Spatiotemporal Traffic Flow Prediction with KNN and LSTM

The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined wi...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced transportation Vol. 2019; no. 2019; pp. 1 - 10
Main Authors Zhang, Shengrui, Yang, Yu, Li, Danyang, Luo, Xianglong
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and capture spatial features of traffic flow. LSTM is utilized to mine temporal variability of traffic flow, and a two-layer LSTM network is applied to predict traffic flow respectively in selected stations. The final prediction results are obtained by result-level fusion with rank-exponent weighting method. The prediction performance is evaluated with real-time traffic flow data provided by the Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results indicate that the proposed model can achieve a better performance compared with well-known prediction models including autoregressive integrated moving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief networks combined with support vector regression (DBN-SVR), and LSTM models, and the proposed model can achieve on average 12.59% accuracy improvement.
AbstractList The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and capture spatial features of traffic flow. LSTM is utilized to mine temporal variability of traffic flow, and a two-layer LSTM network is applied to predict traffic flow respectively in selected stations. The final prediction results are obtained by result-level fusion with rank-exponent weighting method. The prediction performance is evaluated with real-time traffic flow data provided by the Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results indicate that the proposed model can achieve a better performance compared with well-known prediction models including autoregressive integrated moving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief networks combined with support vector regression (DBN-SVR), and LSTM models, and the proposed model can achieve on average 12.59% accuracy improvement.
Audience Academic
Author Li, Danyang
Yang, Yu
Luo, Xianglong
Zhang, Shengrui
Author_xml – sequence: 1
  fullname: Zhang, Shengrui
– sequence: 2
  fullname: Yang, Yu
– sequence: 3
  fullname: Li, Danyang
– sequence: 4
  fullname: Luo, Xianglong
BookMark eNqFkd1rFDEUxYNUcFt981kGfNRp8z3JYylWi2sVuj6HTD5ms8wmazLL4n9v1ikqsmICCdz8zsnlnnNwFlN0ALxE8BIhxq4wRPKKIsoII0_AAkOKW4IkOwOL-tK1vMPyGTgvZQMhkUzSBRAPOz2FNLntLmU9NqusvQ-muR3TofmSnQ2mPsfmEKZ18_H-vtHRNsuH1afn4KnXY3EvHu8L8PX23ermQ7v8_P7u5nrZGkbh1DJJrO89kZYbwmWPCet1JzBjkDjaQUE5lcQThyimjjLYc-mM99Zy5xDn5ALczb426Y3a5bDV-btKOqifhZQHpfMUzOhULyCzWIpeGEkpRNpbSZjmlgvTGSGr1-vZa5fTt70rk9qkfY61fYUp7DirS1SqnalBV9MQfZqyNoOLrg6oDtyHWr7mmKCOIA4rf3mCr9u6bTAnBW__EPT7EqIr9ShhWE9l0PtSTuImp1Ky87-mgKA65q6OuavH3CuO_8JNmI4Zx9pWGP8lejOL1iFafQj_--LVTLvKOK9_04hLwSj5ASzVxAQ
CitedBy_id crossref_primary_10_3390_ijgi12030098
crossref_primary_10_3390_su14074083
crossref_primary_10_1007_s42421_023_00073_y
crossref_primary_10_1109_ACCESS_2019_2937114
crossref_primary_10_1109_JSEN_2020_3024976
crossref_primary_10_1016_j_compeleceng_2021_107219
crossref_primary_10_1155_2021_5533722
crossref_primary_10_1007_s00521_022_07841_x
crossref_primary_10_3233_IDT_220223
crossref_primary_10_3390_rs13163338
crossref_primary_10_1155_2020_8831521
crossref_primary_10_1109_TC_2023_3236902
crossref_primary_10_3390_su14148627
crossref_primary_10_26599_BDMA_2024_9020020
crossref_primary_10_1007_s00521_023_08831_3
crossref_primary_10_1007_s41062_021_00718_3
crossref_primary_10_1155_2022_1793060
crossref_primary_10_1109_ACCESS_2023_3266291
crossref_primary_10_3390_su12155891
crossref_primary_10_1155_2020_9628957
crossref_primary_10_2478_ttj_2021_0032
crossref_primary_10_1016_j_neucom_2024_129006
crossref_primary_10_1016_j_rineng_2024_102342
crossref_primary_10_1109_JIOT_2023_3262484
crossref_primary_10_3233_IDT_220233
crossref_primary_10_3390_math12223589
crossref_primary_10_1007_s12530_023_09513_0
crossref_primary_10_1061_JTEPBS_TEENG_7647
crossref_primary_10_1007_s00521_020_05564_5
crossref_primary_10_31854_1813_324X_2024_10_4_37_47
crossref_primary_10_1016_j_jclepro_2020_122956
crossref_primary_10_3390_coatings15030349
crossref_primary_10_3390_electronics13010212
crossref_primary_10_1007_s11227_023_05333_w
crossref_primary_10_1109_TITS_2022_3179789
crossref_primary_10_2478_amns_2024_3095
crossref_primary_10_1049_itr2_12232
crossref_primary_10_12677_AAM_2023_1210443
crossref_primary_10_1109_ACCESS_2020_2970250
crossref_primary_10_1016_j_dcan_2020_12_002
crossref_primary_10_1109_ACCESS_2022_3204036
crossref_primary_10_1177_03611981231171909
crossref_primary_10_5604_01_3001_0015_8148
crossref_primary_10_3390_app9081677
crossref_primary_10_1016_j_inffus_2024_102341
crossref_primary_10_1002_dac_4814
crossref_primary_10_1109_ACCESS_2020_3038788
crossref_primary_10_1109_JIOT_2024_3440989
crossref_primary_10_1186_s12544_021_00520_3
crossref_primary_10_1016_j_comnet_2020_107530
crossref_primary_10_3390_s21227705
crossref_primary_10_1002_for_2683
crossref_primary_10_1080_19427867_2024_2353485
crossref_primary_10_1016_j_aap_2023_107203
crossref_primary_10_1007_s11042_023_16591_4
crossref_primary_10_1109_TITS_2024_3441326
crossref_primary_10_1038_s41598_023_41902_y
crossref_primary_10_3390_app13127139
crossref_primary_10_1007_s10489_020_02152_x
crossref_primary_10_1016_j_comcom_2019_10_011
crossref_primary_10_1007_s11071_024_10404_5
crossref_primary_10_1016_j_jfranklin_2024_107299
crossref_primary_10_3390_a17090398
crossref_primary_10_1155_2019_5487952
crossref_primary_10_1155_2021_5815280
crossref_primary_10_1109_ACCESS_2020_2991462
crossref_primary_10_1155_2020_8863724
crossref_primary_10_1155_2019_1450163
crossref_primary_10_1155_2022_6446941
crossref_primary_10_1007_s10706_021_01700_7
crossref_primary_10_1016_j_solmat_2023_112207
crossref_primary_10_3389_fbioe_2022_804454
crossref_primary_10_3390_app10041509
crossref_primary_10_1007_s10707_024_00517_9
crossref_primary_10_54480_slrm_v3i3_44
crossref_primary_10_3390_app13042681
crossref_primary_10_1007_s11356_022_20393_w
crossref_primary_10_1155_2021_6688609
crossref_primary_10_1109_TITS_2021_3091708
crossref_primary_10_1016_j_vehcom_2021_100403
crossref_primary_10_1155_2019_7085104
crossref_primary_10_1145_3643848
crossref_primary_10_1155_2021_5540046
crossref_primary_10_1007_s44212_022_00015_z
crossref_primary_10_1109_ACCESS_2023_3236261
crossref_primary_10_1109_JSEN_2020_3007809
crossref_primary_10_3390_electronics11071032
crossref_primary_10_1109_ACCESS_2019_2932801
crossref_primary_10_1155_2019_8709087
crossref_primary_10_1155_2021_6624452
crossref_primary_10_3390_su141610039
crossref_primary_10_1155_2022_8711873
crossref_primary_10_1109_JIOT_2022_3212056
crossref_primary_10_3390_s21020629
crossref_primary_10_1007_s42488_025_00141_8
crossref_primary_10_1155_2019_7092713
crossref_primary_10_3390_su17062576
crossref_primary_10_1007_s11227_022_04518_z
crossref_primary_10_3390_app12189156
crossref_primary_10_1680_jtran_21_00024
crossref_primary_10_1155_2019_7547564
crossref_primary_10_1016_j_asoc_2022_108977
crossref_primary_10_1109_TITS_2024_3463389
crossref_primary_10_1088_2631_8695_ad9238
crossref_primary_10_1155_2020_1659475
crossref_primary_10_1109_ACCESS_2020_2984588
crossref_primary_10_1051_e3sconf_202342903003
crossref_primary_10_1109_TITS_2022_3153397
crossref_primary_10_1016_j_trc_2023_104126
crossref_primary_10_3390_app13095512
crossref_primary_10_1016_j_matpr_2021_04_249
crossref_primary_10_1080_03081060_2024_2367751
crossref_primary_10_3390_math10020282
crossref_primary_10_1016_j_knosys_2024_112586
crossref_primary_10_1021_acs_energyfuels_2c01006
crossref_primary_10_1002_ett_4950
crossref_primary_10_3390_math11112509
crossref_primary_10_1109_ACCESS_2021_3087658
crossref_primary_10_1155_2023_9524966
crossref_primary_10_1016_j_engappai_2022_105683
crossref_primary_10_1109_ACCESS_2020_2990738
crossref_primary_10_1016_j_trc_2022_103921
crossref_primary_10_3390_s22207994
crossref_primary_10_1155_2022_7682274
crossref_primary_10_1016_j_procs_2022_09_110
crossref_primary_10_1155_2020_8845804
crossref_primary_10_1155_2022_1107048
crossref_primary_10_1016_j_aei_2024_102665
crossref_primary_10_1109_MITS_2024_3400679
crossref_primary_10_1109_TITS_2023_3311397
crossref_primary_10_1016_j_pmcj_2023_101788
crossref_primary_10_1109_ACCESS_2020_2994415
crossref_primary_10_1109_MITS_2021_3116156
Cites_doi 10.1016/j.trc.2014.02.006
10.1016/j.trc.2014.02.005
10.1016/j.trc.2015.11.002
10.1016/j.neucom.2015.03.085
10.1109/TITS.2014.2315794
10.1049/iet-its.2016.0263
10.1016/j.trc.2015.03.014
10.1109/TITS.2015.2419614
10.1007/s12205-018-0429-4
10.1109/tits.2014.2311123
10.1155/2019/6461450
10.1155/2019/9196263
10.1049/iet-its.2013.0164
10.1016/j.neucom.2014.06.054
10.1155/2016/8658290
10.1016/j.trc.2014.01.005
10.1016/j.neucom.2017.03.049
10.1016/s0968-090x(97)82903-8
10.1109/TITS.2015.2453116
10.1016/j.trc.2017.02.024
10.1109/TVT.2016.2585575
10.1371/journal.pone.0119044
10.1109/TII.2017.2682855
10.1109/MITS.2018.2806634
10.1049/iet-its.2016.0208
10.1016/j.neucom.2014.08.100
10.1155/2016/9524206
10.1016/j.neucom.2015.12.013
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1016/j.eswa.2008.07.069
ContentType Journal Article
Copyright Copyright © 2019 Xianglong Luo et al.
COPYRIGHT 2019 John Wiley & Sons, Inc.
Copyright © 2019 Xianglong Luo et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2019 Xianglong Luo et al.
– notice: COPYRIGHT 2019 John Wiley & Sons, Inc.
– notice: Copyright © 2019 Xianglong Luo et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
N95
3V.
7ST
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
HCIFZ
K60
K6~
KR7
L.-
L6V
M0C
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
SOI
DOA
DOI 10.1155/2019/4145353
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2042-3195
Editor Hassan, Yasser
Editor_xml – sequence: 1
  givenname: Yasser
  surname: Hassan
  fullname: Hassan, Yasser
EndPage 10
ExternalDocumentID oai_doaj_org_article_b805d298b8c94401afd935a6d68c7c89
A623173160
10_1155_2019_4145353
1169854
GeographicLocations Trinidad and Tobago
China
GeographicLocations_xml – name: Trinidad and Tobago
– name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 5157081053
– fundername: National Key R&D Program of China
  grantid: 2018YFC0808706
GroupedDBID -~X
..I
05W
0R~
1OC
24P
29J
31~
3SF
4.4
52U
5GY
7WY
8-1
8FL
AAESR
AAEVG
AAFWJ
AAJEY
AAONW
AAZKR
ABDBF
ABDPE
ABJCF
ABUWG
ACBWZ
ACIWK
ACNCT
ACXQS
ADBBV
ADIZJ
ADJCN
AEIMD
AENEX
AFBPY
AFKRA
AFPKN
AFRAH
AHFXO
AI.
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAAKF
BCNDV
BDRZF
BENPR
BEZIV
BGLVJ
BHBCM
BNHUX
BOGZA
BRXPI
CCPQU
DU5
DWQXO
EBS
EJD
ESX
FEDTE
FRNLG
G-S
GODZA
GROUPED_DOAJ
H13
HCIFZ
HVGLF
HZ~
I-F
IAO
ICW
IOF
ITC
LITHE
LPU
M0C
M7S
MY~
N95
O9-
OK1
P2P
PIMPY
PQBIZ
PQBZA
PTHSS
PV9
RHX
RIWAO
RJQFR
RZL
SUPJJ
TN5
TUS
VH1
WBKPD
WH7
WIH
XI7
RHU
RHW
AAYXX
ACCMX
ACUHS
AEUYN
CITATION
PHGZM
PHGZT
PMFND
3V.
7ST
7XB
8FD
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
FR3
K60
K6~
KR7
L.-
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
SOI
PUEGO
ID FETCH-LOGICAL-c540t-593dfbf39d6c369b235ba7825503e470846493f3e1424e450b69ecffdd6ee1663
IEDL.DBID DOA
ISSN 0197-6729
IngestDate Wed Aug 27 01:06:22 EDT 2025
Fri Jul 25 10:35:29 EDT 2025
Fri Jun 13 00:05:37 EDT 2025
Tue Jun 10 21:01:34 EDT 2025
Fri May 23 02:36:22 EDT 2025
Thu Apr 24 23:02:58 EDT 2025
Tue Jul 01 00:34:07 EDT 2025
Sun Jun 02 19:16:54 EDT 2024
Tue Nov 26 17:06:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2019
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-593dfbf39d6c369b235ba7825503e470846493f3e1424e450b69ecffdd6ee1663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1116-1438
0000-0001-8069-875X
OpenAccessLink https://doaj.org/article/b805d298b8c94401afd935a6d68c7c89
PQID 2407655558
PQPubID 1006382
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_b805d298b8c94401afd935a6d68c7c89
proquest_journals_2407655558
gale_infotracgeneralonefile_A623173160
gale_infotracacademiconefile_A623173160
gale_businessinsightsgauss_A623173160
crossref_primary_10_1155_2019_4145353
crossref_citationtrail_10_1155_2019_4145353
hindawi_primary_10_1155_2019_4145353
emarefa_primary_1169854
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: London
PublicationTitle Journal of advanced transportation
PublicationYear 2019
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References (23) 2019; 2019
45
24
26
(25) 2019; 2019
27
28
29
(34) 2015; 16
(8) 2019; 2019
(22) 2019; 2019
30
(7) 2019; 2019
(38) 2016; 28
(41) 2018; 12
10
(14) 2018; 12
32
33
(6) 1994; 1453
12
13
(19) 2016; 2016
15
37
16
17
39
18
1
2
5
(11) 2014; 140
(3) 2014; 140
9
40
20
42
21
43
References_xml – volume: 16
  start-page: 865
  issue: 2
  year: 2015
  ident: 34
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– ident: 5
  doi: 10.1016/j.trc.2014.02.006
– volume: 2019
  year: 2019
  ident: 23
  publication-title: Geofluids
– ident: 17
  doi: 10.1016/j.trc.2014.02.005
– ident: 13
  doi: 10.1016/j.trc.2015.11.002
– ident: 16
  doi: 10.1016/j.neucom.2015.03.085
– ident: 18
  doi: 10.1109/TITS.2014.2315794
– volume: 140
  issue: 7
  year: 2014
  ident: 11
  publication-title: Journal of Transportation Engineering
– volume: 12
  start-page: 41
  issue: 1
  year: 2018
  ident: 14
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/iet-its.2016.0263
– ident: 43
  doi: 10.1016/j.trc.2015.03.014
– volume: 12
  issue: 6
  year: 2018
  ident: 41
  publication-title: IET Intelligent Transport Systems
– volume: 28
  start-page: 2371
  issue: 10
  year: 2016
  ident: 38
  publication-title: IEEE Transactions on Neural Networks & Learning Systems
– ident: 24
  doi: 10.1109/TITS.2015.2419614
– ident: 27
  doi: 10.1007/s12205-018-0429-4
– volume: 2019
  year: 2019
  ident: 25
  publication-title: Advances in Civil Engineering
– ident: 33
  doi: 10.1109/tits.2014.2311123
– volume: 1453
  start-page: 98
  year: 1994
  ident: 6
  publication-title: Transportation Research Record
– ident: 28
  doi: 10.1155/2019/6461450
– volume: 2019
  year: 2019
  ident: 8
  publication-title: Advances in Civil Engineering
  doi: 10.1155/2019/9196263
– ident: 10
  doi: 10.1049/iet-its.2013.0164
– ident: 26
  doi: 10.1016/j.neucom.2014.06.054
– ident: 29
  doi: 10.1155/2016/8658290
– ident: 30
  doi: 10.1016/j.trc.2014.01.005
– ident: 39
  doi: 10.1016/j.neucom.2017.03.049
– volume: 2019
  year: 2019
  ident: 7
  publication-title: Geofluids
– ident: 1
  doi: 10.1016/s0968-090x(97)82903-8
– ident: 12
  doi: 10.1109/TITS.2015.2453116
– ident: 40
  doi: 10.1016/j.trc.2017.02.024
– volume: 140
  start-page: 1053
  issue: 5
  year: 2014
  ident: 3
  publication-title: Journal of Transportation Engineering
– ident: 37
  doi: 10.1109/TVT.2016.2585575
– ident: 42
  doi: 10.1371/journal.pone.0119044
– ident: 9
  doi: 10.1109/TII.2017.2682855
– ident: 32
  doi: 10.1109/MITS.2018.2806634
– ident: 45
  doi: 10.1049/iet-its.2016.0208
– ident: 21
  doi: 10.1016/j.neucom.2014.08.100
– volume: 2016
  year: 2016
  ident: 19
  publication-title: Shock and Vibration
  doi: 10.1155/2016/9524206
– ident: 20
  doi: 10.1016/j.neucom.2015.12.013
– volume: 2019
  year: 2019
  ident: 22
  publication-title: Shock and vibration
– ident: 2
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– ident: 15
  doi: 10.1016/j.eswa.2008.07.069
SSID ssj0039594
Score 2.5712917
Snippet The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic...
SourceID doaj
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Analysis
Autoregressive models
Belief networks
Data centers
Deep learning
Intelligent transportation systems
Long short-term memory
Neural networks
Nonparametric statistics
Performance evaluation
Prediction models
Rankings
Regression analysis
Sensors
Stations
Statistical analysis
Support vector machines
Time series
Traffic congestion
Traffic control
Traffic flow
Traffic management
Transportation
Transportation networks
Weighting methods
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEA8qCO2DWPt1VkserH0oS3c3H7t5VOlxaD0KKtxbyKctHGdxT_z3O5PNXXvaUl8Wdpn9mkkyv0kyvyHkQDKPLGiqqDFDhvvKFTaWtgBXa-oI-LpONZbOx3J0xU8nYpJJkrrHS_jg7SA8r9RnXnHBBFsn69DAMCgfTRYDLlNC9RTeqikkgMXF_vYH9654nkTQn7JwDZyb5YC8-R1D4fsfj4bm5G-G22QrA0V61Fv2BVkLsx3y_A_6wJekvUjboTO71JSC30FCCDqc3tzTb7e4BINqpzjXSs_GY2pmnn69uDx_Ra6GXy5PRkWuhFA4QFTzQijmo41MeemYVLZmwhrw7RBesMCbEkAEVyyygHlrgYvSShVcjN7LECoAFa_JxuxmFt4SyoOsI6AKKULJXcNVBCuGJgYs91DKMCCfFlrSLtOEY7WKqU7hghAadaqzTgfkw1L6Z0-P8Q-5Y1T4UgZJrdMFMLTOfUTbthS-Vq1tneIQ95noFRNGetm6xrVqQN5kc_1-VyVVKzh8BppP58KdcOhwaqO7Nnddp48A4lVYoasckI9JDjsv_JQzOQcBVIM0WCuShyuS1z0J-N8ED3KT-Y8C9hbtSedRotMYTUuBjGu7T3vKO_IMT_spoD2yMb-9C_sAiub2feoSvwDpnv2M
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBdbymB9GPtutm74odsehqltfVh6Gm1pKNsaytpC34Ssj6wQkjZO6b-_O1lOG_b1Yohz2MmddPe7k_Q7QnYEdciCpvIKT8gwV9q8CUWTQ6g1VQB8XcUeS8djcXTOvl7wi1Rwa9O2yt4nRkft5hZr5LuYeQiO7FRfrq5z7BqFq6uphcZDsgEuWMoB2dg_HJ_86H0xVVx17N6qzgXgyH7rO-eQ9Zdql5WMU07XglLk7o8HdA18Nitf_egnZsm3l7957RiKRk_Jk4Qhs73O6M_IAz97TjbvMQu-IPI07pROxFPTDEISckVko-n8NjtZ4OoMWiTDMmz2bTzOzMxl30_Pjl-S89Hh2cFRnpok5BbA1jLnirrQBKqcsFSopqK8MRD2IfOgntUF4AumaKAej7R5xotGKG9DcE54XwLeeEUGs_nMb5GMeVEFAByC-4LZmqkABvZ18NgJohB-SD73WtI2MYhjI4upjpkE5xp1qpNOh-TDSvqqY874i9w-Knwlg3zX8cZ8MdFp-uhGFtxVSjbSKgYpoQlOUW6EE9LWVqoheZ3MdfeuUijJGfwMNJ9OPT3h0mLVo52Ym7bVe4D-SmzeVQzJpyiH8xr-lDXpeAKoBhmy1iQ_rklOOn7wPwnupCHzHwVs9-NJJwfS6rvh_ubfX78lj_FhXVVomwyWixv_DnDSsnmfJsMvhg8JUA
  priority: 102
  providerName: ProQuest
Title Spatiotemporal Traffic Flow Prediction with KNN and LSTM
URI https://search.emarefa.net/detail/BIM-1169854
https://dx.doi.org/10.1155/2019/4145353
https://www.proquest.com/docview/2407655558
https://doaj.org/article/b805d298b8c94401afd935a6d68c7c89
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqE9hL67TbrokLaHYmJbD1vHJGS7tM0S8oC9CT3TwrIp8Yb8_c7I2m2WpuTSi8BmQPKMpPlG1nxDyI5kHlnQVFFjhgz3lStsLG0BrtbUEfB1nWosHU3k-Jx_nYrprVJfeCespwfuFbdr21L4WrW2dYpDMGCiV0wY6WXrGtem1D3wectgqt-DmRKqZ_VWTSEBPy6vvAsB0X6ldnnFBRNszRklzv6UmGvg2az26Mc_MDq--fnXbp1c0OgZ2czYke71Y35OHoT5C_L0FqPgS9KephvSmXBqRsEVIUcEHc0ub-jxFf6VQUtQPH6l3yYTauaefj89O3pFzkeHZwfjIhdHKByArEUhFPPRRqa8dEwqWzNhDbh7iDhY4E0JuIIrFlnAVLbARWmlCi5G72UIFeCM12RjfjkPbwnlQdYRgIYUoeSu4SqCYUMTA1aAKGUYkM9LLWmXmcOxgMVMpwhCCI061VmnA_JhJf2rZ8z4h9w-KnwlgzzX6QVYX2fr6_usPyBvsrn-9FVJ1QoOw0Dz6VzLE5oOTzu6C3PddXoPUF-FRbvKAfmU5HA9w0c5k9MSQDXIjLUm-XFN8qLnBb9LcCdPmXsUsL2cTzpvHJ3GAFsKJGF79z_0s0WeYJf9mdE22VhcXYf3gKIWdkgetqMvQ_Jo_3ByfDJMywfak_H0N4E9E9c
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQcEO8GCvjQwgFZsb2PeA8IlUdIyUNITaXetvY-QqUoKXGqiD_Fb2RmvU6JeJ16sRRn5Dizs_PN7O58Q8ieoAZZ0GScYYUMM6mOS5eUMUBtkTmIrzPfY2k4Er1j9vmEn2yRH00tDB6rbHyid9RmrnGNvI2Zh-DITvX2_FuMXaNwd7VpoVGbRd9-X0HKVr05_ADju59l3Y_j9704dBWINUQny5hLalzpqDRCUyHLjPKyAJyEUJ1a1kkAkJmkjlqsAbOMJ6WQVjtnjLA2BYCG514j1xkFJMfK9O6nxvNTyWXNJS47sYCotTloz3kbcFa2Wco45XQDAn2nAF8OXMDnYo0MN75iTr46-w0jPPB175I7IWKNDmoTu0e27Ow-uf0Lj-EDkh_5c9mB5moaAQAiM0XUnc5X0ZcF7gXh-Ee46Bv1R6OomJlocDQePiTHV6K8R2R7Np_ZHRIxKzIH4Y3gNmG6w6QDc7IdZ7HvRCJsi7xutKR04CvHthlT5fMWzhXqVAWdtsj-Wvq85un4i9w7VPhaBtm1_Y35YqLCZFVlnnCTybzMtWSQgBbOSMoLYUSuOzqXLfI4DNflb6VC5pzBa-DwqdBBFC4VrrFUk-KiqtQBxJoptgpLWuSVl0MvAn9KF6EYAlSDfFwbki83JCc1G_mfBPeCyfxHAbuNPangrip1Obme_PvrF-RmbzwcqMHhqP-U3MIH1-tRu2R7ubiwzyBCW5bP_bSIyOlVz8Of7GlEAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCA4IN4ECvjQwgFZsb0Pew8ItbRRS1oroq3U22LvI60UJSVOFfHX-HXM2OuUiNepF0txRo4zO7PfzO7ON4RsCmqQBU2GCVbIMBPrsHRRGQLUFomD-Dqpeywd5WL_lH0-42dr5EdbC4PHKts5sZ6ozVTjGnkPMw_BkZ2q5_yxiOFu_-PltxA7SOFOa9tOozGRgf2-gPSt-nCwC2O9lST9vZNP-6HvMBBqiFTmIZfUuNJRaYSmQpYJ5WUBmAlhO7UsjQCcmaSOWqwHs4xHpZBWO2eMsDYGsIbn3iLrKWZFHbK-s5cPv7Q4QCWXDbO4TEMBMWx77J7zHqCu7LGYccrpCiDWfQPq4uACPhdLnLh9jhn64uI3xKhhsP-A3Pfxa7DdGNxDsmYnj8i9X1gNH5PsuD6l7UmvxgHAIfJUBP3xdBEMZ7gzhNYQ4BJwMMjzoJiY4PD45OgJOb0R9T0lncl0Yp-TgFmROAh2BLcR0ymTDozLps5iF4pI2C5532pJac9ejk00xqrOYjhXqFPlddolW0vpy4a14y9yO6jwpQxybdc3prOR8q6ryiziJpFZmWnJIB0tnJGUF8KITKc6k13yzA_X9W_FQmacwWvg8CnfTxQuFa64VKPiqqrUNkSeMTYOi7rkXS2Hcwr8KV340ghQDbJzrUi-XZEcNdzkfxLc9CbzHwVstPak_ORVqWtXe_Hvr9-QO-CD6vAgH7wkd_G5zeLUBunMZ1f2FYRr8_K194uAfL1pV_wJ8MBJlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+Traffic+Flow+Prediction+with+KNN+and+LSTM&rft.jtitle=Journal+of+advanced+transportation&rft.au=Xianglong+Luo&rft.au=Danyang+Li&rft.au=Yu+Yang&rft.au=Shengrui+Zhang&rft.date=2019-01-01&rft.pub=Wiley&rft.issn=0197-6729&rft.eissn=2042-3195&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F4145353&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b805d298b8c94401afd935a6d68c7c89
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon