mobility on malariaScience20123382672702012Sci...338..267W1:CAS:528:DC%2BC38XhsVKrtrzF10.1126/science.1223467 TorousJStaplesPOnnelaJ-PRealizing the potential of mobile mental health: New methods for new data in psychiatryCurr. Psychiatry Rep.2015176110.1007/s11920-015-0602-0 WrightAARamanNStaplesPThe HOPE pilot study: Harnessing patient-reported outcomes and biometric data to enhance cancer careClin. Cancer Inform.201810.1200/CCI.17.00149 TorousJFirthJMuellerNOnnelaJBakerJTMethodology and reporting of mobile health and smartphone application studies for schizophreniaHarv. Rev. Psychiatry20172514615410.1097/HRP.0000000000000133 BarnettITorousJReederHTBakerJOnnelaJ-PDetermining sample size and length of follow-up for smartphone-based digital phenotyping studiesJ. Am. Med. Inform. Assn.2020271844184910.1093/jamia/ocaa201 WatanabeSA widely applicable bayesian information criterionJ. Mach. Learn. Res.20121486789730494921320.62058 Statista. Subscriber share held by smartphone operating systems in the United States from 2012 to 2018 (2018). InselTRDigital phenotyping: Technology for a new science of behaviorJAMA20173181215121610.1001/jama.2017.11295 TorousJOnnelaJ-PKeshavanMNew dimensions and new tools to realize the potential of RDoC: Digital phenotyping via smartphones and connected devicesTransl. Psychiatry20177e10531:STN:280:DC%2BC1czjsFOjuw%3D%3D10.1038/tp.2017.25 WesolowskiAO’MearaWTatemAJNdegeSEagleNBuckeeCOQuantifying the impact of accessibility on preventive healthcare in sub-saharan africa using mobile phone dataEpidemiology20152622322810.1097/EDE.0000000000000239 TorousJKiangMVLormeJOnnelaJ-PNew tools for new research in psychiatry: A scalable and customizable platform to empower data driven smartphone researchJMIR Mental Health20163e1610.2196/mental.5165 Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Using Stan. https://doi.org/10.18637/jss.v080.i01. (2017). GelmanAGoodrichBGabryJVehtariAR-squared for Bayesian regression modelsAm. Statist.201873163989374 Pew Research Center, Smartphone Ownership Is Growing Rapidly Around the World, but Not Always Equally (2019). https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/ (accessed June 21, 2021). KiangMVSantillanaMChenJTIncorporating human mobility data improves forecasts of Dengue fever in ThailandSci. Rep. U.K.2021119231:CAS:528:DC%2BB3MXhsVOls7s%3D10.1038/s41598-020-79438-0 LittleRJARubinDBStatistical Analysis with Missing Data20193Wiley1411.62006 Onnela, J.-P. Opportunities and challenges in the collection and analysis of digital phenotyping data. Neuropsychopharmacol 46, 45–54 (2021). LiuGOnnelaJ-PBidirectional imputation of spatial GPS trajectories with missingness using sparse online Gaussian processJ. Am. Med. Inform. Assn.202110.1093/jamia/ocab069 OnnelaJ-PRauchSLHarnessing smartphone-based digital phenotyping to enhance behavioral and mental healthNeuropsychopharmacology201641169110.1038/npp.2016.7 iPhone Users Spend $101 Every Month on Tech Purchases, Nearly Double of Android Users, According to a Survey Conducted by Slickdeals (2018). https://www.prnewswire.com/news-releases/iphone-users-spend-101-every-month-on-techpurchases-nearly-double-of-android-users-according-to-a-survey-conducted-by-slickdeals-300739582.html. (accessed Sept 20, 2020). Vehtari, A., Simpson, D., Gelman, A., Yao, Y., & Gabry. J. Pareto Smoothed Importance Sampling. Arxiv (2015). eMarketer. US Smartphone OS Race Still Close, as Men, Younger Users Favor Android. 2013; published online June 12. https://www.emarketer.com/Article/US-Smartphone-OS-Race-Still-Close-Men-Younger-Users-Favor-Android/1009961 (accessed Sept 17, 2020). IHS. More than six billion smartphones by 2020, IHS Markit Says. IHS Markit (2017). KishoreNKiangMVEngø-MonsenKMeasuring mobility to monitor travel and physical distancing interventions: A common framework for mobile phone data analysisLancet Digit. Heal.202010.1016/s2589-7500(20)30193-x SaebSLattieEGSchuellerSMKordingKPMohrDCThe relationship between mobile phone location sensor data and depressive symptom severityPeerJ20164e253710.7717/peerj.2537 BarnettIOnnelaJ-PInferring mobility measures from GPS traces with missing dataBiostatistics201821e98112413335410.1093/biostatistics/kxy059 Hoffman, M. D., Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, Vol. 15 (2014). Coombs III, G. Using single-subject designs to probe dynamics associated with stress and transitions to college life. Doctoral dissertation submitted to Harvard University. (2020) Published online May 1, 2020. Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. Rank-Normalization, Folding, and Localization: An Improved R for Assessing Convergence of MCMC. Arxiv (2019). BarnettITorousJStaplesPSandovalLKeshavanMOnnelaJ-PRelapse prediction in schizophrenia through digital phenotyping: A pilot studyNeuropsychopharmacology2018431660166610.1038/s41386-018-0030-z RashidAZebMARashidAAnwarSJoaquimFHalimZConceptualization of smartphone usage and feature preferences among various demographicsClust. Comput.2020231855187310.1007/s10586-020-03061-x SalathéMDigital epidemiology: what is it, and where is it going?Life Sci. Soc. Policy20181412018SpPol..43....1S10.1186/s40504-017-0065-7 JainSHPowersBWHawkinsJBBrownsteinJSThe digital phenotypeNat. Biotechnol.2015334621:CAS:528:DC%2BC2MXhtFemtrnN10.1038/nbt.3223 MajumderMSSantillanaMMekaruSRMcGinnisDPKhanKBrownsteinJSUtilizing nontraditional data sources for near real-time estimation of transmission dynamics during the 2015–2016 Colombian Zika Virus disease outbreakJMIR Public Health Surveillance20162e3010.2196/publichealth.5814 TorousJStaplesPBarnettISandovalLRKeshavanMOnnelaJ-PCharacterizing the clinical relevance of digital phenotyping data quality with applications to a cohort with schizophreniaNpj Digit. Med.201811510.1038/s41746-018-0022-8 StaplesPTorousJBarnettIA comparison of passive and active estimates of sleep in a cohort with schizophreniaNPJ Schizophr.201733710.1038/s41537-017-0038-0 PandaNSolskyIHuangEJUsing smartphones to capture novel recovery metrics after cancer surgeryJama Surg.202015512312910.1001/jamasurg.2019.4702 Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models, Vol. 1 (2014). Demographics of Mobile Device Ownership and Adoption in the United States | Pew Research Center. n.d. https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed June 21, 2021). 94516_CR35 J Torous (94516_CR27) 2017; 7 94516_CR36 94516_CR37 MS Majumder (94516_CR12) 2016; 2 94516_CR16 J Torous (94516_CR18) 2015; 17 94516_CR38 94516_CR39 A Wesolowski (94516_CR8) 2012; 338 N Kishore (94516_CR11) 2020 A Wesolowski (94516_CR10) 2015; 26 F Lu (94516_CR13) 2018; 4 AA Wright (94516_CR26) 2018 I Barnett (94516_CR31) 2018; 21 M Salathé (94516_CR7) 2018; 14 J-P Onnela (94516_CR17) 2016; 41 S Watanabe (94516_CR43) 2012; 14 TR Insel (94516_CR19) 2017; 318 J Torous (94516_CR28) 2017; 25 A Gelman (94516_CR46) 2018; 73 MV Kiang (94516_CR9) 2021; 11 SH Jain (94516_CR14) 2015; 33 94516_CR5 94516_CR45 I Barnett (94516_CR22) 2018; 43 94516_CR24 94516_CR3 I Barnett (94516_CR34) 2020; 27 94516_CR47 94516_CR4 94516_CR1 M Salathé (94516_CR6) 2012; 8 94516_CR2 N Panda (94516_CR25) 2020; 155 94516_CR29 P Staples (94516_CR23) 2017; 3 RJA Little (94516_CR33) 2019 S Saeb (94516_CR20) 2016; 4 A Rashid (94516_CR30) 2020; 23 A Vehtari (94516_CR44) 2017; 27 J Torous (94516_CR15) 2016; 3 J Torous (94516_CR21) 2018; 1 G Liu (94516_CR32) 2021 B Carpenter (94516_CR41) 2017 94516_CR40 94516_CR42 |
References_xml | – reference: OnnelaJ-PRauchSLHarnessing smartphone-based digital phenotyping to enhance behavioral and mental healthNeuropsychopharmacology201641169110.1038/npp.2016.7 – reference: Kemp, S. Global digital report 2018. We Are Social (2018). – reference: SalathéMBengtssonLBodnarTJDigital epidemiologyPLoS Comput. Biol.20128e100261610.1371/journal.pcbi.1002616 – reference: PandaNSolskyIHuangEJUsing smartphones to capture novel recovery metrics after cancer surgeryJama Surg.202015512312910.1001/jamasurg.2019.4702 – reference: Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Using Stan. https://doi.org/10.18637/jss.v080.i01. (2017). – reference: SaebSLattieEGSchuellerSMKordingKPMohrDCThe relationship between mobile phone location sensor data and depressive symptom severityPeerJ20164e253710.7717/peerj.2537 – reference: TorousJOnnelaJ-PKeshavanMNew dimensions and new tools to realize the potential of RDoC: Digital phenotyping via smartphones and connected devicesTransl. Psychiatry20177e10531:STN:280:DC%2BC1czjsFOjuw%3D%3D10.1038/tp.2017.25 – reference: Vehtari, A., Simpson, D., Gelman, A., Yao, Y., & Gabry. J. Pareto Smoothed Importance Sampling. Arxiv (2015). – reference: eMarketer. US Smartphone OS Race Still Close, as Men, Younger Users Favor Android. 2013; published online June 12. https://www.emarketer.com/Article/US-Smartphone-OS-Race-Still-Close-Men-Younger-Users-Favor-Android/1009961 (accessed Sept 17, 2020). – reference: TorousJStaplesPBarnettISandovalLRKeshavanMOnnelaJ-PCharacterizing the clinical relevance of digital phenotyping data quality with applications to a cohort with schizophreniaNpj Digit. Med.201811510.1038/s41746-018-0022-8 – reference: LuFHouSBaltrusaitisKAccurate influenza monitoring and forecasting using novel internet data streams: A case study in the boston metropolisJMIR Public Health Surveillance20184e410.2196/publichealth.8950 – reference: VehtariAGelmanAGabryJPractical Bayesian model evaluation using leave-one-out cross-validation and WAICStat. Comput.20172714131432364710510.1007/s11222-016-9696-4 – reference: WesolowskiAEagleNTatemAJQuantifying the impact of human mobility on malariaScience20123382672702012Sci...338..267W1:CAS:528:DC%2BC38XhsVKrtrzF10.1126/science.1223467 – reference: R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2018). – reference: iPhone Users Spend $101 Every Month on Tech Purchases, Nearly Double of Android Users, According to a Survey Conducted by Slickdeals (2018). https://www.prnewswire.com/news-releases/iphone-users-spend-101-every-month-on-techpurchases-nearly-double-of-android-users-according-to-a-survey-conducted-by-slickdeals-300739582.html. (accessed Sept 20, 2020). – reference: Hoffman, M. D., Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, Vol. 15 (2014). – reference: InselTRDigital phenotyping: Technology for a new science of behaviorJAMA20173181215121610.1001/jama.2017.11295 – reference: WesolowskiAO’MearaWTatemAJNdegeSEagleNBuckeeCOQuantifying the impact of accessibility on preventive healthcare in sub-saharan africa using mobile phone dataEpidemiology20152622322810.1097/EDE.0000000000000239 – reference: Statista. Subscriber share held by smartphone operating systems in the United States from 2012 to 2018 (2018). – reference: JainSHPowersBWHawkinsJBBrownsteinJSThe digital phenotypeNat. Biotechnol.2015334621:CAS:528:DC%2BC2MXhtFemtrnN10.1038/nbt.3223 – reference: Pew Research Center, Smartphone Ownership Is Growing Rapidly Around the World, but Not Always Equally (2019). https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/ (accessed June 21, 2021). – reference: LittleRJARubinDBStatistical Analysis with Missing Data20193Wiley1411.62006 – reference: KiangMVSantillanaMChenJTIncorporating human mobility data improves forecasts of Dengue fever in ThailandSci. Rep. U.K.2021119231:CAS:528:DC%2BB3MXhsVOls7s%3D10.1038/s41598-020-79438-0 – reference: Coombs III, G. Using single-subject designs to probe dynamics associated with stress and transitions to college life. Doctoral dissertation submitted to Harvard University. (2020) Published online May 1, 2020. – reference: BarnettIOnnelaJ-PInferring mobility measures from GPS traces with missing dataBiostatistics201821e98112413335410.1093/biostatistics/kxy059 – reference: GelmanAGoodrichBGabryJVehtariAR-squared for Bayesian regression modelsAm. Statist.201873163989374 – reference: WatanabeSA widely applicable bayesian information criterionJ. Mach. Learn. Res.20121486789730494921320.62058 – reference: iPhone Users Earn Higher Income, Engage More on Apps than Android Users (2014). https://www.comscore.com/ita/Public-Relations/Infographics/iPhone-Users-Earn-Higher-Income-Engage-More-on-Apps-than-Android-Users (accessed Sept 20, 2020). – reference: TorousJStaplesPOnnelaJ-PRealizing the potential of mobile mental health: New methods for new data in psychiatryCurr. Psychiatry Rep.2015176110.1007/s11920-015-0602-0 – reference: Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models, Vol. 1 (2014). – reference: CarpenterBGelmanAHoffmanMDStan: A probabilistic programming languageJ. Stat. Softw.201710.18637/jss.v076.i01 – reference: LiuGOnnelaJ-PBidirectional imputation of spatial GPS trajectories with missingness using sparse online Gaussian processJ. Am. Med. Inform. Assn.202110.1093/jamia/ocab069 – reference: StaplesPTorousJBarnettIA comparison of passive and active estimates of sleep in a cohort with schizophreniaNPJ Schizophr.201733710.1038/s41537-017-0038-0 – reference: IHS. More than six billion smartphones by 2020, IHS Markit Says. IHS Markit (2017). – reference: KishoreNKiangMVEngø-MonsenKMeasuring mobility to monitor travel and physical distancing interventions: A common framework for mobile phone data analysisLancet Digit. Heal.202010.1016/s2589-7500(20)30193-x – reference: DeGusta. M. Are smart phones spreading faster than any technology in human history? MIT Technology Review (2012). – reference: Demographics of Mobile Device Ownership and Adoption in the United States | Pew Research Center. n.d. https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed June 21, 2021). – reference: TorousJFirthJMuellerNOnnelaJBakerJTMethodology and reporting of mobile health and smartphone application studies for schizophreniaHarv. Rev. Psychiatry20172514615410.1097/HRP.0000000000000133 – reference: Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. Rank-Normalization, Folding, and Localization: An Improved R for Assessing Convergence of MCMC. Arxiv (2019). – reference: TorousJKiangMVLormeJOnnelaJ-PNew tools for new research in psychiatry: A scalable and customizable platform to empower data driven smartphone researchJMIR Mental Health20163e1610.2196/mental.5165 – reference: WrightAARamanNStaplesPThe HOPE pilot study: Harnessing patient-reported outcomes and biometric data to enhance cancer careClin. Cancer Inform.201810.1200/CCI.17.00149 – reference: MajumderMSSantillanaMMekaruSRMcGinnisDPKhanKBrownsteinJSUtilizing nontraditional data sources for near real-time estimation of transmission dynamics during the 2015–2016 Colombian Zika Virus disease outbreakJMIR Public Health Surveillance20162e3010.2196/publichealth.5814 – reference: SalathéMDigital epidemiology: what is it, and where is it going?Life Sci. Soc. Policy20181412018SpPol..43....1S10.1186/s40504-017-0065-7 – reference: BarnettITorousJReederHTBakerJOnnelaJ-PDetermining sample size and length of follow-up for smartphone-based digital phenotyping studiesJ. Am. Med. Inform. Assn.2020271844184910.1093/jamia/ocaa201 – reference: Onnela, J.-P. Opportunities and challenges in the collection and analysis of digital phenotyping data. Neuropsychopharmacol 46, 45–54 (2021). – reference: BarnettITorousJStaplesPSandovalLKeshavanMOnnelaJ-PRelapse prediction in schizophrenia through digital phenotyping: A pilot studyNeuropsychopharmacology2018431660166610.1038/s41386-018-0030-z – reference: RashidAZebMARashidAAnwarSJoaquimFHalimZConceptualization of smartphone usage and feature preferences among various demographicsClust. Comput.2020231855187310.1007/s10586-020-03061-x – ident: 94516_CR1 – ident: 94516_CR35 – volume: 25 start-page: 146 year: 2017 ident: 94516_CR28 publication-title: Harv. Rev. Psychiatry doi: 10.1097/HRP.0000000000000133 – ident: 94516_CR3 – volume: 2 start-page: e30 year: 2016 ident: 94516_CR12 publication-title: JMIR Public Health Surveillance doi: 10.2196/publichealth.5814 – volume: 155 start-page: 123 year: 2020 ident: 94516_CR25 publication-title: Jama Surg. doi: 10.1001/jamasurg.2019.4702 – ident: 94516_CR39 – ident: 94516_CR29 – ident: 94516_CR37 – volume: 8 start-page: e1002616 year: 2012 ident: 94516_CR6 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002616 – volume: 27 start-page: 1844 year: 2020 ident: 94516_CR34 publication-title: J. Am. Med. Inform. Assn. doi: 10.1093/jamia/ocaa201 – volume: 26 start-page: 223 year: 2015 ident: 94516_CR10 publication-title: Epidemiology doi: 10.1097/EDE.0000000000000239 – volume: 41 start-page: 1691 year: 2016 ident: 94516_CR17 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.7 – volume-title: Statistical Analysis with Missing Data year: 2019 ident: 94516_CR33 – volume: 4 start-page: e2537 year: 2016 ident: 94516_CR20 publication-title: PeerJ doi: 10.7717/peerj.2537 – volume: 33 start-page: 462 year: 2015 ident: 94516_CR14 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3223 – year: 2020 ident: 94516_CR11 publication-title: Lancet Digit. Heal. doi: 10.1016/s2589-7500(20)30193-x – volume: 3 start-page: e16 year: 2016 ident: 94516_CR15 publication-title: JMIR Mental Health doi: 10.2196/mental.5165 – volume: 1 start-page: 15 year: 2018 ident: 94516_CR21 publication-title: Npj Digit. Med. doi: 10.1038/s41746-018-0022-8 – ident: 94516_CR5 – volume: 318 start-page: 1215 year: 2017 ident: 94516_CR19 publication-title: JAMA doi: 10.1001/jama.2017.11295 – volume: 17 start-page: 61 year: 2015 ident: 94516_CR18 publication-title: Curr. Psychiatry Rep. doi: 10.1007/s11920-015-0602-0 – volume: 21 start-page: e98 year: 2018 ident: 94516_CR31 publication-title: Biostatistics doi: 10.1093/biostatistics/kxy059 – year: 2018 ident: 94516_CR26 publication-title: Clin. Cancer Inform. doi: 10.1200/CCI.17.00149 – volume: 4 start-page: e4 year: 2018 ident: 94516_CR13 publication-title: JMIR Public Health Surveillance doi: 10.2196/publichealth.8950 – ident: 94516_CR2 – ident: 94516_CR16 doi: 10.1038/s41386-020-0771-3 – volume: 7 start-page: e1053 year: 2017 ident: 94516_CR27 publication-title: Transl. Psychiatry doi: 10.1038/tp.2017.25 – ident: 94516_CR4 – ident: 94516_CR36 – volume: 338 start-page: 267 year: 2012 ident: 94516_CR8 publication-title: Science doi: 10.1126/science.1223467 – ident: 94516_CR38 – year: 2017 ident: 94516_CR41 publication-title: J. Stat. Softw. doi: 10.18637/jss.v076.i01 – ident: 94516_CR42 – volume: 43 start-page: 1660 year: 2018 ident: 94516_CR22 publication-title: Neuropsychopharmacology doi: 10.1038/s41386-018-0030-z – volume: 14 start-page: 867 year: 2012 ident: 94516_CR43 publication-title: J. Mach. Learn. Res. – ident: 94516_CR47 – ident: 94516_CR24 – year: 2021 ident: 94516_CR32 publication-title: J. Am. Med. Inform. Assn. doi: 10.1093/jamia/ocab069 – volume: 27 start-page: 1413 year: 2017 ident: 94516_CR44 publication-title: Stat. Comput. doi: 10.1007/s11222-016-9696-4 – volume: 11 start-page: 923 year: 2021 ident: 94516_CR9 publication-title: Sci. Rep. U.K. doi: 10.1038/s41598-020-79438-0 – ident: 94516_CR45 – ident: 94516_CR40 doi: 10.18637/jss.v080.i01 – volume: 14 start-page: 1 year: 2018 ident: 94516_CR7 publication-title: Life Sci. Soc. Policy doi: 10.1186/s40504-017-0065-7 – volume: 23 start-page: 1855 year: 2020 ident: 94516_CR30 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03061-x – volume: 3 start-page: 37 year: 2017 ident: 94516_CR23 publication-title: NPJ Schizophr. doi: 10.1038/s41537-017-0038-0 – volume: 73 start-page: 1 year: 2018 ident: 94516_CR46 publication-title: Am. Statist. |
SSID | ssj0000529419 |
Score | 2.488602 |
Snippet | The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect... Abstract The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15408 |
SubjectTerms | 692/308/174 692/700/478 Accelerometry - methods Adolescent Adult Bayes Theorem Bayesian analysis Black People Child Cognition Data collection Data Collection - methods Education Environment Feasibility Studies Female Follow-Up Studies Geographic Information Systems Global positioning systems GPS Humanities and Social Sciences Humans Male Mathematical models Middle Aged Missing data multidisciplinary Natural environment Nervous system Phenotyping Science Science (multidisciplinary) Sensitivity analysis Sensors Smartphone - instrumentation Smartphones Social Behavior Sociodemographics Sociological Factors Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLchI3MBq_IgdHwFRKiQ4Uak3y09YCbKIbg_998zY2aXheeEa25H1eZyZycx8Q8hTiW2thjEwMUjNFBgUzCofWF8SKNychTJYKPzuvT45VW_PhrMrrb4wJ6zRAzfgjiSPyssM64NSsoxBF84Lz5qXIY6-MoGCzrviTDVWb2EVt3OVTC_Ho3PQVFhNhhkJ2JyWmYUmqoT9v7Myf02W_CliWhXR8S1yc7Yg6Yu2831yLU-3yfXWU_LyDnlTS1BS_tK4qFeRxiUnM10XCoeL_wgo5ofS1UTT6iM2D6GY8LXeXGIN1V1yevz6w6sTNndLYBGsrg0bYgG8vU9ltN6UKESxvRXCGo-huH70wfYyKOO1D-B02aSj7cF_sTwZXYy8R_am9ZQfEDqkFMCTsqVIC8qL-5iUSJzD28FAMqojfIucizOVOHa0-OxqSFuOrqHtAG1X0XamI892a742Io2_zn6JB7KbiSTY9QGIhptFw_1LNDpyuD1ON9_Mc4eUa-AVgl_ZkSe7YYAdAyV-yuuLOscItB1hzv12-rudYCGulgZGzEIuFltdjkyrT5W3Gz-eUuuOPN9K0I9t_RmKh_8DigNyQ6Do94YJe0j2Nt8u8iOwpjbhcb043wFJ9RmX priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLastroaAgcQOr8SN2fKoAtVRIcKLS3izHj7ISJKW7PfTfM-N4U4VHr2vvyjsz9ow9M99HyBuBtFZN21HeCEUlBBTUSNfROgVwuDFyqbFR-MtXdXomPy-bZXlwW5eyyu2ZmA_qMHh8Iz9EqCyI5uE-cHTxiyJrFGZXC4XGXXIPocvQqvVST28smMWSzJRemVq0h2vwV9hThnUJSFFL9cwfZdj-f8Waf5dM_pE3ze7oZJc8LHFk9X5U_B65E_t9cn9klrzeRzLmUrjxiHzKTSkh_hzRqVe-8nOU5mpIFagbXw0qrBitVn0VVudIJ1JhCdiwucauqsfk7OT428dTWvgTqIc4bEMbn0ADzoXUGqeT5zyZ2nButMPkXN26ztSik9op18E1zATlTQ03GsOCVkmLJ2SnH_r4jFRNCB3crUxKwoA7Y84HyQNj8OsQMmm5IGwrResLuDhyXPywOcktWjtK3oLkbZa81QvydvrOxQitcevsD6icaSbCYucPhstzW3aZFcxLJyIYWyelSG2nEmOJRcVS41sHyzzYqtaWvbq2N5a1IK-nYRA7pk5cH4erPEdzjCZhztPREqaVYGuuEhpG9MxGZkudj_Sr7xnJG49TodSCvNta082y_i-K57f_ixfkAUcDrzXl5oDsbC6v4kuInDbdq7w9fgNXPRQN priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI_GJiQuiG8eDBQkbhDRfDRpjg_EmJ4EF5i0W5SPZjwJWrS9HfbfY6cfqDCQuDZuZTlubMf2z4S8lDjWqm4CE7XUTIFDwazygVU5gcFtW6EMNgp__KSPT9TmtD7dI2LqhSlF-wXSshzTU3XYmwswNNgMhgUFOFuWmRvkAKHaQbcP1uvN5818s4K5K8Xt2CFTyeaalxdWqID1X-dh_lko-Vu2tBihozvk9ug90vXA712y13b3yM1hnuTVffKhtJ-k9vuAQ72NNC7xmGmfKWws3g9QrA2l246m7RkODqFY7NXvrrB_6gE5OXr_5d0xGyclsAge147VMYOsvU-5sd7kKES2lRXCGo9puKrxwVYyKOO1DxBw2aSjrSB2sTwZnY18SPa7vmsfE1qnFCCKsjlLC4aL-5iUSJzD18E5MmpF-CQ5F0cYcZxm8c2VdLZs3CBtB9J2RdrOrMir-Z0fA4jGP6nf4obMlAiAXR7052duVAgneVRetqBWQSmZm6Az55m3muc6Nh7YPJy2041_5YVDuDWICCGmXJEX8zKIHZMkvmv7y0JjBPqNQPNo2P2ZE2zC1dLAilnoxYLV5Uq3_Vowu_HglFqvyOtJg36x9XdRPPk_8qfklkAlrwwT9pDs784v22fgM-3C8_En-QmAiw-W priority: 102 providerName: Springer Nature |
Title | Sociodemographic characteristics of missing data in digital phenotyping |
URI | https://link.springer.com/article/10.1038/s41598-021-94516-7 https://www.ncbi.nlm.nih.gov/pubmed/34326370 https://www.proquest.com/docview/2556149140 https://www.proquest.com/docview/2557221830 https://pubmed.ncbi.nlm.nih.gov/PMC8322366 https://doaj.org/article/31c4a3e4abb443f8b6f11f1e61f5c8a4 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_3geCL-O2e51LBN602H02aB5G95c5j4Q5RF_YtpElzt3C23t4euP-9M2m7sroKPhWStISZSWcmyfx-hLziSGuVF2XKci5TAQFFqoUt0yx4cLhVxYTCQuGzc3k6FZNZPtshPd1RJ8Cbrakd8klNF1dvf1yvPsCCf9-WjBfvbsAJYaEYXjZA3tlU7ZJ98EwKGQ3OunC_xfpmWkSuDwRhTyGYYF0dzfbPbPiqCOm_LQ798zrlb2eq0VWd3Cf3uhgzGbVG8YDsVPVDcqdlnVw9Ih9jkYqvvrVo1XOXuE3U5qQJCagfdxESvEGazOvEzy-QXiTBK2HNcoVVVo_J9OT46_g07fgUUgdx2TLNXQCNWOtDoa0KjrGgM82YVhYP67LCljrjpVBW2hLSMu2l0xlkOJp6JYPiT8he3dTVM5Lk3peQa-kQuAb3Rq3zgnlK4esQQikxILSXnHEd2DhyXlyZeOjNC9NK24C0TZS2UQPyev3O9xZq45-jj1Ah65EIkx0bmsWF6Vad4dQJyyswvlIIHopSBkoDrSQNuSssTPOwV6fpTc8gKBvkjZB5DsjLdTeIHY9SbF01t3GMYhhdwpinrfbXM8FSXckV9KgNu9iY6mZPPb-MyN74e-VSDsib3oJ-Tevvojj4L8E9J3cZ2nimUqYPyd5ycVu9gMBqWQ7JrpqpIdkfjSZfJvA8Oj7_9Blax3I8jJsVw7iefgL3ch8a |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELZKEYILgrI9KBAkOEHUeIkdHxBiK690ObXSuxnHjsuTICl9r0LvT_EbmXGWKiy99Ro70WQ89sx4lo-Q5xxhrfKiTFnOZSrAoEi1sGWaBQ8Kt6qYUFgovH8gp0fi8yyfrZFffS0MplX2Z2I8qH3j8I58C1tlgTUP_sCbkx8pokZhdLWH0GjFYrda_QSXbfF65wOs7wvGtj8evp-mHapA6sA6Waa5C0CXtT4U2qrgGAs604xpZTFklRW21BkvhbLSluCcaC-dzsDO19QrGRSH714hV0HxZujsqZka7nQwaiao7mpzMl5sLUA_Yg0b5kEgJG6qRvovwgT8y7b9O0XzjzhtVH_bt8jNzm5N3raCdpusVfUGudYiWa42EPy5SxS5Qz7FIhhffW-7Yc9d4sZdoZMmJCBeeEuRYIZqMq8TPz9G-JIEU86a5QqruO6So0vh7D2yXjd19YAkufcl-HI6BK5BfVLrvGCeUvg6mGhKTAjtuWhc18wcMTW-mRhU54VpOW-A8yZy3qgJeTm8c9K28rhw9jtcnGEmtuGOD5rTY9PtasOpE5ZXINylEDwUpQyUBlpJGnJXWCBzs19a050NC3MuyRPybBgGtmOoxtZVcxbnKIbWK8y530rCQAmWAkuuYESNZGRE6niknn-NncPx-OZSTsirXprOyfo_Kx5e_BdPyfXp4f6e2ds52H1EbjAU9kylTG-S9eXpWfUYrLZl-SRulYR8uey9-RtPV0_G |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuCMproUCQ4ATWxo_E8QEhSru0FFYVolJvxrHjshIkpbsV2r_Gr2Mmryo8eus1dqLJeOyZ8Tw-Qp4JhLVKspzyRKRUgkFBtbQ5jYMHhVsUXCosFP44S3cP5fuj5GiN_OpqYTCtsjsT64PaVw7vyCfYKgusefAHJqFNizjYnr4--UERQQojrR2cRiMi-8XqJ7hvi1d727DWzzmf7nx-u0tbhAHqwFJZ0sQFoNFaHzJtVXCcBx1rzrWyGL6KM5vrWORS2dTm4Khonzodg82vmVdpUAK-e4WsK_SKRmR9a2d28Km_4cEYmmS6rdSJRTZZgLbEijbMikCAXKoG2rAGDfiXpft3wuYfUdtaGU5vkhutFRu9acTuFlkryg1ytcG1XG0gFHSbNnKbvKtLYnzxvemNPXeRG_aIjqoQgbDhnUWE-arRvIz8_BjBTCJMQKuWK6zpukMOL4W3d8morMriPokS73Pw7HQIQoMyZdZ5yT1j8HUw2JQcE9Zx0bi2tTkibHwzdYhdZKbhvAHOm5rzRo3Ji_6dk6axx4Wzt3Bx-pnYlLt-UJ0em3aPG8GctKIAUc-lFCHL08BYYEXKQuIyC2Rudktr2pNiYc7lekye9sPAdgzc2LKozuo5iqMtC3PuNZLQU4KFwalQMKIGMjIgdThSzr_WfcTxMBdpOiYvO2k6J-v_rHhw8V88IddgX5oPe7P9h-Q6R1mPFeV6k4yWp2fFIzDhlvnjdq9E5Mtlb8_f6o5VYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sociodemographic+characteristics+of+missing+data+in+digital+phenotyping&rft.jtitle=Scientific+reports&rft.au=Kiang%2C+Mathew+V.&rft.au=Chen%2C+Jarvis+T.&rft.au=Krieger%2C+Nancy&rft.au=Buckee%2C+Caroline+O.&rft.date=2021-07-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-94516-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_94516_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |