Spatiotemporal Traffic Flow Prediction with KNN and LSTM
The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined wi...
Saved in:
Published in | Journal of advanced transportation Vol. 2019; no. 2019; pp. 1 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2019
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and capture spatial features of traffic flow. LSTM is utilized to mine temporal variability of traffic flow, and a two-layer LSTM network is applied to predict traffic flow respectively in selected stations. The final prediction results are obtained by result-level fusion with rank-exponent weighting method. The prediction performance is evaluated with real-time traffic flow data provided by the Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results indicate that the proposed model can achieve a better performance compared with well-known prediction models including autoregressive integrated moving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief networks combined with support vector regression (DBN-SVR), and LSTM models, and the proposed model can achieve on average 12.59% accuracy improvement. |
---|---|
AbstractList | The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and capture spatial features of traffic flow. LSTM is utilized to mine temporal variability of traffic flow, and a two-layer LSTM network is applied to predict traffic flow respectively in selected stations. The final prediction results are obtained by result-level fusion with rank-exponent weighting method. The prediction performance is evaluated with real-time traffic flow data provided by the Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results indicate that the proposed model can achieve a better performance compared with well-known prediction models including autoregressive integrated moving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief networks combined with support vector regression (DBN-SVR), and LSTM models, and the proposed model can achieve on average 12.59% accuracy improvement. |
Audience | Academic |
Author | Li, Danyang Yang, Yu Luo, Xianglong Zhang, Shengrui |
Author_xml | – sequence: 1 fullname: Zhang, Shengrui – sequence: 2 fullname: Yang, Yu – sequence: 3 fullname: Li, Danyang – sequence: 4 fullname: Luo, Xianglong |
BookMark | eNqFkd1rFDEUxYNUcFt981kGfNRp8z3JYylWi2sVuj6HTD5ms8wmazLL4n9v1ikqsmICCdz8zsnlnnNwFlN0ALxE8BIhxq4wRPKKIsoII0_AAkOKW4IkOwOL-tK1vMPyGTgvZQMhkUzSBRAPOz2FNLntLmU9NqusvQ-muR3TofmSnQ2mPsfmEKZ18_H-vtHRNsuH1afn4KnXY3EvHu8L8PX23ermQ7v8_P7u5nrZGkbh1DJJrO89kZYbwmWPCet1JzBjkDjaQUE5lcQThyimjjLYc-mM99Zy5xDn5ALczb426Y3a5bDV-btKOqifhZQHpfMUzOhULyCzWIpeGEkpRNpbSZjmlgvTGSGr1-vZa5fTt70rk9qkfY61fYUp7DirS1SqnalBV9MQfZqyNoOLrg6oDtyHWr7mmKCOIA4rf3mCr9u6bTAnBW__EPT7EqIr9ShhWE9l0PtSTuImp1Ky87-mgKA65q6OuavH3CuO_8JNmI4Zx9pWGP8lejOL1iFafQj_--LVTLvKOK9_04hLwSj5ASzVxAQ |
CitedBy_id | crossref_primary_10_3390_ijgi12030098 crossref_primary_10_3390_su14074083 crossref_primary_10_1007_s42421_023_00073_y crossref_primary_10_1109_ACCESS_2019_2937114 crossref_primary_10_1109_JSEN_2020_3024976 crossref_primary_10_1016_j_compeleceng_2021_107219 crossref_primary_10_1155_2021_5533722 crossref_primary_10_1007_s00521_022_07841_x crossref_primary_10_3233_IDT_220223 crossref_primary_10_3390_rs13163338 crossref_primary_10_1155_2020_8831521 crossref_primary_10_1109_TC_2023_3236902 crossref_primary_10_3390_su14148627 crossref_primary_10_26599_BDMA_2024_9020020 crossref_primary_10_1007_s00521_023_08831_3 crossref_primary_10_1007_s41062_021_00718_3 crossref_primary_10_1155_2022_1793060 crossref_primary_10_1109_ACCESS_2023_3266291 crossref_primary_10_3390_su12155891 crossref_primary_10_1155_2020_9628957 crossref_primary_10_2478_ttj_2021_0032 crossref_primary_10_1016_j_neucom_2024_129006 crossref_primary_10_1016_j_rineng_2024_102342 crossref_primary_10_1109_JIOT_2023_3262484 crossref_primary_10_3233_IDT_220233 crossref_primary_10_3390_math12223589 crossref_primary_10_1007_s12530_023_09513_0 crossref_primary_10_1061_JTEPBS_TEENG_7647 crossref_primary_10_1007_s00521_020_05564_5 crossref_primary_10_31854_1813_324X_2024_10_4_37_47 crossref_primary_10_1016_j_jclepro_2020_122956 crossref_primary_10_3390_coatings15030349 crossref_primary_10_3390_electronics13010212 crossref_primary_10_1007_s11227_023_05333_w crossref_primary_10_1109_TITS_2022_3179789 crossref_primary_10_2478_amns_2024_3095 crossref_primary_10_1049_itr2_12232 crossref_primary_10_12677_AAM_2023_1210443 crossref_primary_10_1109_ACCESS_2020_2970250 crossref_primary_10_1016_j_dcan_2020_12_002 crossref_primary_10_1109_ACCESS_2022_3204036 crossref_primary_10_1177_03611981231171909 crossref_primary_10_5604_01_3001_0015_8148 crossref_primary_10_3390_app9081677 crossref_primary_10_1016_j_inffus_2024_102341 crossref_primary_10_1002_dac_4814 crossref_primary_10_1109_ACCESS_2020_3038788 crossref_primary_10_1109_JIOT_2024_3440989 crossref_primary_10_1186_s12544_021_00520_3 crossref_primary_10_1016_j_comnet_2020_107530 crossref_primary_10_3390_s21227705 crossref_primary_10_1002_for_2683 crossref_primary_10_1080_19427867_2024_2353485 crossref_primary_10_1016_j_aap_2023_107203 crossref_primary_10_1007_s11042_023_16591_4 crossref_primary_10_1109_TITS_2024_3441326 crossref_primary_10_1038_s41598_023_41902_y crossref_primary_10_3390_app13127139 crossref_primary_10_1007_s10489_020_02152_x crossref_primary_10_1016_j_comcom_2019_10_011 crossref_primary_10_1007_s11071_024_10404_5 crossref_primary_10_1016_j_jfranklin_2024_107299 crossref_primary_10_3390_a17090398 crossref_primary_10_1155_2019_5487952 crossref_primary_10_1155_2021_5815280 crossref_primary_10_1109_ACCESS_2020_2991462 crossref_primary_10_1155_2020_8863724 crossref_primary_10_1155_2019_1450163 crossref_primary_10_1155_2022_6446941 crossref_primary_10_1007_s10706_021_01700_7 crossref_primary_10_1016_j_solmat_2023_112207 crossref_primary_10_3389_fbioe_2022_804454 crossref_primary_10_3390_app10041509 crossref_primary_10_1007_s10707_024_00517_9 crossref_primary_10_54480_slrm_v3i3_44 crossref_primary_10_3390_app13042681 crossref_primary_10_1007_s11356_022_20393_w crossref_primary_10_1155_2021_6688609 crossref_primary_10_1109_TITS_2021_3091708 crossref_primary_10_1016_j_vehcom_2021_100403 crossref_primary_10_1155_2019_7085104 crossref_primary_10_1145_3643848 crossref_primary_10_1155_2021_5540046 crossref_primary_10_1007_s44212_022_00015_z crossref_primary_10_1109_ACCESS_2023_3236261 crossref_primary_10_1109_JSEN_2020_3007809 crossref_primary_10_3390_electronics11071032 crossref_primary_10_1109_ACCESS_2019_2932801 crossref_primary_10_1155_2019_8709087 crossref_primary_10_1155_2021_6624452 crossref_primary_10_3390_su141610039 crossref_primary_10_1155_2022_8711873 crossref_primary_10_1109_JIOT_2022_3212056 crossref_primary_10_3390_s21020629 crossref_primary_10_1007_s42488_025_00141_8 crossref_primary_10_1155_2019_7092713 crossref_primary_10_3390_su17062576 crossref_primary_10_1007_s11227_022_04518_z crossref_primary_10_3390_app12189156 crossref_primary_10_1680_jtran_21_00024 crossref_primary_10_1155_2019_7547564 crossref_primary_10_1016_j_asoc_2022_108977 crossref_primary_10_1109_TITS_2024_3463389 crossref_primary_10_1088_2631_8695_ad9238 crossref_primary_10_1155_2020_1659475 crossref_primary_10_1109_ACCESS_2020_2984588 crossref_primary_10_1051_e3sconf_202342903003 crossref_primary_10_1109_TITS_2022_3153397 crossref_primary_10_1016_j_trc_2023_104126 crossref_primary_10_3390_app13095512 crossref_primary_10_1016_j_matpr_2021_04_249 crossref_primary_10_1080_03081060_2024_2367751 crossref_primary_10_3390_math10020282 crossref_primary_10_1016_j_knosys_2024_112586 crossref_primary_10_1021_acs_energyfuels_2c01006 crossref_primary_10_1002_ett_4950 crossref_primary_10_3390_math11112509 crossref_primary_10_1109_ACCESS_2021_3087658 crossref_primary_10_1155_2023_9524966 crossref_primary_10_1016_j_engappai_2022_105683 crossref_primary_10_1109_ACCESS_2020_2990738 crossref_primary_10_1016_j_trc_2022_103921 crossref_primary_10_3390_s22207994 crossref_primary_10_1155_2022_7682274 crossref_primary_10_1016_j_procs_2022_09_110 crossref_primary_10_1155_2020_8845804 crossref_primary_10_1155_2022_1107048 crossref_primary_10_1016_j_aei_2024_102665 crossref_primary_10_1109_MITS_2024_3400679 crossref_primary_10_1109_TITS_2023_3311397 crossref_primary_10_1016_j_pmcj_2023_101788 crossref_primary_10_1109_ACCESS_2020_2994415 crossref_primary_10_1109_MITS_2021_3116156 |
Cites_doi | 10.1016/j.trc.2014.02.006 10.1016/j.trc.2014.02.005 10.1016/j.trc.2015.11.002 10.1016/j.neucom.2015.03.085 10.1109/TITS.2014.2315794 10.1049/iet-its.2016.0263 10.1016/j.trc.2015.03.014 10.1109/TITS.2015.2419614 10.1007/s12205-018-0429-4 10.1109/tits.2014.2311123 10.1155/2019/6461450 10.1155/2019/9196263 10.1049/iet-its.2013.0164 10.1016/j.neucom.2014.06.054 10.1155/2016/8658290 10.1016/j.trc.2014.01.005 10.1016/j.neucom.2017.03.049 10.1016/s0968-090x(97)82903-8 10.1109/TITS.2015.2453116 10.1016/j.trc.2017.02.024 10.1109/TVT.2016.2585575 10.1371/journal.pone.0119044 10.1109/TII.2017.2682855 10.1109/MITS.2018.2806634 10.1049/iet-its.2016.0208 10.1016/j.neucom.2014.08.100 10.1155/2016/9524206 10.1016/j.neucom.2015.12.013 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1016/j.eswa.2008.07.069 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Xianglong Luo et al. COPYRIGHT 2019 John Wiley & Sons, Inc. Copyright © 2019 Xianglong Luo et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © 2019 Xianglong Luo et al. – notice: COPYRIGHT 2019 John Wiley & Sons, Inc. – notice: Copyright © 2019 Xianglong Luo et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION N95 3V. 7ST 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ C1K CCPQU DWQXO FR3 FRNLG F~G HCIFZ K60 K6~ KR7 L.- L6V M0C M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U SOI DOA |
DOI | 10.1155/2019/4145353 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Gale Business: Insights ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2042-3195 |
Editor | Hassan, Yasser |
Editor_xml | – sequence: 1 givenname: Yasser surname: Hassan fullname: Hassan, Yasser |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_b805d298b8c94401afd935a6d68c7c89 A623173160 10_1155_2019_4145353 1169854 |
GeographicLocations | Trinidad and Tobago China |
GeographicLocations_xml | – name: Trinidad and Tobago – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 5157081053 – fundername: National Key R&D Program of China grantid: 2018YFC0808706 |
GroupedDBID | -~X ..I 05W 0R~ 1OC 24P 29J 31~ 3SF 4.4 52U 5GY 7WY 8-1 8FL AAESR AAEVG AAFWJ AAJEY AAONW AAZKR ABDBF ABDPE ABJCF ABUWG ACBWZ ACIWK ACNCT ACXQS ADBBV ADIZJ ADJCN AEIMD AENEX AFBPY AFKRA AFPKN AFRAH AHFXO AI. AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZFZN AZVAB BAAKF BCNDV BDRZF BENPR BEZIV BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU DU5 DWQXO EBS EJD ESX FEDTE FRNLG G-S GODZA GROUPED_DOAJ H13 HCIFZ HVGLF HZ~ I-F IAO ICW IOF ITC LITHE LPU M0C M7S MY~ N95 O9- OK1 P2P PIMPY PQBIZ PQBZA PTHSS PV9 RHX RIWAO RJQFR RZL SUPJJ TN5 TUS VH1 WBKPD WH7 WIH XI7 RHU RHW AAYXX ACCMX ACUHS AEUYN CITATION PHGZM PHGZT PMFND 3V. 7ST 7XB 8FD 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K FR3 K60 K6~ KR7 L.- L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U SOI PUEGO |
ID | FETCH-LOGICAL-c540t-593dfbf39d6c369b235ba7825503e470846493f3e1424e450b69ecffdd6ee1663 |
IEDL.DBID | DOA |
ISSN | 0197-6729 |
IngestDate | Wed Aug 27 01:06:22 EDT 2025 Fri Jul 25 10:35:29 EDT 2025 Fri Jun 13 00:05:37 EDT 2025 Tue Jun 10 21:01:34 EDT 2025 Fri May 23 02:36:22 EDT 2025 Thu Apr 24 23:02:58 EDT 2025 Tue Jul 01 00:34:07 EDT 2025 Sun Jun 02 19:16:54 EDT 2024 Tue Nov 26 17:06:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2019 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-593dfbf39d6c369b235ba7825503e470846493f3e1424e450b69ecffdd6ee1663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1116-1438 0000-0001-8069-875X |
OpenAccessLink | https://doaj.org/article/b805d298b8c94401afd935a6d68c7c89 |
PQID | 2407655558 |
PQPubID | 1006382 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b805d298b8c94401afd935a6d68c7c89 proquest_journals_2407655558 gale_infotracgeneralonefile_A623173160 gale_infotracacademiconefile_A623173160 gale_businessinsightsgauss_A623173160 crossref_primary_10_1155_2019_4145353 crossref_citationtrail_10_1155_2019_4145353 hindawi_primary_10_1155_2019_4145353 emarefa_primary_1169854 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: London |
PublicationTitle | Journal of advanced transportation |
PublicationYear | 2019 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | (23) 2019; 2019 45 24 26 (25) 2019; 2019 27 28 29 (34) 2015; 16 (8) 2019; 2019 (22) 2019; 2019 30 (7) 2019; 2019 (38) 2016; 28 (41) 2018; 12 10 (14) 2018; 12 32 33 (6) 1994; 1453 12 13 (19) 2016; 2016 15 37 16 17 39 18 1 2 5 (11) 2014; 140 (3) 2014; 140 9 40 20 42 21 43 |
References_xml | – volume: 16 start-page: 865 issue: 2 year: 2015 ident: 34 publication-title: IEEE Transactions on Intelligent Transportation Systems – ident: 5 doi: 10.1016/j.trc.2014.02.006 – volume: 2019 year: 2019 ident: 23 publication-title: Geofluids – ident: 17 doi: 10.1016/j.trc.2014.02.005 – ident: 13 doi: 10.1016/j.trc.2015.11.002 – ident: 16 doi: 10.1016/j.neucom.2015.03.085 – ident: 18 doi: 10.1109/TITS.2014.2315794 – volume: 140 issue: 7 year: 2014 ident: 11 publication-title: Journal of Transportation Engineering – volume: 12 start-page: 41 issue: 1 year: 2018 ident: 14 publication-title: IET Intelligent Transport Systems doi: 10.1049/iet-its.2016.0263 – ident: 43 doi: 10.1016/j.trc.2015.03.014 – volume: 12 issue: 6 year: 2018 ident: 41 publication-title: IET Intelligent Transport Systems – volume: 28 start-page: 2371 issue: 10 year: 2016 ident: 38 publication-title: IEEE Transactions on Neural Networks & Learning Systems – ident: 24 doi: 10.1109/TITS.2015.2419614 – ident: 27 doi: 10.1007/s12205-018-0429-4 – volume: 2019 year: 2019 ident: 25 publication-title: Advances in Civil Engineering – ident: 33 doi: 10.1109/tits.2014.2311123 – volume: 1453 start-page: 98 year: 1994 ident: 6 publication-title: Transportation Research Record – ident: 28 doi: 10.1155/2019/6461450 – volume: 2019 year: 2019 ident: 8 publication-title: Advances in Civil Engineering doi: 10.1155/2019/9196263 – ident: 10 doi: 10.1049/iet-its.2013.0164 – ident: 26 doi: 10.1016/j.neucom.2014.06.054 – ident: 29 doi: 10.1155/2016/8658290 – ident: 30 doi: 10.1016/j.trc.2014.01.005 – ident: 39 doi: 10.1016/j.neucom.2017.03.049 – volume: 2019 year: 2019 ident: 7 publication-title: Geofluids – ident: 1 doi: 10.1016/s0968-090x(97)82903-8 – ident: 12 doi: 10.1109/TITS.2015.2453116 – ident: 40 doi: 10.1016/j.trc.2017.02.024 – volume: 140 start-page: 1053 issue: 5 year: 2014 ident: 3 publication-title: Journal of Transportation Engineering – ident: 37 doi: 10.1109/TVT.2016.2585575 – ident: 42 doi: 10.1371/journal.pone.0119044 – ident: 9 doi: 10.1109/TII.2017.2682855 – ident: 32 doi: 10.1109/MITS.2018.2806634 – ident: 45 doi: 10.1049/iet-its.2016.0208 – ident: 21 doi: 10.1016/j.neucom.2014.08.100 – volume: 2016 year: 2016 ident: 19 publication-title: Shock and Vibration doi: 10.1155/2016/9524206 – ident: 20 doi: 10.1016/j.neucom.2015.12.013 – volume: 2019 year: 2019 ident: 22 publication-title: Shock and vibration – ident: 2 doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – ident: 15 doi: 10.1016/j.eswa.2008.07.069 |
SSID | ssj0039594 |
Score | 2.5712917 |
Snippet | The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic... |
SourceID | doaj proquest gale crossref hindawi emarefa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Analysis Autoregressive models Belief networks Data centers Deep learning Intelligent transportation systems Long short-term memory Neural networks Nonparametric statistics Performance evaluation Prediction models Rankings Regression analysis Sensors Stations Statistical analysis Support vector machines Time series Traffic congestion Traffic control Traffic flow Traffic management Transportation Transportation networks Weighting methods |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEA8qCO2DWPt1VkserH0oS3c3H7t5VOlxaD0KKtxbyKctHGdxT_z3O5PNXXvaUl8Wdpn9mkkyv0kyvyHkQDKPLGiqqDFDhvvKFTaWtgBXa-oI-LpONZbOx3J0xU8nYpJJkrrHS_jg7SA8r9RnXnHBBFsn69DAMCgfTRYDLlNC9RTeqikkgMXF_vYH9654nkTQn7JwDZyb5YC8-R1D4fsfj4bm5G-G22QrA0V61Fv2BVkLsx3y_A_6wJekvUjboTO71JSC30FCCDqc3tzTb7e4BINqpzjXSs_GY2pmnn69uDx_Ra6GXy5PRkWuhFA4QFTzQijmo41MeemYVLZmwhrw7RBesMCbEkAEVyyygHlrgYvSShVcjN7LECoAFa_JxuxmFt4SyoOsI6AKKULJXcNVBCuGJgYs91DKMCCfFlrSLtOEY7WKqU7hghAadaqzTgfkw1L6Z0-P8Q-5Y1T4UgZJrdMFMLTOfUTbthS-Vq1tneIQ95noFRNGetm6xrVqQN5kc_1-VyVVKzh8BppP58KdcOhwaqO7Nnddp48A4lVYoasckI9JDjsv_JQzOQcBVIM0WCuShyuS1z0J-N8ED3KT-Y8C9hbtSedRotMYTUuBjGu7T3vKO_IMT_spoD2yMb-9C_sAiub2feoSvwDpnv2M priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBdbymB9GPtutm74odsehqltfVh6Gm1pKNsaytpC34Ssj6wQkjZO6b-_O1lOG_b1Yohz2MmddPe7k_Q7QnYEdciCpvIKT8gwV9q8CUWTQ6g1VQB8XcUeS8djcXTOvl7wi1Rwa9O2yt4nRkft5hZr5LuYeQiO7FRfrq5z7BqFq6uphcZDsgEuWMoB2dg_HJ_86H0xVVx17N6qzgXgyH7rO-eQ9Zdql5WMU07XglLk7o8HdA18Nitf_egnZsm3l7957RiKRk_Jk4Qhs73O6M_IAz97TjbvMQu-IPI07pROxFPTDEISckVko-n8NjtZ4OoMWiTDMmz2bTzOzMxl30_Pjl-S89Hh2cFRnpok5BbA1jLnirrQBKqcsFSopqK8MRD2IfOgntUF4AumaKAej7R5xotGKG9DcE54XwLeeEUGs_nMb5GMeVEFAByC-4LZmqkABvZ18NgJohB-SD73WtI2MYhjI4upjpkE5xp1qpNOh-TDSvqqY874i9w-Knwlg3zX8cZ8MdFp-uhGFtxVSjbSKgYpoQlOUW6EE9LWVqoheZ3MdfeuUijJGfwMNJ9OPT3h0mLVo52Ym7bVe4D-SmzeVQzJpyiH8xr-lDXpeAKoBhmy1iQ_rklOOn7wPwnupCHzHwVs9-NJJwfS6rvh_ubfX78lj_FhXVVomwyWixv_DnDSsnmfJsMvhg8JUA priority: 102 providerName: ProQuest |
Title | Spatiotemporal Traffic Flow Prediction with KNN and LSTM |
URI | https://search.emarefa.net/detail/BIM-1169854 https://dx.doi.org/10.1155/2019/4145353 https://www.proquest.com/docview/2407655558 https://doaj.org/article/b805d298b8c94401afd935a6d68c7c89 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqE9hL67TbrokLaHYmJbD1vHJGS7tM0S8oC9CT3TwrIp8Yb8_c7I2m2WpuTSi8BmQPKMpPlG1nxDyI5kHlnQVFFjhgz3lStsLG0BrtbUEfB1nWosHU3k-Jx_nYrprVJfeCespwfuFbdr21L4WrW2dYpDMGCiV0wY6WXrGtem1D3wectgqt-DmRKqZ_VWTSEBPy6vvAsB0X6ldnnFBRNszRklzv6UmGvg2az26Mc_MDq--fnXbp1c0OgZ2czYke71Y35OHoT5C_L0FqPgS9KephvSmXBqRsEVIUcEHc0ub-jxFf6VQUtQPH6l3yYTauaefj89O3pFzkeHZwfjIhdHKByArEUhFPPRRqa8dEwqWzNhDbh7iDhY4E0JuIIrFlnAVLbARWmlCi5G72UIFeCM12RjfjkPbwnlQdYRgIYUoeSu4SqCYUMTA1aAKGUYkM9LLWmXmcOxgMVMpwhCCI061VmnA_JhJf2rZ8z4h9w-KnwlgzzX6QVYX2fr6_usPyBvsrn-9FVJ1QoOw0Dz6VzLE5oOTzu6C3PddXoPUF-FRbvKAfmU5HA9w0c5k9MSQDXIjLUm-XFN8qLnBb9LcCdPmXsUsL2cTzpvHJ3GAFsKJGF79z_0s0WeYJf9mdE22VhcXYf3gKIWdkgetqMvQ_Jo_3ByfDJMywfak_H0N4E9E9c |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQcEO8GCvjQwgFZsb2PeA8IlUdIyUNITaXetvY-QqUoKXGqiD_Fb2RmvU6JeJ16sRRn5Dizs_PN7O58Q8ieoAZZ0GScYYUMM6mOS5eUMUBtkTmIrzPfY2k4Er1j9vmEn2yRH00tDB6rbHyid9RmrnGNvI2Zh-DITvX2_FuMXaNwd7VpoVGbRd9-X0HKVr05_ADju59l3Y_j9704dBWINUQny5hLalzpqDRCUyHLjPKyAJyEUJ1a1kkAkJmkjlqsAbOMJ6WQVjtnjLA2BYCG514j1xkFJMfK9O6nxvNTyWXNJS47sYCotTloz3kbcFa2Wco45XQDAn2nAF8OXMDnYo0MN75iTr46-w0jPPB175I7IWKNDmoTu0e27Ow-uf0Lj-EDkh_5c9mB5moaAQAiM0XUnc5X0ZcF7gXh-Ee46Bv1R6OomJlocDQePiTHV6K8R2R7Np_ZHRIxKzIH4Y3gNmG6w6QDc7IdZ7HvRCJsi7xutKR04CvHthlT5fMWzhXqVAWdtsj-Wvq85un4i9w7VPhaBtm1_Y35YqLCZFVlnnCTybzMtWSQgBbOSMoLYUSuOzqXLfI4DNflb6VC5pzBa-DwqdBBFC4VrrFUk-KiqtQBxJoptgpLWuSVl0MvAn9KF6EYAlSDfFwbki83JCc1G_mfBPeCyfxHAbuNPangrip1Obme_PvrF-RmbzwcqMHhqP-U3MIH1-tRu2R7ubiwzyBCW5bP_bSIyOlVz8Of7GlEAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCA4IN4ECvjQwgFZsb0Pew8ItbRRS1oroq3U22LvI60UJSVOFfHX-HXM2OuUiNepF0txRo4zO7PfzO7ON4RsCmqQBU2GCVbIMBPrsHRRGQLUFomD-Dqpeywd5WL_lH0-42dr5EdbC4PHKts5sZ6ozVTjGnkPMw_BkZ2q5_yxiOFu_-PltxA7SOFOa9tOozGRgf2-gPSt-nCwC2O9lST9vZNP-6HvMBBqiFTmIZfUuNJRaYSmQpYJ5WUBmAlhO7UsjQCcmaSOWqwHs4xHpZBWO2eMsDYGsIbn3iLrKWZFHbK-s5cPv7Q4QCWXDbO4TEMBMWx77J7zHqCu7LGYccrpCiDWfQPq4uACPhdLnLh9jhn64uI3xKhhsP-A3Pfxa7DdGNxDsmYnj8i9X1gNH5PsuD6l7UmvxgHAIfJUBP3xdBEMZ7gzhNYQ4BJwMMjzoJiY4PD45OgJOb0R9T0lncl0Yp-TgFmROAh2BLcR0ymTDozLps5iF4pI2C5532pJac9ejk00xqrOYjhXqFPlddolW0vpy4a14y9yO6jwpQxybdc3prOR8q6ryiziJpFZmWnJIB0tnJGUF8KITKc6k13yzA_X9W_FQmacwWvg8CnfTxQuFa64VKPiqqrUNkSeMTYOi7rkXS2Hcwr8KV340ghQDbJzrUi-XZEcNdzkfxLc9CbzHwVstPak_ORVqWtXe_Hvr9-QO-CD6vAgH7wkd_G5zeLUBunMZ1f2FYRr8_K194uAfL1pV_wJ8MBJlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+Traffic+Flow+Prediction+with+KNN+and+LSTM&rft.jtitle=Journal+of+advanced+transportation&rft.au=Xianglong+Luo&rft.au=Danyang+Li&rft.au=Yu+Yang&rft.au=Shengrui+Zhang&rft.date=2019-01-01&rft.pub=Wiley&rft.issn=0197-6729&rft.eissn=2042-3195&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F4145353&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b805d298b8c94401afd935a6d68c7c89 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon |