Self-assembled liquid crystal architectures for soft matter photonics
Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate th...
Saved in:
Published in | Light, science & applications Vol. 11; no. 1; pp. 270 - 24 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.09.2022
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.
This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging applications. |
---|---|
AbstractList | Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field. Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging applications. This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging applications. Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field. This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging applications. Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field. |
ArticleNumber | 270 |
Author | Pan, Jin-Tao Wang, Yu Ma, Ling-Ling Zheng, Ren Ji, Yue-E. Li, Bing-Xiang Li, Chao-Yi Wang, Ze-Yu Jiang, Chang Lu, Yan-Qing |
Author_xml | – sequence: 1 givenname: Ling-Ling surname: Ma fullname: Ma, Ling-Ling organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University – sequence: 2 givenname: Chao-Yi surname: Li fullname: Li, Chao-Yi organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University – sequence: 3 givenname: Jin-Tao surname: Pan fullname: Pan, Jin-Tao organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University – sequence: 4 givenname: Yue-E. surname: Ji fullname: Ji, Yue-E. organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University – sequence: 5 givenname: Chang surname: Jiang fullname: Jiang, Chang organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University – sequence: 6 givenname: Ren surname: Zheng fullname: Zheng, Ren organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University – sequence: 7 givenname: Ze-Yu surname: Wang fullname: Wang, Ze-Yu organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University – sequence: 8 givenname: Yu orcidid: 0000-0003-0249-4414 surname: Wang fullname: Wang, Yu email: yuwang87@nju.edu.cn organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University – sequence: 9 givenname: Bing-Xiang orcidid: 0000-0003-4727-1572 surname: Li fullname: Li, Bing-Xiang email: bxli@njupt.edu.cn organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications – sequence: 10 givenname: Yan-Qing orcidid: 0000-0001-6151-8557 surname: Lu fullname: Lu, Yan-Qing email: yqlu@nju.edu.cn organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36100592$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9vFSEUxSemxtbaL-DCTOLGzSjDnwE2Jqap2qSJC3VNGLi8xwszvAJj0m8vr9Nq20XZQOCcH4fLfd0czXGGpnnbo489IuJTpj3hvEMYdwhJgjr2ojnBiPKOMyKOHqyPm7Ocd6gOSXsk-KvmmAw9Qkzik-biJwTX6ZxhGgPYNvjrxdvWpJtcdGh1MltfwJQlQW5dTG2OrrSTLgVSu9_GEmdv8pvmpdMhw9ndfNr8_nrx6_x7d_Xj2-X5l6vOMIpKxwRDEurFZBykFkCtG7RmPXGICiIdgdHqEQ3GUUuJs1zCwKxFxhrWg7TktLlcuTbqndonP-l0o6L26nYjpo3SqXgTQFlKx6EXAmMhKadOWiHqmznldpQCcGV9Xln7ZZzAGphL0uER9PHJ7LdqE_-oijvUrgI-3AFSvF4gFzX5bCAEPUNcssK8p0QINtAqff9EuotLmmupDioiOCaYVNW7h4n-Rbn_rSoQq8CkmHMCp4wvuvh4COiD6pE69IZae0PV3lC3vaFYteIn1nv6syaymnIVzxtI_2M_4_oLZH3LLg |
CitedBy_id | crossref_primary_10_1103_PhysRevE_110_014701 crossref_primary_10_1016_j_molliq_2023_122667 crossref_primary_10_1016_j_engfracmech_2024_109896 crossref_primary_10_1039_D4CC02698E crossref_primary_10_1038_s41377_023_01375_0 crossref_primary_10_1002_slct_202301486 crossref_primary_10_1088_1674_1056_ad4cd7 crossref_primary_10_1038_s41377_024_01538_7 crossref_primary_10_3788_COL202321_120003 crossref_primary_10_1002_adom_202402581 crossref_primary_10_1186_s43074_023_00102_7 crossref_primary_10_1002_adom_202301364 crossref_primary_10_1021_acs_nanolett_3c00510 crossref_primary_10_1088_1361_6463_ad4a84 crossref_primary_10_1002_smtd_202301105 crossref_primary_10_1002_adma_202403766 crossref_primary_10_1002_adfm_202400090 crossref_primary_10_1039_D3SM01558K crossref_primary_10_1002_adom_202400702 crossref_primary_10_1002_lpor_202400366 crossref_primary_10_1364_OE_523529 crossref_primary_10_1149_2754_2726_ada0c3 crossref_primary_10_21869_2223_1528_2023_13_3_182_198 crossref_primary_10_1016_j_jmat_2024_04_012 crossref_primary_10_1038_s41377_024_01470_w crossref_primary_10_1002_rpm_20240021 crossref_primary_10_1021_acsami_4c04275 crossref_primary_10_1186_s43593_024_00061_x crossref_primary_10_1021_acsnano_2c06623 crossref_primary_10_1038_s41467_024_53040_8 crossref_primary_10_1038_s41467_024_51383_w crossref_primary_10_1002_adfm_202308828 crossref_primary_10_1021_acsphotonics_3c00907 crossref_primary_10_1364_OL_500133 crossref_primary_10_1007_s10854_024_12714_1 crossref_primary_10_1038_s41428_024_00912_x crossref_primary_10_1039_D3SM01634J crossref_primary_10_1364_OE_543168 crossref_primary_10_37188_lam_2023_018 crossref_primary_10_3390_ma17030618 crossref_primary_10_1002_rpm_20240009 crossref_primary_10_4028_p_DWFK5o crossref_primary_10_1002_adfm_202300731 crossref_primary_10_1021_acsnano_5c02465 crossref_primary_10_34133_ultrafastscience_0065 crossref_primary_10_1002_rpm_20230005 crossref_primary_10_1002_adfm_202301142 crossref_primary_10_1007_s13538_022_01239_9 crossref_primary_10_3390_liquids3040028 crossref_primary_10_3788_COL202321_041603 crossref_primary_10_1002_adom_202301421 crossref_primary_10_3390_ma17163980 crossref_primary_10_1002_ange_202302739 crossref_primary_10_1103_PhysRevResearch_5_033210 crossref_primary_10_1016_j_displa_2023_102632 crossref_primary_10_1016_j_susmat_2025_e01244 crossref_primary_10_1364_OL_482397 crossref_primary_10_3390_mi15060808 crossref_primary_10_1002_pol_20230254 crossref_primary_10_1002_advs_202405709 crossref_primary_10_1002_smo_20230025 crossref_primary_10_1002_adma_202302456 crossref_primary_10_1016_j_molliq_2024_125926 crossref_primary_10_1002_adfm_202404614 crossref_primary_10_1002_adom_202401934 crossref_primary_10_1016_j_molliq_2023_122159 crossref_primary_10_1002_lpor_202400621 crossref_primary_10_1002_smll_202304590 crossref_primary_10_1016_j_optcom_2024_131241 crossref_primary_10_1364_OL_537415 crossref_primary_10_1002_adma_202415856 crossref_primary_10_1038_s41598_024_72680_w crossref_primary_10_1002_rpm_20230017 crossref_primary_10_1016_j_molliq_2024_124952 crossref_primary_10_1080_01411594_2025_2481139 crossref_primary_10_3390_ma18071440 crossref_primary_10_1016_j_cej_2024_151131 crossref_primary_10_3390_photonics12030227 crossref_primary_10_1039_D4SM00270A crossref_primary_10_3390_polym15071734 crossref_primary_10_1002_anie_202302739 crossref_primary_10_1002_adma_202401533 crossref_primary_10_1021_acsphotonics_4c01284 crossref_primary_10_1038_s41566_024_01501_3 crossref_primary_10_1016_j_optlastec_2025_112772 crossref_primary_10_1002_adma_202309645 crossref_primary_10_1080_02678292_2023_2227979 crossref_primary_10_1109_JSEN_2024_3419774 crossref_primary_10_1364_OME_533089 crossref_primary_10_1002_adom_202403124 crossref_primary_10_1002_adfm_202315177 crossref_primary_10_1002_asia_202400807 crossref_primary_10_1021_acsaom_4c00386 |
Cites_doi | 10.1002/9781119850809.ch1 10.1002/adma.201702769 10.1038/s41377-019-0194-2 10.1002/adma.201701814 10.1038/nature17141 10.1063/1.4793750 10.1038/s41467-019-12583-x 10.1103/PhysRevE.79.011707 10.1002/adom.201500153 10.1073/pnas.1716887115 10.1002/adma.201305198 10.1002/adma.202103674 10.1021/acsphotonics.6b00518 10.1016/j.carbpol.2015.08.029 10.1039/C9TC06105C 10.1002/adfm.202107242 10.1002/smll.202200113 10.1038/nature03932 10.1002/adma.201905151 10.1038/nature25443 10.1002/9781118751992 10.1038/nmat2029 10.3788/COL202119.112601 10.1038/srep00414 10.1063/1.4803922 10.1039/C8TC01321G 10.1038/am.2013.69 10.1016/j.scib.2019.04.030 10.1021/acs.chemrev.6b00415 10.1002/adfm.201906780 10.1073/pnas.1214708109 10.1002/adma.201905876 10.3390/polym9070295 10.1063/1.3694921 10.1016/j.matt.2019.05.005 10.1002/lpor.201400402 10.1038/s41563-021-01075-3 10.1186/s43593-021-00003-x 10.1039/C5TC00687B 10.1002/adfm.202004610 10.1038/s41467-018-05101-y 10.1021/acsami.9b12106 10.1103/PhysRevE.104.044702 10.1038/nature10769 10.1038/lsa.2014.94 10.1002/adma.201907376 10.1007/b97416 10.1126/sciadv.1701336 10.1103/PhysRevLett.121.213901 10.1021/ar500249k 10.1103/PhysRevE.90.062504 10.1038/s41467-019-11260-3 10.1364/OE.27.008800 10.1002/adma.201502590 10.1038/s41467-019-08351-6 10.1002/adma.201808028 10.1364/OE.20.016684 10.1039/D1ME00044F 10.1063/1.1676151 10.1063/1.1680293 10.1088/2040-8978/13/6/064022 10.1002/adfm.201902720 10.1039/c2tc00089j 10.1038/s41467-021-25112-6 10.1021/acsnano.0c01779 10.1002/aenm.201900720 10.1126/science.aax1839 10.1002/adma.201304966 10.3390/polym10080884 10.1002/adom.201900393 10.1039/C8CS01007B 10.1038/s41467-020-16864-8 10.1002/adma.201705865 10.1038/s41377-022-00806-8 10.1016/0079-6700(83)90001-1 10.1002/adom.201400166 10.1016/j.nantod.2022.101420 10.1038/s41377-021-00567-w 10.1002/adma.201800237 10.1021/acsomega.0c05087 10.1021/ma00138a016 10.1126/science.abg0291 10.1002/adma.201204591 10.1038/ncomms8564 10.1021/acsami.5b01380 10.1038/440163a 10.1038/ncomms15453 10.1103/PhysRevResearch.2.013178 10.1039/C9MH00320G 10.1002/adom.201500403 10.1364/OE.26.032640 10.1103/PhysRevLett.108.031301 10.1002/sstr.202000107 10.1002/adma.201506002 10.1364/OE.387942 10.1007/430_2007_075 10.1038/nmat3993 10.1021/acs.chemrev.1c00761 10.1103/PhysRevLett.116.253903 10.1002/adma.201901036 10.1002/adfm.201702261 10.1038/ncomms6533 10.1889/1.3621051 10.1364/OE.450941 10.1002/adom.201300384 10.1002/adma.200903728 10.1364/OL.40.002723 10.1021/acsanm.1c00542 10.1103/PhysRevLett.111.107802 10.1016/j.mattod.2017.04.028 10.1021/acsphotonics.8b00289 10.1002/adma.200801258 10.1103/PhysRevE.88.022502 10.1002/adma.202004754 10.1002/adom.201801395 10.1016/j.eng.2021.02.014 10.1073/pnas.2002290117 10.1002/smll.201802060 10.1038/nature22987 10.1080/713935610 10.1038/nphoton.2016.66 10.1038/s41467-019-13012-9 10.1002/advs.202103090 10.1103/PhysRevLett.112.217801 10.1364/OME.1.001478 10.1021/acs.jafc.0c04742 10.1021/acsami.5b04496 10.1038/s41567-019-0476-x 10.1038/s41467-021-20908-y 10.1088/0034-4885/52/5/002 10.1039/C6CS00129G 10.1038/s41467-018-07518-x 10.1038/nmat4421 10.1038/s41467-021-25797-9 10.1002/admi.201901878 10.1126/science.abb4536 10.1126/science.1143826 10.1002/adfm.201909537 10.1016/j.matt.2019.10.019 10.1364/OE.441386 10.1126/science.aay4182 10.1038/s41566-018-0152-1 10.1039/C2CS35332F 10.1021/acssuschemeng.7b01749 10.1038/nphoton.2011.81 10.1039/D0SM01112F 10.1002/adma.201903120 10.1080/15421406.2016.1177900 10.1016/S0141-8130(05)80008-X 10.1021/acsami.0c21044 10.1039/D1SM00488C 10.1039/c0jm00910e 10.1063/5.0020982 10.1038/ncomms7368 10.1021/acsami.8b22023 10.1039/C6TC02629J 10.1002/marc.202100087 10.1038/nmat4544 10.1002/smll.202107105 10.1103/PhysRevResearch.1.033215 10.1002/adma.201704477 10.1515/nanoph-2018-0072 10.1073/pnas.1612212113 10.1038/ncomms9011 10.1021/acs.langmuir.5b02508 10.1038/362709a0 10.1038/nmat712 10.1073/pnas.2000849117 10.1002/adma.201701903 10.1002/adma.201603386 10.1038/nature21051 10.1126/science.1170027 10.1038/s41928-018-0024-1 10.1073/pnas.1917952117 10.1038/s41467-021-21764-6 10.1021/acsami.1c11711 10.1557/mrc.2020.23 10.1126/science.1070821 10.1063/1.4752461 10.1038/nature19344 10.1038/s41377-022-00746-3 10.1063/5.0079634 10.1364/OE.399581 10.1126/sciadv.aax9501 10.1016/0038-1098(72)90186-X 10.1038/s41586-019-1247-7 10.1103/PhysRevE.94.042705 10.1002/adma.201704296 10.1002/adom.201400457 10.1039/C7SM00384F 10.1021/acs.chemrev.9b00509 10.1016/j.apmt.2020.100912 10.1002/admi.201500080 10.1021/acsami.7b04590 10.1063/1.4879018 10.1364/OL.25.000317 10.1021/acsomega.8b01749 10.1002/admi.201500415 10.1103/PhysRevLett.125.077801 10.1002/adom.202000593 10.1021/acsami.0c19527 10.1002/adma.201707069 10.1002/adma.201103008 10.1038/s41566-019-0448-9 10.1007/BF03046095 10.1039/c2sm07207f 10.1021/acsnano.9b07104 10.1103/PhysRevLett.103.103903 10.1021/ma0487655 10.1002/3527602054 10.1016/j.cej.2021.132780 10.1002/anie.201908832 10.1002/anie.201712781 10.1002/adfm.202009916 10.1002/adma.201704941 10.1002/adfm.201705309 10.1021/acsami.0c09212 10.1038/lsa.2017.11 10.1021/acs.nanolett.1c02290 10.1002/adma.201805312 10.1364/OL.40.004887 10.1002/aenm.201602209 10.1016/j.carbpol.2017.06.098 10.1103/PhysRevResearch.3.L022008 10.1039/C2JM15461G 10.1038/s41467-017-00822-y 10.1117/1.AP.2.3.036002 10.1002/adom.202001861 10.1002/adma.201706512 10.1039/C7NH00105C 10.1002/adom.201901958 10.1143/JJAP.43.7083 10.1038/s41467-018-07048-6 10.1038/lsa.2015.26 10.1039/C4CS00053F 10.1038/ncomms10236 10.1002/adma.201701323 10.1002/adfm.201001303 10.1002/adma.201703655 10.1002/adma.201801335 10.1038/s42005-020-0288-4 10.1073/pnas.2110839118 10.1002/adom.201901360 10.1038/s41467-020-16125-8 10.1002/adpr.202100362 10.1038/nature09713 10.1038/s41467-018-02895-9 10.1021/acs.chemrev.7b00153 10.1039/C4CE02502D 10.1126/science.1261019 10.1126/science.258.5080.275 10.1126/sciadv.aau8064 10.1073/pnas.1911563116 10.1080/02678290902814718 10.1039/C7SM01755C 10.1073/pnas.1112849108 10.1038/s41586-018-0109-z 10.1038/s41467-019-11768-8 10.1021/ma9711452 10.1515/nanoph-2021-0427 10.1107/S0365110X51000751 10.1038/nmat4826 10.1021/ma7027775 10.3788/COL202018.080004 10.1016/j.giant.2020.100018 10.1021/acsami.0c00591 10.1002/adma.201703165 10.1039/C9MH00101H 10.1126/sciadv.abh3505 10.1364/OL.30.003308 10.1039/D0SM00676A 10.1002/adma.201704970 10.1016/j.nanoen.2021.105976 10.1021/acsami.1c12575 10.1364/OL.43.004903 10.1002/adfm.201500745 10.1002/adma.201606671 10.1002/adma.202001228 10.1016/j.carbpol.2019.115387 10.1063/1.4817724 10.1002/adom.202000170 10.1098/rspa.1984.0023 10.1002/anie.201911468 10.1364/PRJ.449284 10.1126/sciadv.aax5746 10.1364/PRJ.3.000133 10.1364/OE.22.004699 10.1016/j.carbpol.2020.116281 10.1002/smsc.202100007 10.1002/anie.201606895 10.1002/anie.202101881 10.1002/adma.201500340 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41377-022-00930-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_d44b61882289474f9d88005747db98e2 PMC9470592 36100592 10_1038_s41377_022_00930_5 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Key Research and Development Program of China (No. 2021YFA1202000), Program for Innovative Talents and Entrepreneurs in Jiangsu (No. JSSCTD202138), Innovation and Entrepreneurship Program of Jiangsu Province, and Start-up Fund at the Nanjing University (No. 14912226) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52003115; 62175102 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: BK20212004; BK20200320 funderid: https://doi.org/10.13039/501100004608 – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: BK20212004 – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: BK20200320 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52003115 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 62175102 – fundername: ; – fundername: ; grantid: BK20212004; BK20200320 – fundername: ; grantid: 52003115; 62175102 |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-58509e0593b69a8e4df6aa513f04839f3ebdab06cf4d43fd79e65dd0cdc51e9d3 |
IEDL.DBID | DOA |
ISSN | 2047-7538 2095-5545 |
IngestDate | Wed Aug 27 01:13:13 EDT 2025 Thu Aug 21 13:58:57 EDT 2025 Thu Jul 10 21:56:54 EDT 2025 Wed Aug 13 09:30:36 EDT 2025 Mon Jul 21 06:00:48 EDT 2025 Tue Jul 01 03:45:17 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Fri Feb 21 02:38:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-58509e0593b69a8e4df6aa513f04839f3ebdab06cf4d43fd79e65dd0cdc51e9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0249-4414 0000-0003-4727-1572 0000-0001-6151-8557 |
OpenAccessLink | https://doaj.org/article/d44b61882289474f9d88005747db98e2 |
PMID | 36100592 |
PQID | 2713872323 |
PQPubID | 2041947 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d44b61882289474f9d88005747db98e2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9470592 proquest_miscellaneous_2714388564 proquest_journals_2713872323 pubmed_primary_36100592 crossref_citationtrail_10_1038_s41377_022_00930_5 crossref_primary_10_1038_s41377_022_00930_5 springer_journals_10_1038_s41377_022_00930_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-13 |
PublicationDateYYYYMMDD | 2022-09-13 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | XiongJWuSTPlanar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applicationseLight20211310.1186/s43593-021-00003-x RupnikPMField-controlled structures in ferromagnetic cholesteric liquid crystalsSci. Adv.20173e17013362017SciA....3E1336M10.1126/sciadv.1701336 KobashiJYoshidaHOzakiMPolychromatic optical vortex generation from patterned cholesteric liquid crystalsPhys. Rev. Lett.20161162539032016PhRvL.116y3903K10.1103/PhysRevLett.116.253903 ShenYDierkingIDynamic dissipative solitons in nematics with positive anisotropiesSoft Matter202016532553332020SMat...16.5325S10.1039/D0SM00676A YuHLStimuli-responsive circularly polarized luminescent films with tunable emissionJ. Mater. Chem. C.202081459146510.1039/C9TC06105C NanFCEnhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatmentACS Sustain. Chem. Eng.201758951895810.1021/acssuschemeng.7b01749 ZhanTPractical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lensesAdv. Optical Mater.20208190136010.1002/adom.201901360 De GennesPGAn analogy between superconductors and smectics ASolid State Commun.1972107537561972SSCom..10..753D10.1016/0038-1098(72)90186-X BabakhanovaGControlled placement of microparticles at the water-liquid crystal elastomer interfaceACS Appl. Mater. Interfaces201911150071501310.1021/acsami.8b22023 AlmeidaAPCCellulose-based biomimetics and their applicationsAdv. Mater.201830170365510.1002/adma.201703655 GuoYBHigh-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystalsAdv. Mater.2016282353235810.1002/adma.201506002 JiangYFImage flickering-free polymer stabilized fringe field switching liquid crystal displayOpt. Express20182632640326512018OExpr..2632640J10.1364/OE.26.032640 WangJStabilization and electro-optical switching of liquid crystal blue phases using unpolymerized and polymerized polyoxometalate-based nanoparticlesMol. Cryst. Liq. Cryst.2016634122310.1080/15421406.2016.1177900 ConleyKOrigin of the twist of cellulosic materialsCarbohydr. Polym.201613528529910.1016/j.carbpol.2015.08.029 SatoshiAFumitoAKinetics of motile solitons in nematic liquid crystalsNat. Commun.20201110.1038/s41467-020-16864-8 PalRKBiopatterning of silk proteins for soft micro-opticsACS Appl. Mater. Interfaces201578809881610.1021/acsami.5b01380 LiuFDeeply seeing through highly turbid water by active polarization imagingOpt. Lett.201843490349062018OptL...43.4903L10.1364/OL.43.004903 YinKHeZQWuSTReflective polarization volume lens with small f-number and large diffraction angleAdv. Optical Mater.20208200017010.1002/adom.202000170 Frka-PetesicBVignoliniSSo much more than paperNat. Photonics2019133653672019NaPho..13..365F10.1038/s41566-019-0448-9 ShenZXLiquid crystal integrated metalens with tunable chromatic aberrationAdv. Photonics202020360022020AdPho...2c6002S10.1117/1.AP.2.3.036002 ZhangPA patterned mechanochromic photonic polymer for reversible image revealAdv. Mater. Interfaces20207190187810.1002/admi.201901878 WangYEmerging chirality in nanoscienceChem. Soc. Rev.2013422930296210.1039/C2CS35332F Yang, D. K. & Wu, S. T. Fundamentals of liquid crystal devices. 2nd edn. (Hoboken: John Wiley & Sons, 2014). WangYLight-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructuresNat. Commun.2021122021NatCo..12.1651W10.1038/s41467-021-21764-6 KimYHOptically selective microlens photomasks using self-assembled smectic liquid crystal defect arraysAdv. Mater.2010222416242010.1002/adma.200903728 MaLLSelf-assembled asymmetric microlenses for four-dimensional visual imagingACS Nano201913137091371510.1021/acsnano.9b07104 LiuPWBiomimetic confined self-assembly of chitin nanocrystalsNano Today20224310142010.1016/j.nantod.2022.101420 PoyGChirality-enhanced periodic self-focusing of light in soft birefringent mediaPhys. Rev. Lett.20201250778012020PhRvL.125g7801P10.1103/PhysRevLett.125.077801 GimMJBellerDAYoonDKMorphogenesis of liquid crystal topological defects during the nematic-smectic A phase transitionNat. Commun.201782017NatCo...815453G10.1038/ncomms15453 SchlafmannKRWhiteTJRetention and deformation of the blue phases in liquid crystalline elastomersNat. Commun.2021122021NatCo..12.4916S10.1038/s41467-021-25112-6 KimDSMosaics of topological defects in micropatterned liquid crystal texturesSci. Adv.20184eaau80642018SciA....4.8064K10.1126/sciadv.aau8064 ChenXFirst-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-opticsProc. Natl Acad. Sci. USA202011714021140312020PNAS..11714021C10.1073/pnas.2002290117 WhitesidesGMGrzybowskiBSelf-assembly at all scalesScience2002295241824212002Sci...295.2418W10.1126/science.1070821 ZhangXFElectro-and photo-driven orthogonal switching of a helical superstructure enabled by an axially chiral molecular switchACS Appl. Mater. Interfaces202012552155522210.1021/acsami.0c19527 KimSUBroadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomersNat. Mater.20222141462022NatMa..21...41K10.1038/s41563-021-01075-3 ChuFFour-mode 2D/3D switchable display with a 1D/2D convertible liquid crystal lens arrayOpt. Express20212937464374752021OExpr..2937464C10.1364/OE.441386 HuWPolarization independent liquid crystal gratings based on orthogonal photoalignmentsAppl. Phys. Lett.20121001111162012ApPhL.100k1116H10.1063/1.3694921 WangYJHigh-efficiency broadband achromatic metalens for near-IR biological imaging windowNat. Commun.2021122021NatCo..12.5560W10.1038/s41467-021-25797-9 BorshchVShiyanovskiiSVLavrentovichODNanosecond electro-optic switching of a liquid crystalPhys. Rev. Lett.20131111078022013PhRvL.111j7802B10.1103/PhysRevLett.111.107802 ColesHJPivnenkoMNLiquid crystal ‘blue phases’ with a wide temperature rangeNature200543699710002005Natur.436..997C10.1038/nature03932 BisoyiHKLiQLiquid crystals: Versatile self-organized smart soft materialsChem. Rev.20221224887492610.1021/acs.chemrev.1c00761 AkiyamaHSynthesis and properties of azo dye aligning layers for liquid crystal cellsLiq. Cryst.2002291321132710.1080/713935610 De VriesHRotatory power and other optical properties of certain liquid crystalsActa Crystallogr.1951421922610.1107/S0365110X51000751 LuYQLiYPlanar liquid crystal polarization optics for near-eye displaysLight Sci. Appl.2021101222021LSA....10..122L423561310.1038/s41377-021-00567-w MengYHFabrication of environmental humidity-responsive iridescent films with cellulose nanocrystal/polyolsCarbohydr. Polym.202024011628110.1016/j.carbpol.2020.116281 WangSCScalable thermochromic smart windows with passive radiative cooling regulationScience2021374150115042021Sci...374.1501W10.1126/science.abg0291 HoughLEHelical nanofilament phasesScience20093254564602009Sci...325..456H10.1126/science.1170027 ChengMLight-fueled polymer film capable of directional crawling, friction-controlled climbing, and self-sustained motion on a human hairAdv. Sci.20229210309010.1002/advs.202103090 NiJCThree-dimensional chiral microstructures fabricated by structured optical vortices in isotropic materialLight Sci. Appl.20176e1701110.1038/lsa.2017.11 ShangLRBio-inspired intelligent structural color materialsMater. Horiz.2019694595810.1039/C9MH00101H WerbowyjRSGrayDGOptical properties of hydroxypropyl cellulose liquid crystals. I. Cholesteric pitch and polymer concentrationMacromolecules198417151215201984MaMol..17.1512W10.1021/ma00138a016 XuMCMultifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatingsJ. Mater. Chem. C.201865391540010.1039/C8TC01321G DumanliAGSavinTRecent advances in the biomimicry of structural coloursChem. Soc. Rev.2016456698672410.1039/C6CS00129G KimDSControlling gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystalsNat. Commun.201672016NatCo...710236K10.1038/ncomms10236 YanJA full-color reflective display using polymer-stabilized blue phase liquid crystalAppl. Phys. Lett.20131020811022013ApPhL.102h1102Y10.1063/1.4793750 AckermanPJLaser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularitiesSci. Rep.2012210.1038/srep00414 TeyssierJPhotonic crystals cause active colour change in chameleonsNat. Commun.201562015NatCo...6.6368T10.1038/ncomms7368 DuFPolymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuatorJpn. J. Appl. Phys.200443708370862004JaJAP..43.7083D10.1143/JJAP.43.7083 KlémanMDefects in liquid crystalsRep. Prog. Phys.1989525556541989RPPh...52..555K100054810.1088/0034-4885/52/5/002 SatapathyPSwitchable smart windows using a biopolymer network of cellulose nanocrystals imposed on a nematic liquid crystalAppl. Phys. Lett.20201171037022020ApPhL.117j3702S10.1063/5.0020982 VoloschenkoDLavrentovichODOptical vortices generated by dislocations in a cholesteric liquid crystalOpt. Lett.2000253173192000OptL...25..317V10.1364/OL.25.000317 NakataMEnd-to-end stacking and liquid crystal condensation of 6- to 20-base pair DNA duplexesScience2007318127612792007Sci...318.1276N10.1126/science.1143826 ZhangZCYouZChuDPFundamentals of phase-only liquid crystal on silicon (LCOS) devicesLight Sci. Appl.20143e2132014LSA.....3E.213Z10.1038/lsa.2014.94 RisteenBThermally switchable liquid crystals based on cellulose nanocrystals with patchy polymer graftsSmall201814180206010.1002/smll.201802060 PengZWApplications of cellulose nanomaterials in stimuli-responsive opticsJ. Agric. Food Chem.202068129401295510.1021/acs.jafc.0c04742 LavrentovichODKlémanMPergamenshchikVMNucleation of focal conic domains in smectic A liquid crystalsJ. de. Phys. II199443774041994JPhy2...4..377L ZhengZGThree-dimensional control of the helical axis of a chiral nematic liquid crystal by lightNature20165313523562016Natur.531..352Z10.1038/nature17141 KimYHFabrication of two-dimensio H Zhang (930_CR44) 2020; 8 S Tadepalli (930_CR53) 2017; 117 YZ Yang (930_CR132) 2021; 1 S Savo (930_CR225) 2014; 2 T Lu (930_CR177) 2017; 9 KG Gutierrez-Cuevas (930_CR284) 2016; 55 CLC Chan (930_CR159) 2019; 31 Y Wang (930_CR290) 2021; 12 SB Wu (930_CR101) 2020; 8 K Yao (930_CR175) 2017; 29 J Kobashi (930_CR240) 2016; 116 A Piccardi (930_CR12) 2014; 5 930_CR242 A Tran (930_CR163) 2020; 32 H Yi (930_CR204) 2019; 29 V Borshch (930_CR58) 2013; 111 HL Yu (930_CR180) 2020; 8 PG De Gennes (930_CR104) 1972; 10 I Usov (930_CR165) 2015; 6 YJ Wang (930_CR206) 2021; 12 JC García-Escartín (930_CR235) 2011; 13 G Isapour (930_CR18) 2018; 30 RK Pal (930_CR189) 2015; 7 A Espinha (930_CR170) 2018; 12 G Babakhanova (930_CR262) 2018; 9 W Hu (930_CR71) 2012; 100 GM Whitesides (930_CR7) 2002; 295 M Jiang (930_CR212) 2019; 31 Y Xia (930_CR280) 2019; 9 H Kikuchi (930_CR131) 2002; 1 X Li (930_CR61) 2018; 10 RD Gilbert (930_CR158) 1983; 9 K Yin (930_CR219) 2020; 8 MA Gharbi (930_CR94) 2015; 31 JT Li (930_CR115) 2019; 58 HL Liang (930_CR190) 2018; 9 Q Xu (930_CR214) 2021; 4 YB Guo (930_CR72) 2016; 28 J Schmidtke (930_CR202) 2005; 38 Y Wang (930_CR291) 2017; 29 RS Werbowyj (930_CR169) 1984; 17 JQ Wang (930_CR279) 2021; 85 B Zappone (930_CR88) 2012; 8 H Shahsavan (930_CR40) 2020; 117 LL Ma (930_CR121) 2015; 3 Q He (930_CR37) 2019; 5 R Kizhakidathazhath (930_CR118) 2020; 30 J Xiang (930_CR143) 2013; 103 H Zhou (930_CR268) 2018; 28 J Murray (930_CR282) 2017; 4 L Tong (930_CR221) 2020; 11 BX Li (930_CR79) 2019; 10 G Zhu (930_CR141) 2011; 1 J Wang (930_CR142) 2016; 634 Y Xia (930_CR66) 2019; 10 YZ Yang (930_CR151) 2021; 13 BX Li (930_CR60) 2014; 104 D Qu (930_CR187) 2019; 11 B Zappone (930_CR103) 2020; 117 SC Wang (930_CR276) 2021; 374 P Chen (930_CR226) 2015; 3 HK Bisoyi (930_CR4) 2022; 122 930_CR135 AS Gladman (930_CR270) 2016; 15 J Xiong (930_CR47) 2021; 1 YY Cao (930_CR172) 2020; 32 SI Rich (930_CR22) 2018; 1 B Deng (930_CR205) 2019; 64 LL Ma (930_CR52) 2019; 7 AG Dumanli (930_CR193) 2016; 45 WF Chiang (930_CR229) 2020; 28 K Rechcińska (930_CR249) 2019; 366 JY Zou (930_CR218) 2022; 3 H Akiyama (930_CR68) 2002; 29 JPF Lagerwall (930_CR160) 2014; 6 E Vitral (930_CR106) 2021; 17 ZX Shen (930_CR211) 2019; 27 YH Meng (930_CR176) 2020; 240 B Risteen (930_CR192) 2018; 14 A Honglawan (930_CR85) 2011; 23 JD Lin (930_CR138) 2018; 3 YD Yu (930_CR16) 2020; 12 T Gibaud (930_CR13) 2012; 481 V Borshch (930_CR59) 2014; 90 C Fernández-Rico (930_CR3) 2020; 369 HJ Coles (930_CR139) 2005; 436 Y Li (930_CR252) 2021; 9 Q Chen (930_CR11) 2011; 469 MG Nassiri (930_CR245) 2018; 121 K Yin (930_CR64) 2020; 5 L Qin (930_CR196) 2018; 30 Y Li (930_CR215) 2020; 28 X Liang (930_CR286) 2017; 2 M Kléman (930_CR82) 1989; 52 E Brasselet (930_CR246) 2009; 103 W Feng (930_CR257) 2018; 30 LE Hough (930_CR9) 2009; 325 SU Kim (930_CR199) 2022; 21 P Zhang (930_CR201) 2020; 7 B Son (930_CR99) 2014; 22 J Yan (930_CR136) 2013; 102 JF Revol (930_CR168) 1998; 24 W Ge (930_CR42) 2022; 18 YF Jiang (930_CR57) 2018; 26 R Xiong (930_CR55) 2020; 49 HW Yoo (930_CR92) 2013; 1 H Choi (930_CR137) 2012; 101 ZX Shen (930_CR217) 2020; 2 H Zhang (930_CR19) 2019; 10 DS Kim (930_CR105) 2016; 7 CE Boott (930_CR186) 2020; 59 HK Bisoyi (930_CR297) 2018; 30 K Conley (930_CR167) 2016; 135 H Zeng (930_CR20) 2020; 2 J Xiang (930_CR116) 2016; 113 WJ Orts (930_CR166) 1998; 31 L Wang (930_CR34) 2020; 32 Y Wang (930_CR293) 2019; 31 A Martinez (930_CR73) 2011; 108 PM Rupnik (930_CR117) 2017; 3 RL Chen (930_CR203) 2021; 31 ZC Zhang (930_CR227) 2014; 3 T Zhan (930_CR216) 2020; 8 JA De La Cruz (930_CR287) 2018; 5 NA Rubin (930_CR222) 2019; 365 CR Feng (930_CR256) 2021; 7 SA Jiang (930_CR125) 2021; 13 M Wang (930_CR148) 2017; 27 RM Parker (930_CR162) 2018; 30 LR Shang (930_CR194) 2019; 6 AJJ Kragt (930_CR200) 2019; 31 Y Cao (930_CR17) 2020; 2 F Castles (930_CR134) 2014; 13 HW Yang (930_CR237) 2021; 21 PJ Ackerman (930_CR26) 2017; 16 YH Kim (930_CR96) 2010; 22 LJ Chen (930_CR124) 2014; 2 H Wu (930_CR69) 2012; 20 G Nava (930_CR129) 2019; 1 O Kose (930_CR183) 2019; 10 YQ Lu (930_CR56) 2021; 10 CL Xu (930_CR154) 2021; 22 H Wang (930_CR195) 2018; 57 HC Jau (930_CR296) 2015; 3 ZH Zhang (930_CR173) 2022; 32 FC Nan (930_CR188) 2017; 5 H Khandelwal (930_CR277) 2017; 7 JF Revol (930_CR164) 1992; 14 Y Sawa (930_CR255) 2013; 88 LL Ma (930_CR30) 2021; 7 AH Gelebart (930_CR253) 2017; 546 T Badloe (930_CR29) 2022; 11 W Guo (930_CR89) 2009; 79 W Wang (930_CR191) 2008; 41 K Thapa (930_CR198) 2021; 104 Y Yuan (930_CR267) 2018; 9 M Kléman (930_CR87) 2009; 36 E Bukusoglu (930_CR145) 2017; 13 Y Wang (930_CR110) 2013; 42 B Frka-Petesic (930_CR157) 2019; 13 J Teyssier (930_CR14) 2015; 6 G Boniello (930_CR107) 2021; 42 F Liu (930_CR223) 2018; 43 P Chen (930_CR241) 2018; 30 JJ Yang (930_CR278) 2021; 33 W Feng (930_CR259) 2020; 2 Y Yuan (930_CR266) 2019; 570 WJ Yoon (930_CR283) 2020; 30 MC Xu (930_CR184) 2018; 6 MTI Mredha (930_CR273) 2019; 6 LL Ma (930_CR120) 2022; 10 930_CR2 JSB Tai (930_CR63) 2018; 115 YH Kim (930_CR80) 2011; 21 930_CR1 930_CR6 XW Wang (930_CR238) 2018; 7 JC Ni (930_CR239) 2017; 6 T Lindahl (930_CR108) 1993; 362 Y Wang (930_CR35) 2015; 17 T Shimizu (930_CR23) 2020; 120 JP Hurault (930_CR41) 1973; 59 LL Ma (930_CR265) 2017; 9 L Wang (930_CR285) 2017; 20 XG Wang (930_CR10) 2016; 15 A Boyarsky (930_CR109) 2012; 108 WQ Hu (930_CR258) 2018; 554 G Milione (930_CR234) 2015; 40 M Wang (930_CR272) 2015; 2 930_CR46 YS Wang (930_CR294) 2020; 18 930_CR45 YH Kim (930_CR90) 2010; 20 SM Salili (930_CR128) 2016; 94 CW Chen (930_CR144) 2017; 8 Y Shen (930_CR74) 2020; 16 X Li (930_CR43) 2021; 6 XF Zhang (930_CR51) 2020; 12 SS Gandhi (930_CR133) 2017; 29 M Padgett (930_CR233) 2011; 5 M Kim (930_CR281) 2015; 7 J Xiong (930_CR28) 2022; 11 BX Li (930_CR75) 2020; 2 A Honglawan (930_CR84) 2013; 110 CL Yuan (930_CR130) 2019; 5 G Guidetti (930_CR54) 2020; 10 M Kim (930_CR49) 2021; 33 NA Rubin (930_CR224) 2022; 30 X Chen (930_CR289) 2020; 117 A Satoshi (930_CR77) 2020; 11 Y Xia (930_CR27) 2018; 557 BX Li (930_CR78) 2018; 9 KJ Ihn (930_CR31) 1992; 258 S Pancharatnam (930_CR208) 1956; 44 DS Kim (930_CR65) 2018; 4 K Zhou (930_CR146) 2018; 30 KR Schlafmann (930_CR147) 2021; 12 K Perera (930_CR220) 2021; 13 A Scacchi (930_CR8) 2021; 3 SD Dai (930_CR181) 2017; 174 TH Ware (930_CR254) 2015; 347 H De Vries (930_CR113) 1951; 4 HH Chou (930_CR15) 2015; 6 MJ Gim (930_CR102) 2017; 8 930_CR25 Y Zhang (930_CR179) 2020; 228 HK Bisoyi (930_CR39) 2016; 116 MK Khan (930_CR269) 2014; 26 F Serra (930_CR97) 2015; 3 YC Jiang (930_CR182) 2022; 430 DK Yoon (930_CR93) 2007; 6 G Chu (930_CR171) 2019; 1 II Smalyukh (930_CR156) 2021; 33 D Foster (930_CR62) 2019; 15 OD Lavrentovich (930_CR86) 1994; 4 YL Huang (930_CR251) 2021; 60 M Cheng (930_CR261) 2022; 9 ZG Zheng (930_CR50) 2017; 29 P Satapathy (930_CR288) 2020; 117 L Wang (930_CR230) 2015; 4 PW Liu (930_CR5) 2022; 43 J Xiang (930_CR127) 2014; 112 R Eelkema (930_CR264) 2006; 440 T Matsui (930_CR299) 2022; 18 P Bettotti (930_CR271) 2016; 3 W Helfrich (930_CR126) 1971; 55 D Voloschenko (930_CR244) 2000; 25 M Mitov (930_CR32) 2017; 13 J Xiang (930_CR38) 2015; 27 ZW Peng (930_CR155) 2020; 68 W Duan (930_CR70) 2022; 120 ZG Zheng (930_CR123) 2017; 29 HT Dai (930_CR213) 2015; 40 H Zeng (930_CR260) 2017; 29 H Lee (930_CR298) 2011; 42 G Babakhanova (930_CR263) 2019; 11 J Cao (930_CR274) 2020; 14 GM Zhao (930_CR174) 2020; 12 MV Berry (930_CR209) 1984; 392 M Papič (930_CR247) 2021; 118 CE Williams (930_CR83) 1975; 36 Y Chen (930_CR149) 2013; 102 G Poy (930_CR24) 2020; 125 BY Wei (930_CR67) 2014; 26 JA Lv (930_CR21) 2016; 537 HK Bisoyi (930_CR36) 2014; 47 D Qu (930_CR178) 2019; 7 YJ Shen (930_CR231) 2019; 8 ZG Zheng (930_CR122) 2016; 531 ST Hur (930_CR152) 2013; 25 JE Stumpel (930_CR119) 2015; 25 APC Almeida (930_CR153) 2018; 30 G Foo (930_CR236) 2005; 30 DA Beller (930_CR91) 2013; 3 LL Ma (930_CR98) 2019; 13 PJ Ackerman (930_CR243) 2012; 2 Y Shen (930_CR76) 2020; 3 L Wang (930_CR140) 2012; 22 M Nakata (930_CR33) 2007; 318 AE Minovich (930_CR210) 2015; 9 WY Li (930_CR295) 2019; 31 W Hu (930_CR150) 2020; 30 J Chen (930_CR248) 2021; 10 B Zuo (930_CR250) 2019; 10 DS Kim (930_CR81) 2015; 3 SC Zhang (930_CR111) 2017; 543 F Du (930_CR114) 2004; 43 ZX Li (930_CR232) 2021; 19 RS Preusse (930_CR100) 2020; 16 L Zhang (930_CR112) 2016; 28 F Joubert (930_CR161) 2014; 43 G Guidetti (930_CR185) 2016; 28 TH Wu (930_CR275) 2016; 4 Y Wang (930_CR292) 2019; 116 J Kobashi (930_CR228) 2016; 10 M Honda (930_CR48) 2009; 21 LL Ma (930_CR95) 2017; 29 L Qin (930_CR197) 2021; 12 F Chu (930_CR207) 2021; 29 |
References_xml | – reference: SavoSShrekenhamerDPadillaWJLiquid crystal metamaterial absorber spatial light modulator for THz applicationsAdv. Optical Mater.2014227527910.1002/adom.201300384 – reference: ZhuGLiquid crystal blue phase induced by bent-shaped molecules with allylic end groupsOptical Mater. Express20111147814832011OMExp...1.1478Z10.1364/OME.1.001478 – reference: BisoyiHKLiQLiquid crystals: Versatile self-organized smart soft materialsChem. Rev.20221224887492610.1021/acs.chemrev.1c00761 – reference: LiYZhanTWuSTFlat cholesteric liquid crystal polymeric lens with low f-numberOpt. Express202028587558822020OExpr..28.5875L10.1364/OE.387942 – reference: ChengMLight-fueled polymer film capable of directional crawling, friction-controlled climbing, and self-sustained motion on a human hairAdv. Sci.20229210309010.1002/advs.202103090 – reference: LiBXElectro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameterAppl. Phys. Lett.20141042011052014ApPhL.104t1105L10.1063/1.4879018 – reference: ParkerRMThe self-assembly of cellulose nanocrystals: hierarchical design of visual appearanceAdv. Mater.201830170447710.1002/adma.201704477 – reference: WangWThin films of poly(N-isopropylacrylamide) end-capped with n-butyltrithiocarbonateMacromolecules200841320932182008MaMol..41.3209W10.1021/ma7027775 – reference: TaiJSBAckermanPJSmalyukhIITopological transformations of Hopf solitons in chiral ferromagnets and liquid crystalsProc. Natl Acad. Sci. USA20181159219262018PNAS..115..921T37637011416.8204610.1073/pnas.1716887115 – reference: DaiHTOptically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separationOpt. Lett.201540272327262015OptL...40.2723D10.1364/OL.40.002723 – reference: MredhaMTIAnisotropic tough multilayer hydrogels with programmable orientationMater. Horiz.201961504151110.1039/C9MH00320G – reference: KobashiJYoshidaHOzakiMPlanar optics with patterned chiral liquid crystalsNat. Photonics2016103893922016NaPho..10..389K10.1038/nphoton.2016.66 – reference: YuanYSelf-assembled nematic colloidal motors powered by lightNat. Commun.201892018NatCo...9.5040Y10.1038/s41467-018-07518-x – reference: ChenPDigitalizing self-assembled chiral superstructures for optical vortex processingAdv. Mater.201830170586510.1002/adma.201705865 – reference: CastlesFStretchable liquid-crystal blue-phase gelsNat. Mater.2014138178212014NatMa..13..817C10.1038/nmat3993 – reference: WangXGTopological defects in liquid crystals as templates for molecular self-assemblyNat. Mater.2016151061122016NatMa..15..106W10.1038/nmat4421 – reference: HonglawanAPillar-assisted epitaxial assembly of toric focal conic domains of smectic-a liquid crystalsAdv. Mater.2011235519552310.1002/adma.201103008 – reference: DengBScalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arraysSci. Bull.20196465966810.1016/j.scib.2019.04.030 – reference: ShenZXLiquid crystal integrated metalens with tunable chromatic aberrationAdv. Photonics202020360022020AdPho...2c6002S10.1117/1.AP.2.3.036002 – reference: WangYModulation of multiscale 3D lattices through conformational control: Painting silk inverse opals with water and lightAdv. Mater.201729170276910.1002/adma.201702769 – reference: ChenCWLarge three-dimensional photonic crystals based on monocrystalline liquid crystal blue phasesNat. Commun.201782017NatCo...8..727C10.1038/s41467-017-00822-y – reference: GharbiMASmectic gardening on curved landscapesLangmuir201531111351114210.1021/acs.langmuir.5b02508 – reference: Brasselet, E. Singular optics of liquid crystal defects. in Liquid Crystals: New Perspectives (eds Pieranski P. and Godinho M. H.). (Hoboken: John Wiley & Sons, 2021), 1-79. – reference: LiZXLiquid crystal devices for vector vortex beams manipulation and quantum information applicationsChin. Opt. Lett.2021191126012021ChOpL..19k2601L10.3788/COL202119.112601 – reference: ColesHJPivnenkoMNLiquid crystal ‘blue phases’ with a wide temperature rangeNature200543699710002005Natur.436..997C10.1038/nature03932 – reference: GandhiSSChienLCUnraveling the mystery of the blue fog: structure, properties, and applications of amorphous blue phase IIIAdv. Mater.201729170429610.1002/adma.201704296 – reference: PadgettMBowmanRTweezers with a twistNat. Photonics201153433482011NaPho...5..343P10.1038/nphoton.2011.81 – reference: TadepalliSBio-optics and bio-inspired optical materialsChem. Rev.2017117127051276310.1021/acs.chemrev.7b00153 – reference: QuDChiral photonic cellulose films enabling mechano/chemo responsive selective reflection of circularly polarized lightAdv. Optical Mater.20197180139510.1002/adom.201801395 – reference: YinKPatterning liquid-crystal alignment for ultrathin flat opticsACS Omega20205314853148910.1021/acsomega.0c05087 – reference: BadloeTLiquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacksLight Sci. Appl.2022111182022LSA....11..118B10.1038/s41377-022-00806-8 – reference: RisteenBThermally switchable liquid crystals based on cellulose nanocrystals with patchy polymer graftsSmall201814180206010.1002/smll.201802060 – reference: Kikuchi, H. Liquid crystalline blue phases. in Liquid Crystalline Functional Assemblies and Their Supramolecular Structures (ed Kato, T.). (Berlin: Springer, 2007), 99-117. – reference: ChuFFour-mode 2D/3D switchable display with a 1D/2D convertible liquid crystal lens arrayOpt. Express20212937464374752021OExpr..2937464C10.1364/OE.441386 – reference: YuanYElastic colloidal monopoles and reconfigurable self-assembly in liquid crystalsNature20195702142182019Natur.570..214Y10.1038/s41586-019-1247-7 – reference: MaLLSmectic layer origami via preprogrammed photoalignmentAdv. Mater.201729160667110.1002/adma.201606671 – reference: WangSCScalable thermochromic smart windows with passive radiative cooling regulationScience2021374150115042021Sci...374.1501W10.1126/science.abg0291 – reference: ChenQBaeSCGranickSDirected self-assembly of a colloidal kagome latticeNature20114693813842011Natur.469..381C10.1038/nature09713 – reference: LuYQLiYPlanar liquid crystal polarization optics for near-eye displaysLight Sci. Appl.2021101222021LSA....10..122L423561310.1038/s41377-021-00567-w – reference: WuHArbitrary photo-patterning in liquid crystal alignments using DMD based lithography systemOpt. Express20122016684166892012OExpr..2016684W10.1364/OE.20.016684 – reference: LiuFDeeply seeing through highly turbid water by active polarization imagingOpt. Lett.201843490349062018OptL...43.4903L10.1364/OL.43.004903 – reference: XiongJHolo-imprinting polarization optics with a reflective liquid crystal hologram templateLight Sci. Appl.202211542022LSA....11...54X10.1038/s41377-022-00746-3 – reference: ShenYDierkingIDynamics of electrically driven solitons in nematic and cholesteric liquid crystalsCommun. Phys.202031410.1038/s42005-020-0288-4 – reference: ZhangZHCholesteric cellulose liquid crystals with multifunctional structural colorsAdv. Funct. Mater.202232210724210.1002/adfm.202107242 – reference: JauHCLight-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switchAdv. Optical Mater.2015316617010.1002/adom.201400457 – reference: SchmidtkeJKnieselSFinkelmannHProbing the photonic properties of a cholesteric elastomer under biaxial stressMacromolecules200538135713632005MaMol..38.1357S10.1021/ma0487655 – reference: ZhangHAzobenzene sulphonic dye photoalignment as a means to fabricate liquid crystalline conjugated polymer chain-orientation-based optical structuresAdv. Optical Mater.20208190195810.1002/adom.201901958 – reference: WangLWide blue phase range and electro-optical performances of liquid crystalline composites doped with thiophene-based mesogensJ. Mater. Chem.2012222383238610.1039/C2JM15461G – reference: LiangHLRoll-to-roll fabrication of touch-responsive cellulose photonic laminatesNat. Commun.201892018NatCo...9.4632L10.1038/s41467-018-07048-6 – reference: ScacchiASelf-assembly in soft matter with multiple length scalesPhys. Rev. Res.20213L02200810.1103/PhysRevResearch.3.L022008 – reference: MitovMCholesteric liquid crystals in living matterSoft Matter201713417642092017SMat...13.4176M10.1039/C7SM00384F – reference: YangHWSteering nonlinear twisted valley photons of monolayer WS2 by vector beamsNano Lett.202121726172692021NanoL..21.7261Y10.1021/acs.nanolett.1c02290 – reference: ZengHAssociative learning by classical conditioning in liquid crystal network actuatorsMatter2020219420610.1016/j.matt.2019.10.019 – reference: De GennesPGAn analogy between superconductors and smectics ASolid State Commun.1972107537561972SSCom..10..753D10.1016/0038-1098(72)90186-X – reference: ShangLRBio-inspired intelligent structural color materialsMater. Horiz.2019694595810.1039/C9MH00101H – reference: CaoYDeciphering chiral structures in soft materials via resonant soft and tender X-ray scatteringGiant2020210001810.1016/j.giant.2020.100018 – reference: ShahsavanHBioinspired underwater locomotion of light-driven liquid crystal gelsProc. Natl Acad. Sci. USA2020117512551332020PNAS..117.5125S10.1073/pnas.1917952117 – reference: Frka-PetesicBVignoliniSSo much more than paperNat. Photonics2019133653672019NaPho..13..365F10.1038/s41566-019-0448-9 – reference: RupnikPMField-controlled structures in ferromagnetic cholesteric liquid crystalsSci. Adv.20173e17013362017SciA....3E1336M10.1126/sciadv.1701336 – reference: KimDSMosaics of topological defects in micropatterned liquid crystal texturesSci. Adv.20184eaau80642018SciA....4.8064K10.1126/sciadv.aau8064 – reference: XiangJElectrically tunable laser based on oblique heliconical cholesteric liquid crystalProc. Natl Acad. Sci. U. State. Am.201611312925129282016PNAS..11312925X10.1073/pnas.1612212113 – reference: MaLLSubmicrosecond electro-optical switching of one-dimensional soft photonic crystalsPhotonics Res.20221078679210.1364/PRJ.449284 – reference: XiaYHigh-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cellsAdv. Energy Mater.20199190072010.1002/aenm.201900720 – reference: KimYHOptically selective microlens photomasks using self-assembled smectic liquid crystal defect arraysAdv. Mater.2010222416242010.1002/adma.200903728 – reference: WangHPhotochemically and thermally driven full-color reflection in a self-organized helical superstructure enabled by a halogen-bonded chiral molecular switchAngew. Chem. Int. Ed.2018571627163110.1002/anie.201712781 – reference: ChenRLRe-printable chiral photonic paper with invisible patterns and tunable wettabilityAdv. Funct. Mater.202131200991610.1002/adfm.202009916 – reference: WhitesidesGMGrzybowskiBSelf-assembly at all scalesScience2002295241824212002Sci...295.2418W10.1126/science.1070821 – reference: LiBXSoliton-induced liquid crystal enabled electrophoresisPhys. Rev. Res.202020131782020hsm2.book.....L10.1103/PhysRevResearch.2.013178 – reference: XiaYProgramming emergent symmetries with saddle-splay elasticityNat. Commun.2019102019NatCo..10.5104X10.1038/s41467-019-13012-9 – reference: ZhengZGControllable dynamic zigzag pattern formation in a soft helical superstructureAdv. Mater.201729170190310.1002/adma.201701903 – reference: LuTCellulose nanocrystals/polyacrylamide composites of high sensitivity and cycling performance to gauge humidityACS Appl. Mater. Interfaces20179182311823710.1021/acsami.7b04590 – reference: LiBXThree-dimensional solitary waves with electrically tunable direction of propagation in nematicsNat. Commun.2019102019NatCo..10.3749L10.1038/s41467-019-11768-8 – reference: ZengHSelf-regulating iris based on light-actuated liquid crystal elastomerAdv. Mater.201729170181410.1002/adma.201701814 – reference: ZhouHBio-inspired photonic materials: Prototypes and structural effect designs for applications in solar energy manipulationAdv. Funct. Mater.201828170530910.1002/adfm.201705309 – reference: MartinezAMirelesHCSmalyukhIILarge-area optoelastic manipulation of colloidal particles in liquid crystals using photoresponsive molecular surface monolayersProc. Natl Acad. Sci. USA201110820891208962011PNAS..10820891M10.1073/pnas.1112849108 – reference: BisoyiHKLiQLight-directing chiral liquid crystal nanostructures: From 1D to 3DAcc. Chem. Res.2014473184319510.1021/ar500249k – reference: HoughLEHelical nanofilament phasesScience20093254564602009Sci...325..456H10.1126/science.1170027 – reference: KlémanMDefects in liquid crystalsRep. Prog. Phys.1989525556541989RPPh...52..555K100054810.1088/0034-4885/52/5/002 – reference: WangYJHigh-efficiency broadband achromatic metalens for near-IR biological imaging windowNat. Commun.2021122021NatCo..12.5560W10.1038/s41467-021-25797-9 – reference: NavaGPitch tuning induced by optical torque in heliconical cholesteric liquid crystalsPhys. Rev. Res.2019103321510.1103/PhysRevResearch.1.033215 – reference: WangYLight-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructuresNat. Commun.2021122021NatCo..12.1651W10.1038/s41467-021-21764-6 – reference: BisoyiHKLiQLight-driven liquid crystalline materials: From photo-induced phase transitions and property modulations to applicationsChem. Rev.2016116150891516610.1021/acs.chemrev.6b00415 – reference: KimMSwitchable photonic bio-adhesive materialsAdv. Mater.202133210367410.1002/adma.202103674 – reference: ZhangYResponsive and patterned cellulose nanocrystal films modified by N-methylmorpholine-N-oxideCarbohydr. Polym.202022811538710.1016/j.carbpol.2019.115387 – reference: PalRKBiopatterning of silk proteins for soft micro-opticsACS Appl. Mater. Interfaces201578809881610.1021/acsami.5b01380 – reference: KragtAJJ3D helix engineering in chiral photonic materialsAdv. Mater.201931190312010.1002/adma.201903120 – reference: KimSUBroadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomersNat. Mater.20222141462022NatMa..21...41K10.1038/s41563-021-01075-3 – reference: JiangSAControl of large-area orderliness of a 2D supramolecular chiral microstructure by a 1D interference fieldACS Appl. Mater. Interfaces202113449164492410.1021/acsami.1c12575 – reference: FengCRRajapakshaCPHJákliAIonic elastomers for electric actuators and sensorsEngineering2021758160210.1016/j.eng.2021.02.014 – reference: AlmeidaAPCCellulose-based biomimetics and their applicationsAdv. Mater.201830170365510.1002/adma.201703655 – reference: ZuoBVisible and infrared three-wavelength modulated multi-directional actuatorsNat. Commun.2019102019NatCo..10.4539Z10.1038/s41467-019-12583-x – reference: GuidettiGOmenettoFGN-dimensional optics with natural materialsMRS Commun.20201020121410.1557/mrc.2020.23 – reference: GilbertRDPattonPALiquid crystal formation in cellulose and cellulose derivativesProg. Polym. Sci.1983911513110.1016/0079-6700(83)90001-1 – reference: LavrentovichODKlémanMPergamenshchikVMNucleation of focal conic domains in smectic A liquid crystalsJ. de. Phys. II199443774041994JPhy2...4..377L – reference: StumpelJEStimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogelsAdv. Funct. Mater.2015253314332010.1002/adfm.201500745 – reference: ZhangLChiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helicesAdv. Mater.2016281044105910.1002/adma.201502590 – reference: ChouHHA chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensingNat. Commun.201562015NatCo...6.8011C10.1038/ncomms9011 – reference: WangXWRecent advances on optical vortex generationNanophotonics201871533155610.1515/nanoph-2018-0072 – reference: SatoshiAFumitoAKinetics of motile solitons in nematic liquid crystalsNat. Commun.20201110.1038/s41467-020-16864-8 – reference: ShenZXLiquid crystal tunable terahertz lens with spin-selected focusing propertyOpt. Express201927880088072019OExpr..27.8800S10.1364/OE.27.008800 – reference: NiJCThree-dimensional chiral microstructures fabricated by structured optical vortices in isotropic materialLight Sci. Appl.20176e1701110.1038/lsa.2017.11 – reference: NassiriMGBrasseletEMultispectral management of the photon orbital angular momentumPhys. Rev. Lett.20181212139012018PhRvL.121u3901G10.1103/PhysRevLett.121.213901 – reference: PoyGChirality-enhanced periodic self-focusing of light in soft birefringent mediaPhys. Rev. Lett.20201250778012020PhRvL.125g7801P10.1103/PhysRevLett.125.077801 – reference: AkiyamaHSynthesis and properties of azo dye aligning layers for liquid crystal cellsLiq. Cryst.2002291321132710.1080/713935610 – reference: PereraKConverging microlens array using nematic liquid crystals doped with chiral nanoparticlesACS Appl. Mater. Interfaces2021134574458210.1021/acsami.0c21044 – reference: ZapponeBPeriodic lattices of frustrated focal conic defect domains in smectic liquid crystal filmsSoft Matter20128431843262012SMat....8.4318Z10.1039/c2sm07207f – reference: ChoiHPolymer-stabilized supercooled blue phaseAppl. Phys. Lett.20121011319042012ApPhL.101m1904C10.1063/1.4752461 – reference: VoloschenkoDLavrentovichODOptical vortices generated by dislocations in a cholesteric liquid crystalOpt. Lett.2000253173192000OptL...25..317V10.1364/OL.25.000317 – reference: De VriesHRotatory power and other optical properties of certain liquid crystalsActa Crystallogr.1951421922610.1107/S0365110X51000751 – reference: ZhangSCArrays of horizontal carbon nanotubes of controlled chirality grown using designed catalystsNature20175432342382017Natur.543..234Z10.1038/nature21051 – reference: LiXFast switchable dual-model grating by using polymer-stabilized sphere phase liquid crystalPolymers20181088410.3390/polym10080884 – reference: ZhengZGThree-dimensional control of the helical axis of a chiral nematic liquid crystal by lightNature20165313523562016Natur.531..352Z10.1038/nature17141 – reference: ZhengZGLight-patterned crystallographic direction of a self-organized 3D soft photonic crystalAdv. Mater.201729170316510.1002/adma.201703165 – reference: YaoKFlexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural colorAdv. Mater.201729170132310.1002/adma.201701323 – reference: YangJJBeyond the visible: bioinspired infrared adaptive materialsAdv. Mater.202133200475410.1002/adma.202004754 – reference: LvJAPhotocontrol of fluid slugs in liquid crystal polymer microactuatorsNature20165371791842016Natur.537..179L10.1038/nature19344 – reference: YangYZ3D chiral photonic nanostructures based on blue-phase liquid crystalsSmall Sci.20211210000710.1002/smsc.202100007 – reference: TongLStable mid-infrared polarization imaging based on quasi-2D tellurium at room temperatureNat. Commun.2020112020NatCo..11.2308T10.1038/s41467-020-16125-8 – reference: GelebartAHMaking waves in a photoactive polymer filmNature20175466326362017Natur.546..632G10.1038/nature22987 – reference: XuCLHuangCXHuangHHRecent advances in structural color display of cellulose nanocrystal materialsAppl. Mater. Today20212210091210.1016/j.apmt.2020.100912 – reference: KikuchiHPolymer-stabilized liquid crystal blue phasesNat. Mater.2002164682002NatMa...1...64K10.1038/nmat712 – reference: HuangYLBioinspired synergistic photochromic luminescence and programmable liquid crystal actuatorsAngew. Chem. Int. Ed.202160112471125110.1002/anie.202101881 – reference: MaLLProgrammable self-propelling actuators enabled by a dynamic helical mediumSci. Adv.20217eabh35052021SciA....7.3505M10.1126/sciadv.abh3505 – reference: HonglawanATopographically induced hierarchical assembly and geometrical transformation of focal conic domain arrays in smectic liquid crystalsProc. Natl Acad. Sci. U. State. Am.201311034392013PNAS..110...34H10.1073/pnas.1214708109 – reference: SonBOptical vortex arrays from smectic liquid crystalsOpt. Express201422469947042014OExpr..22.4699S10.1364/OE.22.004699 – reference: CaoYYTunable diffraction gratings from biosourced lyotropic liquid crystalsAdv. Mater.202032190737610.1002/adma.201907376 – reference: MaLLSelf-assembled asymmetric microlenses for four-dimensional visual imagingACS Nano201913137091371510.1021/acsnano.9b07104 – reference: YangYZBioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networksACS Appl. Mater. Interfaces202113411024111110.1021/acsami.1c11711 – reference: BabakhanovaGLiquid crystal elastomer coatings with programmed response of surface profileNat. Commun.201892018NatCo...9..456B10.1038/s41467-018-02895-9 – reference: QuDModulating the structural orientation of nanocellulose composites through mechano-stimuliACS Appl. Mater. Interfaces201911404434045010.1021/acsami.9b12106 – reference: Kléman, M. & Lavrentovich, O. D. Soft matter physics: an introduction. (New York: Springer, 2003). – reference: ZhanTPractical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lensesAdv. Optical Mater.20208190136010.1002/adom.201901360 – reference: García-EscartínJCChamorro-PosadaPUniversal quantum computation with the orbital angular momentum of a single photonJ. Opt.2011130640222011JOpt...13f4022G10.1088/2040-8978/13/6/064022 – reference: ZhangXFElectro-and photo-driven orthogonal switching of a helical superstructure enabled by an axially chiral molecular switchACS Appl. Mater. Interfaces202012552155522210.1021/acsami.0c19527 – reference: ChuGPrinting flowers? Custom-tailored photonic cellulose films with engineered surface topographyMatter20191988100010.1016/j.matt.2019.05.005 – reference: YuHLStimuli-responsive circularly polarized luminescent films with tunable emissionJ. Mater. Chem. C.202081459146510.1039/C9TC06105C – reference: GuidettiGFlexible photonic cellulose nanocrystal filmsAdv. Mater.201628100421004710.1002/adma.201603386 – reference: XiangJLavrentovichODBlue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switchingAppl. Phys. Lett.20131030511122013ApPhL.103e1112X10.1063/1.4817724 – reference: LiBXElectrically driven three-dimensional solitary waves as director bullets in nematic liquid crystalsNat. Commun.201892018NatCo...9.2912L10.1038/s41467-018-05101-y – reference: WangYControlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfacesProc. Natl Acad. Sci. USA201911621361213682019PNAS..11621361W10.1073/pnas.1911563116 – reference: HuWPolarization independent liquid crystal gratings based on orthogonal photoalignmentsAppl. Phys. Lett.20121001111162012ApPhL.100k1116H10.1063/1.3694921 – reference: MaLLRationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystalsAdv. Optical Mater.201531691169610.1002/adom.201500403 – reference: SmalyukhIIThermal management by engineering the alignment of nanocelluloseAdv. Mater.202133200122810.1002/adma.202001228 – reference: CaoJUltrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructuresACS Nano2020147055706510.1021/acsnano.0c01779 – reference: MaLLLight-activated liquid crystalline hierarchical architecture toward photonicsAdv. Optical Mater.20197190039310.1002/adom.201900393 – reference: KimYHSmectic liquid crystal defects for self-assembling of building blocks and their lithographic applicationsAdv. Funct. Mater.20112161062710.1002/adfm.201001303 – reference: BabakhanovaGControlled placement of microparticles at the water-liquid crystal elastomer interfaceACS Appl. Mater. Interfaces201911150071501310.1021/acsami.8b22023 – reference: KhandelwalHSchenningAPHJDebijeMGInfrared regulating smart window based on organic materialsAdv. Energy Mater.20177160220910.1002/aenm.201602209 – reference: ZhouKLight-driven reversible transformation between self-organized simple cubic lattice and helical superstructure enabled by a molecular switch functionalized nanocageAdv. Mater.201830180023710.1002/adma.201800237 – reference: BerryMVQuantal phase factors accompanying adiabatic changesProc. R. Soc. Lond. A. Math. Phys. Sci.198439245571984RSPSA.392...45B7389261113.81306 – reference: AckermanPJSmalyukhIIStatic three-dimensional topological solitons in fluid chiral ferromagnets and colloidsNat. Mater.2017164264322017NatMa..16..426A10.1038/nmat4826 – reference: HuWHumidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signalsAdv. Funct. Mater.202030200461010.1002/adfm.202004610 – reference: LagerwallJPFCellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin filmsNPG Asia Mater.2014610.1038/am.2013.69 – reference: QinLGeminate labels programmed by two-tone microdroplets combining structural and fluorescent colorNat. Commun.2021122021NatCo..12..699Q10.1038/s41467-021-20908-y – reference: WuTHA bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator propertiesJ. Mater. Chem. C.201649687969610.1039/C6TC02629J – reference: HelfrichWElectrohydrodynamic and dielectric instabilities of cholesteric liquid crystalsJ. Chem. Phys.1971558398421971JChPh..55..839H10.1063/1.1676151 – reference: JoubertFThe preparation of graft copolymers of cellulose and cellulose derivatives using atrp under homogeneous reaction conditionsChem. Soc. Rev.2014437217723510.1039/C4CS00053F – reference: PapičMTopological liquid crystal superstructures as structured light lasersProc. Natl Acad. Sci. USA2021118e211083911810.1073/pnas.2110839118 – reference: PreusseRSHierarchical assembly of smectic liquid crystal defects at undulated interfacesSoft Matter202016835283582020SMat...16.8352P10.1039/D0SM01112F – reference: XuQSunTWangCCoded liquid crystal metasurface for achromatic imaging in the broadband wavelength rangeACS Appl. Nano Mater.202145068507510.1021/acsanm.1c00542 – reference: BettottiPDynamics of hydration of nanocellulose filmsAdv. Mater. Interfaces20163150041510.1002/admi.201500415 – reference: WeiBYGenerating switchable and reconfigurable optical vortices via photopatterning of liquid crystalsAdv. Mater.2014261590159510.1002/adma.201305198 – reference: MatsuiTVisualizing invisible phase transitions in blue phase liquid crystals using early warning indicatorsSmall202218220011310.1002/smll.202200113 – reference: XiangJElectrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholestericsAdv. Mater.2015273014301810.1002/adma.201500340 – reference: FosterDTwo-dimensional skyrmion bags in liquid crystals and ferromagnetsNat. Phys.20191565565910.1038/s41567-019-0476-x – reference: LiuPWBiomimetic confined self-assembly of chitin nanocrystalsNano Today20224310142010.1016/j.nantod.2022.101420 – reference: HurSTLiquid-crystalline blue phase laser with widely tunable wavelengthAdv. Mater.2013253002300610.1002/adma.201204591 – reference: JiangYFImage flickering-free polymer stabilized fringe field switching liquid crystal displayOpt. Express20182632640326512018OExpr..2632640J10.1364/OE.26.032640 – reference: JiangMLow f-number diffraction-limited Pancharatnam–Berry microlenses enabled by plasmonic photopatterning of liquid crystal polymersAdv. Mater.201931180802810.1002/adma.201808028 – reference: WangMSensitive humidity-driven reversible and bidirectional bending of nanocellulose thin films as bio-inspired actuationAdv. Mater. Interfaces20152150008010.1002/admi.201500080 – reference: DuFPolymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuatorJpn. J. Appl. Phys.200443708370862004JaJAP..43.7083D10.1143/JJAP.43.7083 – reference: TranABoottCEMacLachlanMJUnderstanding the self-assembly of cellulose nanocrystals-Toward chiral photonic materialsAdv. Mater.202032190587610.1002/adma.201905876 – reference: LiWYInkjet printing of patterned, multispectral, and biocompatible photonic crystalsAdv. Mater.201931190103610.1002/adma.201901036 – reference: YanJA full-color reflective display using polymer-stabilized blue phase liquid crystalAppl. Phys. Lett.20131020811022013ApPhL.102h1102Y10.1063/1.4793750 – reference: ZhangZCYouZChuDPFundamentals of phase-only liquid crystal on silicon (LCOS) devicesLight Sci. Appl.20143e2132014LSA.....3E.213Z10.1038/lsa.2014.94 – reference: WilliamsCEKlémanMDislocations, grain boundaries and focal conics in smectics ALe. J. de. Phys. Colloq.197536C1-315C311-320 – reference: LeeH11.1: Invited Paper: The world's first blue phase liquid crystal displaySID Symp . Dig. Tech. Pap.2011421211242011IAUS..277..121L10.1889/1.3621051 – reference: MinovichAEFunctional and nonlinear optical metasurfacesLaser Photonics Rev.201591952132015LPRv....9..195M10.1002/lpor.201400402 – reference: Yang, D. K. & Wu, S. T. Fundamentals of liquid crystal devices. 2nd edn. (Hoboken: John Wiley & Sons, 2014). – reference: DaiSDCholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gasCarbohydr. Polym.201717453153910.1016/j.carbpol.2017.06.098 – reference: BrasseletEOptical vortices from liquid crystal dropletsPhys. Rev. Lett.20091031039032009PhRvL.103j3903B10.1103/PhysRevLett.103.103903 – reference: UsovIUnderstanding nanocellulose chirality and structure–properties relationship at the single fibril levelNat. Commun.201562015NatCo...6.7564U10.1038/ncomms8564 – reference: RubinNAMatrix fourier optics enables a compact full-stokes polarization cameraScience2019365eaax18392019Sci...365.1839R10.1126/science.aax1839 – reference: RevolJFHelicoidal self-ordering of cellulose microfibrils in aqueous suspensionInt. J. Biol. Macromolecules19921417017210.1016/S0141-8130(05)80008-X – reference: KimDSControlling gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystalsNat. Commun.201672016NatCo...710236K10.1038/ncomms10236 – reference: SaliliSMMagnetically tunable selective reflection of light by heliconical cholestericsPhys. Rev. E2016940427052016PhRvE..94d2705S10.1103/PhysRevE.94.042705 – reference: De La CruzJACellulose-based reflective liquid crystal films as optical filters and solar gain regulatorsACS Photonics201852468247710.1021/acsphotonics.8b00289 – reference: EspinhaAHydroxypropyl cellulose photonic architectures by soft nanoimprinting lithographyNat. Photonics2018123433482018NaPho..12..343E10.1038/s41566-018-0152-1 – reference: GeWHighly tough, stretchable, and solvent-resistant cellulose nanocrystal photonic films for mechanochromism and actuator propertiesSmall202218210710510.1002/smll.202107105 – reference: ChenYWuSTElectric field-induced monodomain blue phase liquid crystalsAppl. Phys. Lett.20131021711102013ApPhL.102q1110C10.1063/1.4803922 – reference: KimYHFabrication of two-dimensional dimple and conical microlens arrays from a highly periodic toroidal-shaped liquid crystal defect arrayJ. Mater. Chem.2010206557656110.1039/c0jm00910e – reference: ChenXFirst-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-opticsProc. Natl Acad. Sci. USA202011714021140312020PNAS..11714021C10.1073/pnas.2002290117 – reference: WangJStabilization and electro-optical switching of liquid crystal blue phases using unpolymerized and polymerized polyoxometalate-based nanoparticlesMol. Cryst. Liq. Cryst.2016634122310.1080/15421406.2016.1177900 – reference: PengZWApplications of cellulose nanomaterials in stimuli-responsive opticsJ. Agric. Food Chem.202068129401295510.1021/acs.jafc.0c04742 – reference: NakataMEnd-to-end stacking and liquid crystal condensation of 6- to 20-base pair DNA duplexesScience2007318127612792007Sci...318.1276N10.1126/science.1143826 – reference: ShenYJOptical vortices 30 years on: OAM manipulation from topological charge to multiple singularitiesLight Sci. Appl.20198902019LSA.....8...90S10.1038/s41377-019-0194-2 – reference: SawaYShape and chirality transitions in off-axis twist nematic elastomer ribbonsPhys. Rev. E2013880225022013PhRvE..88b2502S10.1103/PhysRevE.88.022502 – reference: Fernández-RicoCShaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic phasesScience20203699509552020Sci...369..950F10.1126/science.abb4536 – reference: RechcińskaKEngineering spin-orbit synthetic hamiltonians in liquid-crystal optical cavitiesScience20193667277302019Sci...366..727R10.1126/science.aay4182 – reference: WangYSLiMWangYSilk: a versatile biomaterial for advanced optics and photonicsChin. Opt. Lett.2020180800042020ChOpL..18h0004W10.3788/COL202018.080004 – reference: KhanMKHamadWYMacLachlanMJTunable mesoporous bilayer photonic resins with chiral nematic structures and actuator propertiesAdv. Mater.2014262323232810.1002/adma.201304966 – reference: MaLLLight-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free filmPolymers2017929510.3390/polym9070295 – reference: HuraultJPStatic distortions of a cholesteric planar structure induced by magnetic or ac electric fieldsJ. Chem. Phys.197359206820751973JChPh..59.2068H10.1063/1.1680293 – reference: HondaMSekiTTakeokaYDual tuning of the photonic band-gap structure in soft photonic crystalsAdv. Mater.2009211801180410.1002/adma.200801258 – reference: XiongRBiopolymeric photonic structures: Design, fabrication, and emerging applicationsChem. Soc. Rev.202049983103110.1039/C8CS01007B – reference: IhnKJObservations of the liquid-crystal analog of the Abrikosov phaseScience19922582752781992Sci...258..275I10.1126/science.258.5080.275 – reference: DumanliAGSavinTRecent advances in the biomimicry of structural coloursChem. Soc. Rev.2016456698672410.1039/C6CS00129G – reference: XiongJWuSTPlanar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applicationseLight20211310.1186/s43593-021-00003-x – reference: BisoyiHKBunningTJLiQStimuli-driven control of the helical axis of self-organized soft helical superstructuresAdv. Mater.201830170651210.1002/adma.201706512 – reference: RubinNAImaging polarimetry through metasurface polarization gratingsOpt. Express202230938994122022OExpr..30.9389R10.1364/OE.450941 – reference: GibaudTReconfigurable self-assembly through chiral control of interfacial tensionNature20124813483512012Natur.481..348G10.1038/nature10769 – reference: SatapathyPSwitchable smart windows using a biopolymer network of cellulose nanocrystals imposed on a nematic liquid crystalAppl. Phys. Lett.20201171037022020ApPhL.117j3702S10.1063/5.0020982 – reference: ZapponeBAnalogy between periodic patterns in thin smectic liquid crystal films and the intermediate state of superconductorsProc. Natl Acad. Sci. U. State. Am.202011717643176492020PNAS..11717643Z42427371485.8201310.1073/pnas.2000849117 – reference: WangLUrbasAMLiQNature-inspired emerging chiral liquid crystal nanostructures: From molecular self-assembly to DNA mesophase and nanocolloidsAdv. Mater.202032180133510.1002/adma.201801335 – reference: LiYLiuYJLuoDPolarization dependent light-driven liquid crystal elastomer actuators based on photothermal effectAdv. Optical Mater.20219200186110.1002/adom.202001861 – reference: BukusogluEStrain-induced alignment and phase behavior of blue phase liquid crystals confined to thin filmsSoft Matter201713899990062017SMat...13.8999B10.1039/C7SM01755C – reference: RevolJFGodboutLGrayDGSolid self-assembled films of cellulose with chiral nematic order and optically variable propertiesJ. Pulp Pap. Sci.199824146149 – reference: FooGPalaciosDMSwartzlanderGAOptical vortex coronagraphOpt. Lett.200530330833102005OptL...30.3308F10.1364/OL.30.003308 – reference: MengYHFabrication of environmental humidity-responsive iridescent films with cellulose nanocrystal/polyolsCarbohydr. Polym.202024011628110.1016/j.carbpol.2020.116281 – reference: ZhangPA patterned mechanochromic photonic polymer for reversible image revealAdv. Mater. Interfaces20207190187810.1002/admi.201901878 – reference: OrtsWJEnhanced ordering of liquid crystalline suspensions of cellulose microfibrils: A small angle neutron scattering studyMacromolecules199831571757251998MaMol..31.5717O10.1021/ma9711452 – reference: XiangJElectrooptic response of chiral nematic liquid crystals with oblique helicoidal directorPhys. Rev. Lett.20141122178012014PhRvL.112u7801X10.1103/PhysRevLett.112.217801 – reference: ThapaKCombined electric and photocontrol of selective light reflection at an oblique helicoidal cholesteric liquid crystal doped with azoxybenzene derivativePhys. Rev. E20211040447022021PhRvE.104d4702T435376110.1103/PhysRevE.104.044702 – reference: PiccardiAPower-controlled transition from standard to negative refraction in reorientational soft matterNat. Commun.201452014NatCo...5.5533P10.1038/ncomms6533 – reference: RichSIWoodRJMajidiCUntethered soft roboticsNat. Electron.2018110211210.1038/s41928-018-0024-1 – reference: GuoYBHigh-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystalsAdv. Mater.2016282353235810.1002/adma.201506002 – reference: KimMFabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windowsACS Appl. Mater. Interfaces20157179041790910.1021/acsami.5b04496 – reference: WangLStimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized grapheneMater. Today20172023023710.1016/j.mattod.2017.04.028 – reference: Dierking, I. Textures of Liquid Crystals. (Weinheim: John Wiley & Sons, 2003). – reference: YoonWJA single-step dual stabilization of smart window by the formation of liquid crystal physical gels and the construction of liquid crystal chambersAdv. Funct. Mater.202030190678010.1002/adfm.201906780 – reference: XiaYThickness-independent capacitance of vertically aligned liquid-crystalline MXenesNature20185574094122018Natur.557..409X10.1038/s41586-018-0109-z – reference: BellerDAFocal conic flower textures at curved interfacesPhys. Rev. X20133041026 – reference: ChiangWFContinuously tunable intensity modulators with large switching contrasts using liquid crystal elastomer films that are deposited with terahertz metamaterialsOpt. Express20202827676276872020OExpr..2827676C10.1364/OE.399581 – reference: KimDSFabrication of periodic nanoparticle clusters using a soft lithographic templateJ. Mater. Chem. C.201534598460210.1039/C5TC00687B – reference: HuWQSmall-scale soft-bodied robot with multimodal locomotionNature201855481852018Natur.554...81H10.1038/nature25443 – reference: Yeh, P. & Gu, C. Optics of liquid crystal displays. (New York: John Wiley & Sons, 1999). – reference: YoonDKInternal structure visualization and lithographic use of periodic toroidal holes in liquid crystalsNat. Mater.200768668702007NatMa...6..866Y10.1038/nmat2029 – reference: GimMJBellerDAYoonDKMorphogenesis of liquid crystal topological defects during the nematic-smectic A phase transitionNat. Commun.201782017NatCo...815453G10.1038/ncomms15453 – reference: Gutierrez-CuevasKGFrequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticlesAngew. Chem. Int. Ed.201655130901309410.1002/anie.201606895 – reference: ChanCLCVisual appearance of chiral nematic cellulose-based photonic films: angular and polarization independent color response with a twistAdv. Mater.201931190515110.1002/adma.201905151 – reference: WangYEmerging chirality in nanoscienceChem. Soc. Rev.2013422930296210.1039/C2CS35332F – reference: LinJDMicrostructure-stabilized blue phase liquid crystalsACS Omega20183154351544110.1021/acsomega.8b01749 – reference: BorshchVNanosecond electro-optics of a nematic liquid crystal with negative dielectric anisotropyPhys. Rev. E2014900625042014PhRvE..90f2504B10.1103/PhysRevE.90.062504 – reference: ConleyKOrigin of the twist of cellulosic materialsCarbohydr. Polym.201613528529910.1016/j.carbpol.2015.08.029 – reference: KlémanMLavrentovichODLiquids with conicsLiq. Cryst.2009361085109910.1080/02678290902814718 – reference: WangMAsymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarityAdv. Funct. Mater.201727170226110.1002/adfm.201702261 – reference: WangYBiomaterial-based “structured opals” with programmable combination of diffractive optical elements and photonic bandgap effectsAdv. Mater.201931180531210.1002/adma.201805312 – reference: MurrayJMaDKMundayJNElectrically controllable light trapping for self-powered switchable solar windowsACS Photonics201741710.1021/acsphotonics.6b00518 – reference: FengWBroerDJLiuDQOscillating chiral-nematic fingerprints wipe away dustAdv. Mater.201830170497010.1002/adma.201704970 – reference: LiXNucleation and growth of blue phase liquid crystals on chemically-patterned surfaces: A surface anchoring assisted blue phase correlation lengthMol. Syst. Des. Eng.2021653454410.1039/D1ME00044F – reference: XuMCMultifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatingsJ. Mater. Chem. C.201865391540010.1039/C8TC01321G – reference: ZhaoGMDual response of photonic films with chiral nematic cellulose nanocrystals: humidity and formaldehydeACS Appl. Mater. Interfaces202012178331784410.1021/acsami.0c00591 – reference: JiangYCHighly strong luminescent chiral nematic cellulose nanocrystal/PEI composites for anticounterfeitingChem. Eng. J.202243013278010.1016/j.cej.2021.132780 – reference: YuanCLStimulated transformation of soft helix among helicoidal, heliconical, and their inverse helicesSci. Adv.20195eaax95012019SciA....5.9501Y10.1126/sciadv.aax9501 – reference: PancharatnamSGeneralized theory of interference and its applicationsProc. Indian Acad. Sci.-Sect. A1956443984179723610.1007/BF03046095 – reference: VitralELeoPHViñalsJPhase-field model for a weakly compressible soft layered material: Morphological transitions on smectic-isotropic interfacesSoft Matter202117614061592021SMat...17.6140V10.1039/D1SM00488C – reference: BorshchVShiyanovskiiSVLavrentovichODNanosecond electro-optic switching of a liquid crystalPhys. Rev. Lett.20131111078022013PhRvL.111j7802B10.1103/PhysRevLett.111.107802 – reference: SerraFCurvature-driven, one-step assembly of reconfigurable smectic liquid crystal “compound eye” lensesAdv. Optical Mater.201531287129210.1002/adom.201500153 – reference: BonielloGMaking smectic defect patterns electrically reversible and dynamically tunable using in situ polymer-templated nematic liquid crystalsMacromol. Rapid Commun.202142210008710.1002/marc.202100087 – reference: LiJT1,2-dithienyldicyanoethene-based, visible-light-driven, chiral fluorescent molecular switch: Rewritable multimodal photonic devicesAngew. Chem. Int. Ed.201958160521605610.1002/anie.201908832 – reference: ChenLJPhotoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switchAdv. Optical Mater.2014284584810.1002/adom.201400166 – reference: ChenJExperimental demonstration of cylindrical vector spatiotemporal optical vortexNanophotonics2021104489449510.1515/nanoph-2021-0427 – reference: WangJQA fully self-powered, ultra-stable cholesteric smart window triggered by instantaneous mechanical stimuliNano Energy20218510597610.1016/j.nanoen.2021.105976 – reference: KoseOUnwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable opticsNat. Commun.2019102019NatCo..10..510K10.1038/s41467-019-08351-6 – reference: WareTHVoxelated liquid crystal elastomersScience20153479829842015Sci...347..982W10.1126/science.1261019 – reference: TeyssierJPhotonic crystals cause active colour change in chameleonsNat. Commun.201562015NatCo...6.6368T10.1038/ncomms7368 – reference: WangLBroadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodesLight Sci. Appl.20154e2532015ltnc.book.....W10.1038/lsa.2015.26 – reference: LiangXA roll-to-roll process for multi-responsive soft-matter composite films containing CsxWO3 nanorods for energy-efficient smart window applicationsNanoscale Horiz.201723193252017NanoH...2..319L10.1039/C7NH00105C – reference: De Gennes, P. G. & Prost, J. The physics of liquid crystals. 2nd edn. (Oxford: Oxford University Press, 1995). – reference: BoyarskyAFröhlichJRuchayskiyOSelf-consistent evolution of magnetic fields and chiral asymmetry in the early universePhys. Rev. Lett.20121080313012012PhRvL.108c1301B10.1103/PhysRevLett.108.031301 – reference: EelkemaRMolecular machines: Nanomotor rotates microscale objectsNature20064401632006Natur.440..163E10.1038/440163a – reference: BoottCECellulose nanocrystal elastomers with reversible visible colorAngew. Chem. Int. Ed.20205922623110.1002/anie.201911468 – reference: HeQElectrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuationSci. Adv.20195eaax57462019SciA....5.5746H10.1126/sciadv.aax5746 – reference: YuYDChameleon-inspired stress-responsive multicolored ultratough filmsACS Appl. Mater. Interfaces202012367313673910.1021/acsami.0c09212 – reference: WerbowyjRSGrayDGOptical properties of hydroxypropyl cellulose liquid crystals. I. Cholesteric pitch and polymer concentrationMacromolecules198417151215201984MaMol..17.1512W10.1021/ma00138a016 – reference: YooHWPlasmonic three-dimensional dimpled array from highly ordered self-assembled liquid crystal defectsJ. Mater. Chem. C.201311434143910.1039/c2tc00089j – reference: FengWLiuDQBroerDJFunctional liquid crystal polymer surfaces with switchable topographiesSmall Struct.20202200010710.1002/sstr.202000107 – reference: AckermanPJLaser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularitiesSci. Rep.2012210.1038/srep00414 – reference: WangYRoom temperature heliconical twist-bend nematic liquid crystalCrystEngComm2015172778278210.1039/C4CE02502D – reference: DuanWPatterned optical anisotropic film for generation of non-diffracting vortex beamsAppl. Phys. Lett.20221200311012022ApPhL.120c1101D10.1063/5.0079634 – reference: GladmanASBiomimetic 4D printingNat. Mater.2016154134182016NatMa..15..413S10.1038/nmat4544 – reference: ChenPArbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratingsPhotonics Res.2015313313910.1364/PRJ.3.000133 – reference: KizhakidathazhathRFacile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic responseAdv. Funct. Mater.202030190953710.1002/adfm.201909537 – reference: GuoWBahrCInfluence of anchoring strength on focal conic domains in smectic filmsPhys. Rev. E2009790117072009PhRvE..79a1707G10.1103/PhysRevE.79.011707 – reference: SchlafmannKRWhiteTJRetention and deformation of the blue phases in liquid crystalline elastomersNat. Commun.2021122021NatCo..12.4916S10.1038/s41467-021-25112-6 – reference: QinLPiecewise phototuning of self-organized helical superstructuresAdv. Mater.201830170494110.1002/adma.201704941 – reference: ZhangHProgrammable responsive hydrogels inspired by classical conditioning algorithmNat. Commun.2019102019NatCo..10.3267Z10.1038/s41467-019-11260-3 – reference: ShimizuTDingWKametaNSoft-matter nanotubes: A platform for diverse functions and applicationsChem. Rev.20201202347240710.1021/acs.chemrev.9b00509 – reference: IsapourGLattuadaMBioinspired stimuli-responsive color-changing systemsAdv. Mater.201830170706910.1002/adma.201707069 – reference: ShenYDierkingIDynamic dissipative solitons in nematics with positive anisotropiesSoft Matter202016532553332020SMat...16.5325S10.1039/D0SM00676A – reference: Goodby, J. W. et al. Handbook of liquid crystals. 2nd edn. (Weinheim: John Wiley & Sons, 2014). – reference: WuSBSmectic defect engineering enabled by programmable photoalignmentAdv. Optical Mater.20208200059310.1002/adom.202000593 – reference: YinKHeZQWuSTReflective polarization volume lens with small f-number and large diffraction angleAdv. Optical Mater.20208200017010.1002/adom.202000170 – reference: YiHUltra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivativeAdv. Funct. Mater.201929190272010.1002/adfm.201902720 – reference: LindahlTInstability and decay of the primary structure of DNANature19933627097151993Natur.362..709L10.1038/362709a0 – reference: NanFCEnhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatmentACS Sustain. Chem. Eng.201758951895810.1021/acssuschemeng.7b01749 – reference: MilioneGUsing the nonseparability of vector beams to encode information for optical communicationOpt. Lett.201540488748902015OptL...40.4887M10.1364/OL.40.004887 – reference: KobashiJYoshidaHOzakiMPolychromatic optical vortex generation from patterned cholesteric liquid crystalsPhys. Rev. Lett.20161162539032016PhRvL.116y3903K10.1103/PhysRevLett.116.253903 – reference: ZouJYLiLSWuSTGaze-matched pupil steering Maxwellian-view augmented reality display with large angle diffractive liquid crystal lensesAdv. Photonics Res.20223210036210.1002/adpr.202100362 – ident: 930_CR242 doi: 10.1002/9781119850809.ch1 – volume: 29 start-page: 1702769 year: 2017 ident: 930_CR291 publication-title: Adv. Mater. doi: 10.1002/adma.201702769 – volume: 8 start-page: 90 year: 2019 ident: 930_CR231 publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0194-2 – volume: 29 start-page: 1701814 year: 2017 ident: 930_CR260 publication-title: Adv. Mater. doi: 10.1002/adma.201701814 – volume: 531 start-page: 352 year: 2016 ident: 930_CR122 publication-title: Nature doi: 10.1038/nature17141 – volume: 102 start-page: 081102 year: 2013 ident: 930_CR136 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4793750 – volume: 10 year: 2019 ident: 930_CR250 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12583-x – volume: 79 start-page: 011707 year: 2009 ident: 930_CR89 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.011707 – volume: 3 start-page: 1287 year: 2015 ident: 930_CR97 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201500153 – volume: 115 start-page: 921 year: 2018 ident: 930_CR63 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1716887115 – volume: 26 start-page: 1590 year: 2014 ident: 930_CR67 publication-title: Adv. Mater. doi: 10.1002/adma.201305198 – volume: 33 start-page: 2103674 year: 2021 ident: 930_CR49 publication-title: Adv. Mater. doi: 10.1002/adma.202103674 – volume: 4 start-page: 1 year: 2017 ident: 930_CR282 publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00518 – volume: 135 start-page: 285 year: 2016 ident: 930_CR167 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.08.029 – volume: 8 start-page: 1459 year: 2020 ident: 930_CR180 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC06105C – volume: 32 start-page: 2107242 year: 2022 ident: 930_CR173 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107242 – volume: 18 start-page: 2200113 year: 2022 ident: 930_CR299 publication-title: Small doi: 10.1002/smll.202200113 – volume: 436 start-page: 997 year: 2005 ident: 930_CR139 publication-title: Nature doi: 10.1038/nature03932 – volume: 31 start-page: 1905151 year: 2019 ident: 930_CR159 publication-title: Adv. Mater. doi: 10.1002/adma.201905151 – volume: 554 start-page: 81 year: 2018 ident: 930_CR258 publication-title: Nature doi: 10.1038/nature25443 – ident: 930_CR6 doi: 10.1002/9781118751992 – volume: 6 start-page: 866 year: 2007 ident: 930_CR93 publication-title: Nat. Mater. doi: 10.1038/nmat2029 – volume: 19 start-page: 112601 year: 2021 ident: 930_CR232 publication-title: Chin. Opt. Lett. doi: 10.3788/COL202119.112601 – volume: 2 year: 2012 ident: 930_CR243 publication-title: Sci. Rep. doi: 10.1038/srep00414 – volume: 102 start-page: 171110 year: 2013 ident: 930_CR149 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4803922 – volume: 6 start-page: 5391 year: 2018 ident: 930_CR184 publication-title: J. Mater. Chem. C. doi: 10.1039/C8TC01321G – volume: 6 year: 2014 ident: 930_CR160 publication-title: NPG Asia Mater. doi: 10.1038/am.2013.69 – volume: 64 start-page: 659 year: 2019 ident: 930_CR205 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.04.030 – volume: 116 start-page: 15089 year: 2016 ident: 930_CR39 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00415 – volume: 30 start-page: 1906780 year: 2020 ident: 930_CR283 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906780 – volume: 110 start-page: 34 year: 2013 ident: 930_CR84 publication-title: Proc. Natl Acad. Sci. U. State. Am. doi: 10.1073/pnas.1214708109 – volume: 32 start-page: 1905876 year: 2020 ident: 930_CR163 publication-title: Adv. Mater. doi: 10.1002/adma.201905876 – volume: 9 start-page: 295 year: 2017 ident: 930_CR265 publication-title: Polymers doi: 10.3390/polym9070295 – volume: 100 start-page: 111116 year: 2012 ident: 930_CR71 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3694921 – volume: 1 start-page: 988 year: 2019 ident: 930_CR171 publication-title: Matter doi: 10.1016/j.matt.2019.05.005 – volume: 9 start-page: 195 year: 2015 ident: 930_CR210 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201400402 – volume: 21 start-page: 41 year: 2022 ident: 930_CR199 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01075-3 – volume: 1 start-page: 3 year: 2021 ident: 930_CR47 publication-title: eLight doi: 10.1186/s43593-021-00003-x – volume: 3 start-page: 4598 year: 2015 ident: 930_CR81 publication-title: J. Mater. Chem. C. doi: 10.1039/C5TC00687B – volume: 30 start-page: 2004610 year: 2020 ident: 930_CR150 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004610 – volume: 9 year: 2018 ident: 930_CR78 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05101-y – volume: 11 start-page: 40443 year: 2019 ident: 930_CR187 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12106 – volume: 104 start-page: 044702 year: 2021 ident: 930_CR198 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.044702 – volume: 481 start-page: 348 year: 2012 ident: 930_CR13 publication-title: Nature doi: 10.1038/nature10769 – volume: 3 start-page: e213 year: 2014 ident: 930_CR227 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.94 – volume: 32 start-page: 1907376 year: 2020 ident: 930_CR172 publication-title: Adv. Mater. doi: 10.1002/adma.201907376 – ident: 930_CR2 doi: 10.1007/b97416 – volume: 3 start-page: e1701336 year: 2017 ident: 930_CR117 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701336 – volume: 121 start-page: 213901 year: 2018 ident: 930_CR245 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.213901 – volume: 47 start-page: 3184 year: 2014 ident: 930_CR36 publication-title: Acc. Chem. Res. doi: 10.1021/ar500249k – volume: 90 start-page: 062504 year: 2014 ident: 930_CR59 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.062504 – volume: 36 start-page: C1-315 year: 1975 ident: 930_CR83 publication-title: Le. J. de. Phys. Colloq. – volume: 10 year: 2019 ident: 930_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11260-3 – volume: 27 start-page: 8800 year: 2019 ident: 930_CR211 publication-title: Opt. Express doi: 10.1364/OE.27.008800 – volume: 28 start-page: 1044 year: 2016 ident: 930_CR112 publication-title: Adv. Mater. doi: 10.1002/adma.201502590 – volume: 10 year: 2019 ident: 930_CR183 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08351-6 – volume: 31 start-page: 1808028 year: 2019 ident: 930_CR212 publication-title: Adv. Mater. doi: 10.1002/adma.201808028 – volume: 20 start-page: 16684 year: 2012 ident: 930_CR69 publication-title: Opt. Express doi: 10.1364/OE.20.016684 – volume: 6 start-page: 534 year: 2021 ident: 930_CR43 publication-title: Mol. Syst. Des. Eng. doi: 10.1039/D1ME00044F – volume: 55 start-page: 839 year: 1971 ident: 930_CR126 publication-title: J. Chem. Phys. doi: 10.1063/1.1676151 – volume: 59 start-page: 2068 year: 1973 ident: 930_CR41 publication-title: J. Chem. Phys. doi: 10.1063/1.1680293 – volume: 13 start-page: 064022 year: 2011 ident: 930_CR235 publication-title: J. Opt. doi: 10.1088/2040-8978/13/6/064022 – volume: 29 start-page: 1902720 year: 2019 ident: 930_CR204 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902720 – volume: 1 start-page: 1434 year: 2013 ident: 930_CR92 publication-title: J. Mater. Chem. C. doi: 10.1039/c2tc00089j – volume: 12 year: 2021 ident: 930_CR147 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25112-6 – volume: 14 start-page: 7055 year: 2020 ident: 930_CR274 publication-title: ACS Nano doi: 10.1021/acsnano.0c01779 – volume: 9 start-page: 1900720 year: 2019 ident: 930_CR280 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900720 – volume: 365 start-page: eaax1839 year: 2019 ident: 930_CR222 publication-title: Science doi: 10.1126/science.aax1839 – volume: 26 start-page: 2323 year: 2014 ident: 930_CR269 publication-title: Adv. Mater. doi: 10.1002/adma.201304966 – volume: 10 start-page: 884 year: 2018 ident: 930_CR61 publication-title: Polymers doi: 10.3390/polym10080884 – volume: 7 start-page: 1900393 year: 2019 ident: 930_CR52 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201900393 – volume: 49 start-page: 983 year: 2020 ident: 930_CR55 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS01007B – volume: 11 year: 2020 ident: 930_CR77 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16864-8 – volume: 30 start-page: 1705865 year: 2018 ident: 930_CR241 publication-title: Adv. Mater. doi: 10.1002/adma.201705865 – volume: 11 start-page: 118 year: 2022 ident: 930_CR29 publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00806-8 – volume: 9 start-page: 115 year: 1983 ident: 930_CR158 publication-title: Prog. Polym. Sci. doi: 10.1016/0079-6700(83)90001-1 – volume: 2 start-page: 845 year: 2014 ident: 930_CR124 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201400166 – volume: 43 start-page: 101420 year: 2022 ident: 930_CR5 publication-title: Nano Today doi: 10.1016/j.nantod.2022.101420 – volume: 10 start-page: 122 year: 2021 ident: 930_CR56 publication-title: Light Sci. Appl. doi: 10.1038/s41377-021-00567-w – volume: 30 start-page: 1800237 year: 2018 ident: 930_CR146 publication-title: Adv. Mater. doi: 10.1002/adma.201800237 – volume: 5 start-page: 31485 year: 2020 ident: 930_CR64 publication-title: ACS Omega doi: 10.1021/acsomega.0c05087 – volume: 17 start-page: 1512 year: 1984 ident: 930_CR169 publication-title: Macromolecules doi: 10.1021/ma00138a016 – volume: 374 start-page: 1501 year: 2021 ident: 930_CR276 publication-title: Science doi: 10.1126/science.abg0291 – volume: 25 start-page: 3002 year: 2013 ident: 930_CR152 publication-title: Adv. Mater. doi: 10.1002/adma.201204591 – volume: 6 year: 2015 ident: 930_CR165 publication-title: Nat. Commun. doi: 10.1038/ncomms8564 – volume: 7 start-page: 8809 year: 2015 ident: 930_CR189 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01380 – volume: 440 start-page: 163 year: 2006 ident: 930_CR264 publication-title: Nature doi: 10.1038/440163a – volume: 8 year: 2017 ident: 930_CR102 publication-title: Nat. Commun. doi: 10.1038/ncomms15453 – volume: 2 start-page: 013178 year: 2020 ident: 930_CR75 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.013178 – volume: 4 start-page: 377 year: 1994 ident: 930_CR86 publication-title: J. de. Phys. II – volume: 6 start-page: 1504 year: 2019 ident: 930_CR273 publication-title: Mater. Horiz. doi: 10.1039/C9MH00320G – volume: 3 start-page: 1691 year: 2015 ident: 930_CR121 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201500403 – volume: 26 start-page: 32640 year: 2018 ident: 930_CR57 publication-title: Opt. Express doi: 10.1364/OE.26.032640 – volume: 108 start-page: 031301 year: 2012 ident: 930_CR109 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.031301 – volume: 2 start-page: 2000107 year: 2020 ident: 930_CR259 publication-title: Small Struct. doi: 10.1002/sstr.202000107 – volume: 28 start-page: 2353 year: 2016 ident: 930_CR72 publication-title: Adv. Mater. doi: 10.1002/adma.201506002 – volume: 28 start-page: 5875 year: 2020 ident: 930_CR215 publication-title: Opt. Express doi: 10.1364/OE.387942 – ident: 930_CR135 doi: 10.1007/430_2007_075 – volume: 13 start-page: 817 year: 2014 ident: 930_CR134 publication-title: Nat. Mater. doi: 10.1038/nmat3993 – volume: 122 start-page: 4887 year: 2022 ident: 930_CR4 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00761 – volume: 116 start-page: 253903 year: 2016 ident: 930_CR240 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.253903 – volume: 31 start-page: 1901036 year: 2019 ident: 930_CR295 publication-title: Adv. Mater. doi: 10.1002/adma.201901036 – volume: 27 start-page: 1702261 year: 2017 ident: 930_CR148 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702261 – volume: 5 year: 2014 ident: 930_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms6533 – volume: 42 start-page: 121 year: 2011 ident: 930_CR298 publication-title: SID Symp . Dig. Tech. Pap. doi: 10.1889/1.3621051 – volume: 30 start-page: 9389 year: 2022 ident: 930_CR224 publication-title: Opt. Express doi: 10.1364/OE.450941 – volume: 2 start-page: 275 year: 2014 ident: 930_CR225 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201300384 – volume: 22 start-page: 2416 year: 2010 ident: 930_CR96 publication-title: Adv. Mater. doi: 10.1002/adma.200903728 – volume: 40 start-page: 2723 year: 2015 ident: 930_CR213 publication-title: Opt. Lett. doi: 10.1364/OL.40.002723 – volume: 4 start-page: 5068 year: 2021 ident: 930_CR214 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00542 – volume: 111 start-page: 107802 year: 2013 ident: 930_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.107802 – volume: 20 start-page: 230 year: 2017 ident: 930_CR285 publication-title: Mater. Today doi: 10.1016/j.mattod.2017.04.028 – volume: 5 start-page: 2468 year: 2018 ident: 930_CR287 publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b00289 – volume: 21 start-page: 1801 year: 2009 ident: 930_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.200801258 – volume: 88 start-page: 022502 year: 2013 ident: 930_CR255 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.022502 – volume: 33 start-page: 2004754 year: 2021 ident: 930_CR278 publication-title: Adv. Mater. doi: 10.1002/adma.202004754 – volume: 7 start-page: 1801395 year: 2019 ident: 930_CR178 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201801395 – volume: 7 start-page: 581 year: 2021 ident: 930_CR256 publication-title: Engineering doi: 10.1016/j.eng.2021.02.014 – volume: 117 start-page: 14021 year: 2020 ident: 930_CR289 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2002290117 – volume: 14 start-page: 1802060 year: 2018 ident: 930_CR192 publication-title: Small doi: 10.1002/smll.201802060 – volume: 546 start-page: 632 year: 2017 ident: 930_CR253 publication-title: Nature doi: 10.1038/nature22987 – volume: 29 start-page: 1321 year: 2002 ident: 930_CR68 publication-title: Liq. Cryst. doi: 10.1080/713935610 – volume: 10 start-page: 389 year: 2016 ident: 930_CR228 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.66 – volume: 10 year: 2019 ident: 930_CR66 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13012-9 – volume: 9 start-page: 2103090 year: 2022 ident: 930_CR261 publication-title: Adv. Sci. doi: 10.1002/advs.202103090 – volume: 112 start-page: 217801 year: 2014 ident: 930_CR127 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.217801 – volume: 1 start-page: 1478 year: 2011 ident: 930_CR141 publication-title: Optical Mater. Express doi: 10.1364/OME.1.001478 – volume: 68 start-page: 12940 year: 2020 ident: 930_CR155 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c04742 – volume: 7 start-page: 17904 year: 2015 ident: 930_CR281 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04496 – volume: 15 start-page: 655 year: 2019 ident: 930_CR62 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0476-x – volume: 12 year: 2021 ident: 930_CR197 publication-title: Nat. Commun. doi: 10.1038/s41467-021-20908-y – volume: 52 start-page: 555 year: 1989 ident: 930_CR82 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/52/5/002 – volume: 45 start-page: 6698 year: 2016 ident: 930_CR193 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00129G – volume: 9 year: 2018 ident: 930_CR267 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07518-x – volume: 15 start-page: 106 year: 2016 ident: 930_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat4421 – volume: 12 year: 2021 ident: 930_CR206 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25797-9 – volume: 7 start-page: 1901878 year: 2020 ident: 930_CR201 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901878 – volume: 369 start-page: 950 year: 2020 ident: 930_CR3 publication-title: Science doi: 10.1126/science.abb4536 – volume: 318 start-page: 1276 year: 2007 ident: 930_CR33 publication-title: Science doi: 10.1126/science.1143826 – volume: 30 start-page: 1909537 year: 2020 ident: 930_CR118 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909537 – volume: 2 start-page: 194 year: 2020 ident: 930_CR20 publication-title: Matter doi: 10.1016/j.matt.2019.10.019 – volume: 29 start-page: 37464 year: 2021 ident: 930_CR207 publication-title: Opt. Express doi: 10.1364/OE.441386 – volume: 366 start-page: 727 year: 2019 ident: 930_CR249 publication-title: Science doi: 10.1126/science.aay4182 – volume: 12 start-page: 343 year: 2018 ident: 930_CR170 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0152-1 – volume: 42 start-page: 2930 year: 2013 ident: 930_CR110 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35332F – volume: 5 start-page: 8951 year: 2017 ident: 930_CR188 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01749 – volume: 5 start-page: 343 year: 2011 ident: 930_CR233 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.81 – volume: 16 start-page: 8352 year: 2020 ident: 930_CR100 publication-title: Soft Matter doi: 10.1039/D0SM01112F – volume: 31 start-page: 1903120 year: 2019 ident: 930_CR200 publication-title: Adv. Mater. doi: 10.1002/adma.201903120 – volume: 634 start-page: 12 year: 2016 ident: 930_CR142 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2016.1177900 – volume: 14 start-page: 170 year: 1992 ident: 930_CR164 publication-title: Int. J. Biol. Macromolecules doi: 10.1016/S0141-8130(05)80008-X – volume: 13 start-page: 4574 year: 2021 ident: 930_CR220 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21044 – volume: 17 start-page: 6140 year: 2021 ident: 930_CR106 publication-title: Soft Matter doi: 10.1039/D1SM00488C – volume: 20 start-page: 6557 year: 2010 ident: 930_CR90 publication-title: J. Mater. Chem. doi: 10.1039/c0jm00910e – volume: 117 start-page: 103702 year: 2020 ident: 930_CR288 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0020982 – volume: 6 year: 2015 ident: 930_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms7368 – volume: 11 start-page: 15007 year: 2019 ident: 930_CR263 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22023 – volume: 4 start-page: 9687 year: 2016 ident: 930_CR275 publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC02629J – volume: 42 start-page: 2100087 year: 2021 ident: 930_CR107 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202100087 – volume: 15 start-page: 413 year: 2016 ident: 930_CR270 publication-title: Nat. Mater. doi: 10.1038/nmat4544 – volume: 18 start-page: 2107105 year: 2022 ident: 930_CR42 publication-title: Small doi: 10.1002/smll.202107105 – volume: 1 start-page: 033215 year: 2019 ident: 930_CR129 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.1.033215 – volume: 30 start-page: 1704477 year: 2018 ident: 930_CR162 publication-title: Adv. Mater. doi: 10.1002/adma.201704477 – volume: 7 start-page: 1533 year: 2018 ident: 930_CR238 publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0072 – volume: 113 start-page: 12925 year: 2016 ident: 930_CR116 publication-title: Proc. Natl Acad. Sci. U. State. Am. doi: 10.1073/pnas.1612212113 – volume: 6 year: 2015 ident: 930_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms9011 – volume: 31 start-page: 11135 year: 2015 ident: 930_CR94 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b02508 – volume: 362 start-page: 709 year: 1993 ident: 930_CR108 publication-title: Nature doi: 10.1038/362709a0 – volume: 1 start-page: 64 year: 2002 ident: 930_CR131 publication-title: Nat. Mater. doi: 10.1038/nmat712 – volume: 117 start-page: 17643 year: 2020 ident: 930_CR103 publication-title: Proc. Natl Acad. Sci. U. State. Am. doi: 10.1073/pnas.2000849117 – volume: 29 start-page: 1701903 year: 2017 ident: 930_CR123 publication-title: Adv. Mater. doi: 10.1002/adma.201701903 – volume: 28 start-page: 10042 year: 2016 ident: 930_CR185 publication-title: Adv. Mater. doi: 10.1002/adma.201603386 – volume: 543 start-page: 234 year: 2017 ident: 930_CR111 publication-title: Nature doi: 10.1038/nature21051 – volume: 325 start-page: 456 year: 2009 ident: 930_CR9 publication-title: Science doi: 10.1126/science.1170027 – volume: 1 start-page: 102 year: 2018 ident: 930_CR22 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0024-1 – volume: 117 start-page: 5125 year: 2020 ident: 930_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1917952117 – volume: 12 year: 2021 ident: 930_CR290 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21764-6 – volume: 13 start-page: 41102 year: 2021 ident: 930_CR151 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11711 – volume: 10 start-page: 201 year: 2020 ident: 930_CR54 publication-title: MRS Commun. doi: 10.1557/mrc.2020.23 – volume: 295 start-page: 2418 year: 2002 ident: 930_CR7 publication-title: Science doi: 10.1126/science.1070821 – volume: 101 start-page: 131904 year: 2012 ident: 930_CR137 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4752461 – volume: 537 start-page: 179 year: 2016 ident: 930_CR21 publication-title: Nature doi: 10.1038/nature19344 – volume: 11 start-page: 54 year: 2022 ident: 930_CR28 publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00746-3 – volume: 120 start-page: 031101 year: 2022 ident: 930_CR70 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0079634 – volume: 28 start-page: 27676 year: 2020 ident: 930_CR229 publication-title: Opt. Express doi: 10.1364/OE.399581 – volume: 5 start-page: eaax9501 year: 2019 ident: 930_CR130 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax9501 – volume: 10 start-page: 753 year: 1972 ident: 930_CR104 publication-title: Solid State Commun. doi: 10.1016/0038-1098(72)90186-X – volume: 570 start-page: 214 year: 2019 ident: 930_CR266 publication-title: Nature doi: 10.1038/s41586-019-1247-7 – volume: 94 start-page: 042705 year: 2016 ident: 930_CR128 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.042705 – volume: 29 start-page: 1704296 year: 2017 ident: 930_CR133 publication-title: Adv. Mater. doi: 10.1002/adma.201704296 – volume: 3 start-page: 166 year: 2015 ident: 930_CR296 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201400457 – volume: 13 start-page: 4176 year: 2017 ident: 930_CR32 publication-title: Soft Matter doi: 10.1039/C7SM00384F – volume: 120 start-page: 2347 year: 2020 ident: 930_CR23 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00509 – volume: 22 start-page: 100912 year: 2021 ident: 930_CR154 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2020.100912 – volume: 2 start-page: 1500080 year: 2015 ident: 930_CR272 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500080 – volume: 9 start-page: 18231 year: 2017 ident: 930_CR177 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04590 – volume: 104 start-page: 201105 year: 2014 ident: 930_CR60 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4879018 – volume: 25 start-page: 317 year: 2000 ident: 930_CR244 publication-title: Opt. Lett. doi: 10.1364/OL.25.000317 – volume: 3 start-page: 041026 year: 2013 ident: 930_CR91 publication-title: Phys. Rev. X – volume: 3 start-page: 15435 year: 2018 ident: 930_CR138 publication-title: ACS Omega doi: 10.1021/acsomega.8b01749 – volume: 3 start-page: 1500415 year: 2016 ident: 930_CR271 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500415 – volume: 125 start-page: 077801 year: 2020 ident: 930_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.077801 – volume: 8 start-page: 2000593 year: 2020 ident: 930_CR101 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202000593 – volume: 12 start-page: 55215 year: 2020 ident: 930_CR51 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c19527 – volume: 30 start-page: 1707069 year: 2018 ident: 930_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201707069 – volume: 23 start-page: 5519 year: 2011 ident: 930_CR85 publication-title: Adv. Mater. doi: 10.1002/adma.201103008 – volume: 13 start-page: 365 year: 2019 ident: 930_CR157 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0448-9 – volume: 44 start-page: 398 year: 1956 ident: 930_CR208 publication-title: Proc. Indian Acad. Sci.-Sect. A doi: 10.1007/BF03046095 – volume: 8 start-page: 4318 year: 2012 ident: 930_CR88 publication-title: Soft Matter doi: 10.1039/c2sm07207f – volume: 13 start-page: 13709 year: 2019 ident: 930_CR98 publication-title: ACS Nano doi: 10.1021/acsnano.9b07104 – volume: 103 start-page: 103903 year: 2009 ident: 930_CR246 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.103903 – volume: 38 start-page: 1357 year: 2005 ident: 930_CR202 publication-title: Macromolecules doi: 10.1021/ma0487655 – ident: 930_CR25 doi: 10.1002/3527602054 – volume: 430 start-page: 132780 year: 2022 ident: 930_CR182 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132780 – volume: 58 start-page: 16052 year: 2019 ident: 930_CR115 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908832 – volume: 57 start-page: 1627 year: 2018 ident: 930_CR195 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712781 – volume: 31 start-page: 2009916 year: 2021 ident: 930_CR203 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009916 – volume: 30 start-page: 1704941 year: 2018 ident: 930_CR196 publication-title: Adv. Mater. doi: 10.1002/adma.201704941 – volume: 28 start-page: 1705309 year: 2018 ident: 930_CR268 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705309 – volume: 12 start-page: 36731 year: 2020 ident: 930_CR16 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09212 – volume: 6 start-page: e17011 year: 2017 ident: 930_CR239 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2017.11 – volume: 21 start-page: 7261 year: 2021 ident: 930_CR237 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02290 – volume: 31 start-page: 1805312 year: 2019 ident: 930_CR293 publication-title: Adv. Mater. doi: 10.1002/adma.201805312 – volume: 40 start-page: 4887 year: 2015 ident: 930_CR234 publication-title: Opt. Lett. doi: 10.1364/OL.40.004887 – volume: 7 start-page: 1602209 year: 2017 ident: 930_CR277 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602209 – volume: 174 start-page: 531 year: 2017 ident: 930_CR181 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.098 – volume: 3 start-page: L022008 year: 2021 ident: 930_CR8 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.L022008 – volume: 22 start-page: 2383 year: 2012 ident: 930_CR140 publication-title: J. Mater. Chem. doi: 10.1039/C2JM15461G – volume: 8 year: 2017 ident: 930_CR144 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00822-y – volume: 2 start-page: 036002 year: 2020 ident: 930_CR217 publication-title: Adv. Photonics doi: 10.1117/1.AP.2.3.036002 – volume: 9 start-page: 2001861 year: 2021 ident: 930_CR252 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202001861 – volume: 30 start-page: 1706512 year: 2018 ident: 930_CR297 publication-title: Adv. Mater. doi: 10.1002/adma.201706512 – volume: 2 start-page: 319 year: 2017 ident: 930_CR286 publication-title: Nanoscale Horiz. doi: 10.1039/C7NH00105C – volume: 8 start-page: 1901958 year: 2020 ident: 930_CR44 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201901958 – volume: 43 start-page: 7083 year: 2004 ident: 930_CR114 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.43.7083 – ident: 930_CR46 – volume: 9 year: 2018 ident: 930_CR190 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07048-6 – volume: 4 start-page: e253 year: 2015 ident: 930_CR230 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2015.26 – volume: 43 start-page: 7217 year: 2014 ident: 930_CR161 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00053F – volume: 7 year: 2016 ident: 930_CR105 publication-title: Nat. Commun. doi: 10.1038/ncomms10236 – volume: 29 start-page: 1701323 year: 2017 ident: 930_CR175 publication-title: Adv. Mater. doi: 10.1002/adma.201701323 – volume: 21 start-page: 610 year: 2011 ident: 930_CR80 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201001303 – volume: 30 start-page: 1703655 year: 2018 ident: 930_CR153 publication-title: Adv. Mater. doi: 10.1002/adma.201703655 – volume: 32 start-page: 1801335 year: 2020 ident: 930_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.201801335 – volume: 3 start-page: 14 year: 2020 ident: 930_CR76 publication-title: Commun. Phys. doi: 10.1038/s42005-020-0288-4 – volume: 118 start-page: e2110839118 year: 2021 ident: 930_CR247 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2110839118 – volume: 8 start-page: 1901360 year: 2020 ident: 930_CR216 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201901360 – volume: 11 year: 2020 ident: 930_CR221 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16125-8 – volume: 3 start-page: 2100362 year: 2022 ident: 930_CR218 publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202100362 – volume: 469 start-page: 381 year: 2011 ident: 930_CR11 publication-title: Nature doi: 10.1038/nature09713 – volume: 9 year: 2018 ident: 930_CR262 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02895-9 – volume: 117 start-page: 12705 year: 2017 ident: 930_CR53 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00153 – volume: 17 start-page: 2778 year: 2015 ident: 930_CR35 publication-title: CrystEngComm doi: 10.1039/C4CE02502D – volume: 347 start-page: 982 year: 2015 ident: 930_CR254 publication-title: Science doi: 10.1126/science.1261019 – volume: 258 start-page: 275 year: 1992 ident: 930_CR31 publication-title: Science doi: 10.1126/science.258.5080.275 – volume: 4 start-page: eaau8064 year: 2018 ident: 930_CR65 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau8064 – volume: 116 start-page: 21361 year: 2019 ident: 930_CR292 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1911563116 – volume: 36 start-page: 1085 year: 2009 ident: 930_CR87 publication-title: Liq. Cryst. doi: 10.1080/02678290902814718 – volume: 13 start-page: 8999 year: 2017 ident: 930_CR145 publication-title: Soft Matter doi: 10.1039/C7SM01755C – volume: 24 start-page: 146 year: 1998 ident: 930_CR168 publication-title: J. Pulp Pap. Sci. – volume: 108 start-page: 20891 year: 2011 ident: 930_CR73 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1112849108 – volume: 557 start-page: 409 year: 2018 ident: 930_CR27 publication-title: Nature doi: 10.1038/s41586-018-0109-z – volume: 10 year: 2019 ident: 930_CR79 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11768-8 – volume: 31 start-page: 5717 year: 1998 ident: 930_CR166 publication-title: Macromolecules doi: 10.1021/ma9711452 – volume: 10 start-page: 4489 year: 2021 ident: 930_CR248 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0427 – volume: 4 start-page: 219 year: 1951 ident: 930_CR113 publication-title: Acta Crystallogr. doi: 10.1107/S0365110X51000751 – volume: 16 start-page: 426 year: 2017 ident: 930_CR26 publication-title: Nat. Mater. doi: 10.1038/nmat4826 – volume: 41 start-page: 3209 year: 2008 ident: 930_CR191 publication-title: Macromolecules doi: 10.1021/ma7027775 – volume: 18 start-page: 080004 year: 2020 ident: 930_CR294 publication-title: Chin. Opt. Lett. doi: 10.3788/COL202018.080004 – volume: 2 start-page: 100018 year: 2020 ident: 930_CR17 publication-title: Giant doi: 10.1016/j.giant.2020.100018 – volume: 12 start-page: 17833 year: 2020 ident: 930_CR174 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00591 – volume: 29 start-page: 1703165 year: 2017 ident: 930_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.201703165 – volume: 6 start-page: 945 year: 2019 ident: 930_CR194 publication-title: Mater. Horiz. doi: 10.1039/C9MH00101H – volume: 7 start-page: eabh3505 year: 2021 ident: 930_CR30 publication-title: Sci. Adv. doi: 10.1126/sciadv.abh3505 – volume: 30 start-page: 3308 year: 2005 ident: 930_CR236 publication-title: Opt. Lett. doi: 10.1364/OL.30.003308 – volume: 16 start-page: 5325 year: 2020 ident: 930_CR74 publication-title: Soft Matter doi: 10.1039/D0SM00676A – volume: 30 start-page: 1704970 year: 2018 ident: 930_CR257 publication-title: Adv. Mater. doi: 10.1002/adma.201704970 – volume: 85 start-page: 105976 year: 2021 ident: 930_CR279 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105976 – volume: 13 start-page: 44916 year: 2021 ident: 930_CR125 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c12575 – volume: 43 start-page: 4903 year: 2018 ident: 930_CR223 publication-title: Opt. Lett. doi: 10.1364/OL.43.004903 – volume: 25 start-page: 3314 year: 2015 ident: 930_CR119 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500745 – volume: 29 start-page: 1606671 year: 2017 ident: 930_CR95 publication-title: Adv. Mater. doi: 10.1002/adma.201606671 – volume: 33 start-page: 2001228 year: 2021 ident: 930_CR156 publication-title: Adv. Mater. doi: 10.1002/adma.202001228 – volume: 228 start-page: 115387 year: 2020 ident: 930_CR179 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115387 – volume: 103 start-page: 051112 year: 2013 ident: 930_CR143 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4817724 – volume: 8 start-page: 2000170 year: 2020 ident: 930_CR219 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202000170 – volume: 392 start-page: 45 year: 1984 ident: 930_CR209 publication-title: Proc. R. Soc. Lond. A. Math. Phys. Sci. doi: 10.1098/rspa.1984.0023 – ident: 930_CR1 – volume: 59 start-page: 226 year: 2020 ident: 930_CR186 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911468 – volume: 10 start-page: 786 year: 2022 ident: 930_CR120 publication-title: Photonics Res. doi: 10.1364/PRJ.449284 – volume: 5 start-page: eaax5746 year: 2019 ident: 930_CR37 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax5746 – volume: 3 start-page: 133 year: 2015 ident: 930_CR226 publication-title: Photonics Res. doi: 10.1364/PRJ.3.000133 – ident: 930_CR45 – volume: 22 start-page: 4699 year: 2014 ident: 930_CR99 publication-title: Opt. Express doi: 10.1364/OE.22.004699 – volume: 240 start-page: 116281 year: 2020 ident: 930_CR176 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116281 – volume: 1 start-page: 2100007 year: 2021 ident: 930_CR132 publication-title: Small Sci. doi: 10.1002/smsc.202100007 – volume: 55 start-page: 13090 year: 2016 ident: 930_CR284 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606895 – volume: 60 start-page: 11247 year: 2021 ident: 930_CR251 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101881 – volume: 27 start-page: 3014 year: 2015 ident: 930_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.201500340 |
SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
Score | 2.613775 |
SecondaryResourceType | review_article |
Snippet | Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable... This paper reviews recent advances in self-assembled liquid crystalline architectures in terms of their fabrications, manipulations, as well as emerging... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 270 |
SubjectTerms | 639/624/1075/146 639/624/399/919 Crystals Lasers Matter & antimatter Microwaves Optical and Electronic Materials Optical Devices Optics Photonics Physics Physics and Astronomy Review Review Article Reviews RF and Optical Engineering Spatial distribution |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t1AQUbiBlaT2LHjEwLUqkKCC1Tam-V4bLpSmmw3uwf-PWMnm7I8eo3tyBl7xt94Jt8Q8iYHh74OcKZtYZlw0rJGa8ekLgsOZfAqUQp9-SrPzsXnRbWYLtyGKa1yZxOToYbexTvy4xK9qVrh-c_fr65YrBoVo6tTCY3b5E6kLospXWqh5jsWdF2KvFbTvzI5r48HERn2WExhj758zqq98yjR9v8La_6dMvlH3DQdR6cPyP0JR9IP48I_JLd894jcTfmcbnhMTr75NjAExv6yaT3Qdnm1XQJ165-IBlv6e_hgoIhb6YDmmF4msk26uug3kTF3eELOT0--fzpjU8UE5hB5bRhi_1z7WKWvkdrWXkCQ1lYFD5E5XgfuG7BNLl0QIHgApb2sAHIHriq8Bv6UHHR95w8JdVr5Gnhk8pRCQ24dRMpQn1sEujbIjBQ7uRk30YnHqhatSWFtXptR1gZlbZKsTZWRt_OY1UimcWPvj3E55p6RCDs96Nc_zKRXBoRoZIFuAjqOQomgAQ0SYlChoNG1LzNytFtMM2nnYK73UkZez82oVzFYYjvfb1MfwesaPz4jz8a1n2fCEXOikPHlam9X7E11v6VbXiTubpzkOPLdbv9cT-v_onh-81e8IPfKtKU1K_gROdist_4lYqVN8yopxC_0TxB_ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXRHkGWhQkbmDhxI5jH2HVqkKCC1TqzXI8Nl0pzZbN7oF_z9h5wNJSiWs8jibjsf1NZvyZkDcMHMY6wKm2haXCSUsbrR2Vuiw4lMHXiVLo8xd5eiY-nVfne6SczsKkov1EaZmW6ak67H0vIjUejbXnMQhntLpD7kbq9ujVC7mY_6tguFIwVY_nYxhXN3Td2YMSVf9N-PJ6meRfudK0BZ08JA9G7Jh_GLQ9IHu-e0TupRpO1z8mx199GyiCYX_ZtB7ydvlju4TcrX8iAmzzP1MGfY5YNe9xCc4vE8FmfnWx2kSW3P4JOTs5_rY4peMtCdQh2tpQxPtM-3gzXyO1VV5AkNZWBQ-RLV4H7huwDZMuCBA8QK29rACYA1cVXgN_Sva7Veefk9zp2ivgkb1TCg3MOog0oZ5ZBLc2yIwUk92MGynE400WrUmpbK7MYGuDtjbJ1qbKyNu5z9VAoHGr9Mc4HLNkJL9OD1br72Z0BgNCNLLA0ACDRVGLoAEXIcSdooZGK19m5HAaTDPOyN6UGI2rGvEjz8jruRnnUkyQ2M6vtklGcKXw4zPybBj7WROOOBONjC-vd7xiR9Xdlm55kfi6Ucmh57vJf36r9W9TvPg_8ZfkfplcXNOCH5L9zXrrjxAvbZpXaYL8Ajc9Dj0 priority: 102 providerName: Springer Nature |
Title | Self-assembled liquid crystal architectures for soft matter photonics |
URI | https://link.springer.com/article/10.1038/s41377-022-00930-5 https://www.ncbi.nlm.nih.gov/pubmed/36100592 https://www.proquest.com/docview/2713872323 https://www.proquest.com/docview/2714388564 https://pubmed.ncbi.nlm.nih.gov/PMC9470592 https://doaj.org/article/d44b61882289474f9d88005747db98e2 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY92ntzZ4sLdN1I5kyXpMQ0oJrIx1hbwJWSfRFNfp6uRh__1OspMl--he-mTQhzmfTtLvuPPvCPmQgUVfBxhVJjeUW2FopZSlQg1zBkPvZKQU-nwmTi_4dFbMtkp9hZywjh64U9wRcF6JHHEgegZccq8ALQ5BBpdQqdLF0xfvvC1n6qrLl8uzUvZ_yWSsPGp54NajIXk9ePEZLXZuokjY_zeU-Wey5G8R03gRnTwjT3sEmY46yffJA9c8J49jJqdtX5DJuas9RUjsrqvaQVrPv6_mkNrbH4gD63Q7cNCmiFjTFg_i9DrSbKY3l4tl4MptX5KLk8m38SntayVQi5hrSRH1Z8qF-nyVUKZ0HLwwpsiZD5zxyjNXgakyYT0HzjxI5UQBkFmwRe4UsFdkr1k07g1JrZKuBBY4PAVXkBkLgSzUZQYhrvEiIflab9r2ROKhnkWtY0CblbrTtUZd66hrXSTk42bOTUejcefo47Acm5GBAjs2oGHo3jD0_wwjIQfrxdT9vmz1EH3yUiKKZAl5v-nGHRXCJKZxi1Ucw1lZ4scn5HW39htJGKJNVDK-XO5YxY6ouz3N_DKydqOQ3cxPa_v5Jda_VfH2PlTxjjwZRsNXNGcHZG95u3KHiKWW1YA8lDM5II9Go-n5FJ_Hk7MvX7F1LMaDuKV-ApFkHGQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8WCgQJTmA1iZ2HD6iisNWWtisErdSbcWyHrpQm282uUP8Uv7Fj51GWR2-9xg8547H9jWf8DcBrXyu0dTQlXAaSMBVLknGuSMzDgOowN4mjFDqYxOMj9vk4Ol6DX91bGBtW2e2JbqPWlbJ35JshWlNpguc_3ZqdEZs1ynpXuxQajVrsmfOfaLLV73c_4fy-CcOd0eHHMWmzChCF6GRBEB_73NhMdlnMZWqYzmMpo4Dmll2d59RkWmZ-rHKmGc11wk0cae0rraLAcE2x3xuwziiaMgNY3x5Nvnztb3XQWAr8NGlf5_g03ayZ5fQjNmje3h74JFo5AV2igH-h27-DNP_w1LoDcOcu3GmRq_ehUbV7sGbK-3DTRZCq-gGMvpkiJwjFzWlWGO0V07PlVHtqfo74s_B-d1jUHiJlr8YDwDt19J7e7KRaWI7e-iEcXYs0H8GgrErzBDzFE5NqarlDY8a1L5W2JKXGlwitZR4PIejkJlRLYG7zaBTCOdJpKhpZC5S1cLIW0RDe9m1mDX3HlbW37XT0NS31tvtQzX-IdiULzVgWB2iYoKnKEpZzjVsgol6W6IynJhzCRjeZot0PanGpvUN41RfjSrbuGVmaaunqMJqm-PNDeNzMfT8SiigXhYydJytasTLU1ZJyeuLYwnGQTct3nf5cDuv_onh69V-8hFvjw4N9sb872XsGt0On3pwEdAMGi_nSPEektshetMvDg-_XvSIvADEkUCA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNYmsRPHB4SAdtVSqJCg0t5cxw-6UppsN7tC_Wv8OsZOsmV59NZrYkfOeMb-xjP-BqEXsdHg6xhKhEoUYTpXpBRCk1ykCTWpszxQCn0-yHcP2cdJNtlAP4e7MD6tclgTw0JtGu3PyEcpeFMFh_2fjlyfFvFle_x2dkp8BSkfaR3KaXQqsm_PfoD71r7Z24a5fpmm451vH3ZJX2GAaEAqCwJYORbWV7Urc6EKy4zLlcoS6jzTunDUlkaVca4dM4w6w4XNM2NibXSWWGEofPcKusopdAFb4hO-Ot8BtymJC97f04lpMWqZZ_cjPn3enyPEJFvbC0PJgH_h3L_TNf-I2YatcHwL3ewxLH7XKd1ttGHrO-hayCXV7V2089VWjgAotydlZQ2upqfLqcF6fgZItMK_hy5aDJgZt7AV4JNA9Ilnx83Cs_W299DhpcjyPtqsm9o-RFgLbgtDPYtozoSJlTaertTGCkC2cnmEkkFuUvdU5r6iRiVDSJ0WspO1BFnLIGuZRejVqs-sI_K4sPV7Px2rlp6EOzxo5t9lb9PSMFbmCbgo4LQyzpwwsBgC_mXclKKwaYS2hsmU_crQynM9jtDz1WuwaR-oUbVtlqENo0UBPx-hB93cr0ZCAe-CkOHjfE0r1oa6_qaeHgfecBhk1_P1oD_nw_q_KB5d_BfP0HWwQ_lp72D_MbqRBu0WJKFbaHMxX9onANkW5dNgGxgdXbYx_gIix1Lw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+liquid+crystal+architectures+for+soft+matter+photonics&rft.jtitle=Light%2C+science+%26+applications&rft.au=Ma%2C+Ling-Ling&rft.au=Li%2C+Chao-Yi&rft.au=Pan%2C+Jin-Tao&rft.au=Ji%2C+Yue-E&rft.date=2022-09-13&rft.eissn=2047-7538&rft.volume=11&rft.issue=1&rft.spage=270&rft_id=info:doi/10.1038%2Fs41377-022-00930-5&rft_id=info%3Apmid%2F36100592&rft.externalDocID=36100592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |