Sociodemographic characteristics of missing data in digital phenotyping

The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphone...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 15408 - 11
Main Authors Kiang, Mathew V., Chen, Jarvis T., Krieger, Nancy, Buckee, Caroline O., Alexander, Monica J., Baker, Justin T., Buckner, Randy L., Coombs, Garth, Rich-Edwards, Janet W., Carlson, Kenzie W., Onnela, Jukka-Pekka
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies.
AbstractList The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies.
The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies.
The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for "digital phenotyping," the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies.The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for "digital phenotyping," the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies.
Abstract The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies.
ArticleNumber 15408
Author Coombs, Garth
Kiang, Mathew V.
Chen, Jarvis T.
Buckee, Caroline O.
Onnela, Jukka-Pekka
Buckner, Randy L.
Rich-Edwards, Janet W.
Baker, Justin T.
Alexander, Monica J.
Carlson, Kenzie W.
Krieger, Nancy
Author_xml – sequence: 1
  givenname: Mathew V.
  surname: Kiang
  fullname: Kiang, Mathew V.
  organization: Department of Epidemiology and Population Health, Stanford University School of Medicine
– sequence: 2
  givenname: Jarvis T.
  surname: Chen
  fullname: Chen, Jarvis T.
  organization: Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health
– sequence: 3
  givenname: Nancy
  surname: Krieger
  fullname: Krieger, Nancy
  organization: Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health
– sequence: 4
  givenname: Caroline O.
  surname: Buckee
  fullname: Buckee, Caroline O.
  organization: Department of Epidemiology, Harvard T.H. Chan School of Public Health
– sequence: 5
  givenname: Monica J.
  surname: Alexander
  fullname: Alexander, Monica J.
  organization: Department of Sociology, University of Toronto, Department of Statistical Sciences, University of Toronto
– sequence: 6
  givenname: Justin T.
  surname: Baker
  fullname: Baker, Justin T.
  organization: Department of Psychiatry, Harvard Medical School, Institute for Technology in Psychiatry, McLean Hospital
– sequence: 7
  givenname: Randy L.
  surname: Buckner
  fullname: Buckner, Randy L.
  organization: Department of Psychology, Harvard University, Department of Psychiatry, Massachusetts General Hospital, Department of Radiology, Massachusetts General Hospital
– sequence: 8
  givenname: Garth
  surname: Coombs
  fullname: Coombs, Garth
  organization: Department of Psychology, Harvard University
– sequence: 9
  givenname: Janet W.
  surname: Rich-Edwards
  fullname: Rich-Edwards, Janet W.
  organization: Department of Epidemiology, Harvard T.H. Chan School of Public Health, Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical
– sequence: 10
  givenname: Kenzie W.
  surname: Carlson
  fullname: Carlson, Kenzie W.
  organization: Department of Biostatistics, Harvard T.H. Chan School of Public Health
– sequence: 11
  givenname: Jukka-Pekka
  surname: Onnela
  fullname: Onnela, Jukka-Pekka
  email: onnela@hsph.harvard.edu
  organization: Department of Biostatistics, Harvard T.H. Chan School of Public Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34326370$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1P3DAUtBAVUMof6KGK1EsvKf5OfKlUoZYiIXFoe7ZeHDvrVdZO7SwS_74OoRQ44Istv3nj8bx5iw5DDBah9wR_Jpi155kTodoaU1IrLoismwN0QjEXNWWUHj45H6OznLe4LEEVJ-oIHTPOqGQNPkGXP6Pxsbe7OCSYNt5UZgMJzGyTz7M3uYqu2vmcfRiqHmaofKh6P_gZxmra2BDnu6nU3qE3DsZszx72U_T7-7dfFz_q65vLq4uv17URHM-1MI4KBtC7VkHjDKVOYUWpakCJRuEWOoVZxxuQ0FGuVC-NwhJLRfpGuoadoquVt4-w1VPyO0h3OoLX9xcxDRpS0T1azYjhwCyHruOcubaTjhBHrCROmBZ44fqyck37bmd7Y8OcYHxG-rwS_EYP8Va3xVUmZSH49ECQ4p-9zbMuThk7jhBs3GdNhWgoJS3DBfrxBXQb9ykUqxaUJFwRvqA-PFX0KOXfvAqArgCTYs7JukcIwXrJhV5zoUsu9H0u9OJZ-6LJlPHNPi6_8uPrrWxtzeWdMNj0X_YrXX8BoorL8A
CitedBy_id crossref_primary_10_1038_s41746_025_01451_2
crossref_primary_10_1038_s44159_023_00235_3
crossref_primary_10_1186_s44247_024_00116_6
crossref_primary_10_1016_j_chb_2024_108422
crossref_primary_10_2196_39546
crossref_primary_10_1111_cdev_14125
crossref_primary_10_3390_s24196246
crossref_primary_10_1038_s41467_022_29766_8
crossref_primary_10_2196_59974
crossref_primary_10_1089_tmj_2024_0023
crossref_primary_10_1177_20552076231222097
crossref_primary_10_2196_31877
crossref_primary_10_2196_52831
crossref_primary_10_2196_57439
crossref_primary_10_3758_s13428_024_02474_5
crossref_primary_10_1002_acn3_52050
crossref_primary_10_1016_j_invent_2023_100657
crossref_primary_10_1007_s41347_023_00310_9
crossref_primary_10_1038_s41746_024_01343_x
crossref_primary_10_1136_bmjment_2023_300718
crossref_primary_10_2196_42866
crossref_primary_10_1038_s42256_022_00596_z
crossref_primary_10_2196_55170
Cites_doi 10.1097/HRP.0000000000000133
10.2196/publichealth.5814
10.1001/jamasurg.2019.4702
10.1371/journal.pcbi.1002616
10.1093/jamia/ocaa201
10.1097/EDE.0000000000000239
10.1038/npp.2016.7
10.7717/peerj.2537
10.1038/nbt.3223
10.1016/s2589-7500(20)30193-x
10.2196/mental.5165
10.1038/s41746-018-0022-8
10.1001/jama.2017.11295
10.1007/s11920-015-0602-0
10.1093/biostatistics/kxy059
10.1200/CCI.17.00149
10.2196/publichealth.8950
10.1038/s41386-020-0771-3
10.1038/tp.2017.25
10.1126/science.1223467
10.18637/jss.v076.i01
10.1038/s41386-018-0030-z
10.1093/jamia/ocab069
10.1007/s11222-016-9696-4
10.1038/s41598-020-79438-0
10.18637/jss.v080.i01
10.1186/s40504-017-0065-7
10.1007/s10586-020-03061-x
10.1038/s41537-017-0038-0
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-94516-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Education
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_31c4a3e4abb443f8b6f11f1e61f5c8a4
PMC8322366
34326370
10_1038_s41598_021_94516_7
Genre Research Support, Non-U.S. Gov't
Journal Article
Observational Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Harvard Catalyst
  grantid: 3UL1TR001102
  funderid: http://dx.doi.org/10.13039/100007299
– fundername: National Institute on Drug Abuse
  grantid: T90DA022759
  funderid: http://dx.doi.org/10.13039/100000026
– fundername: National Institute of Mental Health
  grantid: DP2MH103909; U01MH116925; DP2MH103909; DP2MH103909
  funderid: http://dx.doi.org/10.13039/100000025
– fundername: NIMH NIH HHS
  grantid: DP2 MH103909
– fundername: NIDA NIH HHS
  grantid: T90 DA022759
– fundername: NIMH NIH HHS
  grantid: U01 MH116925
– fundername: NCATS NIH HHS
  grantid: UL1 TR001102
– fundername: NIDA NIH HHS
  grantid: K99 DA051534
– fundername: ;
  grantid: DP2MH103909; U01MH116925; DP2MH103909; DP2MH103909
– fundername: ;
  grantid: 3UL1TR001102
– fundername: ;
  grantid: T90DA022759
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-5cf253aadf89a7fc22f9092297a957908ab903b47a6ab2499d6c9060691d76f73
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:22 EDT 2025
Thu Aug 21 14:14:26 EDT 2025
Tue Aug 05 09:52:15 EDT 2025
Wed Aug 13 11:26:23 EDT 2025
Mon Jul 21 05:24:33 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Tue Jul 01 03:48:59 EDT 2025
Fri Feb 21 02:39:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-5cf253aadf89a7fc22f9092297a957908ab903b47a6ab2499d6c9060691d76f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.proquest.com/docview/2556149140?pq-origsite=%requestingapplication%
PMID 34326370
PQID 2556149140
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_31c4a3e4abb443f8b6f11f1e61f5c8a4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8322366
proquest_miscellaneous_2557221830
proquest_journals_2556149140
pubmed_primary_34326370
crossref_primary_10_1038_s41598_021_94516_7
crossref_citationtrail_10_1038_s41598_021_94516_7
springer_journals_10_1038_s41598_021_94516_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-29
PublicationDateYYYYMMDD 2021-07-29
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2018).
iPhone Users Earn Higher Income, Engage More on Apps than Android Users (2014). https://www.comscore.com/ita/Public-Relations/Infographics/iPhone-Users-Earn-Higher-Income-Engage-More-on-Apps-than-Android-Users (accessed Sept 20, 2020).
VehtariAGelmanAGabryJPractical Bayesian model evaluation using leave-one-out cross-validation and WAICStat. Comput.20172714131432364710510.1007/s11222-016-9696-4
DeGusta. M. Are smart phones spreading faster than any technology in human history? MIT Technology Review (2012).
LuFHouSBaltrusaitisKAccurate influenza monitoring and forecasting using novel internet data streams: A case study in the boston metropolisJMIR Public Health Surveillance20184e410.2196/publichealth.8950
Kemp, S. Global digital report 2018. We Are Social (2018).
CarpenterBGelmanAHoffmanMDStan: A probabilistic programming languageJ. Stat. Softw.201710.18637/jss.v076.i01
SalathéMBengtssonLBodnarTJDigital epidemiologyPLoS Comput. Biol.20128e100261610.1371/journal.pcbi.1002616
WesolowskiAEagleNTatemAJQuantifying the impact of human mobility on malariaScience20123382672702012Sci...338..267W1:CAS:528:DC%2BC38XhsVKrtrzF10.1126/science.1223467
TorousJStaplesPOnnelaJ-PRealizing the potential of mobile mental health: New methods for new data in psychiatryCurr. Psychiatry Rep.2015176110.1007/s11920-015-0602-0
WrightAARamanNStaplesPThe HOPE pilot study: Harnessing patient-reported outcomes and biometric data to enhance cancer careClin. Cancer Inform.201810.1200/CCI.17.00149
TorousJFirthJMuellerNOnnelaJBakerJTMethodology and reporting of mobile health and smartphone application studies for schizophreniaHarv. Rev. Psychiatry20172514615410.1097/HRP.0000000000000133
BarnettITorousJReederHTBakerJOnnelaJ-PDetermining sample size and length of follow-up for smartphone-based digital phenotyping studiesJ. Am. Med. Inform. Assn.2020271844184910.1093/jamia/ocaa201
WatanabeSA widely applicable bayesian information criterionJ. Mach. Learn. Res.20121486789730494921320.62058
Statista. Subscriber share held by smartphone operating systems in the United States from 2012 to 2018 (2018).
InselTRDigital phenotyping: Technology for a new science of behaviorJAMA20173181215121610.1001/jama.2017.11295
TorousJOnnelaJ-PKeshavanMNew dimensions and new tools to realize the potential of RDoC: Digital phenotyping via smartphones and connected devicesTransl. Psychiatry20177e10531:STN:280:DC%2BC1czjsFOjuw%3D%3D10.1038/tp.2017.25
WesolowskiAO’MearaWTatemAJNdegeSEagleNBuckeeCOQuantifying the impact of accessibility on preventive healthcare in sub-saharan africa using mobile phone dataEpidemiology20152622322810.1097/EDE.0000000000000239
TorousJKiangMVLormeJOnnelaJ-PNew tools for new research in psychiatry: A scalable and customizable platform to empower data driven smartphone researchJMIR Mental Health20163e1610.2196/mental.5165
Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Using Stan. https://doi.org/10.18637/jss.v080.i01. (2017).
GelmanAGoodrichBGabryJVehtariAR-squared for Bayesian regression modelsAm. Statist.201873163989374
Pew Research Center, Smartphone Ownership Is Growing Rapidly Around the World, but Not Always Equally (2019). https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/ (accessed June 21, 2021).
KiangMVSantillanaMChenJTIncorporating human mobility data improves forecasts of Dengue fever in ThailandSci. Rep. U.K.2021119231:CAS:528:DC%2BB3MXhsVOls7s%3D10.1038/s41598-020-79438-0
LittleRJARubinDBStatistical Analysis with Missing Data20193Wiley1411.62006
Onnela, J.-P. Opportunities and challenges in the collection and analysis of digital phenotyping data. Neuropsychopharmacol 46, 45–54 (2021).
LiuGOnnelaJ-PBidirectional imputation of spatial GPS trajectories with missingness using sparse online Gaussian processJ. Am. Med. Inform. Assn.202110.1093/jamia/ocab069
OnnelaJ-PRauchSLHarnessing smartphone-based digital phenotyping to enhance behavioral and mental healthNeuropsychopharmacology201641169110.1038/npp.2016.7
iPhone Users Spend $101 Every Month on Tech Purchases, Nearly Double of Android Users, According to a Survey Conducted by Slickdeals (2018). https://www.prnewswire.com/news-releases/iphone-users-spend-101-every-month-on-techpurchases-nearly-double-of-android-users-according-to-a-survey-conducted-by-slickdeals-300739582.html. (accessed Sept 20, 2020).
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., & Gabry. J. Pareto Smoothed Importance Sampling. Arxiv (2015).
eMarketer. US Smartphone OS Race Still Close, as Men, Younger Users Favor Android. 2013; published online June 12. https://www.emarketer.com/Article/US-Smartphone-OS-Race-Still-Close-Men-Younger-Users-Favor-Android/1009961 (accessed Sept 17, 2020).
IHS. More than six billion smartphones by 2020, IHS Markit Says. IHS Markit (2017).
KishoreNKiangMVEngø-MonsenKMeasuring mobility to monitor travel and physical distancing interventions: A common framework for mobile phone data analysisLancet Digit. Heal.202010.1016/s2589-7500(20)30193-x
SaebSLattieEGSchuellerSMKordingKPMohrDCThe relationship between mobile phone location sensor data and depressive symptom severityPeerJ20164e253710.7717/peerj.2537
BarnettIOnnelaJ-PInferring mobility measures from GPS traces with missing dataBiostatistics201821e98112413335410.1093/biostatistics/kxy059
Hoffman, M. D., Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, Vol. 15 (2014).
Coombs III, G. Using single-subject designs to probe dynamics associated with stress and transitions to college life. Doctoral dissertation submitted to Harvard University. (2020) Published online May 1, 2020.
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. Rank-Normalization, Folding, and Localization: An Improved R for Assessing Convergence of MCMC. Arxiv (2019).
BarnettITorousJStaplesPSandovalLKeshavanMOnnelaJ-PRelapse prediction in schizophrenia through digital phenotyping: A pilot studyNeuropsychopharmacology2018431660166610.1038/s41386-018-0030-z
RashidAZebMARashidAAnwarSJoaquimFHalimZConceptualization of smartphone usage and feature preferences among various demographicsClust. Comput.2020231855187310.1007/s10586-020-03061-x
SalathéMDigital epidemiology: what is it, and where is it going?Life Sci. Soc. Policy20181412018SpPol..43....1S10.1186/s40504-017-0065-7
JainSHPowersBWHawkinsJBBrownsteinJSThe digital phenotypeNat. Biotechnol.2015334621:CAS:528:DC%2BC2MXhtFemtrnN10.1038/nbt.3223
MajumderMSSantillanaMMekaruSRMcGinnisDPKhanKBrownsteinJSUtilizing nontraditional data sources for near real-time estimation of transmission dynamics during the 2015–2016 Colombian Zika Virus disease outbreakJMIR Public Health Surveillance20162e3010.2196/publichealth.5814
TorousJStaplesPBarnettISandovalLRKeshavanMOnnelaJ-PCharacterizing the clinical relevance of digital phenotyping data quality with applications to a cohort with schizophreniaNpj Digit. Med.201811510.1038/s41746-018-0022-8
StaplesPTorousJBarnettIA comparison of passive and active estimates of sleep in a cohort with schizophreniaNPJ Schizophr.201733710.1038/s41537-017-0038-0
PandaNSolskyIHuangEJUsing smartphones to capture novel recovery metrics after cancer surgeryJama Surg.202015512312910.1001/jamasurg.2019.4702
Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models, Vol. 1 (2014).
Demographics of Mobile Device Ownership and Adoption in the United States | Pew Research Center. n.d. https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed June 21, 2021).
94516_CR35
J Torous (94516_CR27) 2017; 7
94516_CR36
94516_CR37
MS Majumder (94516_CR12) 2016; 2
94516_CR16
J Torous (94516_CR18) 2015; 17
94516_CR38
94516_CR39
A Wesolowski (94516_CR8) 2012; 338
N Kishore (94516_CR11) 2020
A Wesolowski (94516_CR10) 2015; 26
F Lu (94516_CR13) 2018; 4
AA Wright (94516_CR26) 2018
I Barnett (94516_CR31) 2018; 21
M Salathé (94516_CR7) 2018; 14
J-P Onnela (94516_CR17) 2016; 41
S Watanabe (94516_CR43) 2012; 14
TR Insel (94516_CR19) 2017; 318
J Torous (94516_CR28) 2017; 25
A Gelman (94516_CR46) 2018; 73
MV Kiang (94516_CR9) 2021; 11
SH Jain (94516_CR14) 2015; 33
94516_CR5
94516_CR45
I Barnett (94516_CR22) 2018; 43
94516_CR24
94516_CR3
I Barnett (94516_CR34) 2020; 27
94516_CR47
94516_CR4
94516_CR1
M Salathé (94516_CR6) 2012; 8
94516_CR2
N Panda (94516_CR25) 2020; 155
94516_CR29
P Staples (94516_CR23) 2017; 3
RJA Little (94516_CR33) 2019
S Saeb (94516_CR20) 2016; 4
A Rashid (94516_CR30) 2020; 23
A Vehtari (94516_CR44) 2017; 27
J Torous (94516_CR15) 2016; 3
J Torous (94516_CR21) 2018; 1
G Liu (94516_CR32) 2021
B Carpenter (94516_CR41) 2017
94516_CR40
94516_CR42
References_xml – reference: OnnelaJ-PRauchSLHarnessing smartphone-based digital phenotyping to enhance behavioral and mental healthNeuropsychopharmacology201641169110.1038/npp.2016.7
– reference: Kemp, S. Global digital report 2018. We Are Social (2018).
– reference: SalathéMBengtssonLBodnarTJDigital epidemiologyPLoS Comput. Biol.20128e100261610.1371/journal.pcbi.1002616
– reference: PandaNSolskyIHuangEJUsing smartphones to capture novel recovery metrics after cancer surgeryJama Surg.202015512312910.1001/jamasurg.2019.4702
– reference: Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Using Stan. https://doi.org/10.18637/jss.v080.i01. (2017).
– reference: SaebSLattieEGSchuellerSMKordingKPMohrDCThe relationship between mobile phone location sensor data and depressive symptom severityPeerJ20164e253710.7717/peerj.2537
– reference: TorousJOnnelaJ-PKeshavanMNew dimensions and new tools to realize the potential of RDoC: Digital phenotyping via smartphones and connected devicesTransl. Psychiatry20177e10531:STN:280:DC%2BC1czjsFOjuw%3D%3D10.1038/tp.2017.25
– reference: Vehtari, A., Simpson, D., Gelman, A., Yao, Y., & Gabry. J. Pareto Smoothed Importance Sampling. Arxiv (2015).
– reference: eMarketer. US Smartphone OS Race Still Close, as Men, Younger Users Favor Android. 2013; published online June 12. https://www.emarketer.com/Article/US-Smartphone-OS-Race-Still-Close-Men-Younger-Users-Favor-Android/1009961 (accessed Sept 17, 2020).
– reference: TorousJStaplesPBarnettISandovalLRKeshavanMOnnelaJ-PCharacterizing the clinical relevance of digital phenotyping data quality with applications to a cohort with schizophreniaNpj Digit. Med.201811510.1038/s41746-018-0022-8
– reference: LuFHouSBaltrusaitisKAccurate influenza monitoring and forecasting using novel internet data streams: A case study in the boston metropolisJMIR Public Health Surveillance20184e410.2196/publichealth.8950
– reference: VehtariAGelmanAGabryJPractical Bayesian model evaluation using leave-one-out cross-validation and WAICStat. Comput.20172714131432364710510.1007/s11222-016-9696-4
– reference: WesolowskiAEagleNTatemAJQuantifying the impact of human mobility on malariaScience20123382672702012Sci...338..267W1:CAS:528:DC%2BC38XhsVKrtrzF10.1126/science.1223467
– reference: R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2018).
– reference: iPhone Users Spend $101 Every Month on Tech Purchases, Nearly Double of Android Users, According to a Survey Conducted by Slickdeals (2018). https://www.prnewswire.com/news-releases/iphone-users-spend-101-every-month-on-techpurchases-nearly-double-of-android-users-according-to-a-survey-conducted-by-slickdeals-300739582.html. (accessed Sept 20, 2020).
– reference: Hoffman, M. D., Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, Vol. 15 (2014).
– reference: InselTRDigital phenotyping: Technology for a new science of behaviorJAMA20173181215121610.1001/jama.2017.11295
– reference: WesolowskiAO’MearaWTatemAJNdegeSEagleNBuckeeCOQuantifying the impact of accessibility on preventive healthcare in sub-saharan africa using mobile phone dataEpidemiology20152622322810.1097/EDE.0000000000000239
– reference: Statista. Subscriber share held by smartphone operating systems in the United States from 2012 to 2018 (2018).
– reference: JainSHPowersBWHawkinsJBBrownsteinJSThe digital phenotypeNat. Biotechnol.2015334621:CAS:528:DC%2BC2MXhtFemtrnN10.1038/nbt.3223
– reference: Pew Research Center, Smartphone Ownership Is Growing Rapidly Around the World, but Not Always Equally (2019). https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/ (accessed June 21, 2021).
– reference: LittleRJARubinDBStatistical Analysis with Missing Data20193Wiley1411.62006
– reference: KiangMVSantillanaMChenJTIncorporating human mobility data improves forecasts of Dengue fever in ThailandSci. Rep. U.K.2021119231:CAS:528:DC%2BB3MXhsVOls7s%3D10.1038/s41598-020-79438-0
– reference: Coombs III, G. Using single-subject designs to probe dynamics associated with stress and transitions to college life. Doctoral dissertation submitted to Harvard University. (2020) Published online May 1, 2020.
– reference: BarnettIOnnelaJ-PInferring mobility measures from GPS traces with missing dataBiostatistics201821e98112413335410.1093/biostatistics/kxy059
– reference: GelmanAGoodrichBGabryJVehtariAR-squared for Bayesian regression modelsAm. Statist.201873163989374
– reference: WatanabeSA widely applicable bayesian information criterionJ. Mach. Learn. Res.20121486789730494921320.62058
– reference: iPhone Users Earn Higher Income, Engage More on Apps than Android Users (2014). https://www.comscore.com/ita/Public-Relations/Infographics/iPhone-Users-Earn-Higher-Income-Engage-More-on-Apps-than-Android-Users (accessed Sept 20, 2020).
– reference: TorousJStaplesPOnnelaJ-PRealizing the potential of mobile mental health: New methods for new data in psychiatryCurr. Psychiatry Rep.2015176110.1007/s11920-015-0602-0
– reference: Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models, Vol. 1 (2014).
– reference: CarpenterBGelmanAHoffmanMDStan: A probabilistic programming languageJ. Stat. Softw.201710.18637/jss.v076.i01
– reference: LiuGOnnelaJ-PBidirectional imputation of spatial GPS trajectories with missingness using sparse online Gaussian processJ. Am. Med. Inform. Assn.202110.1093/jamia/ocab069
– reference: StaplesPTorousJBarnettIA comparison of passive and active estimates of sleep in a cohort with schizophreniaNPJ Schizophr.201733710.1038/s41537-017-0038-0
– reference: IHS. More than six billion smartphones by 2020, IHS Markit Says. IHS Markit (2017).
– reference: KishoreNKiangMVEngø-MonsenKMeasuring mobility to monitor travel and physical distancing interventions: A common framework for mobile phone data analysisLancet Digit. Heal.202010.1016/s2589-7500(20)30193-x
– reference: DeGusta. M. Are smart phones spreading faster than any technology in human history? MIT Technology Review (2012).
– reference: Demographics of Mobile Device Ownership and Adoption in the United States | Pew Research Center. n.d. https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed June 21, 2021).
– reference: TorousJFirthJMuellerNOnnelaJBakerJTMethodology and reporting of mobile health and smartphone application studies for schizophreniaHarv. Rev. Psychiatry20172514615410.1097/HRP.0000000000000133
– reference: Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. Rank-Normalization, Folding, and Localization: An Improved R for Assessing Convergence of MCMC. Arxiv (2019).
– reference: TorousJKiangMVLormeJOnnelaJ-PNew tools for new research in psychiatry: A scalable and customizable platform to empower data driven smartphone researchJMIR Mental Health20163e1610.2196/mental.5165
– reference: WrightAARamanNStaplesPThe HOPE pilot study: Harnessing patient-reported outcomes and biometric data to enhance cancer careClin. Cancer Inform.201810.1200/CCI.17.00149
– reference: MajumderMSSantillanaMMekaruSRMcGinnisDPKhanKBrownsteinJSUtilizing nontraditional data sources for near real-time estimation of transmission dynamics during the 2015–2016 Colombian Zika Virus disease outbreakJMIR Public Health Surveillance20162e3010.2196/publichealth.5814
– reference: SalathéMDigital epidemiology: what is it, and where is it going?Life Sci. Soc. Policy20181412018SpPol..43....1S10.1186/s40504-017-0065-7
– reference: BarnettITorousJReederHTBakerJOnnelaJ-PDetermining sample size and length of follow-up for smartphone-based digital phenotyping studiesJ. Am. Med. Inform. Assn.2020271844184910.1093/jamia/ocaa201
– reference: Onnela, J.-P. Opportunities and challenges in the collection and analysis of digital phenotyping data. Neuropsychopharmacol 46, 45–54 (2021).
– reference: BarnettITorousJStaplesPSandovalLKeshavanMOnnelaJ-PRelapse prediction in schizophrenia through digital phenotyping: A pilot studyNeuropsychopharmacology2018431660166610.1038/s41386-018-0030-z
– reference: RashidAZebMARashidAAnwarSJoaquimFHalimZConceptualization of smartphone usage and feature preferences among various demographicsClust. Comput.2020231855187310.1007/s10586-020-03061-x
– ident: 94516_CR1
– ident: 94516_CR35
– volume: 25
  start-page: 146
  year: 2017
  ident: 94516_CR28
  publication-title: Harv. Rev. Psychiatry
  doi: 10.1097/HRP.0000000000000133
– ident: 94516_CR3
– volume: 2
  start-page: e30
  year: 2016
  ident: 94516_CR12
  publication-title: JMIR Public Health Surveillance
  doi: 10.2196/publichealth.5814
– volume: 155
  start-page: 123
  year: 2020
  ident: 94516_CR25
  publication-title: Jama Surg.
  doi: 10.1001/jamasurg.2019.4702
– ident: 94516_CR39
– ident: 94516_CR29
– ident: 94516_CR37
– volume: 8
  start-page: e1002616
  year: 2012
  ident: 94516_CR6
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002616
– volume: 27
  start-page: 1844
  year: 2020
  ident: 94516_CR34
  publication-title: J. Am. Med. Inform. Assn.
  doi: 10.1093/jamia/ocaa201
– volume: 26
  start-page: 223
  year: 2015
  ident: 94516_CR10
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000000239
– volume: 41
  start-page: 1691
  year: 2016
  ident: 94516_CR17
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2016.7
– volume-title: Statistical Analysis with Missing Data
  year: 2019
  ident: 94516_CR33
– volume: 4
  start-page: e2537
  year: 2016
  ident: 94516_CR20
  publication-title: PeerJ
  doi: 10.7717/peerj.2537
– volume: 33
  start-page: 462
  year: 2015
  ident: 94516_CR14
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3223
– year: 2020
  ident: 94516_CR11
  publication-title: Lancet Digit. Heal.
  doi: 10.1016/s2589-7500(20)30193-x
– volume: 3
  start-page: e16
  year: 2016
  ident: 94516_CR15
  publication-title: JMIR Mental Health
  doi: 10.2196/mental.5165
– volume: 1
  start-page: 15
  year: 2018
  ident: 94516_CR21
  publication-title: Npj Digit. Med.
  doi: 10.1038/s41746-018-0022-8
– ident: 94516_CR5
– volume: 318
  start-page: 1215
  year: 2017
  ident: 94516_CR19
  publication-title: JAMA
  doi: 10.1001/jama.2017.11295
– volume: 17
  start-page: 61
  year: 2015
  ident: 94516_CR18
  publication-title: Curr. Psychiatry Rep.
  doi: 10.1007/s11920-015-0602-0
– volume: 21
  start-page: e98
  year: 2018
  ident: 94516_CR31
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxy059
– year: 2018
  ident: 94516_CR26
  publication-title: Clin. Cancer Inform.
  doi: 10.1200/CCI.17.00149
– volume: 4
  start-page: e4
  year: 2018
  ident: 94516_CR13
  publication-title: JMIR Public Health Surveillance
  doi: 10.2196/publichealth.8950
– ident: 94516_CR2
– ident: 94516_CR16
  doi: 10.1038/s41386-020-0771-3
– volume: 7
  start-page: e1053
  year: 2017
  ident: 94516_CR27
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2017.25
– ident: 94516_CR4
– ident: 94516_CR36
– volume: 338
  start-page: 267
  year: 2012
  ident: 94516_CR8
  publication-title: Science
  doi: 10.1126/science.1223467
– ident: 94516_CR38
– year: 2017
  ident: 94516_CR41
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v076.i01
– ident: 94516_CR42
– volume: 43
  start-page: 1660
  year: 2018
  ident: 94516_CR22
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-018-0030-z
– volume: 14
  start-page: 867
  year: 2012
  ident: 94516_CR43
  publication-title: J. Mach. Learn. Res.
– ident: 94516_CR47
– ident: 94516_CR24
– year: 2021
  ident: 94516_CR32
  publication-title: J. Am. Med. Inform. Assn.
  doi: 10.1093/jamia/ocab069
– volume: 27
  start-page: 1413
  year: 2017
  ident: 94516_CR44
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-016-9696-4
– volume: 11
  start-page: 923
  year: 2021
  ident: 94516_CR9
  publication-title: Sci. Rep. U.K.
  doi: 10.1038/s41598-020-79438-0
– ident: 94516_CR45
– ident: 94516_CR40
  doi: 10.18637/jss.v080.i01
– volume: 14
  start-page: 1
  year: 2018
  ident: 94516_CR7
  publication-title: Life Sci. Soc. Policy
  doi: 10.1186/s40504-017-0065-7
– volume: 23
  start-page: 1855
  year: 2020
  ident: 94516_CR30
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-020-03061-x
– volume: 3
  start-page: 37
  year: 2017
  ident: 94516_CR23
  publication-title: NPJ Schizophr.
  doi: 10.1038/s41537-017-0038-0
– volume: 73
  start-page: 1
  year: 2018
  ident: 94516_CR46
  publication-title: Am. Statist.
SSID ssj0000529419
Score 2.488602
Snippet The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect...
Abstract The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15408
SubjectTerms 692/308/174
692/700/478
Accelerometry - methods
Adolescent
Adult
Bayes Theorem
Bayesian analysis
Black People
Child
Cognition
Data collection
Data Collection - methods
Education
Environment
Feasibility Studies
Female
Follow-Up Studies
Geographic Information Systems
Global positioning systems
GPS
Humanities and Social Sciences
Humans
Male
Mathematical models
Middle Aged
Missing data
multidisciplinary
Natural environment
Nervous system
Phenotyping
Science
Science (multidisciplinary)
Sensitivity analysis
Sensors
Smartphone - instrumentation
Smartphones
Social Behavior
Sociodemographics
Sociological Factors
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLchI3MBq_IgdHwFRKiQ4Uak3y09YCbKIbg_998zY2aXheeEa25H1eZyZycx8Q8hTiW2thjEwMUjNFBgUzCofWF8SKNychTJYKPzuvT45VW_PhrMrrb4wJ6zRAzfgjiSPyssM64NSsoxBF84Lz5qXIY6-MoGCzrviTDVWb2EVt3OVTC_Ho3PQVFhNhhkJ2JyWmYUmqoT9v7Myf02W_CliWhXR8S1yc7Yg6Yu2831yLU-3yfXWU_LyDnlTS1BS_tK4qFeRxiUnM10XCoeL_wgo5ofS1UTT6iM2D6GY8LXeXGIN1V1yevz6w6sTNndLYBGsrg0bYgG8vU9ltN6UKESxvRXCGo-huH70wfYyKOO1D-B02aSj7cF_sTwZXYy8R_am9ZQfEDqkFMCTsqVIC8qL-5iUSJzD28FAMqojfIucizOVOHa0-OxqSFuOrqHtAG1X0XamI892a742Io2_zn6JB7KbiSTY9QGIhptFw_1LNDpyuD1ON9_Mc4eUa-AVgl_ZkSe7YYAdAyV-yuuLOscItB1hzv12-rudYCGulgZGzEIuFltdjkyrT5W3Gz-eUuuOPN9K0I9t_RmKh_8DigNyQ6Do94YJe0j2Nt8u8iOwpjbhcb043wFJ9RmX
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLastroaAgcQOr8SN2fKoAtVRIcKLS3izHj7ISJKW7PfTfM-N4U4VHr2vvyjsz9ow9M99HyBuBtFZN21HeCEUlBBTUSNfROgVwuDFyqbFR-MtXdXomPy-bZXlwW5eyyu2ZmA_qMHh8Iz9EqCyI5uE-cHTxiyJrFGZXC4XGXXIPocvQqvVST28smMWSzJRemVq0h2vwV9hThnUJSFFL9cwfZdj-f8Waf5dM_pE3ze7oZJc8LHFk9X5U_B65E_t9cn9klrzeRzLmUrjxiHzKTSkh_hzRqVe-8nOU5mpIFagbXw0qrBitVn0VVudIJ1JhCdiwucauqsfk7OT428dTWvgTqIc4bEMbn0ADzoXUGqeT5zyZ2nButMPkXN26ztSik9op18E1zATlTQ03GsOCVkmLJ2SnH_r4jFRNCB3crUxKwoA7Y84HyQNj8OsQMmm5IGwrResLuDhyXPywOcktWjtK3oLkbZa81QvydvrOxQitcevsD6icaSbCYucPhstzW3aZFcxLJyIYWyelSG2nEmOJRcVS41sHyzzYqtaWvbq2N5a1IK-nYRA7pk5cH4erPEdzjCZhztPREqaVYGuuEhpG9MxGZkudj_Sr7xnJG49TodSCvNta082y_i-K57f_ixfkAUcDrzXl5oDsbC6v4kuInDbdq7w9fgNXPRQN
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI_GJiQuiG8eDBQkbhDRfDRpjg_EmJ4EF5i0W5SPZjwJWrS9HfbfY6cfqDCQuDZuZTlubMf2z4S8lDjWqm4CE7XUTIFDwazygVU5gcFtW6EMNgp__KSPT9TmtD7dI2LqhSlF-wXSshzTU3XYmwswNNgMhgUFOFuWmRvkAKHaQbcP1uvN5818s4K5K8Xt2CFTyeaalxdWqID1X-dh_lko-Vu2tBihozvk9ug90vXA712y13b3yM1hnuTVffKhtJ-k9vuAQ72NNC7xmGmfKWws3g9QrA2l246m7RkODqFY7NXvrrB_6gE5OXr_5d0xGyclsAge147VMYOsvU-5sd7kKES2lRXCGo9puKrxwVYyKOO1DxBw2aSjrSB2sTwZnY18SPa7vmsfE1qnFCCKsjlLC4aL-5iUSJzD18E5MmpF-CQ5F0cYcZxm8c2VdLZs3CBtB9J2RdrOrMir-Z0fA4jGP6nf4obMlAiAXR7052duVAgneVRetqBWQSmZm6Az55m3muc6Nh7YPJy2041_5YVDuDWICCGmXJEX8zKIHZMkvmv7y0JjBPqNQPNo2P2ZE2zC1dLAilnoxYLV5Uq3_Vowu_HglFqvyOtJg36x9XdRPPk_8qfklkAlrwwT9pDs784v22fgM-3C8_En-QmAiw-W
  priority: 102
  providerName: Springer Nature
Title Sociodemographic characteristics of missing data in digital phenotyping
URI https://link.springer.com/article/10.1038/s41598-021-94516-7
https://www.ncbi.nlm.nih.gov/pubmed/34326370
https://www.proquest.com/docview/2556149140
https://www.proquest.com/docview/2557221830
https://pubmed.ncbi.nlm.nih.gov/PMC8322366
https://doaj.org/article/31c4a3e4abb443f8b6f11f1e61f5c8a4
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_3geCL-O2e51LBN602H02aB5G95c5j4Q5RF_YtpElzt3C23t4euP-9M2m7sroKPhWStISZSWcmyfx-hLziSGuVF2XKci5TAQFFqoUt0yx4cLhVxYTCQuGzc3k6FZNZPtshPd1RJ8Cbrakd8klNF1dvf1yvPsCCf9-WjBfvbsAJYaEYXjZA3tlU7ZJ98EwKGQ3OunC_xfpmWkSuDwRhTyGYYF0dzfbPbPiqCOm_LQ798zrlb2eq0VWd3Cf3uhgzGbVG8YDsVPVDcqdlnVw9Ih9jkYqvvrVo1XOXuE3U5qQJCagfdxESvEGazOvEzy-QXiTBK2HNcoVVVo_J9OT46_g07fgUUgdx2TLNXQCNWOtDoa0KjrGgM82YVhYP67LCljrjpVBW2hLSMu2l0xlkOJp6JYPiT8he3dTVM5Lk3peQa-kQuAb3Rq3zgnlK4esQQikxILSXnHEd2DhyXlyZeOjNC9NK24C0TZS2UQPyev3O9xZq45-jj1Ah65EIkx0bmsWF6Vad4dQJyyswvlIIHopSBkoDrSQNuSssTPOwV6fpTc8gKBvkjZB5DsjLdTeIHY9SbF01t3GMYhhdwpinrfbXM8FSXckV9KgNu9iY6mZPPb-MyN74e-VSDsib3oJ-Tevvojj4L8E9J3cZ2nimUqYPyd5ycVu9gMBqWQ7JrpqpIdkfjSZfJvA8Oj7_9Blax3I8jJsVw7iefgL3ch8a
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELZKEYILgrI9KBAkOEHUeIkdHxBiK690ObXSuxnHjsuTICl9r0LvT_EbmXGWKiy99Ro70WQ89sx4lo-Q5xxhrfKiTFnOZSrAoEi1sGWaBQ8Kt6qYUFgovH8gp0fi8yyfrZFffS0MplX2Z2I8qH3j8I58C1tlgTUP_sCbkx8pokZhdLWH0GjFYrda_QSXbfF65wOs7wvGtj8evp-mHapA6sA6Waa5C0CXtT4U2qrgGAs604xpZTFklRW21BkvhbLSluCcaC-dzsDO19QrGRSH714hV0HxZujsqZka7nQwaiao7mpzMl5sLUA_Yg0b5kEgJG6qRvovwgT8y7b9O0XzjzhtVH_bt8jNzm5N3raCdpusVfUGudYiWa42EPy5SxS5Qz7FIhhffW-7Yc9d4sZdoZMmJCBeeEuRYIZqMq8TPz9G-JIEU86a5QqruO6So0vh7D2yXjd19YAkufcl-HI6BK5BfVLrvGCeUvg6mGhKTAjtuWhc18wcMTW-mRhU54VpOW-A8yZy3qgJeTm8c9K28rhw9jtcnGEmtuGOD5rTY9PtasOpE5ZXINylEDwUpQyUBlpJGnJXWCBzs19a050NC3MuyRPybBgGtmOoxtZVcxbnKIbWK8y530rCQAmWAkuuYESNZGRE6niknn-NncPx-OZSTsirXprOyfo_Kx5e_BdPyfXp4f6e2ds52H1EbjAU9kylTG-S9eXpWfUYrLZl-SRulYR8uey9-RtPV0_G
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuCMproUCQ4ATWxo_E8QEhSru0FFYVolJvxrHjshIkpbsV2r_Gr2Mmryo8eus1dqLJeOyZ8Tw-Qp4JhLVKspzyRKRUgkFBtbQ5jYMHhVsUXCosFP44S3cP5fuj5GiN_OpqYTCtsjsT64PaVw7vyCfYKgusefAHJqFNizjYnr4--UERQQojrR2cRiMi-8XqJ7hvi1d727DWzzmf7nx-u0tbhAHqwFJZ0sQFoNFaHzJtVXCcBx1rzrWyGL6KM5vrWORS2dTm4Khonzodg82vmVdpUAK-e4WsK_SKRmR9a2d28Km_4cEYmmS6rdSJRTZZgLbEijbMikCAXKoG2rAGDfiXpft3wuYfUdtaGU5vkhutFRu9acTuFlkryg1ytcG1XG0gFHSbNnKbvKtLYnzxvemNPXeRG_aIjqoQgbDhnUWE-arRvIz8_BjBTCJMQKuWK6zpukMOL4W3d8morMriPokS73Pw7HQIQoMyZdZ5yT1j8HUw2JQcE9Zx0bi2tTkibHwzdYhdZKbhvAHOm5rzRo3Ji_6dk6axx4Wzt3Bx-pnYlLt-UJ0em3aPG8GctKIAUc-lFCHL08BYYEXKQuIyC2Rudktr2pNiYc7lekye9sPAdgzc2LKozuo5iqMtC3PuNZLQU4KFwalQMKIGMjIgdThSzr_WfcTxMBdpOiYvO2k6J-v_rHhw8V88IddgX5oPe7P9h-Q6R1mPFeV6k4yWp2fFIzDhlvnjdq9E5Mtlb8_f6o5VYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sociodemographic+characteristics+of+missing+data+in+digital+phenotyping&rft.jtitle=Scientific+reports&rft.au=Kiang%2C+Mathew+V.&rft.au=Chen%2C+Jarvis+T.&rft.au=Krieger%2C+Nancy&rft.au=Buckee%2C+Caroline+O.&rft.date=2021-07-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-94516-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_94516_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon