Continuous and scalable manufacture of amphibious energy yarns and textiles

Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and p...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 868 - 8
Main Authors Gong, Wei, Hou, Chengyi, Zhou, Jie, Guo, Yinben, Zhang, Wei, Li, Yaogang, Zhang, Qinghong, Wang, Hongzhi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.02.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies. Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability, flexibility, and stretchability. Here the authors report scalable fabrication for a stretchable triboelectric yarn that is operational under water.
AbstractList Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies. Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability, flexibility, and stretchability. Here the authors report scalable fabrication for a stretchable triboelectric yarn that is operational under water.
Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability, flexibility, and stretchability. Here the authors report scalable fabrication for a stretchable triboelectric yarn that is operational under water.
Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies.Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies.
Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies.
Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies.Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability, flexibility, and stretchability. Here the authors report scalable fabrication for a stretchable triboelectric yarn that is operational under water.
ArticleNumber 868
Author Zhou, Jie
Hou, Chengyi
Li, Yaogang
Zhang, Wei
Zhang, Qinghong
Guo, Yinben
Wang, Hongzhi
Gong, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Gong
  fullname: Gong, Wei
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University
– sequence: 2
  givenname: Chengyi
  surname: Hou
  fullname: Hou, Chengyi
  email: hcy@dhu.edu.cn
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University
– sequence: 3
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  organization: College of Electronics and Information Engineering, Sichuan University
– sequence: 4
  givenname: Yinben
  surname: Guo
  fullname: Guo, Yinben
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University
– sequence: 5
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University
– sequence: 6
  givenname: Yaogang
  surname: Li
  fullname: Li, Yaogang
  organization: Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University
– sequence: 7
  givenname: Qinghong
  surname: Zhang
  fullname: Zhang, Qinghong
  email: zhangqh@dhu.edu.cn
  organization: Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University
– sequence: 8
  givenname: Hongzhi
  surname: Wang
  fullname: Wang, Hongzhi
  email: wanghz@dhu.edu.cn
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30787290$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBIrFhE_AzcTZIaMSjohIbWFs3zvXUo4w92E7F_Hs8kxbaLuqNLfucT0fX52V14oPHqnpNyXtKuPqQBBVt1xDaN0Qp0TbsWXXGiKAN7Rg_uXc-rS5S2pCyeE-VEC-qU0461bGenFXfV8Fn5-cwpxr8WCcDEwwT1lvwswWT54h1sDVsd9ducAcZeozrfb2H6BdPxj_ZTZheVc8tTAkvbvfz6teXzz9X35qrH18vV5-uGiMFyY3kWJITScfWWIWKwcgGJVmnmFWcG0uIsXbkHQMjyGBaID1iJ3vZtyNB4OfV5cIdA2z0LrotxL0O4PTxIsS1hpidmVAr0xWLQml5K4oXJDEDCt4NXLGWicL6uLB287DF0aDPEaYH0Icv3l3rdbjRbQEo1RfAu1tADL9nTFlvXTI4TeCxTEuzMnLJBWOsSN8-km7CHH0Z1VFFBeu5LKo39xP9i3L3Z0WgFoGJIaWIVhuXIbtwCOgmTYk-NEQvDdGlIfrYEH1IwB5Z7-hPmvhiSkXs1xj_x37C9RffBc2r
CitedBy_id crossref_primary_10_1039_D0EE02777D
crossref_primary_10_1039_D1EE00059D
crossref_primary_10_1002_adma_202002640
crossref_primary_10_1021_acs_nanolett_0c01694
crossref_primary_10_1021_acssuschemeng_1c04804
crossref_primary_10_1007_s42765_023_00262_y
crossref_primary_10_1021_acsnano_4c07125
crossref_primary_10_15541_jim20200742
crossref_primary_10_1088_2631_7990_ada858
crossref_primary_10_1088_2631_7990_ada857
crossref_primary_10_1007_s42765_025_00534_9
crossref_primary_10_1038_s41467_019_13569_5
crossref_primary_10_1109_JFLEX_2023_3339587
crossref_primary_10_1016_j_nanoen_2022_107588
crossref_primary_10_1109_ACCESS_2021_3094303
crossref_primary_10_1126_sciadv_adf4049
crossref_primary_10_1016_j_nanoen_2023_108950
crossref_primary_10_1002_advs_202207298
crossref_primary_10_1016_j_nanoen_2024_109474
crossref_primary_10_34133_2019_1091632
crossref_primary_10_1126_sciadv_abo0869
crossref_primary_10_1039_D0TA05006G
crossref_primary_10_1021_acsnano_0c07148
crossref_primary_10_2139_ssrn_4162755
crossref_primary_10_1002_advs_202203808
crossref_primary_10_1002_aenm_202101443
crossref_primary_10_1016_j_nanoen_2022_107737
crossref_primary_10_1039_D1TA02518J
crossref_primary_10_1021_acsami_0c03670
crossref_primary_10_1038_s41467_024_52354_x
crossref_primary_10_1039_C9TC04540F
crossref_primary_10_1002_ente_202401863
crossref_primary_10_1002_admt_202202116
crossref_primary_10_1038_s41467_024_46516_0
crossref_primary_10_1039_D2TA03813G
crossref_primary_10_1016_j_snb_2025_137404
crossref_primary_10_1016_j_cej_2023_147026
crossref_primary_10_1021_acsnano_4c10111
crossref_primary_10_1016_j_nanoen_2023_108171
crossref_primary_10_1007_s11517_022_02544_w
crossref_primary_10_1063_5_0085850
crossref_primary_10_2139_ssrn_4188805
crossref_primary_10_1002_adsr_202200044
crossref_primary_10_1002_smll_201901558
crossref_primary_10_1039_D1TA01309B
crossref_primary_10_1016_j_nanoen_2022_106956
crossref_primary_10_1016_j_ensm_2022_06_039
crossref_primary_10_1557_s43577_021_00123_2
crossref_primary_10_3390_s22249716
crossref_primary_10_1021_acsami_9b10928
crossref_primary_10_1016_j_matdes_2019_108451
crossref_primary_10_1021_acs_chemrev_9b00821
crossref_primary_10_1364_PRJ_394044
crossref_primary_10_1039_D0TA12073A
crossref_primary_10_1002_adma_202007352
crossref_primary_10_1021_acsaelm_1c00039
crossref_primary_10_1016_j_nanoen_2022_107485
crossref_primary_10_1021_acsami_3c10111
crossref_primary_10_1021_acsami_3c14156
crossref_primary_10_1039_D0NA00536C
crossref_primary_10_1021_acsami_9b19238
crossref_primary_10_1039_D0TC01112F
crossref_primary_10_1002_adma_202305606
crossref_primary_10_1007_s12274_024_6410_2
crossref_primary_10_1002_adma_202104681
crossref_primary_10_1016_j_device_2024_100600
crossref_primary_10_1016_j_nanoso_2023_100990
crossref_primary_10_1039_D0CS01603A
crossref_primary_10_1021_acsami_1c14572
crossref_primary_10_1126_sciadv_ado7826
crossref_primary_10_1016_j_indcrop_2023_117547
crossref_primary_10_1021_acsnano_2c06287
crossref_primary_10_1002_adma_202310102
crossref_primary_10_1002_aelm_202300219
crossref_primary_10_1002_aenm_202100411
crossref_primary_10_1021_acsnano_0c00524
crossref_primary_10_1016_j_mtnano_2022_100214
crossref_primary_10_1016_j_nanoen_2021_106884
crossref_primary_10_1126_science_adk3755
crossref_primary_10_1016_j_nanoen_2024_110277
crossref_primary_10_1002_advs_201901437
crossref_primary_10_1002_cnl2_39
crossref_primary_10_1007_s42765_021_00077_9
crossref_primary_10_1016_j_cej_2021_131698
crossref_primary_10_1007_s10854_025_14228_w
crossref_primary_10_1021_acsnano_1c06230
crossref_primary_10_1002_adfm_201908479
crossref_primary_10_1021_acsami_1c00983
crossref_primary_10_1177_1558925020967352
crossref_primary_10_1002_admt_202201294
crossref_primary_10_1016_j_jclepro_2022_133702
crossref_primary_10_1016_j_snb_2023_133346
crossref_primary_10_1016_j_apmt_2025_102672
crossref_primary_10_1177_15280837241300546
crossref_primary_10_1002_advs_202202489
crossref_primary_10_1021_acsami_1c16255
crossref_primary_10_1002_adfm_202419645
crossref_primary_10_1002_adma_202100782
crossref_primary_10_1016_j_jpowsour_2021_230303
crossref_primary_10_1016_j_isci_2022_105264
crossref_primary_10_3390_s20102925
crossref_primary_10_1016_j_bios_2023_115890
crossref_primary_10_1016_j_nanoen_2019_104303
crossref_primary_10_1002_adma_201902034
crossref_primary_10_1039_D3EE01325A
crossref_primary_10_1039_D1TA09384C
crossref_primary_10_1088_1361_6528_abfcfe
crossref_primary_10_1021_acsami_1c18449
crossref_primary_10_1093_nsr_nwac170
crossref_primary_10_1021_acsnano_2c07320
crossref_primary_10_3390_batteries8110215
crossref_primary_10_1016_j_nanoen_2020_105627
crossref_primary_10_1016_j_nanoen_2021_105867
crossref_primary_10_1016_j_jmst_2024_12_096
crossref_primary_10_1016_j_nanoen_2023_108898
crossref_primary_10_1016_j_nanoen_2021_106672
crossref_primary_10_1002_advs_202401109
crossref_primary_10_3389_fbioe_2022_889364
crossref_primary_10_1016_j_nanoen_2024_109377
crossref_primary_10_1002_adma_201902301
crossref_primary_10_1007_s42765_019_0002_z
crossref_primary_10_1002_adfm_202423596
crossref_primary_10_1021_acsnano_0c09146
crossref_primary_10_1021_acs_analchem_9b05728
crossref_primary_10_1021_acsnano_4c06225
crossref_primary_10_1002_admt_202302068
crossref_primary_10_1016_j_isci_2020_101360
crossref_primary_10_1038_s41560_022_01191_7
crossref_primary_10_1002_adma_201902549
crossref_primary_10_1016_j_nanoen_2024_109259
crossref_primary_10_3390_polym15030508
crossref_primary_10_1016_j_nanoen_2022_107035
Cites_doi 10.1038/s41467-017-00131-4
10.1039/C5EE01532D
10.1039/C7TA00248C
10.1021/la00040a030
10.1002/adma.201603436
10.1002/adma.201603679
10.1002/ange.201402388
10.1016/j.nanoen.2017.07.045
10.1002/adfm.201404087
10.1126/science.aam8771
10.1021/acsnano.7b08674
10.1021/acsnano.7b07534
10.1016/j.nanoen.2017.08.018
10.1039/C4CS00286E
10.1016/j.nanoen.2013.08.004
10.1016/j.nanoen.2017.08.003
10.1002/adfm.201604378
10.1021/acsnano.7b05317
10.1016/j.mattod.2017.10.006
10.1016/j.nanoen.2017.04.053
10.1002/adfm.201604462
10.1038/srep35153
10.1039/C8EE00595H
10.1002/anie.201706620
10.1126/science.aat4191
10.1038/natrevmats.2017.23
10.1002/anie.201006062
10.1021/acsnano.6b05293
10.1002/aenm.201600988
10.1103/PhysRevLett.117.048001
10.1021/jz401108n
10.1002/adma.201702648
10.1016/j.nanoen.2017.10.010
10.1002/adma.201706790
10.1126/sciadv.1600097
10.1002/adma.201500311
10.1021/nn404614z
10.1021/am504919w
10.1063/1.3549915
10.1063/1.481870
10.1038/nenergy.2016.138
10.1126/science.aat9875
10.1016/j.nanoen.2016.04.033
10.1016/j.nanoen.2013.07.012
10.1021/acsnano.7b05203
10.1002/adma.201402428
10.1007/978-0-387-76464-1
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-08846-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_8c7d0e8e5f3640eaa50cbe437b382624
PMC6382889
30787290
10_1038_s41467_019_08846_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-53e467051d6cf8e82ad2b852782f833cf00cffd372ac40bc6a09ee759596d0ea3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:55 EDT 2025
Thu Aug 21 17:57:59 EDT 2025
Thu Jul 10 17:17:01 EDT 2025
Wed Aug 13 04:18:55 EDT 2025
Wed Feb 19 02:30:58 EST 2025
Thu Apr 24 22:50:24 EDT 2025
Tue Jul 01 02:21:24 EDT 2025
Fri Feb 21 02:40:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-53e467051d6cf8e82ad2b852782f833cf00cffd372ac40bc6a09ee759596d0ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-08846-2
PMID 30787290
PQID 2184142935
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_8c7d0e8e5f3640eaa50cbe437b382624
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6382889
proquest_miscellaneous_2184534222
proquest_journals_2184142935
pubmed_primary_30787290
crossref_citationtrail_10_1038_s41467_019_08846_2
crossref_primary_10_1038_s41467_019_08846_2
springer_journals_10_1038_s41467_019_08846_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-20
PublicationDateYYYYMMDD 2019-02-20
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Shi, Wang, Wu, Lee (CR29) 2017; 40
Kalinin (CR43) 2018; 360
Guo (CR24) 2014; 6
Zhang (CR10) 2018; 11
Xu (CR30) 2018; 12
Ben-Yaakov, Andelman, Podgornik (CR45) 2011; 134
Zhang (CR25) 2013; 2
Wen (CR40) 2016; 2
Dong (CR20) 2017; 11
Shao (CR28) 2017; 39
He (CR18) 2017; 27
Kwak (CR34) 2017; 11
Kim (CR4) 2017; 357
Cheng (CR16) 2017; 41
Xi (CR27) 2017; 38
Xu (CR11) 2017; 56
Yu (CR2) 2015; 44
Zhong (CR21) 2015; 25
Dong (CR19) 2017; 29
Lai (CR32) 2017; 27
Saurenbach, Wollmann, Terris, Diaz (CR38) 1992; 8
Fumagalli (CR42) 2018; 360
Schlaich, Knapp, Netz (CR44) 2016; 117
Bae (CR7) 2011; 50
Gong (CR15) 2017; 39
Liang, Yan, Liao, Zhang (CR31) 2016; 25
Zhao (CR35) 2016; 28
Xu (CR36) 2018; 30
Pu (CR5) 2015; 27
Wang, Chen, Lin (CR13) 2015; 8
Chen (CR26) 2017; 21
Wang (CR12) 2013; 7
Liu, Song, Kong, Cui (CR3) 2017; 29
Yu (CR22) 2017; 5
Nguyen, Yang (CR23) 2013; 2
CR9
Wang (CR39) 2017; 8
Zhang, Gygi, Galli (CR47) 2013; 4
Sun, Zhang, Zhang, Sun, Peng (CR1) 2017; 2
Sim (CR17) 2016; 6
Chen (CR41) 2016; 1
Chai (CR8) 2016; 10
Seung (CR37) 2017; 7
Chandra (CR46) 2000; 113
Ren (CR6) 2014; 126
Xie (CR14) 2014; 26
Yu (CR33) 2017; 11
ZL Wang (8846_CR13) 2015; 8
K Dong (8846_CR19) 2017; 29
A Schlaich (8846_CR44) 2016; 117
HJ Sim (8846_CR17) 2016; 6
K Dong (8846_CR20) 2017; 11
J Ren (8846_CR6) 2014; 126
YC Lai (8846_CR32) 2017; 27
V Nguyen (8846_CR23) 2013; 2
Y Xi (8846_CR27) 2017; 38
8846_CR9
Y Xie (8846_CR14) 2014; 26
Q Shi (8846_CR29) 2017; 40
H Shao (8846_CR28) 2017; 39
L Fumagalli (8846_CR42) 2018; 360
X Pu (8846_CR5) 2015; 27
W Liu (8846_CR3) 2017; 29
J Bae (8846_CR7) 2011; 50
Z Wen (8846_CR40) 2016; 2
D Yu (8846_CR2) 2015; 44
H Zhang (8846_CR25) 2013; 2
A Chandra (8846_CR46) 2000; 113
ZL Wang (8846_CR12) 2013; 7
C Xu (8846_CR36) 2018; 30
W Seung (8846_CR37) 2017; 7
W Gong (8846_CR15) 2017; 39
C Zhang (8846_CR47) 2013; 4
BD Chen (8846_CR26) 2017; 21
AF Yu (8846_CR33) 2017; 11
X He (8846_CR18) 2017; 27
F Saurenbach (8846_CR38) 1992; 8
Z Chai (8846_CR8) 2016; 10
SS Kwak (8846_CR34) 2017; 11
D Ben-Yaakov (8846_CR45) 2011; 134
SV Kalinin (8846_CR43) 2018; 360
J Chen (8846_CR41) 2016; 1
SH Kim (8846_CR4) 2017; 357
J Wang (8846_CR39) 2017; 8
ZZ Zhao (8846_CR35) 2016; 28
Y Xu (8846_CR11) 2017; 56
X Yu (8846_CR22) 2017; 5
H Guo (8846_CR24) 2014; 6
H Sun (8846_CR1) 2017; 2
Q Liang (8846_CR31) 2016; 25
L Xu (8846_CR30) 2018; 12
G Zhang (8846_CR10) 2018; 11
Y Cheng (8846_CR16) 2017; 41
J Zhong (8846_CR21) 2015; 25
References_xml – volume: 8
  year: 2017
  ident: CR39
  article-title: Achieving ultrahigh triboelectric charge density for efficient energy harvesting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00131-4
– volume: 8
  start-page: 2250
  year: 2015
  end-page: 2282
  ident: CR13
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 5
  start-page: 6032
  year: 2017
  end-page: 6037
  ident: CR22
  article-title: A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00248C
– volume: 8
  start-page: 1199
  year: 1992
  end-page: 1203
  ident: CR38
  article-title: Force microscopy of ion-containing polymer surfaces: morphology and charge structure
  publication-title: Langmuir
  doi: 10.1021/la00040a030
– volume: 29
  start-page: 1603436
  year: 2017
  ident: CR3
  article-title: Flexible and stretchable energy storage: recent advances and future perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603436
– volume: 28
  start-page: 10267
  year: 2016
  end-page: 10274
  ident: CR35
  article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603679
– volume: 126
  start-page: 7998
  year: 2014
  end-page: 8003
  ident: CR6
  article-title: Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201402388
– volume: 39
  start-page: 608
  year: 2017
  end-page: 615
  ident: CR28
  article-title: Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.045
– volume: 25
  start-page: 1798
  year: 2015
  end-page: 1803
  ident: CR21
  article-title: Stretchable self-powered fiber-based strain sensor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404087
– volume: 357
  start-page: 773
  year: 2017
  end-page: 778
  ident: CR4
  article-title: Harvesting electrical energy from carbon nanotube yarn twist
  publication-title: Science
  doi: 10.1126/science.aam8771
– volume: 12
  start-page: 1849
  year: 2018
  end-page: 1858
  ident: CR30
  article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08674
– volume: 11
  start-page: 12764
  year: 2017
  end-page: 12771
  ident: CR33
  article-title: Core-shell-yarn-based triboelectric nanogenerator textiles as power cloths
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07534
– volume: 40
  start-page: 203
  year: 2017
  end-page: 213
  ident: CR29
  article-title: Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.018
– volume: 44
  start-page: 647
  year: 2015
  end-page: 662
  ident: CR2
  article-title: Emergence of fiber supercapacitors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00286E
– volume: 2
  start-page: 693
  year: 2013
  end-page: 701
  ident: CR25
  article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.08.004
– volume: 39
  start-page: 673
  year: 2017
  end-page: 683
  ident: CR15
  article-title: A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.003
– volume: 27
  start-page: 1604378
  year: 2017
  ident: CR18
  article-title: A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604378
– volume: 11
  start-page: 9490
  year: 2017
  end-page: 9499
  ident: CR20
  article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05317
– volume: 21
  start-page: 88
  year: 2017
  end-page: 97
  ident: CR26
  article-title: Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.10.006
– volume: 38
  start-page: 101
  year: 2017
  end-page: 108
  ident: CR27
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.053
– volume: 27
  start-page: 1604462
  year: 2017
  ident: CR32
  article-title: Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth‐based self‐powered human-interactive and biomedical sensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604462
– volume: 6
  year: 2016
  ident: CR17
  article-title: Stretchable triboelectric fiber for self-powered kinematic sensing textile
  publication-title: Sci. Rep.
  doi: 10.1038/srep35153
– volume: 11
  start-page: 2046
  year: 2018
  end-page: 2056
  ident: CR10
  article-title: Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00595H
– volume: 56
  start-page: 12940
  year: 2017
  end-page: 12945
  ident: CR11
  article-title: A one-dimensional fluidic nanogenerator with a high power conversion efficiency
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706620
– volume: 360
  start-page: 1339
  year: 2018
  end-page: 1342
  ident: CR42
  article-title: Anomalously low dielectric constant of confined water
  publication-title: Science
  doi: 10.1126/science.aat4191
– volume: 2
  start-page: 17023
  year: 2017
  ident: CR1
  article-title: Energy harvesting and storage in 1D devices
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.23
– volume: 50
  start-page: 1683
  year: 2011
  end-page: 1687
  ident: CR7
  article-title: Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201006062
– volume: 10
  start-page: 9201
  year: 2016
  end-page: 9207
  ident: CR8
  article-title: Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05293
– volume: 7
  start-page: 1600988
  year: 2017
  ident: CR37
  article-title: Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600988
– volume: 117
  start-page: 048001
  year: 2016
  ident: CR44
  article-title: Water dielectric effects in planar confinement
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.048001
– volume: 4
  start-page: 2477
  year: 2013
  end-page: 2481
  ident: CR47
  article-title: Strongly anisotropic dielectric relaxation of water at the nanoscale
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401108n
– ident: CR9
– volume: 29
  start-page: 1702648
  year: 2017
  ident: CR19
  article-title: 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702648
– volume: 41
  start-page: 511
  year: 2017
  end-page: 518
  ident: CR16
  article-title: A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.010
– volume: 30
  start-page: 1706790
  year: 2018
  ident: CR36
  article-title: On the electron-transfer mechanism in the contact-electrification effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706790
– volume: 2
  start-page: e1600097
  year: 2016
  ident: CR40
  article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600097
– volume: 27
  start-page: 2472
  year: 2015
  end-page: 2478
  ident: CR5
  article-title: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500311
– volume: 7
  start-page: 9533
  year: 2013
  end-page: 9557
  ident: CR12
  article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 6
  start-page: 17184
  year: 2014
  end-page: 17189
  ident: CR24
  article-title: Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504919w
– volume: 134
  start-page: 074705
  year: 2011
  ident: CR45
  article-title: Dielectric decrement as a source of ion-specific effects
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3549915
– volume: 113
  start-page: 903
  year: 2000
  end-page: 905
  ident: CR46
  article-title: Static dielectric constant of aqueous electrolyte solutions: is there any dynamic contribution?
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481870
– volume: 1
  start-page: 16138
  year: 2016
  ident: CR41
  article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.138
– volume: 360
  start-page: 1302
  year: 2018
  end-page: 1302
  ident: CR43
  article-title: Feel the dielectric force
  publication-title: Science
  doi: 10.1126/science.aat9875
– volume: 25
  start-page: 18
  year: 2016
  end-page: 25
  ident: CR31
  article-title: Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.033
– volume: 2
  start-page: 604
  year: 2013
  end-page: 608
  ident: CR23
  article-title: Effect of humidity and pressure on the triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.07.012
– volume: 11
  start-page: 10733
  year: 2017
  end-page: 10741
  ident: CR34
  article-title: Fully stretchable textile triboelectric nanogenerator with knitted fabric structures
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05203
– volume: 26
  start-page: 6599
  year: 2014
  end-page: 6607
  ident: CR14
  article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402428
– volume: 39
  start-page: 608
  year: 2017
  ident: 8846_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.045
– volume: 30
  start-page: 1706790
  year: 2018
  ident: 8846_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706790
– volume: 6
  start-page: 17184
  year: 2014
  ident: 8846_CR24
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504919w
– volume: 27
  start-page: 2472
  year: 2015
  ident: 8846_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500311
– volume: 1
  start-page: 16138
  year: 2016
  ident: 8846_CR41
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.138
– volume: 360
  start-page: 1302
  year: 2018
  ident: 8846_CR43
  publication-title: Science
  doi: 10.1126/science.aat9875
– volume: 27
  start-page: 1604378
  year: 2017
  ident: 8846_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604378
– volume: 38
  start-page: 101
  year: 2017
  ident: 8846_CR27
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.053
– volume: 360
  start-page: 1339
  year: 2018
  ident: 8846_CR42
  publication-title: Science
  doi: 10.1126/science.aat4191
– volume: 50
  start-page: 1683
  year: 2011
  ident: 8846_CR7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201006062
– volume: 40
  start-page: 203
  year: 2017
  ident: 8846_CR29
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.018
– volume: 25
  start-page: 18
  year: 2016
  ident: 8846_CR31
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.033
– volume: 56
  start-page: 12940
  year: 2017
  ident: 8846_CR11
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706620
– volume: 11
  start-page: 12764
  year: 2017
  ident: 8846_CR33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07534
– volume: 2
  start-page: 604
  year: 2013
  ident: 8846_CR23
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.07.012
– volume: 5
  start-page: 6032
  year: 2017
  ident: 8846_CR22
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00248C
– volume: 7
  start-page: 9533
  year: 2013
  ident: 8846_CR12
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 4
  start-page: 2477
  year: 2013
  ident: 8846_CR47
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401108n
– volume: 2
  start-page: 17023
  year: 2017
  ident: 8846_CR1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.23
– volume: 2
  start-page: 693
  year: 2013
  ident: 8846_CR25
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.08.004
– ident: 8846_CR9
  doi: 10.1007/978-0-387-76464-1
– volume: 113
  start-page: 903
  year: 2000
  ident: 8846_CR46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481870
– volume: 27
  start-page: 1604462
  year: 2017
  ident: 8846_CR32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604462
– volume: 2
  start-page: e1600097
  year: 2016
  ident: 8846_CR40
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600097
– volume: 29
  start-page: 1603436
  year: 2017
  ident: 8846_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603436
– volume: 26
  start-page: 6599
  year: 2014
  ident: 8846_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402428
– volume: 29
  start-page: 1702648
  year: 2017
  ident: 8846_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702648
– volume: 11
  start-page: 10733
  year: 2017
  ident: 8846_CR34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05203
– volume: 126
  start-page: 7998
  year: 2014
  ident: 8846_CR6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201402388
– volume: 11
  start-page: 2046
  year: 2018
  ident: 8846_CR10
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00595H
– volume: 12
  start-page: 1849
  year: 2018
  ident: 8846_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08674
– volume: 8
  start-page: 1199
  year: 1992
  ident: 8846_CR38
  publication-title: Langmuir
  doi: 10.1021/la00040a030
– volume: 10
  start-page: 9201
  year: 2016
  ident: 8846_CR8
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05293
– volume: 41
  start-page: 511
  year: 2017
  ident: 8846_CR16
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.010
– volume: 11
  start-page: 9490
  year: 2017
  ident: 8846_CR20
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05317
– volume: 25
  start-page: 1798
  year: 2015
  ident: 8846_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404087
– volume: 6
  year: 2016
  ident: 8846_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/srep35153
– volume: 28
  start-page: 10267
  year: 2016
  ident: 8846_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603679
– volume: 117
  start-page: 048001
  year: 2016
  ident: 8846_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.048001
– volume: 357
  start-page: 773
  year: 2017
  ident: 8846_CR4
  publication-title: Science
  doi: 10.1126/science.aam8771
– volume: 8
  year: 2017
  ident: 8846_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00131-4
– volume: 44
  start-page: 647
  year: 2015
  ident: 8846_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00286E
– volume: 21
  start-page: 88
  year: 2017
  ident: 8846_CR26
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.10.006
– volume: 39
  start-page: 673
  year: 2017
  ident: 8846_CR15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.003
– volume: 134
  start-page: 074705
  year: 2011
  ident: 8846_CR45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3549915
– volume: 7
  start-page: 1600988
  year: 2017
  ident: 8846_CR37
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600988
– volume: 8
  start-page: 2250
  year: 2015
  ident: 8846_CR13
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
SSID ssj0000391844
Score 2.6118917
Snippet Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in...
Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 868
SubjectTerms 639/301/1005/1007
639/4077/4072/4062
Biomechanics
Electric power generation
Electricity
Electronic devices
Electronic equipment
Energy
Energy harvesting
Fabrication
Humanities and Social Sciences
Melt spinning
multidisciplinary
Nanogenerators
Rubber
Science
Science (multidisciplinary)
Silicone rubber
Silicones
Stainless steel
Stainless steels
Stretchability
Textiles
Wearable technology
Weaving
Yarn
Yarns
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxUxFG4MiYkbIj5wBE1J2OmE3nbaaZdIIESiK0nYNX2chptoMfex4N9z2pl74aroxu20nXS-c3oe0_Mg5BBM1zs0h1qdjGk7gX6KRlHc9kmp4KOJjJcE5y9f1fll9_lKXj1o9VViwobywANwRzr0kYEGmYTqGDgnWfCAL_UCLWNeK4GiznvgTFUZLAy6Lt2YJcOEPpp3VSawkrOjUem2fEMT1YL9f7Iyfw-W_OXGtCqis-dke7Qg6fGw8x3yBPIL8nToKXn7klyUelPTvESPnroc6RyJUNKj6A-XlyWNYTkDepOoQzJOfYmApVDz_-itm-VhTYkGQWkxf0Uuz06_nZy3Y8eENqDltWilAPxIPGdRhaRBcxe515KjGZC0ECExFlKKoucudMwH5ZgB6KWRRiHKTrwmW_kmwxtCZYhJuyRVRBx98mbSgZLQu-CY6IE1ZLJCz4axnHjpavHd1mttoe2AuEXEbUXc8oZ8WK_5ORTT-OvsT4Uo65mlEHZ9gOxhR_aw_2KPhuyvSGrH0zm3xa2doCIWsiEH62E8V-WyxGVA6OscKcoPsobsDhyw3gnKRY1OCWLQb_DGxlY3R_L0utbuRnHHtTYN-bjiovttPQ7F2_8BxR55xiv7cxSN-2RrMVvCO7SoFv59PTx3LDkcfg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCIkLomULtMhI3CCqx1vsEwLEtALBiUq9WV5hpOIpk5lD_z3PTibVsPSa2JL9ls_v2W9B6FXUvLNgDrUqad1yBn6KAihuuySld0EHQkuC85ev8vSMfzoX5-OFWz-GVW4xsQJ1WPpyR35cXJEZgCcTby9_taVrVHldHVto3EZ3ZnDSlJAuNT-Z7lhK9XPF-ZgrQ5g67nlFBlIydxQcvS3dOY9q2f5_2Zp_h0z-8W5aj6P5A3R_tCPxu4Hx--hWzAfo7tBZ8uoh-lyqTi3yBvx6bHPAPbCiJEnhnzZvSjLDZhXxMmELzFy4EgeLY80CxFd2lYc5JSYEMKN_hM7mH799OG3HvgmtB_tr3QoWYZOgbUH6pKKiNlCnBAVjICnGfCLEpxRYR63nxHlpiY6xE1poGUi07DHay8scnyIsfEjKJiED0NElp2c8ShE76y1hXSQNmm2pZ_xYVLz0trgw9XGbKTNQ3ADFTaW4oQ16Pc25HEpq3Dj6fWHKNLKUw64flqvvZtQuo3wHC1dRJCY57MAK4l0EyXMM3CfKG3S4ZakZdbQ31xLVoJfTb9Cu8mRicwTS1zGClWuyBj0ZJGBaCaCjAtcEaNDtyMbOUnf_5MWPWsEbQI8qpRv0ZitF18v6Pyme3byL5-gerYJNAfoO0d56tYlHYDGt3YuqFr8BF4QT5g
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La1QxFA6lRXAjWl9Xa0nBnV7M5HWT5SiWMlI3Wugu5KkDmpF5LPrvPcl9yGgV3N4kcHJeOefmnC8IvYyadxbCoVYlrVvOIE9R4IrbLknpXdCB0NLgfPlRXlzxxbW4PkB07IWpRfsV0rK66bE67M2GV5MmpeVGwZnZgts9KlDtoNtH8_ni02L6s1IwzxXnQ4cMYeqWxXunUAXrvy3C_LNQ8rfb0noInd9H94boEc97eh-gg5iP0Z3-Pcmbh-hDwZpa5h1k89jmgDcggNIahb_bvCstDLBhvErYggiXrlS_4lh7__CNXed-TakEAU-xeYSuzt9_fnfRDq8ltB6irm0rWIRNgo0F6ZOKitpAnRIUQoCkGPOJEJ9SYB21nhPnpSU6xk5ooWUg0bLH6DCvcnyKsPAhKZuEDMBHl5ye8ShF7Ky3hHWRNGg2cs_4AUq8vGjxzdQrbaZMz3EDHDeV44Y26NW05kcPpPHP2W-LUKaZBQS7flitv5hBKYzyHRCuokhMctiBFcS7CPrmGCRNlDfoZBSpGSxzY0pKO4NDmIkGnU3DYFPlosTmCKyvcwQrP8ca9KTXgIkS8IkKEhLgQbenG3uk7o_k5deK2w2ujiqlG_R61KJfZP2dFc_-b_pzdJdWRafgAE_Q4Xa9iy8gbtq608FQfgIpyBMj
  priority: 102
  providerName: Springer Nature
Title Continuous and scalable manufacture of amphibious energy yarns and textiles
URI https://link.springer.com/article/10.1038/s41467-019-08846-2
https://www.ncbi.nlm.nih.gov/pubmed/30787290
https://www.proquest.com/docview/2184142935
https://www.proquest.com/docview/2184534222
https://pubmed.ncbi.nlm.nih.gov/PMC6382889
https://doaj.org/article/8c7d0e8e5f3640eaa50cbe437b382624
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_OOwRfDr-NniWCbxrd7ma_HkR65epRuUPUQt_CZrOrhTM9-wH2v3d2k1SqVXxJINmEyW_nM7szA_Dc6VwadIcy5bXOcoZxikJVnEkvhC0rXREaEpwvLsX5JB9P-fQAunZHLYDLvaFd6Cc1WVy9-vF98xYF_k2TMq5eL_Mo7iSk4yi0pxmq5CO0TDJ0NLho3f2omZnGgCYsNFOS9zMcwNo8mv2v2bFVsaT_Pj_0z-2Uv62pRlM1ug3HrY-ZDhqmuAMHrr4LN5uuk5t78D5UpJrVa4z5U1NX6RKnKSRQpd9MvQ6JDuuFS-c-NTjRszLskU1dzBBMN2ZRN8-E_SKoT5b3YTI6-zw8z9qeCplF32yVcebwI1ESK2G9coqaipaKU3QUvGLMekKs9xWT1NiclFYYop2TXHMtKuIMewCH9bx2jyDltvLKeC4qxLT0pe7nTnAnjTWESUcS6HfoFbYtOB76XlwVceGbqaJBvEDEi4h4QRN4sX3muim38c_Rp2FStiNDqex4Yb74UrSSVygrkXDluGcixy8wnNjSIVeWDEMrmidw0k1p0bFfEQLfPppqxhN4tr2NkheWU0ztEPo4hrPwCy2Bhw0HbClBzakwbEEM5A5v7JC6e6eefY3VvVEhUqV0Ai87LvpF1t-hePwfZD6BWzRyN0XdeAKHq8XaPUWXalX24IacSjyq0bseHA0G409jPJ-eXX74iFeHYtiLPyt6UZ5-AuLVIbk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCaJ6_UicA0K8li3b9tRKvRnHsWElSMpmI7R_it_I2HlUy6O3XhM7csafv5mxPTMAz2zOM43mUCJdniecoZ8ikYqTzKWpKcq8JNQHOB8cprNj_ulEnGzBryEWxl-rHDgxEHVZG79HvutdkQmSJxOvT38kvmqUP10dSmh0sJjb9U902ZpXe-9xfp9TOv1w9G6W9FUFEoPWySoRzCI5IBbL1DhpJdUlLaSgqCqdZMw4QoxzJcuoNpwUJtUktzYTucjTkljN8LuX4DJnqMl9ZPr047in47OtS8772BzC5G7DAxMRHykkUdUndEP_hTIB_7Jt_76i-cc5bVB_0xtwvbdb4zcd0G7Clq1uwZWukuX6Nsx9lqtF1dZtE-uqjBuceh-UFX_XVeuDJ9qljWsXawTPovD3bmMbog7jtV5WXR9_BwU5qrkDxxci0buwXdWVvQ-xMKWT2om0RDkWrsgn3KbCZtpowjJLIpgM0lOmT2Lua2l8U-EwnUnVSVyhxFWQuKIRvBj7nHYpPM5t_dZPytjSp98OD-rlF9WvZiVNhgOXVjiWcvwDLYgpLCK9YOiuUR7BzjClqueERp0hOIKn42tczf6IRlcWRR_aCOa35SK41yFgHAmysURXCGWQbWBjY6ibb6rF15AxHEmWSplH8HJA0dmw_i-KB-f_xRO4Ojs62Ff7e4fzh3CNBpBTpN0d2F4tW_sIrbVV8TgskRg-X_Sa_A3-SlD8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ4jWa8eJc0CI0q5aFlYVolJvruPYsBIkZbMR2r_Gr2PsPKrl0VuvG2flfP7ms8f2zAA8N1mcKlwORcJmWRQz9FMESnGU2iTReZEVhLoA54_z5OA4fn_CT7bgVx8L465V9prohbqotNsjHztXZILiyfjYdtcijvamb85-RK6ClDtp7ctptBSZmfVPdN_q14d7ONYvKJ3uf353EHUVBiKNK5VVxJlBoUBeFom2wgiqCpoLTnHatIIxbQnR1hYspUrHJNeJIpkxKc94lhTEKIb_ewW2U-cVjWB7d39-9GnY4XG510Ucd5E6hIlxHXtdIi5uSODEH9GN2dAXDfjXSvfvC5t_nNr6yXB6E250q9jwbUu7W7Blyttwta1rub4DM5fzalE2VVOHqizCGongQrTC76psXChFszRhZUOFVFrk7hZuaHwMYrhWy7J9x0GPilXfheNLwfQejMqqNA8g5LqwQlmeFIhjbvNsEpuEm1RpRVhqSACTHj2pu5TmrrLGN-mP1pmQLeISEZcecUkDeDm8c9Ym9Liw9a4blKGlS8btf6iWX2Rn21LoFDsuDLcsifELFCc6N8j7nKHzRuMAdvohlZ1C1PKczwE8Gx6jbbsDG1UahN634cxt0gVwv2XA0BPUZoGOEWKQbnBjo6ubT8rFV58_HCWXCpEF8Kpn0Xm3_g_Fw4u_4ilcQ3uUHw7ns0dwnXqOU9TgHRitlo15jEu3Vf6ks5EQTi_bLH8DXbVWjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+and+scalable+manufacture+of+amphibious+energy+yarns+and+textiles&rft.jtitle=Nature+communications&rft.au=Gong%2C+Wei&rft.au=Hou%2C+Chengyi&rft.au=Zhou%2C+Jie&rft.au=Guo%2C+Yinben&rft.date=2019-02-20&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=868&rft_id=info:doi/10.1038%2Fs41467-019-08846-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon