Self-assembled liquid crystal architectures for soft matter photonics

Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate th...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 11; no. 1; pp. 270 - 24
Main Authors Ma, Ling-Ling, Li, Chao-Yi, Pan, Jin-Tao, Ji, Yue-E., Jiang, Chang, Zheng, Ren, Wang, Ze-Yu, Wang, Yu, Li, Bing-Xiang, Lu, Yan-Qing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.09.2022
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field. This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging applications.
AbstractList Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.
Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging applications.
This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging applications.
Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field. This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging applications.
Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.
ArticleNumber 270
Author Pan, Jin-Tao
Wang, Yu
Ma, Ling-Ling
Zheng, Ren
Ji, Yue-E.
Li, Bing-Xiang
Li, Chao-Yi
Wang, Ze-Yu
Jiang, Chang
Lu, Yan-Qing
Author_xml – sequence: 1
  givenname: Ling-Ling
  surname: Ma
  fullname: Ma, Ling-Ling
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
– sequence: 2
  givenname: Chao-Yi
  surname: Li
  fullname: Li, Chao-Yi
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
– sequence: 3
  givenname: Jin-Tao
  surname: Pan
  fullname: Pan, Jin-Tao
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
– sequence: 4
  givenname: Yue-E.
  surname: Ji
  fullname: Ji, Yue-E.
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
– sequence: 5
  givenname: Chang
  surname: Jiang
  fullname: Jiang, Chang
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
– sequence: 6
  givenname: Ren
  surname: Zheng
  fullname: Zheng, Ren
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
– sequence: 7
  givenname: Ze-Yu
  surname: Wang
  fullname: Wang, Ze-Yu
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
– sequence: 8
  givenname: Yu
  orcidid: 0000-0003-0249-4414
  surname: Wang
  fullname: Wang, Yu
  email: yuwang87@nju.edu.cn
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
– sequence: 9
  givenname: Bing-Xiang
  orcidid: 0000-0003-4727-1572
  surname: Li
  fullname: Li, Bing-Xiang
  email: bxli@njupt.edu.cn
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications
– sequence: 10
  givenname: Yan-Qing
  orcidid: 0000-0001-6151-8557
  surname: Lu
  fullname: Lu, Yan-Qing
  email: yqlu@nju.edu.cn
  organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36100592$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vFSEUxSemxtbaL-DCTOLGzSjDnwE2Jqap2qSJC3VNGLi8xwszvAJj0m8vr9Nq20XZQOCcH4fLfd0czXGGpnnbo489IuJTpj3hvEMYdwhJgjr2ojnBiPKOMyKOHqyPm7Ocd6gOSXsk-KvmmAw9Qkzik-biJwTX6ZxhGgPYNvjrxdvWpJtcdGh1MltfwJQlQW5dTG2OrrSTLgVSu9_GEmdv8pvmpdMhw9ndfNr8_nrx6_x7d_Xj2-X5l6vOMIpKxwRDEurFZBykFkCtG7RmPXGICiIdgdHqEQ3GUUuJs1zCwKxFxhrWg7TktLlcuTbqndonP-l0o6L26nYjpo3SqXgTQFlKx6EXAmMhKadOWiHqmznldpQCcGV9Xln7ZZzAGphL0uER9PHJ7LdqE_-oijvUrgI-3AFSvF4gFzX5bCAEPUNcssK8p0QINtAqff9EuotLmmupDioiOCaYVNW7h4n-Rbn_rSoQq8CkmHMCp4wvuvh4COiD6pE69IZae0PV3lC3vaFYteIn1nv6syaymnIVzxtI_2M_4_oLZH3LLg
CitedBy_id crossref_primary_10_1103_PhysRevE_110_014701
crossref_primary_10_1016_j_molliq_2023_122667
crossref_primary_10_1016_j_engfracmech_2024_109896
crossref_primary_10_1039_D4CC02698E
crossref_primary_10_1038_s41377_023_01375_0
crossref_primary_10_1002_slct_202301486
crossref_primary_10_1088_1674_1056_ad4cd7
crossref_primary_10_1038_s41377_024_01538_7
crossref_primary_10_3788_COL202321_120003
crossref_primary_10_1002_adom_202402581
crossref_primary_10_1186_s43074_023_00102_7
crossref_primary_10_1002_adom_202301364
crossref_primary_10_1021_acs_nanolett_3c00510
crossref_primary_10_1088_1361_6463_ad4a84
crossref_primary_10_1002_smtd_202301105
crossref_primary_10_1002_adma_202403766
crossref_primary_10_1002_adfm_202400090
crossref_primary_10_1039_D3SM01558K
crossref_primary_10_1002_adom_202400702
crossref_primary_10_1002_lpor_202400366
crossref_primary_10_1364_OE_523529
crossref_primary_10_1149_2754_2726_ada0c3
crossref_primary_10_21869_2223_1528_2023_13_3_182_198
crossref_primary_10_1016_j_jmat_2024_04_012
crossref_primary_10_1038_s41377_024_01470_w
crossref_primary_10_1002_rpm_20240021
crossref_primary_10_1021_acsami_4c04275
crossref_primary_10_1186_s43593_024_00061_x
crossref_primary_10_1021_acsnano_2c06623
crossref_primary_10_1038_s41467_024_53040_8
crossref_primary_10_1038_s41467_024_51383_w
crossref_primary_10_1002_adfm_202308828
crossref_primary_10_1021_acsphotonics_3c00907
crossref_primary_10_1364_OL_500133
crossref_primary_10_1007_s10854_024_12714_1
crossref_primary_10_1038_s41428_024_00912_x
crossref_primary_10_1039_D3SM01634J
crossref_primary_10_1364_OE_543168
crossref_primary_10_37188_lam_2023_018
crossref_primary_10_3390_ma17030618
crossref_primary_10_1002_rpm_20240009
crossref_primary_10_4028_p_DWFK5o
crossref_primary_10_1002_adfm_202300731
crossref_primary_10_1021_acsnano_5c02465
crossref_primary_10_34133_ultrafastscience_0065
crossref_primary_10_1002_rpm_20230005
crossref_primary_10_1002_adfm_202301142
crossref_primary_10_1007_s13538_022_01239_9
crossref_primary_10_3390_liquids3040028
crossref_primary_10_3788_COL202321_041603
crossref_primary_10_1002_adom_202301421
crossref_primary_10_3390_ma17163980
crossref_primary_10_1002_ange_202302739
crossref_primary_10_1103_PhysRevResearch_5_033210
crossref_primary_10_1016_j_displa_2023_102632
crossref_primary_10_1016_j_susmat_2025_e01244
crossref_primary_10_1364_OL_482397
crossref_primary_10_3390_mi15060808
crossref_primary_10_1002_pol_20230254
crossref_primary_10_1002_advs_202405709
crossref_primary_10_1002_smo_20230025
crossref_primary_10_1002_adma_202302456
crossref_primary_10_1016_j_molliq_2024_125926
crossref_primary_10_1002_adfm_202404614
crossref_primary_10_1002_adom_202401934
crossref_primary_10_1016_j_molliq_2023_122159
crossref_primary_10_1002_lpor_202400621
crossref_primary_10_1002_smll_202304590
crossref_primary_10_1016_j_optcom_2024_131241
crossref_primary_10_1364_OL_537415
crossref_primary_10_1002_adma_202415856
crossref_primary_10_1038_s41598_024_72680_w
crossref_primary_10_1002_rpm_20230017
crossref_primary_10_1016_j_molliq_2024_124952
crossref_primary_10_1080_01411594_2025_2481139
crossref_primary_10_3390_ma18071440
crossref_primary_10_1016_j_cej_2024_151131
crossref_primary_10_3390_photonics12030227
crossref_primary_10_1039_D4SM00270A
crossref_primary_10_3390_polym15071734
crossref_primary_10_1002_anie_202302739
crossref_primary_10_1002_adma_202401533
crossref_primary_10_1021_acsphotonics_4c01284
crossref_primary_10_1038_s41566_024_01501_3
crossref_primary_10_1016_j_optlastec_2025_112772
crossref_primary_10_1002_adma_202309645
crossref_primary_10_1080_02678292_2023_2227979
crossref_primary_10_1109_JSEN_2024_3419774
crossref_primary_10_1364_OME_533089
crossref_primary_10_1002_adom_202403124
crossref_primary_10_1002_adfm_202315177
crossref_primary_10_1002_asia_202400807
crossref_primary_10_1021_acsaom_4c00386
Cites_doi 10.1002/9781119850809.ch1
10.1002/adma.201702769
10.1038/s41377-019-0194-2
10.1002/adma.201701814
10.1038/nature17141
10.1063/1.4793750
10.1038/s41467-019-12583-x
10.1103/PhysRevE.79.011707
10.1002/adom.201500153
10.1073/pnas.1716887115
10.1002/adma.201305198
10.1002/adma.202103674
10.1021/acsphotonics.6b00518
10.1016/j.carbpol.2015.08.029
10.1039/C9TC06105C
10.1002/adfm.202107242
10.1002/smll.202200113
10.1038/nature03932
10.1002/adma.201905151
10.1038/nature25443
10.1002/9781118751992
10.1038/nmat2029
10.3788/COL202119.112601
10.1038/srep00414
10.1063/1.4803922
10.1039/C8TC01321G
10.1038/am.2013.69
10.1016/j.scib.2019.04.030
10.1021/acs.chemrev.6b00415
10.1002/adfm.201906780
10.1073/pnas.1214708109
10.1002/adma.201905876
10.3390/polym9070295
10.1063/1.3694921
10.1016/j.matt.2019.05.005
10.1002/lpor.201400402
10.1038/s41563-021-01075-3
10.1186/s43593-021-00003-x
10.1039/C5TC00687B
10.1002/adfm.202004610
10.1038/s41467-018-05101-y
10.1021/acsami.9b12106
10.1103/PhysRevE.104.044702
10.1038/nature10769
10.1038/lsa.2014.94
10.1002/adma.201907376
10.1007/b97416
10.1126/sciadv.1701336
10.1103/PhysRevLett.121.213901
10.1021/ar500249k
10.1103/PhysRevE.90.062504
10.1038/s41467-019-11260-3
10.1364/OE.27.008800
10.1002/adma.201502590
10.1038/s41467-019-08351-6
10.1002/adma.201808028
10.1364/OE.20.016684
10.1039/D1ME00044F
10.1063/1.1676151
10.1063/1.1680293
10.1088/2040-8978/13/6/064022
10.1002/adfm.201902720
10.1039/c2tc00089j
10.1038/s41467-021-25112-6
10.1021/acsnano.0c01779
10.1002/aenm.201900720
10.1126/science.aax1839
10.1002/adma.201304966
10.3390/polym10080884
10.1002/adom.201900393
10.1039/C8CS01007B
10.1038/s41467-020-16864-8
10.1002/adma.201705865
10.1038/s41377-022-00806-8
10.1016/0079-6700(83)90001-1
10.1002/adom.201400166
10.1016/j.nantod.2022.101420
10.1038/s41377-021-00567-w
10.1002/adma.201800237
10.1021/acsomega.0c05087
10.1021/ma00138a016
10.1126/science.abg0291
10.1002/adma.201204591
10.1038/ncomms8564
10.1021/acsami.5b01380
10.1038/440163a
10.1038/ncomms15453
10.1103/PhysRevResearch.2.013178
10.1039/C9MH00320G
10.1002/adom.201500403
10.1364/OE.26.032640
10.1103/PhysRevLett.108.031301
10.1002/sstr.202000107
10.1002/adma.201506002
10.1364/OE.387942
10.1007/430_2007_075
10.1038/nmat3993
10.1021/acs.chemrev.1c00761
10.1103/PhysRevLett.116.253903
10.1002/adma.201901036
10.1002/adfm.201702261
10.1038/ncomms6533
10.1889/1.3621051
10.1364/OE.450941
10.1002/adom.201300384
10.1002/adma.200903728
10.1364/OL.40.002723
10.1021/acsanm.1c00542
10.1103/PhysRevLett.111.107802
10.1016/j.mattod.2017.04.028
10.1021/acsphotonics.8b00289
10.1002/adma.200801258
10.1103/PhysRevE.88.022502
10.1002/adma.202004754
10.1002/adom.201801395
10.1016/j.eng.2021.02.014
10.1073/pnas.2002290117
10.1002/smll.201802060
10.1038/nature22987
10.1080/713935610
10.1038/nphoton.2016.66
10.1038/s41467-019-13012-9
10.1002/advs.202103090
10.1103/PhysRevLett.112.217801
10.1364/OME.1.001478
10.1021/acs.jafc.0c04742
10.1021/acsami.5b04496
10.1038/s41567-019-0476-x
10.1038/s41467-021-20908-y
10.1088/0034-4885/52/5/002
10.1039/C6CS00129G
10.1038/s41467-018-07518-x
10.1038/nmat4421
10.1038/s41467-021-25797-9
10.1002/admi.201901878
10.1126/science.abb4536
10.1126/science.1143826
10.1002/adfm.201909537
10.1016/j.matt.2019.10.019
10.1364/OE.441386
10.1126/science.aay4182
10.1038/s41566-018-0152-1
10.1039/C2CS35332F
10.1021/acssuschemeng.7b01749
10.1038/nphoton.2011.81
10.1039/D0SM01112F
10.1002/adma.201903120
10.1080/15421406.2016.1177900
10.1016/S0141-8130(05)80008-X
10.1021/acsami.0c21044
10.1039/D1SM00488C
10.1039/c0jm00910e
10.1063/5.0020982
10.1038/ncomms7368
10.1021/acsami.8b22023
10.1039/C6TC02629J
10.1002/marc.202100087
10.1038/nmat4544
10.1002/smll.202107105
10.1103/PhysRevResearch.1.033215
10.1002/adma.201704477
10.1515/nanoph-2018-0072
10.1073/pnas.1612212113
10.1038/ncomms9011
10.1021/acs.langmuir.5b02508
10.1038/362709a0
10.1038/nmat712
10.1073/pnas.2000849117
10.1002/adma.201701903
10.1002/adma.201603386
10.1038/nature21051
10.1126/science.1170027
10.1038/s41928-018-0024-1
10.1073/pnas.1917952117
10.1038/s41467-021-21764-6
10.1021/acsami.1c11711
10.1557/mrc.2020.23
10.1126/science.1070821
10.1063/1.4752461
10.1038/nature19344
10.1038/s41377-022-00746-3
10.1063/5.0079634
10.1364/OE.399581
10.1126/sciadv.aax9501
10.1016/0038-1098(72)90186-X
10.1038/s41586-019-1247-7
10.1103/PhysRevE.94.042705
10.1002/adma.201704296
10.1002/adom.201400457
10.1039/C7SM00384F
10.1021/acs.chemrev.9b00509
10.1016/j.apmt.2020.100912
10.1002/admi.201500080
10.1021/acsami.7b04590
10.1063/1.4879018
10.1364/OL.25.000317
10.1021/acsomega.8b01749
10.1002/admi.201500415
10.1103/PhysRevLett.125.077801
10.1002/adom.202000593
10.1021/acsami.0c19527
10.1002/adma.201707069
10.1002/adma.201103008
10.1038/s41566-019-0448-9
10.1007/BF03046095
10.1039/c2sm07207f
10.1021/acsnano.9b07104
10.1103/PhysRevLett.103.103903
10.1021/ma0487655
10.1002/3527602054
10.1016/j.cej.2021.132780
10.1002/anie.201908832
10.1002/anie.201712781
10.1002/adfm.202009916
10.1002/adma.201704941
10.1002/adfm.201705309
10.1021/acsami.0c09212
10.1038/lsa.2017.11
10.1021/acs.nanolett.1c02290
10.1002/adma.201805312
10.1364/OL.40.004887
10.1002/aenm.201602209
10.1016/j.carbpol.2017.06.098
10.1103/PhysRevResearch.3.L022008
10.1039/C2JM15461G
10.1038/s41467-017-00822-y
10.1117/1.AP.2.3.036002
10.1002/adom.202001861
10.1002/adma.201706512
10.1039/C7NH00105C
10.1002/adom.201901958
10.1143/JJAP.43.7083
10.1038/s41467-018-07048-6
10.1038/lsa.2015.26
10.1039/C4CS00053F
10.1038/ncomms10236
10.1002/adma.201701323
10.1002/adfm.201001303
10.1002/adma.201703655
10.1002/adma.201801335
10.1038/s42005-020-0288-4
10.1073/pnas.2110839118
10.1002/adom.201901360
10.1038/s41467-020-16125-8
10.1002/adpr.202100362
10.1038/nature09713
10.1038/s41467-018-02895-9
10.1021/acs.chemrev.7b00153
10.1039/C4CE02502D
10.1126/science.1261019
10.1126/science.258.5080.275
10.1126/sciadv.aau8064
10.1073/pnas.1911563116
10.1080/02678290902814718
10.1039/C7SM01755C
10.1073/pnas.1112849108
10.1038/s41586-018-0109-z
10.1038/s41467-019-11768-8
10.1021/ma9711452
10.1515/nanoph-2021-0427
10.1107/S0365110X51000751
10.1038/nmat4826
10.1021/ma7027775
10.3788/COL202018.080004
10.1016/j.giant.2020.100018
10.1021/acsami.0c00591
10.1002/adma.201703165
10.1039/C9MH00101H
10.1126/sciadv.abh3505
10.1364/OL.30.003308
10.1039/D0SM00676A
10.1002/adma.201704970
10.1016/j.nanoen.2021.105976
10.1021/acsami.1c12575
10.1364/OL.43.004903
10.1002/adfm.201500745
10.1002/adma.201606671
10.1002/adma.202001228
10.1016/j.carbpol.2019.115387
10.1063/1.4817724
10.1002/adom.202000170
10.1098/rspa.1984.0023
10.1002/anie.201911468
10.1364/PRJ.449284
10.1126/sciadv.aax5746
10.1364/PRJ.3.000133
10.1364/OE.22.004699
10.1016/j.carbpol.2020.116281
10.1002/smsc.202100007
10.1002/anie.201606895
10.1002/anie.202101881
10.1002/adma.201500340
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41377-022-00930-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


PubMed

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 24
ExternalDocumentID oai_doaj_org_article_d44b61882289474f9d88005747db98e2
PMC9470592
36100592
10_1038_s41377_022_00930_5
Genre Journal Article
Review
GrantInformation_xml – fundername: National Key Research and Development Program of China (No. 2021YFA1202000), Program for Innovative Talents and Entrepreneurs in Jiangsu (No. JSSCTD202138), Innovation and Entrepreneurship Program of Jiangsu Province, and Start-up Fund at the Nanjing University (No. 14912226)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52003115; 62175102
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: BK20212004; BK20200320
  funderid: https://doi.org/10.13039/501100004608
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: BK20212004
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: BK20200320
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52003115
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 62175102
– fundername: ;
– fundername: ;
  grantid: BK20212004; BK20200320
– fundername: ;
  grantid: 52003115; 62175102
GroupedDBID 0R~
3V.
5VS
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0L
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-58509e0593b69a8e4df6aa513f04839f3ebdab06cf4d43fd79e65dd0cdc51e9d3
IEDL.DBID DOA
ISSN 2047-7538
2095-5545
IngestDate Wed Aug 27 01:13:13 EDT 2025
Thu Aug 21 13:58:57 EDT 2025
Thu Jul 10 21:56:54 EDT 2025
Wed Aug 13 09:30:36 EDT 2025
Mon Jul 21 06:00:48 EDT 2025
Tue Jul 01 03:45:17 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Fri Feb 21 02:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-58509e0593b69a8e4df6aa513f04839f3ebdab06cf4d43fd79e65dd0cdc51e9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0249-4414
0000-0003-4727-1572
0000-0001-6151-8557
OpenAccessLink https://doaj.org/article/d44b61882289474f9d88005747db98e2
PMID 36100592
PQID 2713872323
PQPubID 2041947
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_d44b61882289474f9d88005747db98e2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9470592
proquest_miscellaneous_2714388564
proquest_journals_2713872323
pubmed_primary_36100592
crossref_citationtrail_10_1038_s41377_022_00930_5
crossref_primary_10_1038_s41377_022_00930_5
springer_journals_10_1038_s41377_022_00930_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-13
PublicationDateYYYYMMDD 2022-09-13
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationTitleAlternate Light Sci Appl
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References XiongJWuSTPlanar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applicationseLight20211310.1186/s43593-021-00003-x
RupnikPMField-controlled structures in ferromagnetic cholesteric liquid crystalsSci. Adv.20173e17013362017SciA....3E1336M10.1126/sciadv.1701336
KobashiJYoshidaHOzakiMPolychromatic optical vortex generation from patterned cholesteric liquid crystalsPhys. Rev. Lett.20161162539032016PhRvL.116y3903K10.1103/PhysRevLett.116.253903
ShenYDierkingIDynamic dissipative solitons in nematics with positive anisotropiesSoft Matter202016532553332020SMat...16.5325S10.1039/D0SM00676A
YuHLStimuli-responsive circularly polarized luminescent films with tunable emissionJ. Mater. Chem. C.202081459146510.1039/C9TC06105C
NanFCEnhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatmentACS Sustain. Chem. Eng.201758951895810.1021/acssuschemeng.7b01749
ZhanTPractical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lensesAdv. Optical Mater.20208190136010.1002/adom.201901360
De GennesPGAn analogy between superconductors and smectics ASolid State Commun.1972107537561972SSCom..10..753D10.1016/0038-1098(72)90186-X
BabakhanovaGControlled placement of microparticles at the water-liquid crystal elastomer interfaceACS Appl. Mater. Interfaces201911150071501310.1021/acsami.8b22023
AlmeidaAPCCellulose-based biomimetics and their applicationsAdv. Mater.201830170365510.1002/adma.201703655
GuoYBHigh-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystalsAdv. Mater.2016282353235810.1002/adma.201506002
JiangYFImage flickering-free polymer stabilized fringe field switching liquid crystal displayOpt. Express20182632640326512018OExpr..2632640J10.1364/OE.26.032640
WangJStabilization and electro-optical switching of liquid crystal blue phases using unpolymerized and polymerized polyoxometalate-based nanoparticlesMol. Cryst. Liq. Cryst.2016634122310.1080/15421406.2016.1177900
ConleyKOrigin of the twist of cellulosic materialsCarbohydr. Polym.201613528529910.1016/j.carbpol.2015.08.029
SatoshiAFumitoAKinetics of motile solitons in nematic liquid crystalsNat. Commun.20201110.1038/s41467-020-16864-8
PalRKBiopatterning of silk proteins for soft micro-opticsACS Appl. Mater. Interfaces201578809881610.1021/acsami.5b01380
LiuFDeeply seeing through highly turbid water by active polarization imagingOpt. Lett.201843490349062018OptL...43.4903L10.1364/OL.43.004903
YinKHeZQWuSTReflective polarization volume lens with small f-number and large diffraction angleAdv. Optical Mater.20208200017010.1002/adom.202000170
Frka-PetesicBVignoliniSSo much more than paperNat. Photonics2019133653672019NaPho..13..365F10.1038/s41566-019-0448-9
ShenZXLiquid crystal integrated metalens with tunable chromatic aberrationAdv. Photonics202020360022020AdPho...2c6002S10.1117/1.AP.2.3.036002
ZhangPA patterned mechanochromic photonic polymer for reversible image revealAdv. Mater. Interfaces20207190187810.1002/admi.201901878
WangYEmerging chirality in nanoscienceChem. Soc. Rev.2013422930296210.1039/C2CS35332F
Yang, D. K. & Wu, S. T. Fundamentals of liquid crystal devices. 2nd edn. (Hoboken: John Wiley & Sons, 2014).
WangYLight-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructuresNat. Commun.2021122021NatCo..12.1651W10.1038/s41467-021-21764-6
KimYHOptically selective microlens photomasks using self-assembled smectic liquid crystal defect arraysAdv. Mater.2010222416242010.1002/adma.200903728
MaLLSelf-assembled asymmetric microlenses for four-dimensional visual imagingACS Nano201913137091371510.1021/acsnano.9b07104
LiuPWBiomimetic confined self-assembly of chitin nanocrystalsNano Today20224310142010.1016/j.nantod.2022.101420
PoyGChirality-enhanced periodic self-focusing of light in soft birefringent mediaPhys. Rev. Lett.20201250778012020PhRvL.125g7801P10.1103/PhysRevLett.125.077801
GimMJBellerDAYoonDKMorphogenesis of liquid crystal topological defects during the nematic-smectic A phase transitionNat. Commun.201782017NatCo...815453G10.1038/ncomms15453
SchlafmannKRWhiteTJRetention and deformation of the blue phases in liquid crystalline elastomersNat. Commun.2021122021NatCo..12.4916S10.1038/s41467-021-25112-6
KimDSMosaics of topological defects in micropatterned liquid crystal texturesSci. Adv.20184eaau80642018SciA....4.8064K10.1126/sciadv.aau8064
ChenXFirst-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-opticsProc. Natl Acad. Sci. USA202011714021140312020PNAS..11714021C10.1073/pnas.2002290117
WhitesidesGMGrzybowskiBSelf-assembly at all scalesScience2002295241824212002Sci...295.2418W10.1126/science.1070821
ZhangXFElectro-and photo-driven orthogonal switching of a helical superstructure enabled by an axially chiral molecular switchACS Appl. Mater. Interfaces202012552155522210.1021/acsami.0c19527
KimSUBroadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomersNat. Mater.20222141462022NatMa..21...41K10.1038/s41563-021-01075-3
ChuFFour-mode 2D/3D switchable display with a 1D/2D convertible liquid crystal lens arrayOpt. Express20212937464374752021OExpr..2937464C10.1364/OE.441386
HuWPolarization independent liquid crystal gratings based on orthogonal photoalignmentsAppl. Phys. Lett.20121001111162012ApPhL.100k1116H10.1063/1.3694921
WangYJHigh-efficiency broadband achromatic metalens for near-IR biological imaging windowNat. Commun.2021122021NatCo..12.5560W10.1038/s41467-021-25797-9
BorshchVShiyanovskiiSVLavrentovichODNanosecond electro-optic switching of a liquid crystalPhys. Rev. Lett.20131111078022013PhRvL.111j7802B10.1103/PhysRevLett.111.107802
ColesHJPivnenkoMNLiquid crystal ‘blue phases’ with a wide temperature rangeNature200543699710002005Natur.436..997C10.1038/nature03932
BisoyiHKLiQLiquid crystals: Versatile self-organized smart soft materialsChem. Rev.20221224887492610.1021/acs.chemrev.1c00761
AkiyamaHSynthesis and properties of azo dye aligning layers for liquid crystal cellsLiq. Cryst.2002291321132710.1080/713935610
De VriesHRotatory power and other optical properties of certain liquid crystalsActa Crystallogr.1951421922610.1107/S0365110X51000751
LuYQLiYPlanar liquid crystal polarization optics for near-eye displaysLight Sci. Appl.2021101222021LSA....10..122L423561310.1038/s41377-021-00567-w
MengYHFabrication of environmental humidity-responsive iridescent films with cellulose nanocrystal/polyolsCarbohydr. Polym.202024011628110.1016/j.carbpol.2020.116281
WangSCScalable thermochromic smart windows with passive radiative cooling regulationScience2021374150115042021Sci...374.1501W10.1126/science.abg0291
HoughLEHelical nanofilament phasesScience20093254564602009Sci...325..456H10.1126/science.1170027
ChengMLight-fueled polymer film capable of directional crawling, friction-controlled climbing, and self-sustained motion on a human hairAdv. Sci.20229210309010.1002/advs.202103090
NiJCThree-dimensional chiral microstructures fabricated by structured optical vortices in isotropic materialLight Sci. Appl.20176e1701110.1038/lsa.2017.11
ShangLRBio-inspired intelligent structural color materialsMater. Horiz.2019694595810.1039/C9MH00101H
WerbowyjRSGrayDGOptical properties of hydroxypropyl cellulose liquid crystals. I. Cholesteric pitch and polymer concentrationMacromolecules198417151215201984MaMol..17.1512W10.1021/ma00138a016
XuMCMultifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatingsJ. Mater. Chem. C.201865391540010.1039/C8TC01321G
DumanliAGSavinTRecent advances in the biomimicry of structural coloursChem. Soc. Rev.2016456698672410.1039/C6CS00129G
KimDSControlling gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystalsNat. Commun.201672016NatCo...710236K10.1038/ncomms10236
YanJA full-color reflective display using polymer-stabilized blue phase liquid crystalAppl. Phys. Lett.20131020811022013ApPhL.102h1102Y10.1063/1.4793750
AckermanPJLaser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularitiesSci. Rep.2012210.1038/srep00414
TeyssierJPhotonic crystals cause active colour change in chameleonsNat. Commun.201562015NatCo...6.6368T10.1038/ncomms7368
DuFPolymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuatorJpn. J. Appl. Phys.200443708370862004JaJAP..43.7083D10.1143/JJAP.43.7083
KlémanMDefects in liquid crystalsRep. Prog. Phys.1989525556541989RPPh...52..555K100054810.1088/0034-4885/52/5/002
SatapathyPSwitchable smart windows using a biopolymer network of cellulose nanocrystals imposed on a nematic liquid crystalAppl. Phys. Lett.20201171037022020ApPhL.117j3702S10.1063/5.0020982
VoloschenkoDLavrentovichODOptical vortices generated by dislocations in a cholesteric liquid crystalOpt. Lett.2000253173192000OptL...25..317V10.1364/OL.25.000317
NakataMEnd-to-end stacking and liquid crystal condensation of 6- to 20-base pair DNA duplexesScience2007318127612792007Sci...318.1276N10.1126/science.1143826
ZhangZCYouZChuDPFundamentals of phase-only liquid crystal on silicon (LCOS) devicesLight Sci. Appl.20143e2132014LSA.....3E.213Z10.1038/lsa.2014.94
RisteenBThermally switchable liquid crystals based on cellulose nanocrystals with patchy polymer graftsSmall201814180206010.1002/smll.201802060
PengZWApplications of cellulose nanomaterials in stimuli-responsive opticsJ. Agric. Food Chem.202068129401295510.1021/acs.jafc.0c04742
LavrentovichODKlémanMPergamenshchikVMNucleation of focal conic domains in smectic A liquid crystalsJ. de. Phys. II199443774041994JPhy2...4..377L
ZhengZGThree-dimensional control of the helical axis of a chiral nematic liquid crystal by lightNature20165313523562016Natur.531..352Z10.1038/nature17141
KimYHFabrication of two-dimensio
H Zhang (930_CR44) 2020; 8
S Tadepalli (930_CR53) 2017; 117
YZ Yang (930_CR132) 2021; 1
S Savo (930_CR225) 2014; 2
T Lu (930_CR177) 2017; 9
KG Gutierrez-Cuevas (930_CR284) 2016; 55
CLC Chan (930_CR159) 2019; 31
Y Wang (930_CR290) 2021; 12
SB Wu (930_CR101) 2020; 8
K Yao (930_CR175) 2017; 29
J Kobashi (930_CR240) 2016; 116
A Piccardi (930_CR12) 2014; 5
930_CR242
A Tran (930_CR163) 2020; 32
H Yi (930_CR204) 2019; 29
V Borshch (930_CR58) 2013; 111
HL Yu (930_CR180) 2020; 8
PG De Gennes (930_CR104) 1972; 10
I Usov (930_CR165) 2015; 6
YJ Wang (930_CR206) 2021; 12
JC García-Escartín (930_CR235) 2011; 13
G Isapour (930_CR18) 2018; 30
RK Pal (930_CR189) 2015; 7
A Espinha (930_CR170) 2018; 12
G Babakhanova (930_CR262) 2018; 9
W Hu (930_CR71) 2012; 100
GM Whitesides (930_CR7) 2002; 295
M Jiang (930_CR212) 2019; 31
Y Xia (930_CR280) 2019; 9
H Kikuchi (930_CR131) 2002; 1
X Li (930_CR61) 2018; 10
RD Gilbert (930_CR158) 1983; 9
K Yin (930_CR219) 2020; 8
MA Gharbi (930_CR94) 2015; 31
JT Li (930_CR115) 2019; 58
HL Liang (930_CR190) 2018; 9
Q Xu (930_CR214) 2021; 4
YB Guo (930_CR72) 2016; 28
J Schmidtke (930_CR202) 2005; 38
Y Wang (930_CR291) 2017; 29
RS Werbowyj (930_CR169) 1984; 17
JQ Wang (930_CR279) 2021; 85
B Zappone (930_CR88) 2012; 8
H Shahsavan (930_CR40) 2020; 117
LL Ma (930_CR121) 2015; 3
Q He (930_CR37) 2019; 5
R Kizhakidathazhath (930_CR118) 2020; 30
J Xiang (930_CR143) 2013; 103
H Zhou (930_CR268) 2018; 28
J Murray (930_CR282) 2017; 4
L Tong (930_CR221) 2020; 11
BX Li (930_CR79) 2019; 10
G Zhu (930_CR141) 2011; 1
J Wang (930_CR142) 2016; 634
Y Xia (930_CR66) 2019; 10
YZ Yang (930_CR151) 2021; 13
BX Li (930_CR60) 2014; 104
D Qu (930_CR187) 2019; 11
B Zappone (930_CR103) 2020; 117
SC Wang (930_CR276) 2021; 374
P Chen (930_CR226) 2015; 3
HK Bisoyi (930_CR4) 2022; 122
930_CR135
AS Gladman (930_CR270) 2016; 15
J Xiong (930_CR47) 2021; 1
YY Cao (930_CR172) 2020; 32
SI Rich (930_CR22) 2018; 1
B Deng (930_CR205) 2019; 64
LL Ma (930_CR52) 2019; 7
AG Dumanli (930_CR193) 2016; 45
WF Chiang (930_CR229) 2020; 28
K Rechcińska (930_CR249) 2019; 366
JY Zou (930_CR218) 2022; 3
H Akiyama (930_CR68) 2002; 29
JPF Lagerwall (930_CR160) 2014; 6
E Vitral (930_CR106) 2021; 17
ZX Shen (930_CR211) 2019; 27
YH Meng (930_CR176) 2020; 240
B Risteen (930_CR192) 2018; 14
A Honglawan (930_CR85) 2011; 23
JD Lin (930_CR138) 2018; 3
YD Yu (930_CR16) 2020; 12
T Gibaud (930_CR13) 2012; 481
V Borshch (930_CR59) 2014; 90
C Fernández-Rico (930_CR3) 2020; 369
HJ Coles (930_CR139) 2005; 436
Y Li (930_CR252) 2021; 9
Q Chen (930_CR11) 2011; 469
MG Nassiri (930_CR245) 2018; 121
K Yin (930_CR64) 2020; 5
L Qin (930_CR196) 2018; 30
Y Li (930_CR215) 2020; 28
X Liang (930_CR286) 2017; 2
M Kléman (930_CR82) 1989; 52
E Brasselet (930_CR246) 2009; 103
W Feng (930_CR257) 2018; 30
LE Hough (930_CR9) 2009; 325
SU Kim (930_CR199) 2022; 21
P Zhang (930_CR201) 2020; 7
B Son (930_CR99) 2014; 22
J Yan (930_CR136) 2013; 102
JF Revol (930_CR168) 1998; 24
W Ge (930_CR42) 2022; 18
YF Jiang (930_CR57) 2018; 26
R Xiong (930_CR55) 2020; 49
HW Yoo (930_CR92) 2013; 1
H Choi (930_CR137) 2012; 101
ZX Shen (930_CR217) 2020; 2
H Zhang (930_CR19) 2019; 10
DS Kim (930_CR105) 2016; 7
CE Boott (930_CR186) 2020; 59
HK Bisoyi (930_CR297) 2018; 30
K Conley (930_CR167) 2016; 135
H Zeng (930_CR20) 2020; 2
J Xiang (930_CR116) 2016; 113
WJ Orts (930_CR166) 1998; 31
L Wang (930_CR34) 2020; 32
Y Wang (930_CR293) 2019; 31
A Martinez (930_CR73) 2011; 108
PM Rupnik (930_CR117) 2017; 3
RL Chen (930_CR203) 2021; 31
ZC Zhang (930_CR227) 2014; 3
T Zhan (930_CR216) 2020; 8
JA De La Cruz (930_CR287) 2018; 5
NA Rubin (930_CR222) 2019; 365
CR Feng (930_CR256) 2021; 7
SA Jiang (930_CR125) 2021; 13
M Wang (930_CR148) 2017; 27
RM Parker (930_CR162) 2018; 30
LR Shang (930_CR194) 2019; 6
AJJ Kragt (930_CR200) 2019; 31
Y Cao (930_CR17) 2020; 2
F Castles (930_CR134) 2014; 13
HW Yang (930_CR237) 2021; 21
PJ Ackerman (930_CR26) 2017; 16
YH Kim (930_CR96) 2010; 22
LJ Chen (930_CR124) 2014; 2
H Wu (930_CR69) 2012; 20
G Nava (930_CR129) 2019; 1
O Kose (930_CR183) 2019; 10
YQ Lu (930_CR56) 2021; 10
CL Xu (930_CR154) 2021; 22
H Wang (930_CR195) 2018; 57
HC Jau (930_CR296) 2015; 3
ZH Zhang (930_CR173) 2022; 32
FC Nan (930_CR188) 2017; 5
H Khandelwal (930_CR277) 2017; 7
JF Revol (930_CR164) 1992; 14
Y Sawa (930_CR255) 2013; 88
LL Ma (930_CR30) 2021; 7
AH Gelebart (930_CR253) 2017; 546
T Badloe (930_CR29) 2022; 11
W Guo (930_CR89) 2009; 79
W Wang (930_CR191) 2008; 41
K Thapa (930_CR198) 2021; 104
Y Yuan (930_CR267) 2018; 9
M Kléman (930_CR87) 2009; 36
E Bukusoglu (930_CR145) 2017; 13
Y Wang (930_CR110) 2013; 42
B Frka-Petesic (930_CR157) 2019; 13
J Teyssier (930_CR14) 2015; 6
G Boniello (930_CR107) 2021; 42
F Liu (930_CR223) 2018; 43
P Chen (930_CR241) 2018; 30
JJ Yang (930_CR278) 2021; 33
W Feng (930_CR259) 2020; 2
Y Yuan (930_CR266) 2019; 570
WJ Yoon (930_CR283) 2020; 30
MC Xu (930_CR184) 2018; 6
MTI Mredha (930_CR273) 2019; 6
LL Ma (930_CR120) 2022; 10
930_CR2
JSB Tai (930_CR63) 2018; 115
YH Kim (930_CR80) 2011; 21
930_CR1
930_CR6
XW Wang (930_CR238) 2018; 7
JC Ni (930_CR239) 2017; 6
T Lindahl (930_CR108) 1993; 362
Y Wang (930_CR35) 2015; 17
T Shimizu (930_CR23) 2020; 120
JP Hurault (930_CR41) 1973; 59
LL Ma (930_CR265) 2017; 9
L Wang (930_CR285) 2017; 20
XG Wang (930_CR10) 2016; 15
A Boyarsky (930_CR109) 2012; 108
WQ Hu (930_CR258) 2018; 554
G Milione (930_CR234) 2015; 40
M Wang (930_CR272) 2015; 2
930_CR46
YS Wang (930_CR294) 2020; 18
930_CR45
YH Kim (930_CR90) 2010; 20
SM Salili (930_CR128) 2016; 94
CW Chen (930_CR144) 2017; 8
Y Shen (930_CR74) 2020; 16
X Li (930_CR43) 2021; 6
XF Zhang (930_CR51) 2020; 12
SS Gandhi (930_CR133) 2017; 29
M Padgett (930_CR233) 2011; 5
M Kim (930_CR281) 2015; 7
J Xiong (930_CR28) 2022; 11
BX Li (930_CR75) 2020; 2
A Honglawan (930_CR84) 2013; 110
CL Yuan (930_CR130) 2019; 5
G Guidetti (930_CR54) 2020; 10
M Kim (930_CR49) 2021; 33
NA Rubin (930_CR224) 2022; 30
X Chen (930_CR289) 2020; 117
A Satoshi (930_CR77) 2020; 11
Y Xia (930_CR27) 2018; 557
BX Li (930_CR78) 2018; 9
KJ Ihn (930_CR31) 1992; 258
S Pancharatnam (930_CR208) 1956; 44
DS Kim (930_CR65) 2018; 4
K Zhou (930_CR146) 2018; 30
KR Schlafmann (930_CR147) 2021; 12
K Perera (930_CR220) 2021; 13
A Scacchi (930_CR8) 2021; 3
SD Dai (930_CR181) 2017; 174
TH Ware (930_CR254) 2015; 347
H De Vries (930_CR113) 1951; 4
HH Chou (930_CR15) 2015; 6
MJ Gim (930_CR102) 2017; 8
930_CR25
Y Zhang (930_CR179) 2020; 228
HK Bisoyi (930_CR39) 2016; 116
MK Khan (930_CR269) 2014; 26
F Serra (930_CR97) 2015; 3
YC Jiang (930_CR182) 2022; 430
DK Yoon (930_CR93) 2007; 6
G Chu (930_CR171) 2019; 1
II Smalyukh (930_CR156) 2021; 33
D Foster (930_CR62) 2019; 15
OD Lavrentovich (930_CR86) 1994; 4
YL Huang (930_CR251) 2021; 60
M Cheng (930_CR261) 2022; 9
ZG Zheng (930_CR50) 2017; 29
P Satapathy (930_CR288) 2020; 117
L Wang (930_CR230) 2015; 4
PW Liu (930_CR5) 2022; 43
J Xiang (930_CR127) 2014; 112
R Eelkema (930_CR264) 2006; 440
T Matsui (930_CR299) 2022; 18
P Bettotti (930_CR271) 2016; 3
W Helfrich (930_CR126) 1971; 55
D Voloschenko (930_CR244) 2000; 25
M Mitov (930_CR32) 2017; 13
J Xiang (930_CR38) 2015; 27
ZW Peng (930_CR155) 2020; 68
W Duan (930_CR70) 2022; 120
ZG Zheng (930_CR123) 2017; 29
HT Dai (930_CR213) 2015; 40
H Zeng (930_CR260) 2017; 29
H Lee (930_CR298) 2011; 42
G Babakhanova (930_CR263) 2019; 11
J Cao (930_CR274) 2020; 14
GM Zhao (930_CR174) 2020; 12
MV Berry (930_CR209) 1984; 392
M Papič (930_CR247) 2021; 118
CE Williams (930_CR83) 1975; 36
Y Chen (930_CR149) 2013; 102
G Poy (930_CR24) 2020; 125
BY Wei (930_CR67) 2014; 26
JA Lv (930_CR21) 2016; 537
HK Bisoyi (930_CR36) 2014; 47
D Qu (930_CR178) 2019; 7
YJ Shen (930_CR231) 2019; 8
ZG Zheng (930_CR122) 2016; 531
ST Hur (930_CR152) 2013; 25
JE Stumpel (930_CR119) 2015; 25
APC Almeida (930_CR153) 2018; 30
G Foo (930_CR236) 2005; 30
DA Beller (930_CR91) 2013; 3
LL Ma (930_CR98) 2019; 13
PJ Ackerman (930_CR243) 2012; 2
Y Shen (930_CR76) 2020; 3
L Wang (930_CR140) 2012; 22
M Nakata (930_CR33) 2007; 318
AE Minovich (930_CR210) 2015; 9
WY Li (930_CR295) 2019; 31
W Hu (930_CR150) 2020; 30
J Chen (930_CR248) 2021; 10
B Zuo (930_CR250) 2019; 10
DS Kim (930_CR81) 2015; 3
SC Zhang (930_CR111) 2017; 543
F Du (930_CR114) 2004; 43
ZX Li (930_CR232) 2021; 19
RS Preusse (930_CR100) 2020; 16
L Zhang (930_CR112) 2016; 28
F Joubert (930_CR161) 2014; 43
G Guidetti (930_CR185) 2016; 28
TH Wu (930_CR275) 2016; 4
Y Wang (930_CR292) 2019; 116
J Kobashi (930_CR228) 2016; 10
M Honda (930_CR48) 2009; 21
LL Ma (930_CR95) 2017; 29
L Qin (930_CR197) 2021; 12
F Chu (930_CR207) 2021; 29
References_xml – reference: SavoSShrekenhamerDPadillaWJLiquid crystal metamaterial absorber spatial light modulator for THz applicationsAdv. Optical Mater.2014227527910.1002/adom.201300384
– reference: ZhuGLiquid crystal blue phase induced by bent-shaped molecules with allylic end groupsOptical Mater. Express20111147814832011OMExp...1.1478Z10.1364/OME.1.001478
– reference: BisoyiHKLiQLiquid crystals: Versatile self-organized smart soft materialsChem. Rev.20221224887492610.1021/acs.chemrev.1c00761
– reference: LiYZhanTWuSTFlat cholesteric liquid crystal polymeric lens with low f-numberOpt. Express202028587558822020OExpr..28.5875L10.1364/OE.387942
– reference: ChengMLight-fueled polymer film capable of directional crawling, friction-controlled climbing, and self-sustained motion on a human hairAdv. Sci.20229210309010.1002/advs.202103090
– reference: LiBXElectro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameterAppl. Phys. Lett.20141042011052014ApPhL.104t1105L10.1063/1.4879018
– reference: ParkerRMThe self-assembly of cellulose nanocrystals: hierarchical design of visual appearanceAdv. Mater.201830170447710.1002/adma.201704477
– reference: WangWThin films of poly(N-isopropylacrylamide) end-capped with n-butyltrithiocarbonateMacromolecules200841320932182008MaMol..41.3209W10.1021/ma7027775
– reference: TaiJSBAckermanPJSmalyukhIITopological transformations of Hopf solitons in chiral ferromagnets and liquid crystalsProc. Natl Acad. Sci. USA20181159219262018PNAS..115..921T37637011416.8204610.1073/pnas.1716887115
– reference: DaiHTOptically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separationOpt. Lett.201540272327262015OptL...40.2723D10.1364/OL.40.002723
– reference: MredhaMTIAnisotropic tough multilayer hydrogels with programmable orientationMater. Horiz.201961504151110.1039/C9MH00320G
– reference: KobashiJYoshidaHOzakiMPlanar optics with patterned chiral liquid crystalsNat. Photonics2016103893922016NaPho..10..389K10.1038/nphoton.2016.66
– reference: YuanYSelf-assembled nematic colloidal motors powered by lightNat. Commun.201892018NatCo...9.5040Y10.1038/s41467-018-07518-x
– reference: ChenPDigitalizing self-assembled chiral superstructures for optical vortex processingAdv. Mater.201830170586510.1002/adma.201705865
– reference: CastlesFStretchable liquid-crystal blue-phase gelsNat. Mater.2014138178212014NatMa..13..817C10.1038/nmat3993
– reference: WangXGTopological defects in liquid crystals as templates for molecular self-assemblyNat. Mater.2016151061122016NatMa..15..106W10.1038/nmat4421
– reference: HonglawanAPillar-assisted epitaxial assembly of toric focal conic domains of smectic-a liquid crystalsAdv. Mater.2011235519552310.1002/adma.201103008
– reference: DengBScalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arraysSci. Bull.20196465966810.1016/j.scib.2019.04.030
– reference: ShenZXLiquid crystal integrated metalens with tunable chromatic aberrationAdv. Photonics202020360022020AdPho...2c6002S10.1117/1.AP.2.3.036002
– reference: WangYModulation of multiscale 3D lattices through conformational control: Painting silk inverse opals with water and lightAdv. Mater.201729170276910.1002/adma.201702769
– reference: ChenCWLarge three-dimensional photonic crystals based on monocrystalline liquid crystal blue phasesNat. Commun.201782017NatCo...8..727C10.1038/s41467-017-00822-y
– reference: GharbiMASmectic gardening on curved landscapesLangmuir201531111351114210.1021/acs.langmuir.5b02508
– reference: Brasselet, E. Singular optics of liquid crystal defects. in Liquid Crystals: New Perspectives (eds Pieranski P. and Godinho M. H.). (Hoboken: John Wiley & Sons, 2021), 1-79.
– reference: LiZXLiquid crystal devices for vector vortex beams manipulation and quantum information applicationsChin. Opt. Lett.2021191126012021ChOpL..19k2601L10.3788/COL202119.112601
– reference: ColesHJPivnenkoMNLiquid crystal ‘blue phases’ with a wide temperature rangeNature200543699710002005Natur.436..997C10.1038/nature03932
– reference: GandhiSSChienLCUnraveling the mystery of the blue fog: structure, properties, and applications of amorphous blue phase IIIAdv. Mater.201729170429610.1002/adma.201704296
– reference: PadgettMBowmanRTweezers with a twistNat. Photonics201153433482011NaPho...5..343P10.1038/nphoton.2011.81
– reference: TadepalliSBio-optics and bio-inspired optical materialsChem. Rev.2017117127051276310.1021/acs.chemrev.7b00153
– reference: QuDChiral photonic cellulose films enabling mechano/chemo responsive selective reflection of circularly polarized lightAdv. Optical Mater.20197180139510.1002/adom.201801395
– reference: YinKPatterning liquid-crystal alignment for ultrathin flat opticsACS Omega20205314853148910.1021/acsomega.0c05087
– reference: BadloeTLiquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacksLight Sci. Appl.2022111182022LSA....11..118B10.1038/s41377-022-00806-8
– reference: RisteenBThermally switchable liquid crystals based on cellulose nanocrystals with patchy polymer graftsSmall201814180206010.1002/smll.201802060
– reference: Kikuchi, H. Liquid crystalline blue phases. in Liquid Crystalline Functional Assemblies and Their Supramolecular Structures (ed Kato, T.). (Berlin: Springer, 2007), 99-117.
– reference: ChuFFour-mode 2D/3D switchable display with a 1D/2D convertible liquid crystal lens arrayOpt. Express20212937464374752021OExpr..2937464C10.1364/OE.441386
– reference: YuanYElastic colloidal monopoles and reconfigurable self-assembly in liquid crystalsNature20195702142182019Natur.570..214Y10.1038/s41586-019-1247-7
– reference: MaLLSmectic layer origami via preprogrammed photoalignmentAdv. Mater.201729160667110.1002/adma.201606671
– reference: WangSCScalable thermochromic smart windows with passive radiative cooling regulationScience2021374150115042021Sci...374.1501W10.1126/science.abg0291
– reference: ChenQBaeSCGranickSDirected self-assembly of a colloidal kagome latticeNature20114693813842011Natur.469..381C10.1038/nature09713
– reference: LuYQLiYPlanar liquid crystal polarization optics for near-eye displaysLight Sci. Appl.2021101222021LSA....10..122L423561310.1038/s41377-021-00567-w
– reference: WuHArbitrary photo-patterning in liquid crystal alignments using DMD based lithography systemOpt. Express20122016684166892012OExpr..2016684W10.1364/OE.20.016684
– reference: LiuFDeeply seeing through highly turbid water by active polarization imagingOpt. Lett.201843490349062018OptL...43.4903L10.1364/OL.43.004903
– reference: XiongJHolo-imprinting polarization optics with a reflective liquid crystal hologram templateLight Sci. Appl.202211542022LSA....11...54X10.1038/s41377-022-00746-3
– reference: ShenYDierkingIDynamics of electrically driven solitons in nematic and cholesteric liquid crystalsCommun. Phys.202031410.1038/s42005-020-0288-4
– reference: ZhangZHCholesteric cellulose liquid crystals with multifunctional structural colorsAdv. Funct. Mater.202232210724210.1002/adfm.202107242
– reference: JauHCLight-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switchAdv. Optical Mater.2015316617010.1002/adom.201400457
– reference: SchmidtkeJKnieselSFinkelmannHProbing the photonic properties of a cholesteric elastomer under biaxial stressMacromolecules200538135713632005MaMol..38.1357S10.1021/ma0487655
– reference: ZhangHAzobenzene sulphonic dye photoalignment as a means to fabricate liquid crystalline conjugated polymer chain-orientation-based optical structuresAdv. Optical Mater.20208190195810.1002/adom.201901958
– reference: WangLWide blue phase range and electro-optical performances of liquid crystalline composites doped with thiophene-based mesogensJ. Mater. Chem.2012222383238610.1039/C2JM15461G
– reference: LiangHLRoll-to-roll fabrication of touch-responsive cellulose photonic laminatesNat. Commun.201892018NatCo...9.4632L10.1038/s41467-018-07048-6
– reference: ScacchiASelf-assembly in soft matter with multiple length scalesPhys. Rev. Res.20213L02200810.1103/PhysRevResearch.3.L022008
– reference: MitovMCholesteric liquid crystals in living matterSoft Matter201713417642092017SMat...13.4176M10.1039/C7SM00384F
– reference: YangHWSteering nonlinear twisted valley photons of monolayer WS2 by vector beamsNano Lett.202121726172692021NanoL..21.7261Y10.1021/acs.nanolett.1c02290
– reference: ZengHAssociative learning by classical conditioning in liquid crystal network actuatorsMatter2020219420610.1016/j.matt.2019.10.019
– reference: De GennesPGAn analogy between superconductors and smectics ASolid State Commun.1972107537561972SSCom..10..753D10.1016/0038-1098(72)90186-X
– reference: ShangLRBio-inspired intelligent structural color materialsMater. Horiz.2019694595810.1039/C9MH00101H
– reference: CaoYDeciphering chiral structures in soft materials via resonant soft and tender X-ray scatteringGiant2020210001810.1016/j.giant.2020.100018
– reference: ShahsavanHBioinspired underwater locomotion of light-driven liquid crystal gelsProc. Natl Acad. Sci. USA2020117512551332020PNAS..117.5125S10.1073/pnas.1917952117
– reference: Frka-PetesicBVignoliniSSo much more than paperNat. Photonics2019133653672019NaPho..13..365F10.1038/s41566-019-0448-9
– reference: RupnikPMField-controlled structures in ferromagnetic cholesteric liquid crystalsSci. Adv.20173e17013362017SciA....3E1336M10.1126/sciadv.1701336
– reference: KimDSMosaics of topological defects in micropatterned liquid crystal texturesSci. Adv.20184eaau80642018SciA....4.8064K10.1126/sciadv.aau8064
– reference: XiangJElectrically tunable laser based on oblique heliconical cholesteric liquid crystalProc. Natl Acad. Sci. U. State. Am.201611312925129282016PNAS..11312925X10.1073/pnas.1612212113
– reference: MaLLSubmicrosecond electro-optical switching of one-dimensional soft photonic crystalsPhotonics Res.20221078679210.1364/PRJ.449284
– reference: XiaYHigh-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cellsAdv. Energy Mater.20199190072010.1002/aenm.201900720
– reference: KimYHOptically selective microlens photomasks using self-assembled smectic liquid crystal defect arraysAdv. Mater.2010222416242010.1002/adma.200903728
– reference: WangHPhotochemically and thermally driven full-color reflection in a self-organized helical superstructure enabled by a halogen-bonded chiral molecular switchAngew. Chem. Int. Ed.2018571627163110.1002/anie.201712781
– reference: ChenRLRe-printable chiral photonic paper with invisible patterns and tunable wettabilityAdv. Funct. Mater.202131200991610.1002/adfm.202009916
– reference: WhitesidesGMGrzybowskiBSelf-assembly at all scalesScience2002295241824212002Sci...295.2418W10.1126/science.1070821
– reference: LiBXSoliton-induced liquid crystal enabled electrophoresisPhys. Rev. Res.202020131782020hsm2.book.....L10.1103/PhysRevResearch.2.013178
– reference: XiaYProgramming emergent symmetries with saddle-splay elasticityNat. Commun.2019102019NatCo..10.5104X10.1038/s41467-019-13012-9
– reference: ZhengZGControllable dynamic zigzag pattern formation in a soft helical superstructureAdv. Mater.201729170190310.1002/adma.201701903
– reference: LuTCellulose nanocrystals/polyacrylamide composites of high sensitivity and cycling performance to gauge humidityACS Appl. Mater. Interfaces20179182311823710.1021/acsami.7b04590
– reference: LiBXThree-dimensional solitary waves with electrically tunable direction of propagation in nematicsNat. Commun.2019102019NatCo..10.3749L10.1038/s41467-019-11768-8
– reference: ZengHSelf-regulating iris based on light-actuated liquid crystal elastomerAdv. Mater.201729170181410.1002/adma.201701814
– reference: ZhouHBio-inspired photonic materials: Prototypes and structural effect designs for applications in solar energy manipulationAdv. Funct. Mater.201828170530910.1002/adfm.201705309
– reference: MartinezAMirelesHCSmalyukhIILarge-area optoelastic manipulation of colloidal particles in liquid crystals using photoresponsive molecular surface monolayersProc. Natl Acad. Sci. USA201110820891208962011PNAS..10820891M10.1073/pnas.1112849108
– reference: BisoyiHKLiQLight-directing chiral liquid crystal nanostructures: From 1D to 3DAcc. Chem. Res.2014473184319510.1021/ar500249k
– reference: HoughLEHelical nanofilament phasesScience20093254564602009Sci...325..456H10.1126/science.1170027
– reference: KlémanMDefects in liquid crystalsRep. Prog. Phys.1989525556541989RPPh...52..555K100054810.1088/0034-4885/52/5/002
– reference: WangYJHigh-efficiency broadband achromatic metalens for near-IR biological imaging windowNat. Commun.2021122021NatCo..12.5560W10.1038/s41467-021-25797-9
– reference: NavaGPitch tuning induced by optical torque in heliconical cholesteric liquid crystalsPhys. Rev. Res.2019103321510.1103/PhysRevResearch.1.033215
– reference: WangYLight-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructuresNat. Commun.2021122021NatCo..12.1651W10.1038/s41467-021-21764-6
– reference: BisoyiHKLiQLight-driven liquid crystalline materials: From photo-induced phase transitions and property modulations to applicationsChem. Rev.2016116150891516610.1021/acs.chemrev.6b00415
– reference: KimMSwitchable photonic bio-adhesive materialsAdv. Mater.202133210367410.1002/adma.202103674
– reference: ZhangYResponsive and patterned cellulose nanocrystal films modified by N-methylmorpholine-N-oxideCarbohydr. Polym.202022811538710.1016/j.carbpol.2019.115387
– reference: PalRKBiopatterning of silk proteins for soft micro-opticsACS Appl. Mater. Interfaces201578809881610.1021/acsami.5b01380
– reference: KragtAJJ3D helix engineering in chiral photonic materialsAdv. Mater.201931190312010.1002/adma.201903120
– reference: KimSUBroadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomersNat. Mater.20222141462022NatMa..21...41K10.1038/s41563-021-01075-3
– reference: JiangSAControl of large-area orderliness of a 2D supramolecular chiral microstructure by a 1D interference fieldACS Appl. Mater. Interfaces202113449164492410.1021/acsami.1c12575
– reference: FengCRRajapakshaCPHJákliAIonic elastomers for electric actuators and sensorsEngineering2021758160210.1016/j.eng.2021.02.014
– reference: AlmeidaAPCCellulose-based biomimetics and their applicationsAdv. Mater.201830170365510.1002/adma.201703655
– reference: ZuoBVisible and infrared three-wavelength modulated multi-directional actuatorsNat. Commun.2019102019NatCo..10.4539Z10.1038/s41467-019-12583-x
– reference: GuidettiGOmenettoFGN-dimensional optics with natural materialsMRS Commun.20201020121410.1557/mrc.2020.23
– reference: GilbertRDPattonPALiquid crystal formation in cellulose and cellulose derivativesProg. Polym. Sci.1983911513110.1016/0079-6700(83)90001-1
– reference: LavrentovichODKlémanMPergamenshchikVMNucleation of focal conic domains in smectic A liquid crystalsJ. de. Phys. II199443774041994JPhy2...4..377L
– reference: StumpelJEStimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogelsAdv. Funct. Mater.2015253314332010.1002/adfm.201500745
– reference: ZhangLChiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helicesAdv. Mater.2016281044105910.1002/adma.201502590
– reference: ChouHHA chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensingNat. Commun.201562015NatCo...6.8011C10.1038/ncomms9011
– reference: WangXWRecent advances on optical vortex generationNanophotonics201871533155610.1515/nanoph-2018-0072
– reference: SatoshiAFumitoAKinetics of motile solitons in nematic liquid crystalsNat. Commun.20201110.1038/s41467-020-16864-8
– reference: ShenZXLiquid crystal tunable terahertz lens with spin-selected focusing propertyOpt. Express201927880088072019OExpr..27.8800S10.1364/OE.27.008800
– reference: NiJCThree-dimensional chiral microstructures fabricated by structured optical vortices in isotropic materialLight Sci. Appl.20176e1701110.1038/lsa.2017.11
– reference: NassiriMGBrasseletEMultispectral management of the photon orbital angular momentumPhys. Rev. Lett.20181212139012018PhRvL.121u3901G10.1103/PhysRevLett.121.213901
– reference: PoyGChirality-enhanced periodic self-focusing of light in soft birefringent mediaPhys. Rev. Lett.20201250778012020PhRvL.125g7801P10.1103/PhysRevLett.125.077801
– reference: AkiyamaHSynthesis and properties of azo dye aligning layers for liquid crystal cellsLiq. Cryst.2002291321132710.1080/713935610
– reference: PereraKConverging microlens array using nematic liquid crystals doped with chiral nanoparticlesACS Appl. Mater. Interfaces2021134574458210.1021/acsami.0c21044
– reference: ZapponeBPeriodic lattices of frustrated focal conic defect domains in smectic liquid crystal filmsSoft Matter20128431843262012SMat....8.4318Z10.1039/c2sm07207f
– reference: ChoiHPolymer-stabilized supercooled blue phaseAppl. Phys. Lett.20121011319042012ApPhL.101m1904C10.1063/1.4752461
– reference: VoloschenkoDLavrentovichODOptical vortices generated by dislocations in a cholesteric liquid crystalOpt. Lett.2000253173192000OptL...25..317V10.1364/OL.25.000317
– reference: De VriesHRotatory power and other optical properties of certain liquid crystalsActa Crystallogr.1951421922610.1107/S0365110X51000751
– reference: ZhangSCArrays of horizontal carbon nanotubes of controlled chirality grown using designed catalystsNature20175432342382017Natur.543..234Z10.1038/nature21051
– reference: LiXFast switchable dual-model grating by using polymer-stabilized sphere phase liquid crystalPolymers20181088410.3390/polym10080884
– reference: ZhengZGThree-dimensional control of the helical axis of a chiral nematic liquid crystal by lightNature20165313523562016Natur.531..352Z10.1038/nature17141
– reference: ZhengZGLight-patterned crystallographic direction of a self-organized 3D soft photonic crystalAdv. Mater.201729170316510.1002/adma.201703165
– reference: YaoKFlexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural colorAdv. Mater.201729170132310.1002/adma.201701323
– reference: YangJJBeyond the visible: bioinspired infrared adaptive materialsAdv. Mater.202133200475410.1002/adma.202004754
– reference: LvJAPhotocontrol of fluid slugs in liquid crystal polymer microactuatorsNature20165371791842016Natur.537..179L10.1038/nature19344
– reference: YangYZ3D chiral photonic nanostructures based on blue-phase liquid crystalsSmall Sci.20211210000710.1002/smsc.202100007
– reference: TongLStable mid-infrared polarization imaging based on quasi-2D tellurium at room temperatureNat. Commun.2020112020NatCo..11.2308T10.1038/s41467-020-16125-8
– reference: GelebartAHMaking waves in a photoactive polymer filmNature20175466326362017Natur.546..632G10.1038/nature22987
– reference: XuCLHuangCXHuangHHRecent advances in structural color display of cellulose nanocrystal materialsAppl. Mater. Today20212210091210.1016/j.apmt.2020.100912
– reference: KikuchiHPolymer-stabilized liquid crystal blue phasesNat. Mater.2002164682002NatMa...1...64K10.1038/nmat712
– reference: HuangYLBioinspired synergistic photochromic luminescence and programmable liquid crystal actuatorsAngew. Chem. Int. Ed.202160112471125110.1002/anie.202101881
– reference: MaLLProgrammable self-propelling actuators enabled by a dynamic helical mediumSci. Adv.20217eabh35052021SciA....7.3505M10.1126/sciadv.abh3505
– reference: HonglawanATopographically induced hierarchical assembly and geometrical transformation of focal conic domain arrays in smectic liquid crystalsProc. Natl Acad. Sci. U. State. Am.201311034392013PNAS..110...34H10.1073/pnas.1214708109
– reference: SonBOptical vortex arrays from smectic liquid crystalsOpt. Express201422469947042014OExpr..22.4699S10.1364/OE.22.004699
– reference: CaoYYTunable diffraction gratings from biosourced lyotropic liquid crystalsAdv. Mater.202032190737610.1002/adma.201907376
– reference: MaLLSelf-assembled asymmetric microlenses for four-dimensional visual imagingACS Nano201913137091371510.1021/acsnano.9b07104
– reference: YangYZBioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networksACS Appl. Mater. Interfaces202113411024111110.1021/acsami.1c11711
– reference: BabakhanovaGLiquid crystal elastomer coatings with programmed response of surface profileNat. Commun.201892018NatCo...9..456B10.1038/s41467-018-02895-9
– reference: QuDModulating the structural orientation of nanocellulose composites through mechano-stimuliACS Appl. Mater. Interfaces201911404434045010.1021/acsami.9b12106
– reference: Kléman, M. & Lavrentovich, O. D. Soft matter physics: an introduction. (New York: Springer, 2003).
– reference: ZhanTPractical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lensesAdv. Optical Mater.20208190136010.1002/adom.201901360
– reference: García-EscartínJCChamorro-PosadaPUniversal quantum computation with the orbital angular momentum of a single photonJ. Opt.2011130640222011JOpt...13f4022G10.1088/2040-8978/13/6/064022
– reference: ZhangXFElectro-and photo-driven orthogonal switching of a helical superstructure enabled by an axially chiral molecular switchACS Appl. Mater. Interfaces202012552155522210.1021/acsami.0c19527
– reference: ChuGPrinting flowers? Custom-tailored photonic cellulose films with engineered surface topographyMatter20191988100010.1016/j.matt.2019.05.005
– reference: YuHLStimuli-responsive circularly polarized luminescent films with tunable emissionJ. Mater. Chem. C.202081459146510.1039/C9TC06105C
– reference: GuidettiGFlexible photonic cellulose nanocrystal filmsAdv. Mater.201628100421004710.1002/adma.201603386
– reference: XiangJLavrentovichODBlue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switchingAppl. Phys. Lett.20131030511122013ApPhL.103e1112X10.1063/1.4817724
– reference: LiBXElectrically driven three-dimensional solitary waves as director bullets in nematic liquid crystalsNat. Commun.201892018NatCo...9.2912L10.1038/s41467-018-05101-y
– reference: WangYControlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfacesProc. Natl Acad. Sci. USA201911621361213682019PNAS..11621361W10.1073/pnas.1911563116
– reference: HuWPolarization independent liquid crystal gratings based on orthogonal photoalignmentsAppl. Phys. Lett.20121001111162012ApPhL.100k1116H10.1063/1.3694921
– reference: MaLLRationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystalsAdv. Optical Mater.201531691169610.1002/adom.201500403
– reference: SmalyukhIIThermal management by engineering the alignment of nanocelluloseAdv. Mater.202133200122810.1002/adma.202001228
– reference: CaoJUltrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructuresACS Nano2020147055706510.1021/acsnano.0c01779
– reference: MaLLLight-activated liquid crystalline hierarchical architecture toward photonicsAdv. Optical Mater.20197190039310.1002/adom.201900393
– reference: KimYHSmectic liquid crystal defects for self-assembling of building blocks and their lithographic applicationsAdv. Funct. Mater.20112161062710.1002/adfm.201001303
– reference: BabakhanovaGControlled placement of microparticles at the water-liquid crystal elastomer interfaceACS Appl. Mater. Interfaces201911150071501310.1021/acsami.8b22023
– reference: KhandelwalHSchenningAPHJDebijeMGInfrared regulating smart window based on organic materialsAdv. Energy Mater.20177160220910.1002/aenm.201602209
– reference: ZhouKLight-driven reversible transformation between self-organized simple cubic lattice and helical superstructure enabled by a molecular switch functionalized nanocageAdv. Mater.201830180023710.1002/adma.201800237
– reference: BerryMVQuantal phase factors accompanying adiabatic changesProc. R. Soc. Lond. A. Math. Phys. Sci.198439245571984RSPSA.392...45B7389261113.81306
– reference: AckermanPJSmalyukhIIStatic three-dimensional topological solitons in fluid chiral ferromagnets and colloidsNat. Mater.2017164264322017NatMa..16..426A10.1038/nmat4826
– reference: HuWHumidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signalsAdv. Funct. Mater.202030200461010.1002/adfm.202004610
– reference: LagerwallJPFCellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin filmsNPG Asia Mater.2014610.1038/am.2013.69
– reference: QinLGeminate labels programmed by two-tone microdroplets combining structural and fluorescent colorNat. Commun.2021122021NatCo..12..699Q10.1038/s41467-021-20908-y
– reference: WuTHA bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator propertiesJ. Mater. Chem. C.201649687969610.1039/C6TC02629J
– reference: HelfrichWElectrohydrodynamic and dielectric instabilities of cholesteric liquid crystalsJ. Chem. Phys.1971558398421971JChPh..55..839H10.1063/1.1676151
– reference: JoubertFThe preparation of graft copolymers of cellulose and cellulose derivatives using atrp under homogeneous reaction conditionsChem. Soc. Rev.2014437217723510.1039/C4CS00053F
– reference: PapičMTopological liquid crystal superstructures as structured light lasersProc. Natl Acad. Sci. USA2021118e211083911810.1073/pnas.2110839118
– reference: PreusseRSHierarchical assembly of smectic liquid crystal defects at undulated interfacesSoft Matter202016835283582020SMat...16.8352P10.1039/D0SM01112F
– reference: XuQSunTWangCCoded liquid crystal metasurface for achromatic imaging in the broadband wavelength rangeACS Appl. Nano Mater.202145068507510.1021/acsanm.1c00542
– reference: BettottiPDynamics of hydration of nanocellulose filmsAdv. Mater. Interfaces20163150041510.1002/admi.201500415
– reference: WeiBYGenerating switchable and reconfigurable optical vortices via photopatterning of liquid crystalsAdv. Mater.2014261590159510.1002/adma.201305198
– reference: MatsuiTVisualizing invisible phase transitions in blue phase liquid crystals using early warning indicatorsSmall202218220011310.1002/smll.202200113
– reference: XiangJElectrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholestericsAdv. Mater.2015273014301810.1002/adma.201500340
– reference: FosterDTwo-dimensional skyrmion bags in liquid crystals and ferromagnetsNat. Phys.20191565565910.1038/s41567-019-0476-x
– reference: LiuPWBiomimetic confined self-assembly of chitin nanocrystalsNano Today20224310142010.1016/j.nantod.2022.101420
– reference: HurSTLiquid-crystalline blue phase laser with widely tunable wavelengthAdv. Mater.2013253002300610.1002/adma.201204591
– reference: JiangYFImage flickering-free polymer stabilized fringe field switching liquid crystal displayOpt. Express20182632640326512018OExpr..2632640J10.1364/OE.26.032640
– reference: JiangMLow f-number diffraction-limited Pancharatnam–Berry microlenses enabled by plasmonic photopatterning of liquid crystal polymersAdv. Mater.201931180802810.1002/adma.201808028
– reference: WangMSensitive humidity-driven reversible and bidirectional bending of nanocellulose thin films as bio-inspired actuationAdv. Mater. Interfaces20152150008010.1002/admi.201500080
– reference: DuFPolymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuatorJpn. J. Appl. Phys.200443708370862004JaJAP..43.7083D10.1143/JJAP.43.7083
– reference: TranABoottCEMacLachlanMJUnderstanding the self-assembly of cellulose nanocrystals-Toward chiral photonic materialsAdv. Mater.202032190587610.1002/adma.201905876
– reference: LiWYInkjet printing of patterned, multispectral, and biocompatible photonic crystalsAdv. Mater.201931190103610.1002/adma.201901036
– reference: YanJA full-color reflective display using polymer-stabilized blue phase liquid crystalAppl. Phys. Lett.20131020811022013ApPhL.102h1102Y10.1063/1.4793750
– reference: ZhangZCYouZChuDPFundamentals of phase-only liquid crystal on silicon (LCOS) devicesLight Sci. Appl.20143e2132014LSA.....3E.213Z10.1038/lsa.2014.94
– reference: WilliamsCEKlémanMDislocations, grain boundaries and focal conics in smectics ALe. J. de. Phys. Colloq.197536C1-315C311-320
– reference: LeeH11.1: Invited Paper: The world's first blue phase liquid crystal displaySID Symp . Dig. Tech. Pap.2011421211242011IAUS..277..121L10.1889/1.3621051
– reference: MinovichAEFunctional and nonlinear optical metasurfacesLaser Photonics Rev.201591952132015LPRv....9..195M10.1002/lpor.201400402
– reference: Yang, D. K. & Wu, S. T. Fundamentals of liquid crystal devices. 2nd edn. (Hoboken: John Wiley & Sons, 2014).
– reference: DaiSDCholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gasCarbohydr. Polym.201717453153910.1016/j.carbpol.2017.06.098
– reference: BrasseletEOptical vortices from liquid crystal dropletsPhys. Rev. Lett.20091031039032009PhRvL.103j3903B10.1103/PhysRevLett.103.103903
– reference: UsovIUnderstanding nanocellulose chirality and structure–properties relationship at the single fibril levelNat. Commun.201562015NatCo...6.7564U10.1038/ncomms8564
– reference: RubinNAMatrix fourier optics enables a compact full-stokes polarization cameraScience2019365eaax18392019Sci...365.1839R10.1126/science.aax1839
– reference: RevolJFHelicoidal self-ordering of cellulose microfibrils in aqueous suspensionInt. J. Biol. Macromolecules19921417017210.1016/S0141-8130(05)80008-X
– reference: KimDSControlling gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystalsNat. Commun.201672016NatCo...710236K10.1038/ncomms10236
– reference: SaliliSMMagnetically tunable selective reflection of light by heliconical cholestericsPhys. Rev. E2016940427052016PhRvE..94d2705S10.1103/PhysRevE.94.042705
– reference: De La CruzJACellulose-based reflective liquid crystal films as optical filters and solar gain regulatorsACS Photonics201852468247710.1021/acsphotonics.8b00289
– reference: EspinhaAHydroxypropyl cellulose photonic architectures by soft nanoimprinting lithographyNat. Photonics2018123433482018NaPho..12..343E10.1038/s41566-018-0152-1
– reference: GeWHighly tough, stretchable, and solvent-resistant cellulose nanocrystal photonic films for mechanochromism and actuator propertiesSmall202218210710510.1002/smll.202107105
– reference: ChenYWuSTElectric field-induced monodomain blue phase liquid crystalsAppl. Phys. Lett.20131021711102013ApPhL.102q1110C10.1063/1.4803922
– reference: KimYHFabrication of two-dimensional dimple and conical microlens arrays from a highly periodic toroidal-shaped liquid crystal defect arrayJ. Mater. Chem.2010206557656110.1039/c0jm00910e
– reference: ChenXFirst-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-opticsProc. Natl Acad. Sci. USA202011714021140312020PNAS..11714021C10.1073/pnas.2002290117
– reference: WangJStabilization and electro-optical switching of liquid crystal blue phases using unpolymerized and polymerized polyoxometalate-based nanoparticlesMol. Cryst. Liq. Cryst.2016634122310.1080/15421406.2016.1177900
– reference: PengZWApplications of cellulose nanomaterials in stimuli-responsive opticsJ. Agric. Food Chem.202068129401295510.1021/acs.jafc.0c04742
– reference: NakataMEnd-to-end stacking and liquid crystal condensation of 6- to 20-base pair DNA duplexesScience2007318127612792007Sci...318.1276N10.1126/science.1143826
– reference: ShenYJOptical vortices 30 years on: OAM manipulation from topological charge to multiple singularitiesLight Sci. Appl.20198902019LSA.....8...90S10.1038/s41377-019-0194-2
– reference: SawaYShape and chirality transitions in off-axis twist nematic elastomer ribbonsPhys. Rev. E2013880225022013PhRvE..88b2502S10.1103/PhysRevE.88.022502
– reference: Fernández-RicoCShaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic phasesScience20203699509552020Sci...369..950F10.1126/science.abb4536
– reference: RechcińskaKEngineering spin-orbit synthetic hamiltonians in liquid-crystal optical cavitiesScience20193667277302019Sci...366..727R10.1126/science.aay4182
– reference: WangYSLiMWangYSilk: a versatile biomaterial for advanced optics and photonicsChin. Opt. Lett.2020180800042020ChOpL..18h0004W10.3788/COL202018.080004
– reference: KhanMKHamadWYMacLachlanMJTunable mesoporous bilayer photonic resins with chiral nematic structures and actuator propertiesAdv. Mater.2014262323232810.1002/adma.201304966
– reference: MaLLLight-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free filmPolymers2017929510.3390/polym9070295
– reference: HuraultJPStatic distortions of a cholesteric planar structure induced by magnetic or ac electric fieldsJ. Chem. Phys.197359206820751973JChPh..59.2068H10.1063/1.1680293
– reference: HondaMSekiTTakeokaYDual tuning of the photonic band-gap structure in soft photonic crystalsAdv. Mater.2009211801180410.1002/adma.200801258
– reference: XiongRBiopolymeric photonic structures: Design, fabrication, and emerging applicationsChem. Soc. Rev.202049983103110.1039/C8CS01007B
– reference: IhnKJObservations of the liquid-crystal analog of the Abrikosov phaseScience19922582752781992Sci...258..275I10.1126/science.258.5080.275
– reference: DumanliAGSavinTRecent advances in the biomimicry of structural coloursChem. Soc. Rev.2016456698672410.1039/C6CS00129G
– reference: XiongJWuSTPlanar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applicationseLight20211310.1186/s43593-021-00003-x
– reference: BisoyiHKBunningTJLiQStimuli-driven control of the helical axis of self-organized soft helical superstructuresAdv. Mater.201830170651210.1002/adma.201706512
– reference: RubinNAImaging polarimetry through metasurface polarization gratingsOpt. Express202230938994122022OExpr..30.9389R10.1364/OE.450941
– reference: GibaudTReconfigurable self-assembly through chiral control of interfacial tensionNature20124813483512012Natur.481..348G10.1038/nature10769
– reference: SatapathyPSwitchable smart windows using a biopolymer network of cellulose nanocrystals imposed on a nematic liquid crystalAppl. Phys. Lett.20201171037022020ApPhL.117j3702S10.1063/5.0020982
– reference: ZapponeBAnalogy between periodic patterns in thin smectic liquid crystal films and the intermediate state of superconductorsProc. Natl Acad. Sci. U. State. Am.202011717643176492020PNAS..11717643Z42427371485.8201310.1073/pnas.2000849117
– reference: WangLUrbasAMLiQNature-inspired emerging chiral liquid crystal nanostructures: From molecular self-assembly to DNA mesophase and nanocolloidsAdv. Mater.202032180133510.1002/adma.201801335
– reference: LiYLiuYJLuoDPolarization dependent light-driven liquid crystal elastomer actuators based on photothermal effectAdv. Optical Mater.20219200186110.1002/adom.202001861
– reference: BukusogluEStrain-induced alignment and phase behavior of blue phase liquid crystals confined to thin filmsSoft Matter201713899990062017SMat...13.8999B10.1039/C7SM01755C
– reference: RevolJFGodboutLGrayDGSolid self-assembled films of cellulose with chiral nematic order and optically variable propertiesJ. Pulp Pap. Sci.199824146149
– reference: FooGPalaciosDMSwartzlanderGAOptical vortex coronagraphOpt. Lett.200530330833102005OptL...30.3308F10.1364/OL.30.003308
– reference: MengYHFabrication of environmental humidity-responsive iridescent films with cellulose nanocrystal/polyolsCarbohydr. Polym.202024011628110.1016/j.carbpol.2020.116281
– reference: ZhangPA patterned mechanochromic photonic polymer for reversible image revealAdv. Mater. Interfaces20207190187810.1002/admi.201901878
– reference: OrtsWJEnhanced ordering of liquid crystalline suspensions of cellulose microfibrils: A small angle neutron scattering studyMacromolecules199831571757251998MaMol..31.5717O10.1021/ma9711452
– reference: XiangJElectrooptic response of chiral nematic liquid crystals with oblique helicoidal directorPhys. Rev. Lett.20141122178012014PhRvL.112u7801X10.1103/PhysRevLett.112.217801
– reference: ThapaKCombined electric and photocontrol of selective light reflection at an oblique helicoidal cholesteric liquid crystal doped with azoxybenzene derivativePhys. Rev. E20211040447022021PhRvE.104d4702T435376110.1103/PhysRevE.104.044702
– reference: PiccardiAPower-controlled transition from standard to negative refraction in reorientational soft matterNat. Commun.201452014NatCo...5.5533P10.1038/ncomms6533
– reference: RichSIWoodRJMajidiCUntethered soft roboticsNat. Electron.2018110211210.1038/s41928-018-0024-1
– reference: GuoYBHigh-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystalsAdv. Mater.2016282353235810.1002/adma.201506002
– reference: KimMFabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windowsACS Appl. Mater. Interfaces20157179041790910.1021/acsami.5b04496
– reference: WangLStimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized grapheneMater. Today20172023023710.1016/j.mattod.2017.04.028
– reference: Dierking, I. Textures of Liquid Crystals. (Weinheim: John Wiley & Sons, 2003).
– reference: YoonWJA single-step dual stabilization of smart window by the formation of liquid crystal physical gels and the construction of liquid crystal chambersAdv. Funct. Mater.202030190678010.1002/adfm.201906780
– reference: XiaYThickness-independent capacitance of vertically aligned liquid-crystalline MXenesNature20185574094122018Natur.557..409X10.1038/s41586-018-0109-z
– reference: BellerDAFocal conic flower textures at curved interfacesPhys. Rev. X20133041026
– reference: ChiangWFContinuously tunable intensity modulators with large switching contrasts using liquid crystal elastomer films that are deposited with terahertz metamaterialsOpt. Express20202827676276872020OExpr..2827676C10.1364/OE.399581
– reference: KimDSFabrication of periodic nanoparticle clusters using a soft lithographic templateJ. Mater. Chem. C.201534598460210.1039/C5TC00687B
– reference: HuWQSmall-scale soft-bodied robot with multimodal locomotionNature201855481852018Natur.554...81H10.1038/nature25443
– reference: Yeh, P. & Gu, C. Optics of liquid crystal displays. (New York: John Wiley & Sons, 1999).
– reference: YoonDKInternal structure visualization and lithographic use of periodic toroidal holes in liquid crystalsNat. Mater.200768668702007NatMa...6..866Y10.1038/nmat2029
– reference: GimMJBellerDAYoonDKMorphogenesis of liquid crystal topological defects during the nematic-smectic A phase transitionNat. Commun.201782017NatCo...815453G10.1038/ncomms15453
– reference: Gutierrez-CuevasKGFrequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticlesAngew. Chem. Int. Ed.201655130901309410.1002/anie.201606895
– reference: ChanCLCVisual appearance of chiral nematic cellulose-based photonic films: angular and polarization independent color response with a twistAdv. Mater.201931190515110.1002/adma.201905151
– reference: WangYEmerging chirality in nanoscienceChem. Soc. Rev.2013422930296210.1039/C2CS35332F
– reference: LinJDMicrostructure-stabilized blue phase liquid crystalsACS Omega20183154351544110.1021/acsomega.8b01749
– reference: BorshchVNanosecond electro-optics of a nematic liquid crystal with negative dielectric anisotropyPhys. Rev. E2014900625042014PhRvE..90f2504B10.1103/PhysRevE.90.062504
– reference: ConleyKOrigin of the twist of cellulosic materialsCarbohydr. Polym.201613528529910.1016/j.carbpol.2015.08.029
– reference: KlémanMLavrentovichODLiquids with conicsLiq. Cryst.2009361085109910.1080/02678290902814718
– reference: WangMAsymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarityAdv. Funct. Mater.201727170226110.1002/adfm.201702261
– reference: WangYBiomaterial-based “structured opals” with programmable combination of diffractive optical elements and photonic bandgap effectsAdv. Mater.201931180531210.1002/adma.201805312
– reference: MurrayJMaDKMundayJNElectrically controllable light trapping for self-powered switchable solar windowsACS Photonics201741710.1021/acsphotonics.6b00518
– reference: FengWBroerDJLiuDQOscillating chiral-nematic fingerprints wipe away dustAdv. Mater.201830170497010.1002/adma.201704970
– reference: LiXNucleation and growth of blue phase liquid crystals on chemically-patterned surfaces: A surface anchoring assisted blue phase correlation lengthMol. Syst. Des. Eng.2021653454410.1039/D1ME00044F
– reference: XuMCMultifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatingsJ. Mater. Chem. C.201865391540010.1039/C8TC01321G
– reference: ZhaoGMDual response of photonic films with chiral nematic cellulose nanocrystals: humidity and formaldehydeACS Appl. Mater. Interfaces202012178331784410.1021/acsami.0c00591
– reference: JiangYCHighly strong luminescent chiral nematic cellulose nanocrystal/PEI composites for anticounterfeitingChem. Eng. J.202243013278010.1016/j.cej.2021.132780
– reference: YuanCLStimulated transformation of soft helix among helicoidal, heliconical, and their inverse helicesSci. Adv.20195eaax95012019SciA....5.9501Y10.1126/sciadv.aax9501
– reference: PancharatnamSGeneralized theory of interference and its applicationsProc. Indian Acad. Sci.-Sect. A1956443984179723610.1007/BF03046095
– reference: VitralELeoPHViñalsJPhase-field model for a weakly compressible soft layered material: Morphological transitions on smectic-isotropic interfacesSoft Matter202117614061592021SMat...17.6140V10.1039/D1SM00488C
– reference: BorshchVShiyanovskiiSVLavrentovichODNanosecond electro-optic switching of a liquid crystalPhys. Rev. Lett.20131111078022013PhRvL.111j7802B10.1103/PhysRevLett.111.107802
– reference: SerraFCurvature-driven, one-step assembly of reconfigurable smectic liquid crystal “compound eye” lensesAdv. Optical Mater.201531287129210.1002/adom.201500153
– reference: BonielloGMaking smectic defect patterns electrically reversible and dynamically tunable using in situ polymer-templated nematic liquid crystalsMacromol. Rapid Commun.202142210008710.1002/marc.202100087
– reference: LiJT1,2-dithienyldicyanoethene-based, visible-light-driven, chiral fluorescent molecular switch: Rewritable multimodal photonic devicesAngew. Chem. Int. Ed.201958160521605610.1002/anie.201908832
– reference: ChenLJPhotoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switchAdv. Optical Mater.2014284584810.1002/adom.201400166
– reference: ChenJExperimental demonstration of cylindrical vector spatiotemporal optical vortexNanophotonics2021104489449510.1515/nanoph-2021-0427
– reference: WangJQA fully self-powered, ultra-stable cholesteric smart window triggered by instantaneous mechanical stimuliNano Energy20218510597610.1016/j.nanoen.2021.105976
– reference: KoseOUnwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable opticsNat. Commun.2019102019NatCo..10..510K10.1038/s41467-019-08351-6
– reference: WareTHVoxelated liquid crystal elastomersScience20153479829842015Sci...347..982W10.1126/science.1261019
– reference: TeyssierJPhotonic crystals cause active colour change in chameleonsNat. Commun.201562015NatCo...6.6368T10.1038/ncomms7368
– reference: WangLBroadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodesLight Sci. Appl.20154e2532015ltnc.book.....W10.1038/lsa.2015.26
– reference: LiangXA roll-to-roll process for multi-responsive soft-matter composite films containing CsxWO3 nanorods for energy-efficient smart window applicationsNanoscale Horiz.201723193252017NanoH...2..319L10.1039/C7NH00105C
– reference: De Gennes, P. G. & Prost, J. The physics of liquid crystals. 2nd edn. (Oxford: Oxford University Press, 1995).
– reference: BoyarskyAFröhlichJRuchayskiyOSelf-consistent evolution of magnetic fields and chiral asymmetry in the early universePhys. Rev. Lett.20121080313012012PhRvL.108c1301B10.1103/PhysRevLett.108.031301
– reference: EelkemaRMolecular machines: Nanomotor rotates microscale objectsNature20064401632006Natur.440..163E10.1038/440163a
– reference: BoottCECellulose nanocrystal elastomers with reversible visible colorAngew. Chem. Int. Ed.20205922623110.1002/anie.201911468
– reference: HeQElectrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuationSci. Adv.20195eaax57462019SciA....5.5746H10.1126/sciadv.aax5746
– reference: YuYDChameleon-inspired stress-responsive multicolored ultratough filmsACS Appl. Mater. Interfaces202012367313673910.1021/acsami.0c09212
– reference: WerbowyjRSGrayDGOptical properties of hydroxypropyl cellulose liquid crystals. I. Cholesteric pitch and polymer concentrationMacromolecules198417151215201984MaMol..17.1512W10.1021/ma00138a016
– reference: YooHWPlasmonic three-dimensional dimpled array from highly ordered self-assembled liquid crystal defectsJ. Mater. Chem. C.201311434143910.1039/c2tc00089j
– reference: FengWLiuDQBroerDJFunctional liquid crystal polymer surfaces with switchable topographiesSmall Struct.20202200010710.1002/sstr.202000107
– reference: AckermanPJLaser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularitiesSci. Rep.2012210.1038/srep00414
– reference: WangYRoom temperature heliconical twist-bend nematic liquid crystalCrystEngComm2015172778278210.1039/C4CE02502D
– reference: DuanWPatterned optical anisotropic film for generation of non-diffracting vortex beamsAppl. Phys. Lett.20221200311012022ApPhL.120c1101D10.1063/5.0079634
– reference: GladmanASBiomimetic 4D printingNat. Mater.2016154134182016NatMa..15..413S10.1038/nmat4544
– reference: ChenPArbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratingsPhotonics Res.2015313313910.1364/PRJ.3.000133
– reference: KizhakidathazhathRFacile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic responseAdv. Funct. Mater.202030190953710.1002/adfm.201909537
– reference: GuoWBahrCInfluence of anchoring strength on focal conic domains in smectic filmsPhys. Rev. E2009790117072009PhRvE..79a1707G10.1103/PhysRevE.79.011707
– reference: SchlafmannKRWhiteTJRetention and deformation of the blue phases in liquid crystalline elastomersNat. Commun.2021122021NatCo..12.4916S10.1038/s41467-021-25112-6
– reference: QinLPiecewise phototuning of self-organized helical superstructuresAdv. Mater.201830170494110.1002/adma.201704941
– reference: ZhangHProgrammable responsive hydrogels inspired by classical conditioning algorithmNat. Commun.2019102019NatCo..10.3267Z10.1038/s41467-019-11260-3
– reference: ShimizuTDingWKametaNSoft-matter nanotubes: A platform for diverse functions and applicationsChem. Rev.20201202347240710.1021/acs.chemrev.9b00509
– reference: IsapourGLattuadaMBioinspired stimuli-responsive color-changing systemsAdv. Mater.201830170706910.1002/adma.201707069
– reference: ShenYDierkingIDynamic dissipative solitons in nematics with positive anisotropiesSoft Matter202016532553332020SMat...16.5325S10.1039/D0SM00676A
– reference: Goodby, J. W. et al. Handbook of liquid crystals. 2nd edn. (Weinheim: John Wiley & Sons, 2014).
– reference: WuSBSmectic defect engineering enabled by programmable photoalignmentAdv. Optical Mater.20208200059310.1002/adom.202000593
– reference: YinKHeZQWuSTReflective polarization volume lens with small f-number and large diffraction angleAdv. Optical Mater.20208200017010.1002/adom.202000170
– reference: YiHUltra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivativeAdv. Funct. Mater.201929190272010.1002/adfm.201902720
– reference: LindahlTInstability and decay of the primary structure of DNANature19933627097151993Natur.362..709L10.1038/362709a0
– reference: NanFCEnhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatmentACS Sustain. Chem. Eng.201758951895810.1021/acssuschemeng.7b01749
– reference: MilioneGUsing the nonseparability of vector beams to encode information for optical communicationOpt. Lett.201540488748902015OptL...40.4887M10.1364/OL.40.004887
– reference: KobashiJYoshidaHOzakiMPolychromatic optical vortex generation from patterned cholesteric liquid crystalsPhys. Rev. Lett.20161162539032016PhRvL.116y3903K10.1103/PhysRevLett.116.253903
– reference: ZouJYLiLSWuSTGaze-matched pupil steering Maxwellian-view augmented reality display with large angle diffractive liquid crystal lensesAdv. Photonics Res.20223210036210.1002/adpr.202100362
– ident: 930_CR242
  doi: 10.1002/9781119850809.ch1
– volume: 29
  start-page: 1702769
  year: 2017
  ident: 930_CR291
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702769
– volume: 8
  start-page: 90
  year: 2019
  ident: 930_CR231
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-019-0194-2
– volume: 29
  start-page: 1701814
  year: 2017
  ident: 930_CR260
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701814
– volume: 531
  start-page: 352
  year: 2016
  ident: 930_CR122
  publication-title: Nature
  doi: 10.1038/nature17141
– volume: 102
  start-page: 081102
  year: 2013
  ident: 930_CR136
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4793750
– volume: 10
  year: 2019
  ident: 930_CR250
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12583-x
– volume: 79
  start-page: 011707
  year: 2009
  ident: 930_CR89
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.011707
– volume: 3
  start-page: 1287
  year: 2015
  ident: 930_CR97
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201500153
– volume: 115
  start-page: 921
  year: 2018
  ident: 930_CR63
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1716887115
– volume: 26
  start-page: 1590
  year: 2014
  ident: 930_CR67
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305198
– volume: 33
  start-page: 2103674
  year: 2021
  ident: 930_CR49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103674
– volume: 4
  start-page: 1
  year: 2017
  ident: 930_CR282
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00518
– volume: 135
  start-page: 285
  year: 2016
  ident: 930_CR167
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.08.029
– volume: 8
  start-page: 1459
  year: 2020
  ident: 930_CR180
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC06105C
– volume: 32
  start-page: 2107242
  year: 2022
  ident: 930_CR173
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107242
– volume: 18
  start-page: 2200113
  year: 2022
  ident: 930_CR299
  publication-title: Small
  doi: 10.1002/smll.202200113
– volume: 436
  start-page: 997
  year: 2005
  ident: 930_CR139
  publication-title: Nature
  doi: 10.1038/nature03932
– volume: 31
  start-page: 1905151
  year: 2019
  ident: 930_CR159
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905151
– volume: 554
  start-page: 81
  year: 2018
  ident: 930_CR258
  publication-title: Nature
  doi: 10.1038/nature25443
– ident: 930_CR6
  doi: 10.1002/9781118751992
– volume: 6
  start-page: 866
  year: 2007
  ident: 930_CR93
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2029
– volume: 19
  start-page: 112601
  year: 2021
  ident: 930_CR232
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL202119.112601
– volume: 2
  year: 2012
  ident: 930_CR243
  publication-title: Sci. Rep.
  doi: 10.1038/srep00414
– volume: 102
  start-page: 171110
  year: 2013
  ident: 930_CR149
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4803922
– volume: 6
  start-page: 5391
  year: 2018
  ident: 930_CR184
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C8TC01321G
– volume: 6
  year: 2014
  ident: 930_CR160
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2013.69
– volume: 64
  start-page: 659
  year: 2019
  ident: 930_CR205
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.04.030
– volume: 116
  start-page: 15089
  year: 2016
  ident: 930_CR39
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00415
– volume: 30
  start-page: 1906780
  year: 2020
  ident: 930_CR283
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906780
– volume: 110
  start-page: 34
  year: 2013
  ident: 930_CR84
  publication-title: Proc. Natl Acad. Sci. U. State. Am.
  doi: 10.1073/pnas.1214708109
– volume: 32
  start-page: 1905876
  year: 2020
  ident: 930_CR163
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905876
– volume: 9
  start-page: 295
  year: 2017
  ident: 930_CR265
  publication-title: Polymers
  doi: 10.3390/polym9070295
– volume: 100
  start-page: 111116
  year: 2012
  ident: 930_CR71
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3694921
– volume: 1
  start-page: 988
  year: 2019
  ident: 930_CR171
  publication-title: Matter
  doi: 10.1016/j.matt.2019.05.005
– volume: 9
  start-page: 195
  year: 2015
  ident: 930_CR210
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201400402
– volume: 21
  start-page: 41
  year: 2022
  ident: 930_CR199
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01075-3
– volume: 1
  start-page: 3
  year: 2021
  ident: 930_CR47
  publication-title: eLight
  doi: 10.1186/s43593-021-00003-x
– volume: 3
  start-page: 4598
  year: 2015
  ident: 930_CR81
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C5TC00687B
– volume: 30
  start-page: 2004610
  year: 2020
  ident: 930_CR150
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004610
– volume: 9
  year: 2018
  ident: 930_CR78
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05101-y
– volume: 11
  start-page: 40443
  year: 2019
  ident: 930_CR187
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12106
– volume: 104
  start-page: 044702
  year: 2021
  ident: 930_CR198
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.044702
– volume: 481
  start-page: 348
  year: 2012
  ident: 930_CR13
  publication-title: Nature
  doi: 10.1038/nature10769
– volume: 3
  start-page: e213
  year: 2014
  ident: 930_CR227
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2014.94
– volume: 32
  start-page: 1907376
  year: 2020
  ident: 930_CR172
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907376
– ident: 930_CR2
  doi: 10.1007/b97416
– volume: 3
  start-page: e1701336
  year: 2017
  ident: 930_CR117
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701336
– volume: 121
  start-page: 213901
  year: 2018
  ident: 930_CR245
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.213901
– volume: 47
  start-page: 3184
  year: 2014
  ident: 930_CR36
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500249k
– volume: 90
  start-page: 062504
  year: 2014
  ident: 930_CR59
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.062504
– volume: 36
  start-page: C1-315
  year: 1975
  ident: 930_CR83
  publication-title: Le. J. de. Phys. Colloq.
– volume: 10
  year: 2019
  ident: 930_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11260-3
– volume: 27
  start-page: 8800
  year: 2019
  ident: 930_CR211
  publication-title: Opt. Express
  doi: 10.1364/OE.27.008800
– volume: 28
  start-page: 1044
  year: 2016
  ident: 930_CR112
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502590
– volume: 10
  year: 2019
  ident: 930_CR183
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08351-6
– volume: 31
  start-page: 1808028
  year: 2019
  ident: 930_CR212
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808028
– volume: 20
  start-page: 16684
  year: 2012
  ident: 930_CR69
  publication-title: Opt. Express
  doi: 10.1364/OE.20.016684
– volume: 6
  start-page: 534
  year: 2021
  ident: 930_CR43
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/D1ME00044F
– volume: 55
  start-page: 839
  year: 1971
  ident: 930_CR126
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1676151
– volume: 59
  start-page: 2068
  year: 1973
  ident: 930_CR41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1680293
– volume: 13
  start-page: 064022
  year: 2011
  ident: 930_CR235
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/13/6/064022
– volume: 29
  start-page: 1902720
  year: 2019
  ident: 930_CR204
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902720
– volume: 1
  start-page: 1434
  year: 2013
  ident: 930_CR92
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/c2tc00089j
– volume: 12
  year: 2021
  ident: 930_CR147
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25112-6
– volume: 14
  start-page: 7055
  year: 2020
  ident: 930_CR274
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c01779
– volume: 9
  start-page: 1900720
  year: 2019
  ident: 930_CR280
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900720
– volume: 365
  start-page: eaax1839
  year: 2019
  ident: 930_CR222
  publication-title: Science
  doi: 10.1126/science.aax1839
– volume: 26
  start-page: 2323
  year: 2014
  ident: 930_CR269
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304966
– volume: 10
  start-page: 884
  year: 2018
  ident: 930_CR61
  publication-title: Polymers
  doi: 10.3390/polym10080884
– volume: 7
  start-page: 1900393
  year: 2019
  ident: 930_CR52
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201900393
– volume: 49
  start-page: 983
  year: 2020
  ident: 930_CR55
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS01007B
– volume: 11
  year: 2020
  ident: 930_CR77
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16864-8
– volume: 30
  start-page: 1705865
  year: 2018
  ident: 930_CR241
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705865
– volume: 11
  start-page: 118
  year: 2022
  ident: 930_CR29
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-022-00806-8
– volume: 9
  start-page: 115
  year: 1983
  ident: 930_CR158
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/0079-6700(83)90001-1
– volume: 2
  start-page: 845
  year: 2014
  ident: 930_CR124
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201400166
– volume: 43
  start-page: 101420
  year: 2022
  ident: 930_CR5
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101420
– volume: 10
  start-page: 122
  year: 2021
  ident: 930_CR56
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-021-00567-w
– volume: 30
  start-page: 1800237
  year: 2018
  ident: 930_CR146
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800237
– volume: 5
  start-page: 31485
  year: 2020
  ident: 930_CR64
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c05087
– volume: 17
  start-page: 1512
  year: 1984
  ident: 930_CR169
  publication-title: Macromolecules
  doi: 10.1021/ma00138a016
– volume: 374
  start-page: 1501
  year: 2021
  ident: 930_CR276
  publication-title: Science
  doi: 10.1126/science.abg0291
– volume: 25
  start-page: 3002
  year: 2013
  ident: 930_CR152
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204591
– volume: 6
  year: 2015
  ident: 930_CR165
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8564
– volume: 7
  start-page: 8809
  year: 2015
  ident: 930_CR189
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01380
– volume: 440
  start-page: 163
  year: 2006
  ident: 930_CR264
  publication-title: Nature
  doi: 10.1038/440163a
– volume: 8
  year: 2017
  ident: 930_CR102
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15453
– volume: 2
  start-page: 013178
  year: 2020
  ident: 930_CR75
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.013178
– volume: 4
  start-page: 377
  year: 1994
  ident: 930_CR86
  publication-title: J. de. Phys. II
– volume: 6
  start-page: 1504
  year: 2019
  ident: 930_CR273
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00320G
– volume: 3
  start-page: 1691
  year: 2015
  ident: 930_CR121
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201500403
– volume: 26
  start-page: 32640
  year: 2018
  ident: 930_CR57
  publication-title: Opt. Express
  doi: 10.1364/OE.26.032640
– volume: 108
  start-page: 031301
  year: 2012
  ident: 930_CR109
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.031301
– volume: 2
  start-page: 2000107
  year: 2020
  ident: 930_CR259
  publication-title: Small Struct.
  doi: 10.1002/sstr.202000107
– volume: 28
  start-page: 2353
  year: 2016
  ident: 930_CR72
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506002
– volume: 28
  start-page: 5875
  year: 2020
  ident: 930_CR215
  publication-title: Opt. Express
  doi: 10.1364/OE.387942
– ident: 930_CR135
  doi: 10.1007/430_2007_075
– volume: 13
  start-page: 817
  year: 2014
  ident: 930_CR134
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3993
– volume: 122
  start-page: 4887
  year: 2022
  ident: 930_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00761
– volume: 116
  start-page: 253903
  year: 2016
  ident: 930_CR240
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.253903
– volume: 31
  start-page: 1901036
  year: 2019
  ident: 930_CR295
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901036
– volume: 27
  start-page: 1702261
  year: 2017
  ident: 930_CR148
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702261
– volume: 5
  year: 2014
  ident: 930_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6533
– volume: 42
  start-page: 121
  year: 2011
  ident: 930_CR298
  publication-title: SID Symp . Dig. Tech. Pap.
  doi: 10.1889/1.3621051
– volume: 30
  start-page: 9389
  year: 2022
  ident: 930_CR224
  publication-title: Opt. Express
  doi: 10.1364/OE.450941
– volume: 2
  start-page: 275
  year: 2014
  ident: 930_CR225
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201300384
– volume: 22
  start-page: 2416
  year: 2010
  ident: 930_CR96
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903728
– volume: 40
  start-page: 2723
  year: 2015
  ident: 930_CR213
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002723
– volume: 4
  start-page: 5068
  year: 2021
  ident: 930_CR214
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00542
– volume: 111
  start-page: 107802
  year: 2013
  ident: 930_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.107802
– volume: 20
  start-page: 230
  year: 2017
  ident: 930_CR285
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.04.028
– volume: 5
  start-page: 2468
  year: 2018
  ident: 930_CR287
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00289
– volume: 21
  start-page: 1801
  year: 2009
  ident: 930_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801258
– volume: 88
  start-page: 022502
  year: 2013
  ident: 930_CR255
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.022502
– volume: 33
  start-page: 2004754
  year: 2021
  ident: 930_CR278
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004754
– volume: 7
  start-page: 1801395
  year: 2019
  ident: 930_CR178
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201801395
– volume: 7
  start-page: 581
  year: 2021
  ident: 930_CR256
  publication-title: Engineering
  doi: 10.1016/j.eng.2021.02.014
– volume: 117
  start-page: 14021
  year: 2020
  ident: 930_CR289
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2002290117
– volume: 14
  start-page: 1802060
  year: 2018
  ident: 930_CR192
  publication-title: Small
  doi: 10.1002/smll.201802060
– volume: 546
  start-page: 632
  year: 2017
  ident: 930_CR253
  publication-title: Nature
  doi: 10.1038/nature22987
– volume: 29
  start-page: 1321
  year: 2002
  ident: 930_CR68
  publication-title: Liq. Cryst.
  doi: 10.1080/713935610
– volume: 10
  start-page: 389
  year: 2016
  ident: 930_CR228
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.66
– volume: 10
  year: 2019
  ident: 930_CR66
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13012-9
– volume: 9
  start-page: 2103090
  year: 2022
  ident: 930_CR261
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202103090
– volume: 112
  start-page: 217801
  year: 2014
  ident: 930_CR127
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.217801
– volume: 1
  start-page: 1478
  year: 2011
  ident: 930_CR141
  publication-title: Optical Mater. Express
  doi: 10.1364/OME.1.001478
– volume: 68
  start-page: 12940
  year: 2020
  ident: 930_CR155
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c04742
– volume: 7
  start-page: 17904
  year: 2015
  ident: 930_CR281
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04496
– volume: 15
  start-page: 655
  year: 2019
  ident: 930_CR62
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0476-x
– volume: 12
  year: 2021
  ident: 930_CR197
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20908-y
– volume: 52
  start-page: 555
  year: 1989
  ident: 930_CR82
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/52/5/002
– volume: 45
  start-page: 6698
  year: 2016
  ident: 930_CR193
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00129G
– volume: 9
  year: 2018
  ident: 930_CR267
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07518-x
– volume: 15
  start-page: 106
  year: 2016
  ident: 930_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4421
– volume: 12
  year: 2021
  ident: 930_CR206
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25797-9
– volume: 7
  start-page: 1901878
  year: 2020
  ident: 930_CR201
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901878
– volume: 369
  start-page: 950
  year: 2020
  ident: 930_CR3
  publication-title: Science
  doi: 10.1126/science.abb4536
– volume: 318
  start-page: 1276
  year: 2007
  ident: 930_CR33
  publication-title: Science
  doi: 10.1126/science.1143826
– volume: 30
  start-page: 1909537
  year: 2020
  ident: 930_CR118
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909537
– volume: 2
  start-page: 194
  year: 2020
  ident: 930_CR20
  publication-title: Matter
  doi: 10.1016/j.matt.2019.10.019
– volume: 29
  start-page: 37464
  year: 2021
  ident: 930_CR207
  publication-title: Opt. Express
  doi: 10.1364/OE.441386
– volume: 366
  start-page: 727
  year: 2019
  ident: 930_CR249
  publication-title: Science
  doi: 10.1126/science.aay4182
– volume: 12
  start-page: 343
  year: 2018
  ident: 930_CR170
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0152-1
– volume: 42
  start-page: 2930
  year: 2013
  ident: 930_CR110
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35332F
– volume: 5
  start-page: 8951
  year: 2017
  ident: 930_CR188
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01749
– volume: 5
  start-page: 343
  year: 2011
  ident: 930_CR233
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.81
– volume: 16
  start-page: 8352
  year: 2020
  ident: 930_CR100
  publication-title: Soft Matter
  doi: 10.1039/D0SM01112F
– volume: 31
  start-page: 1903120
  year: 2019
  ident: 930_CR200
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903120
– volume: 634
  start-page: 12
  year: 2016
  ident: 930_CR142
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421406.2016.1177900
– volume: 14
  start-page: 170
  year: 1992
  ident: 930_CR164
  publication-title: Int. J. Biol. Macromolecules
  doi: 10.1016/S0141-8130(05)80008-X
– volume: 13
  start-page: 4574
  year: 2021
  ident: 930_CR220
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21044
– volume: 17
  start-page: 6140
  year: 2021
  ident: 930_CR106
  publication-title: Soft Matter
  doi: 10.1039/D1SM00488C
– volume: 20
  start-page: 6557
  year: 2010
  ident: 930_CR90
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00910e
– volume: 117
  start-page: 103702
  year: 2020
  ident: 930_CR288
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0020982
– volume: 6
  year: 2015
  ident: 930_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7368
– volume: 11
  start-page: 15007
  year: 2019
  ident: 930_CR263
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22023
– volume: 4
  start-page: 9687
  year: 2016
  ident: 930_CR275
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C6TC02629J
– volume: 42
  start-page: 2100087
  year: 2021
  ident: 930_CR107
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202100087
– volume: 15
  start-page: 413
  year: 2016
  ident: 930_CR270
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4544
– volume: 18
  start-page: 2107105
  year: 2022
  ident: 930_CR42
  publication-title: Small
  doi: 10.1002/smll.202107105
– volume: 1
  start-page: 033215
  year: 2019
  ident: 930_CR129
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.1.033215
– volume: 30
  start-page: 1704477
  year: 2018
  ident: 930_CR162
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704477
– volume: 7
  start-page: 1533
  year: 2018
  ident: 930_CR238
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2018-0072
– volume: 113
  start-page: 12925
  year: 2016
  ident: 930_CR116
  publication-title: Proc. Natl Acad. Sci. U. State. Am.
  doi: 10.1073/pnas.1612212113
– volume: 6
  year: 2015
  ident: 930_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9011
– volume: 31
  start-page: 11135
  year: 2015
  ident: 930_CR94
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b02508
– volume: 362
  start-page: 709
  year: 1993
  ident: 930_CR108
  publication-title: Nature
  doi: 10.1038/362709a0
– volume: 1
  start-page: 64
  year: 2002
  ident: 930_CR131
  publication-title: Nat. Mater.
  doi: 10.1038/nmat712
– volume: 117
  start-page: 17643
  year: 2020
  ident: 930_CR103
  publication-title: Proc. Natl Acad. Sci. U. State. Am.
  doi: 10.1073/pnas.2000849117
– volume: 29
  start-page: 1701903
  year: 2017
  ident: 930_CR123
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701903
– volume: 28
  start-page: 10042
  year: 2016
  ident: 930_CR185
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603386
– volume: 543
  start-page: 234
  year: 2017
  ident: 930_CR111
  publication-title: Nature
  doi: 10.1038/nature21051
– volume: 325
  start-page: 456
  year: 2009
  ident: 930_CR9
  publication-title: Science
  doi: 10.1126/science.1170027
– volume: 1
  start-page: 102
  year: 2018
  ident: 930_CR22
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0024-1
– volume: 117
  start-page: 5125
  year: 2020
  ident: 930_CR40
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1917952117
– volume: 12
  year: 2021
  ident: 930_CR290
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21764-6
– volume: 13
  start-page: 41102
  year: 2021
  ident: 930_CR151
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c11711
– volume: 10
  start-page: 201
  year: 2020
  ident: 930_CR54
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2020.23
– volume: 295
  start-page: 2418
  year: 2002
  ident: 930_CR7
  publication-title: Science
  doi: 10.1126/science.1070821
– volume: 101
  start-page: 131904
  year: 2012
  ident: 930_CR137
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4752461
– volume: 537
  start-page: 179
  year: 2016
  ident: 930_CR21
  publication-title: Nature
  doi: 10.1038/nature19344
– volume: 11
  start-page: 54
  year: 2022
  ident: 930_CR28
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-022-00746-3
– volume: 120
  start-page: 031101
  year: 2022
  ident: 930_CR70
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0079634
– volume: 28
  start-page: 27676
  year: 2020
  ident: 930_CR229
  publication-title: Opt. Express
  doi: 10.1364/OE.399581
– volume: 5
  start-page: eaax9501
  year: 2019
  ident: 930_CR130
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax9501
– volume: 10
  start-page: 753
  year: 1972
  ident: 930_CR104
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(72)90186-X
– volume: 570
  start-page: 214
  year: 2019
  ident: 930_CR266
  publication-title: Nature
  doi: 10.1038/s41586-019-1247-7
– volume: 94
  start-page: 042705
  year: 2016
  ident: 930_CR128
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.042705
– volume: 29
  start-page: 1704296
  year: 2017
  ident: 930_CR133
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704296
– volume: 3
  start-page: 166
  year: 2015
  ident: 930_CR296
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201400457
– volume: 13
  start-page: 4176
  year: 2017
  ident: 930_CR32
  publication-title: Soft Matter
  doi: 10.1039/C7SM00384F
– volume: 120
  start-page: 2347
  year: 2020
  ident: 930_CR23
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00509
– volume: 22
  start-page: 100912
  year: 2021
  ident: 930_CR154
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2020.100912
– volume: 2
  start-page: 1500080
  year: 2015
  ident: 930_CR272
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500080
– volume: 9
  start-page: 18231
  year: 2017
  ident: 930_CR177
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04590
– volume: 104
  start-page: 201105
  year: 2014
  ident: 930_CR60
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4879018
– volume: 25
  start-page: 317
  year: 2000
  ident: 930_CR244
  publication-title: Opt. Lett.
  doi: 10.1364/OL.25.000317
– volume: 3
  start-page: 041026
  year: 2013
  ident: 930_CR91
  publication-title: Phys. Rev. X
– volume: 3
  start-page: 15435
  year: 2018
  ident: 930_CR138
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b01749
– volume: 3
  start-page: 1500415
  year: 2016
  ident: 930_CR271
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500415
– volume: 125
  start-page: 077801
  year: 2020
  ident: 930_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.077801
– volume: 8
  start-page: 2000593
  year: 2020
  ident: 930_CR101
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202000593
– volume: 12
  start-page: 55215
  year: 2020
  ident: 930_CR51
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c19527
– volume: 30
  start-page: 1707069
  year: 2018
  ident: 930_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707069
– volume: 23
  start-page: 5519
  year: 2011
  ident: 930_CR85
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103008
– volume: 13
  start-page: 365
  year: 2019
  ident: 930_CR157
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0448-9
– volume: 44
  start-page: 398
  year: 1956
  ident: 930_CR208
  publication-title: Proc. Indian Acad. Sci.-Sect. A
  doi: 10.1007/BF03046095
– volume: 8
  start-page: 4318
  year: 2012
  ident: 930_CR88
  publication-title: Soft Matter
  doi: 10.1039/c2sm07207f
– volume: 13
  start-page: 13709
  year: 2019
  ident: 930_CR98
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07104
– volume: 103
  start-page: 103903
  year: 2009
  ident: 930_CR246
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.103903
– volume: 38
  start-page: 1357
  year: 2005
  ident: 930_CR202
  publication-title: Macromolecules
  doi: 10.1021/ma0487655
– ident: 930_CR25
  doi: 10.1002/3527602054
– volume: 430
  start-page: 132780
  year: 2022
  ident: 930_CR182
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132780
– volume: 58
  start-page: 16052
  year: 2019
  ident: 930_CR115
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908832
– volume: 57
  start-page: 1627
  year: 2018
  ident: 930_CR195
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712781
– volume: 31
  start-page: 2009916
  year: 2021
  ident: 930_CR203
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009916
– volume: 30
  start-page: 1704941
  year: 2018
  ident: 930_CR196
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704941
– volume: 28
  start-page: 1705309
  year: 2018
  ident: 930_CR268
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705309
– volume: 12
  start-page: 36731
  year: 2020
  ident: 930_CR16
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c09212
– volume: 6
  start-page: e17011
  year: 2017
  ident: 930_CR239
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2017.11
– volume: 21
  start-page: 7261
  year: 2021
  ident: 930_CR237
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c02290
– volume: 31
  start-page: 1805312
  year: 2019
  ident: 930_CR293
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805312
– volume: 40
  start-page: 4887
  year: 2015
  ident: 930_CR234
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.004887
– volume: 7
  start-page: 1602209
  year: 2017
  ident: 930_CR277
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602209
– volume: 174
  start-page: 531
  year: 2017
  ident: 930_CR181
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.06.098
– volume: 3
  start-page: L022008
  year: 2021
  ident: 930_CR8
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.L022008
– volume: 22
  start-page: 2383
  year: 2012
  ident: 930_CR140
  publication-title: J. Mater. Chem.
  doi: 10.1039/C2JM15461G
– volume: 8
  year: 2017
  ident: 930_CR144
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00822-y
– volume: 2
  start-page: 036002
  year: 2020
  ident: 930_CR217
  publication-title: Adv. Photonics
  doi: 10.1117/1.AP.2.3.036002
– volume: 9
  start-page: 2001861
  year: 2021
  ident: 930_CR252
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202001861
– volume: 30
  start-page: 1706512
  year: 2018
  ident: 930_CR297
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706512
– volume: 2
  start-page: 319
  year: 2017
  ident: 930_CR286
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C7NH00105C
– volume: 8
  start-page: 1901958
  year: 2020
  ident: 930_CR44
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201901958
– volume: 43
  start-page: 7083
  year: 2004
  ident: 930_CR114
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.43.7083
– ident: 930_CR46
– volume: 9
  year: 2018
  ident: 930_CR190
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07048-6
– volume: 4
  start-page: e253
  year: 2015
  ident: 930_CR230
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2015.26
– volume: 43
  start-page: 7217
  year: 2014
  ident: 930_CR161
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00053F
– volume: 7
  year: 2016
  ident: 930_CR105
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10236
– volume: 29
  start-page: 1701323
  year: 2017
  ident: 930_CR175
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701323
– volume: 21
  start-page: 610
  year: 2011
  ident: 930_CR80
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201001303
– volume: 30
  start-page: 1703655
  year: 2018
  ident: 930_CR153
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703655
– volume: 32
  start-page: 1801335
  year: 2020
  ident: 930_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801335
– volume: 3
  start-page: 14
  year: 2020
  ident: 930_CR76
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-020-0288-4
– volume: 118
  start-page: e2110839118
  year: 2021
  ident: 930_CR247
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2110839118
– volume: 8
  start-page: 1901360
  year: 2020
  ident: 930_CR216
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201901360
– volume: 11
  year: 2020
  ident: 930_CR221
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16125-8
– volume: 3
  start-page: 2100362
  year: 2022
  ident: 930_CR218
  publication-title: Adv. Photonics Res.
  doi: 10.1002/adpr.202100362
– volume: 469
  start-page: 381
  year: 2011
  ident: 930_CR11
  publication-title: Nature
  doi: 10.1038/nature09713
– volume: 9
  year: 2018
  ident: 930_CR262
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02895-9
– volume: 117
  start-page: 12705
  year: 2017
  ident: 930_CR53
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00153
– volume: 17
  start-page: 2778
  year: 2015
  ident: 930_CR35
  publication-title: CrystEngComm
  doi: 10.1039/C4CE02502D
– volume: 347
  start-page: 982
  year: 2015
  ident: 930_CR254
  publication-title: Science
  doi: 10.1126/science.1261019
– volume: 258
  start-page: 275
  year: 1992
  ident: 930_CR31
  publication-title: Science
  doi: 10.1126/science.258.5080.275
– volume: 4
  start-page: eaau8064
  year: 2018
  ident: 930_CR65
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau8064
– volume: 116
  start-page: 21361
  year: 2019
  ident: 930_CR292
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1911563116
– volume: 36
  start-page: 1085
  year: 2009
  ident: 930_CR87
  publication-title: Liq. Cryst.
  doi: 10.1080/02678290902814718
– volume: 13
  start-page: 8999
  year: 2017
  ident: 930_CR145
  publication-title: Soft Matter
  doi: 10.1039/C7SM01755C
– volume: 24
  start-page: 146
  year: 1998
  ident: 930_CR168
  publication-title: J. Pulp Pap. Sci.
– volume: 108
  start-page: 20891
  year: 2011
  ident: 930_CR73
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1112849108
– volume: 557
  start-page: 409
  year: 2018
  ident: 930_CR27
  publication-title: Nature
  doi: 10.1038/s41586-018-0109-z
– volume: 10
  year: 2019
  ident: 930_CR79
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11768-8
– volume: 31
  start-page: 5717
  year: 1998
  ident: 930_CR166
  publication-title: Macromolecules
  doi: 10.1021/ma9711452
– volume: 10
  start-page: 4489
  year: 2021
  ident: 930_CR248
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0427
– volume: 4
  start-page: 219
  year: 1951
  ident: 930_CR113
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X51000751
– volume: 16
  start-page: 426
  year: 2017
  ident: 930_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4826
– volume: 41
  start-page: 3209
  year: 2008
  ident: 930_CR191
  publication-title: Macromolecules
  doi: 10.1021/ma7027775
– volume: 18
  start-page: 080004
  year: 2020
  ident: 930_CR294
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL202018.080004
– volume: 2
  start-page: 100018
  year: 2020
  ident: 930_CR17
  publication-title: Giant
  doi: 10.1016/j.giant.2020.100018
– volume: 12
  start-page: 17833
  year: 2020
  ident: 930_CR174
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00591
– volume: 29
  start-page: 1703165
  year: 2017
  ident: 930_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703165
– volume: 6
  start-page: 945
  year: 2019
  ident: 930_CR194
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00101H
– volume: 7
  start-page: eabh3505
  year: 2021
  ident: 930_CR30
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh3505
– volume: 30
  start-page: 3308
  year: 2005
  ident: 930_CR236
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.003308
– volume: 16
  start-page: 5325
  year: 2020
  ident: 930_CR74
  publication-title: Soft Matter
  doi: 10.1039/D0SM00676A
– volume: 30
  start-page: 1704970
  year: 2018
  ident: 930_CR257
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704970
– volume: 85
  start-page: 105976
  year: 2021
  ident: 930_CR279
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105976
– volume: 13
  start-page: 44916
  year: 2021
  ident: 930_CR125
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c12575
– volume: 43
  start-page: 4903
  year: 2018
  ident: 930_CR223
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.004903
– volume: 25
  start-page: 3314
  year: 2015
  ident: 930_CR119
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500745
– volume: 29
  start-page: 1606671
  year: 2017
  ident: 930_CR95
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606671
– volume: 33
  start-page: 2001228
  year: 2021
  ident: 930_CR156
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001228
– volume: 228
  start-page: 115387
  year: 2020
  ident: 930_CR179
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.115387
– volume: 103
  start-page: 051112
  year: 2013
  ident: 930_CR143
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4817724
– volume: 8
  start-page: 2000170
  year: 2020
  ident: 930_CR219
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202000170
– volume: 392
  start-page: 45
  year: 1984
  ident: 930_CR209
  publication-title: Proc. R. Soc. Lond. A. Math. Phys. Sci.
  doi: 10.1098/rspa.1984.0023
– ident: 930_CR1
– volume: 59
  start-page: 226
  year: 2020
  ident: 930_CR186
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911468
– volume: 10
  start-page: 786
  year: 2022
  ident: 930_CR120
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.449284
– volume: 5
  start-page: eaax5746
  year: 2019
  ident: 930_CR37
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax5746
– volume: 3
  start-page: 133
  year: 2015
  ident: 930_CR226
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.3.000133
– ident: 930_CR45
– volume: 22
  start-page: 4699
  year: 2014
  ident: 930_CR99
  publication-title: Opt. Express
  doi: 10.1364/OE.22.004699
– volume: 240
  start-page: 116281
  year: 2020
  ident: 930_CR176
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116281
– volume: 1
  start-page: 2100007
  year: 2021
  ident: 930_CR132
  publication-title: Small Sci.
  doi: 10.1002/smsc.202100007
– volume: 55
  start-page: 13090
  year: 2016
  ident: 930_CR284
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606895
– volume: 60
  start-page: 11247
  year: 2021
  ident: 930_CR251
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101881
– volume: 27
  start-page: 3014
  year: 2015
  ident: 930_CR38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500340
SSID ssj0000941087
ssib052855617
ssib038074990
ssib054953849
Score 2.613775
SecondaryResourceType review_article
Snippet Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable...
This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 270
SubjectTerms 639/624/1075/146
639/624/399/919
Crystals
Lasers
Matter & antimatter
Microwaves
Optical and Electronic Materials
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Review
Review Article
Reviews
RF and Optical Engineering
Spatial distribution
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t1AQUbiBlaT2LHjEwLUqkKCC1Tam-V4bLpSmmw3uwf-PWMnm7I8eo3tyBl7xt94Jt8Q8iYHh74OcKZtYZlw0rJGa8ekLgsOZfAqUQp9-SrPzsXnRbWYLtyGKa1yZxOToYbexTvy4xK9qVrh-c_fr65YrBoVo6tTCY3b5E6kLospXWqh5jsWdF2KvFbTvzI5r48HERn2WExhj758zqq98yjR9v8La_6dMvlH3DQdR6cPyP0JR9IP48I_JLd894jcTfmcbnhMTr75NjAExv6yaT3Qdnm1XQJ165-IBlv6e_hgoIhb6YDmmF4msk26uug3kTF3eELOT0--fzpjU8UE5hB5bRhi_1z7WKWvkdrWXkCQ1lYFD5E5XgfuG7BNLl0QIHgApb2sAHIHriq8Bv6UHHR95w8JdVr5Gnhk8pRCQ24dRMpQn1sEujbIjBQ7uRk30YnHqhatSWFtXptR1gZlbZKsTZWRt_OY1UimcWPvj3E55p6RCDs96Nc_zKRXBoRoZIFuAjqOQomgAQ0SYlChoNG1LzNytFtMM2nnYK73UkZez82oVzFYYjvfb1MfwesaPz4jz8a1n2fCEXOikPHlam9X7E11v6VbXiTubpzkOPLdbv9cT-v_onh-81e8IPfKtKU1K_gROdist_4lYqVN8yopxC_0TxB_
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXRHkGWhQkbmDhxI5jH2HVqkKCC1TqzXI8Nl0pzZbN7oF_z9h5wNJSiWs8jibjsf1NZvyZkDcMHMY6wKm2haXCSUsbrR2Vuiw4lMHXiVLo8xd5eiY-nVfne6SczsKkov1EaZmW6ak67H0vIjUejbXnMQhntLpD7kbq9ujVC7mY_6tguFIwVY_nYxhXN3Td2YMSVf9N-PJ6meRfudK0BZ08JA9G7Jh_GLQ9IHu-e0TupRpO1z8mx199GyiCYX_ZtB7ydvlju4TcrX8iAmzzP1MGfY5YNe9xCc4vE8FmfnWx2kSW3P4JOTs5_rY4peMtCdQh2tpQxPtM-3gzXyO1VV5AkNZWBQ-RLV4H7huwDZMuCBA8QK29rACYA1cVXgN_Sva7Veefk9zp2ivgkb1TCg3MOog0oZ5ZBLc2yIwUk92MGynE400WrUmpbK7MYGuDtjbJ1qbKyNu5z9VAoHGr9Mc4HLNkJL9OD1br72Z0BgNCNLLA0ACDRVGLoAEXIcSdooZGK19m5HAaTDPOyN6UGI2rGvEjz8jruRnnUkyQ2M6vtklGcKXw4zPybBj7WROOOBONjC-vd7xiR9Xdlm55kfi6Ucmh57vJf36r9W9TvPg_8ZfkfplcXNOCH5L9zXrrjxAvbZpXaYL8Ajc9Dj0
  priority: 102
  providerName: Springer Nature
Title Self-assembled liquid crystal architectures for soft matter photonics
URI https://link.springer.com/article/10.1038/s41377-022-00930-5
https://www.ncbi.nlm.nih.gov/pubmed/36100592
https://www.proquest.com/docview/2713872323
https://www.proquest.com/docview/2714388564
https://pubmed.ncbi.nlm.nih.gov/PMC9470592
https://doaj.org/article/d44b61882289474f9d88005747db98e2
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY92ntzZ4sLdN1I5kyXpMQ0oJrIx1hbwJWSfRFNfp6uRh__1OspMl--he-mTQhzmfTtLvuPPvCPmQgUVfBxhVJjeUW2FopZSlQg1zBkPvZKQU-nwmTi_4dFbMtkp9hZywjh64U9wRcF6JHHEgegZccq8ALQ5BBpdQqdLF0xfvvC1n6qrLl8uzUvZ_yWSsPGp54NajIXk9ePEZLXZuokjY_zeU-Wey5G8R03gRnTwjT3sEmY46yffJA9c8J49jJqdtX5DJuas9RUjsrqvaQVrPv6_mkNrbH4gD63Q7cNCmiFjTFg_i9DrSbKY3l4tl4MptX5KLk8m38SntayVQi5hrSRH1Z8qF-nyVUKZ0HLwwpsiZD5zxyjNXgakyYT0HzjxI5UQBkFmwRe4UsFdkr1k07g1JrZKuBBY4PAVXkBkLgSzUZQYhrvEiIflab9r2ROKhnkWtY0CblbrTtUZd66hrXSTk42bOTUejcefo47Acm5GBAjs2oGHo3jD0_wwjIQfrxdT9vmz1EH3yUiKKZAl5v-nGHRXCJKZxi1Ucw1lZ4scn5HW39htJGKJNVDK-XO5YxY6ouz3N_DKydqOQ3cxPa_v5Jda_VfH2PlTxjjwZRsNXNGcHZG95u3KHiKWW1YA8lDM5II9Go-n5FJ_Hk7MvX7F1LMaDuKV-ApFkHGQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8WCgQJTmA1iZ2HD6iisNWWtisErdSbcWyHrpQm282uUP8Uv7Fj51GWR2-9xg8547H9jWf8DcBrXyu0dTQlXAaSMBVLknGuSMzDgOowN4mjFDqYxOMj9vk4Ol6DX91bGBtW2e2JbqPWlbJ35JshWlNpguc_3ZqdEZs1ynpXuxQajVrsmfOfaLLV73c_4fy-CcOd0eHHMWmzChCF6GRBEB_73NhMdlnMZWqYzmMpo4Dmll2d59RkWmZ-rHKmGc11wk0cae0rraLAcE2x3xuwziiaMgNY3x5Nvnztb3XQWAr8NGlf5_g03ayZ5fQjNmje3h74JFo5AV2igH-h27-DNP_w1LoDcOcu3GmRq_ehUbV7sGbK-3DTRZCq-gGMvpkiJwjFzWlWGO0V07PlVHtqfo74s_B-d1jUHiJlr8YDwDt19J7e7KRaWI7e-iEcXYs0H8GgrErzBDzFE5NqarlDY8a1L5W2JKXGlwitZR4PIejkJlRLYG7zaBTCOdJpKhpZC5S1cLIW0RDe9m1mDX3HlbW37XT0NS31tvtQzX-IdiULzVgWB2iYoKnKEpZzjVsgol6W6IynJhzCRjeZot0PanGpvUN41RfjSrbuGVmaaunqMJqm-PNDeNzMfT8SiigXhYydJytasTLU1ZJyeuLYwnGQTct3nf5cDuv_onh69V-8hFvjw4N9sb872XsGt0On3pwEdAMGi_nSPEektshetMvDg-_XvSIvADEkUCA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNYmsRPHB4SAdtVSqJCg0t5cxw-6UppsN7tC_Wv8OsZOsmV59NZrYkfOeMb-xjP-BqEXsdHg6xhKhEoUYTpXpBRCk1ykCTWpszxQCn0-yHcP2cdJNtlAP4e7MD6tclgTw0JtGu3PyEcpeFMFh_2fjlyfFvFle_x2dkp8BSkfaR3KaXQqsm_PfoD71r7Z24a5fpmm451vH3ZJX2GAaEAqCwJYORbWV7Urc6EKy4zLlcoS6jzTunDUlkaVca4dM4w6w4XNM2NibXSWWGEofPcKusopdAFb4hO-Ot8BtymJC97f04lpMWqZZ_cjPn3enyPEJFvbC0PJgH_h3L_TNf-I2YatcHwL3ewxLH7XKd1ttGHrO-hayCXV7V2089VWjgAotydlZQ2upqfLqcF6fgZItMK_hy5aDJgZt7AV4JNA9Ilnx83Cs_W299DhpcjyPtqsm9o-RFgLbgtDPYtozoSJlTaertTGCkC2cnmEkkFuUvdU5r6iRiVDSJ0WspO1BFnLIGuZRejVqs-sI_K4sPV7Px2rlp6EOzxo5t9lb9PSMFbmCbgo4LQyzpwwsBgC_mXclKKwaYS2hsmU_crQynM9jtDz1WuwaR-oUbVtlqENo0UBPx-hB93cr0ZCAe-CkOHjfE0r1oa6_qaeHgfecBhk1_P1oD_nw_q_KB5d_BfP0HWwQ_lp72D_MbqRBu0WJKFbaHMxX9onANkW5dNgGxgdXbYx_gIix1Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+liquid+crystal+architectures+for+soft+matter+photonics&rft.jtitle=Light%2C+science+%26+applications&rft.au=Ma%2C+Ling-Ling&rft.au=Li%2C+Chao-Yi&rft.au=Pan%2C+Jin-Tao&rft.au=Ji%2C+Yue-E&rft.date=2022-09-13&rft.eissn=2047-7538&rft.volume=11&rft.issue=1&rft.spage=270&rft_id=info:doi/10.1038%2Fs41377-022-00930-5&rft_id=info%3Apmid%2F36100592&rft.externalDocID=36100592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon