Continuous and scalable manufacture of amphibious energy yarns and textiles
Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and p...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 868 - 8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.02.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies.
Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability, flexibility, and stretchability. Here the authors report scalable fabrication for a stretchable triboelectric yarn that is operational under water. |
---|---|
AbstractList | Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies.
Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability, flexibility, and stretchability. Here the authors report scalable fabrication for a stretchable triboelectric yarn that is operational under water. Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability, flexibility, and stretchability. Here the authors report scalable fabrication for a stretchable triboelectric yarn that is operational under water. Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies.Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies. Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies. Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies.Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability, flexibility, and stretchability. Here the authors report scalable fabrication for a stretchable triboelectric yarn that is operational under water. |
ArticleNumber | 868 |
Author | Zhou, Jie Hou, Chengyi Li, Yaogang Zhang, Wei Zhang, Qinghong Guo, Yinben Wang, Hongzhi Gong, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: Gong fullname: Gong, Wei organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University – sequence: 2 givenname: Chengyi surname: Hou fullname: Hou, Chengyi email: hcy@dhu.edu.cn organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University – sequence: 3 givenname: Jie surname: Zhou fullname: Zhou, Jie organization: College of Electronics and Information Engineering, Sichuan University – sequence: 4 givenname: Yinben surname: Guo fullname: Guo, Yinben organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University – sequence: 5 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University – sequence: 6 givenname: Yaogang surname: Li fullname: Li, Yaogang organization: Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University – sequence: 7 givenname: Qinghong surname: Zhang fullname: Zhang, Qinghong email: zhangqh@dhu.edu.cn organization: Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University – sequence: 8 givenname: Hongzhi surname: Wang fullname: Wang, Hongzhi email: wanghz@dhu.edu.cn organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30787290$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpH2CBIrFhE_AzcTZIaMSjohIbWFs3zvXUo4w92E7F_Hs8kxbaLuqNLfucT0fX52V14oPHqnpNyXtKuPqQBBVt1xDaN0Qp0TbsWXXGiKAN7Rg_uXc-rS5S2pCyeE-VEC-qU0461bGenFXfV8Fn5-cwpxr8WCcDEwwT1lvwswWT54h1sDVsd9ducAcZeozrfb2H6BdPxj_ZTZheVc8tTAkvbvfz6teXzz9X35qrH18vV5-uGiMFyY3kWJITScfWWIWKwcgGJVmnmFWcG0uIsXbkHQMjyGBaID1iJ3vZtyNB4OfV5cIdA2z0LrotxL0O4PTxIsS1hpidmVAr0xWLQml5K4oXJDEDCt4NXLGWicL6uLB287DF0aDPEaYH0Icv3l3rdbjRbQEo1RfAu1tADL9nTFlvXTI4TeCxTEuzMnLJBWOsSN8-km7CHH0Z1VFFBeu5LKo39xP9i3L3Z0WgFoGJIaWIVhuXIbtwCOgmTYk-NEQvDdGlIfrYEH1IwB5Z7-hPmvhiSkXs1xj_x37C9RffBc2r |
CitedBy_id | crossref_primary_10_1039_D0EE02777D crossref_primary_10_1039_D1EE00059D crossref_primary_10_1002_adma_202002640 crossref_primary_10_1021_acs_nanolett_0c01694 crossref_primary_10_1021_acssuschemeng_1c04804 crossref_primary_10_1007_s42765_023_00262_y crossref_primary_10_1021_acsnano_4c07125 crossref_primary_10_15541_jim20200742 crossref_primary_10_1088_2631_7990_ada858 crossref_primary_10_1088_2631_7990_ada857 crossref_primary_10_1007_s42765_025_00534_9 crossref_primary_10_1038_s41467_019_13569_5 crossref_primary_10_1109_JFLEX_2023_3339587 crossref_primary_10_1016_j_nanoen_2022_107588 crossref_primary_10_1109_ACCESS_2021_3094303 crossref_primary_10_1126_sciadv_adf4049 crossref_primary_10_1016_j_nanoen_2023_108950 crossref_primary_10_1002_advs_202207298 crossref_primary_10_1016_j_nanoen_2024_109474 crossref_primary_10_34133_2019_1091632 crossref_primary_10_1126_sciadv_abo0869 crossref_primary_10_1039_D0TA05006G crossref_primary_10_1021_acsnano_0c07148 crossref_primary_10_2139_ssrn_4162755 crossref_primary_10_1002_advs_202203808 crossref_primary_10_1002_aenm_202101443 crossref_primary_10_1016_j_nanoen_2022_107737 crossref_primary_10_1039_D1TA02518J crossref_primary_10_1021_acsami_0c03670 crossref_primary_10_1038_s41467_024_52354_x crossref_primary_10_1039_C9TC04540F crossref_primary_10_1002_ente_202401863 crossref_primary_10_1002_admt_202202116 crossref_primary_10_1038_s41467_024_46516_0 crossref_primary_10_1039_D2TA03813G crossref_primary_10_1016_j_snb_2025_137404 crossref_primary_10_1016_j_cej_2023_147026 crossref_primary_10_1021_acsnano_4c10111 crossref_primary_10_1016_j_nanoen_2023_108171 crossref_primary_10_1007_s11517_022_02544_w crossref_primary_10_1063_5_0085850 crossref_primary_10_2139_ssrn_4188805 crossref_primary_10_1002_adsr_202200044 crossref_primary_10_1002_smll_201901558 crossref_primary_10_1039_D1TA01309B crossref_primary_10_1016_j_nanoen_2022_106956 crossref_primary_10_1016_j_ensm_2022_06_039 crossref_primary_10_1557_s43577_021_00123_2 crossref_primary_10_3390_s22249716 crossref_primary_10_1021_acsami_9b10928 crossref_primary_10_1016_j_matdes_2019_108451 crossref_primary_10_1021_acs_chemrev_9b00821 crossref_primary_10_1364_PRJ_394044 crossref_primary_10_1039_D0TA12073A crossref_primary_10_1002_adma_202007352 crossref_primary_10_1021_acsaelm_1c00039 crossref_primary_10_1016_j_nanoen_2022_107485 crossref_primary_10_1021_acsami_3c10111 crossref_primary_10_1021_acsami_3c14156 crossref_primary_10_1039_D0NA00536C crossref_primary_10_1021_acsami_9b19238 crossref_primary_10_1039_D0TC01112F crossref_primary_10_1002_adma_202305606 crossref_primary_10_1007_s12274_024_6410_2 crossref_primary_10_1002_adma_202104681 crossref_primary_10_1016_j_device_2024_100600 crossref_primary_10_1016_j_nanoso_2023_100990 crossref_primary_10_1039_D0CS01603A crossref_primary_10_1021_acsami_1c14572 crossref_primary_10_1126_sciadv_ado7826 crossref_primary_10_1016_j_indcrop_2023_117547 crossref_primary_10_1021_acsnano_2c06287 crossref_primary_10_1002_adma_202310102 crossref_primary_10_1002_aelm_202300219 crossref_primary_10_1002_aenm_202100411 crossref_primary_10_1021_acsnano_0c00524 crossref_primary_10_1016_j_mtnano_2022_100214 crossref_primary_10_1016_j_nanoen_2021_106884 crossref_primary_10_1126_science_adk3755 crossref_primary_10_1016_j_nanoen_2024_110277 crossref_primary_10_1002_advs_201901437 crossref_primary_10_1002_cnl2_39 crossref_primary_10_1007_s42765_021_00077_9 crossref_primary_10_1016_j_cej_2021_131698 crossref_primary_10_1007_s10854_025_14228_w crossref_primary_10_1021_acsnano_1c06230 crossref_primary_10_1002_adfm_201908479 crossref_primary_10_1021_acsami_1c00983 crossref_primary_10_1177_1558925020967352 crossref_primary_10_1002_admt_202201294 crossref_primary_10_1016_j_jclepro_2022_133702 crossref_primary_10_1016_j_snb_2023_133346 crossref_primary_10_1016_j_apmt_2025_102672 crossref_primary_10_1177_15280837241300546 crossref_primary_10_1002_advs_202202489 crossref_primary_10_1021_acsami_1c16255 crossref_primary_10_1002_adfm_202419645 crossref_primary_10_1002_adma_202100782 crossref_primary_10_1016_j_jpowsour_2021_230303 crossref_primary_10_1016_j_isci_2022_105264 crossref_primary_10_3390_s20102925 crossref_primary_10_1016_j_bios_2023_115890 crossref_primary_10_1016_j_nanoen_2019_104303 crossref_primary_10_1002_adma_201902034 crossref_primary_10_1039_D3EE01325A crossref_primary_10_1039_D1TA09384C crossref_primary_10_1088_1361_6528_abfcfe crossref_primary_10_1021_acsami_1c18449 crossref_primary_10_1093_nsr_nwac170 crossref_primary_10_1021_acsnano_2c07320 crossref_primary_10_3390_batteries8110215 crossref_primary_10_1016_j_nanoen_2020_105627 crossref_primary_10_1016_j_nanoen_2021_105867 crossref_primary_10_1016_j_jmst_2024_12_096 crossref_primary_10_1016_j_nanoen_2023_108898 crossref_primary_10_1016_j_nanoen_2021_106672 crossref_primary_10_1002_advs_202401109 crossref_primary_10_3389_fbioe_2022_889364 crossref_primary_10_1016_j_nanoen_2024_109377 crossref_primary_10_1002_adma_201902301 crossref_primary_10_1007_s42765_019_0002_z crossref_primary_10_1002_adfm_202423596 crossref_primary_10_1021_acsnano_0c09146 crossref_primary_10_1021_acs_analchem_9b05728 crossref_primary_10_1021_acsnano_4c06225 crossref_primary_10_1002_admt_202302068 crossref_primary_10_1016_j_isci_2020_101360 crossref_primary_10_1038_s41560_022_01191_7 crossref_primary_10_1002_adma_201902549 crossref_primary_10_1016_j_nanoen_2024_109259 crossref_primary_10_3390_polym15030508 crossref_primary_10_1016_j_nanoen_2022_107035 |
Cites_doi | 10.1038/s41467-017-00131-4 10.1039/C5EE01532D 10.1039/C7TA00248C 10.1021/la00040a030 10.1002/adma.201603436 10.1002/adma.201603679 10.1002/ange.201402388 10.1016/j.nanoen.2017.07.045 10.1002/adfm.201404087 10.1126/science.aam8771 10.1021/acsnano.7b08674 10.1021/acsnano.7b07534 10.1016/j.nanoen.2017.08.018 10.1039/C4CS00286E 10.1016/j.nanoen.2013.08.004 10.1016/j.nanoen.2017.08.003 10.1002/adfm.201604378 10.1021/acsnano.7b05317 10.1016/j.mattod.2017.10.006 10.1016/j.nanoen.2017.04.053 10.1002/adfm.201604462 10.1038/srep35153 10.1039/C8EE00595H 10.1002/anie.201706620 10.1126/science.aat4191 10.1038/natrevmats.2017.23 10.1002/anie.201006062 10.1021/acsnano.6b05293 10.1002/aenm.201600988 10.1103/PhysRevLett.117.048001 10.1021/jz401108n 10.1002/adma.201702648 10.1016/j.nanoen.2017.10.010 10.1002/adma.201706790 10.1126/sciadv.1600097 10.1002/adma.201500311 10.1021/nn404614z 10.1021/am504919w 10.1063/1.3549915 10.1063/1.481870 10.1038/nenergy.2016.138 10.1126/science.aat9875 10.1016/j.nanoen.2016.04.033 10.1016/j.nanoen.2013.07.012 10.1021/acsnano.7b05203 10.1002/adma.201402428 10.1007/978-0-387-76464-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-08846-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_8c7d0e8e5f3640eaa50cbe437b382624 PMC6382889 30787290 10_1038_s41467_019_08846_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-53e467051d6cf8e82ad2b852782f833cf00cffd372ac40bc6a09ee759596d0ea3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:55 EDT 2025 Thu Aug 21 17:57:59 EDT 2025 Thu Jul 10 17:17:01 EDT 2025 Wed Aug 13 04:18:55 EDT 2025 Wed Feb 19 02:30:58 EST 2025 Thu Apr 24 22:50:24 EDT 2025 Tue Jul 01 02:21:24 EDT 2025 Fri Feb 21 02:40:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-53e467051d6cf8e82ad2b852782f833cf00cffd372ac40bc6a09ee759596d0ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-08846-2 |
PMID | 30787290 |
PQID | 2184142935 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8c7d0e8e5f3640eaa50cbe437b382624 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6382889 proquest_miscellaneous_2184534222 proquest_journals_2184142935 pubmed_primary_30787290 crossref_citationtrail_10_1038_s41467_019_08846_2 crossref_primary_10_1038_s41467_019_08846_2 springer_journals_10_1038_s41467_019_08846_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-20 |
PublicationDateYYYYMMDD | 2019-02-20 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Shi, Wang, Wu, Lee (CR29) 2017; 40 Kalinin (CR43) 2018; 360 Guo (CR24) 2014; 6 Zhang (CR10) 2018; 11 Xu (CR30) 2018; 12 Ben-Yaakov, Andelman, Podgornik (CR45) 2011; 134 Zhang (CR25) 2013; 2 Wen (CR40) 2016; 2 Dong (CR20) 2017; 11 Shao (CR28) 2017; 39 He (CR18) 2017; 27 Kwak (CR34) 2017; 11 Kim (CR4) 2017; 357 Cheng (CR16) 2017; 41 Xi (CR27) 2017; 38 Xu (CR11) 2017; 56 Yu (CR2) 2015; 44 Zhong (CR21) 2015; 25 Dong (CR19) 2017; 29 Lai (CR32) 2017; 27 Saurenbach, Wollmann, Terris, Diaz (CR38) 1992; 8 Fumagalli (CR42) 2018; 360 Schlaich, Knapp, Netz (CR44) 2016; 117 Bae (CR7) 2011; 50 Gong (CR15) 2017; 39 Liang, Yan, Liao, Zhang (CR31) 2016; 25 Zhao (CR35) 2016; 28 Xu (CR36) 2018; 30 Pu (CR5) 2015; 27 Wang, Chen, Lin (CR13) 2015; 8 Chen (CR26) 2017; 21 Wang (CR12) 2013; 7 Liu, Song, Kong, Cui (CR3) 2017; 29 Yu (CR22) 2017; 5 Nguyen, Yang (CR23) 2013; 2 CR9 Wang (CR39) 2017; 8 Zhang, Gygi, Galli (CR47) 2013; 4 Sun, Zhang, Zhang, Sun, Peng (CR1) 2017; 2 Sim (CR17) 2016; 6 Chen (CR41) 2016; 1 Chai (CR8) 2016; 10 Seung (CR37) 2017; 7 Chandra (CR46) 2000; 113 Ren (CR6) 2014; 126 Xie (CR14) 2014; 26 Yu (CR33) 2017; 11 ZL Wang (8846_CR13) 2015; 8 K Dong (8846_CR19) 2017; 29 A Schlaich (8846_CR44) 2016; 117 HJ Sim (8846_CR17) 2016; 6 K Dong (8846_CR20) 2017; 11 J Ren (8846_CR6) 2014; 126 YC Lai (8846_CR32) 2017; 27 V Nguyen (8846_CR23) 2013; 2 Y Xi (8846_CR27) 2017; 38 8846_CR9 Y Xie (8846_CR14) 2014; 26 Q Shi (8846_CR29) 2017; 40 H Shao (8846_CR28) 2017; 39 L Fumagalli (8846_CR42) 2018; 360 X Pu (8846_CR5) 2015; 27 W Liu (8846_CR3) 2017; 29 J Bae (8846_CR7) 2011; 50 Z Wen (8846_CR40) 2016; 2 D Yu (8846_CR2) 2015; 44 H Zhang (8846_CR25) 2013; 2 A Chandra (8846_CR46) 2000; 113 ZL Wang (8846_CR12) 2013; 7 C Xu (8846_CR36) 2018; 30 W Seung (8846_CR37) 2017; 7 W Gong (8846_CR15) 2017; 39 C Zhang (8846_CR47) 2013; 4 BD Chen (8846_CR26) 2017; 21 AF Yu (8846_CR33) 2017; 11 X He (8846_CR18) 2017; 27 F Saurenbach (8846_CR38) 1992; 8 Z Chai (8846_CR8) 2016; 10 SS Kwak (8846_CR34) 2017; 11 D Ben-Yaakov (8846_CR45) 2011; 134 SV Kalinin (8846_CR43) 2018; 360 J Chen (8846_CR41) 2016; 1 SH Kim (8846_CR4) 2017; 357 J Wang (8846_CR39) 2017; 8 ZZ Zhao (8846_CR35) 2016; 28 Y Xu (8846_CR11) 2017; 56 X Yu (8846_CR22) 2017; 5 H Guo (8846_CR24) 2014; 6 H Sun (8846_CR1) 2017; 2 Q Liang (8846_CR31) 2016; 25 L Xu (8846_CR30) 2018; 12 G Zhang (8846_CR10) 2018; 11 Y Cheng (8846_CR16) 2017; 41 J Zhong (8846_CR21) 2015; 25 |
References_xml | – volume: 8 year: 2017 ident: CR39 article-title: Achieving ultrahigh triboelectric charge density for efficient energy harvesting publication-title: Nat. Commun. doi: 10.1038/s41467-017-00131-4 – volume: 8 start-page: 2250 year: 2015 end-page: 2282 ident: CR13 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 5 start-page: 6032 year: 2017 end-page: 6037 ident: CR22 article-title: A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00248C – volume: 8 start-page: 1199 year: 1992 end-page: 1203 ident: CR38 article-title: Force microscopy of ion-containing polymer surfaces: morphology and charge structure publication-title: Langmuir doi: 10.1021/la00040a030 – volume: 29 start-page: 1603436 year: 2017 ident: CR3 article-title: Flexible and stretchable energy storage: recent advances and future perspectives publication-title: Adv. Mater. doi: 10.1002/adma.201603436 – volume: 28 start-page: 10267 year: 2016 end-page: 10274 ident: CR35 article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns publication-title: Adv. Mater. doi: 10.1002/adma.201603679 – volume: 126 start-page: 7998 year: 2014 end-page: 8003 ident: CR6 article-title: Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201402388 – volume: 39 start-page: 608 year: 2017 end-page: 615 ident: CR28 article-title: Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.045 – volume: 25 start-page: 1798 year: 2015 end-page: 1803 ident: CR21 article-title: Stretchable self-powered fiber-based strain sensor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404087 – volume: 357 start-page: 773 year: 2017 end-page: 778 ident: CR4 article-title: Harvesting electrical energy from carbon nanotube yarn twist publication-title: Science doi: 10.1126/science.aam8771 – volume: 12 start-page: 1849 year: 2018 end-page: 1858 ident: CR30 article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.7b08674 – volume: 11 start-page: 12764 year: 2017 end-page: 12771 ident: CR33 article-title: Core-shell-yarn-based triboelectric nanogenerator textiles as power cloths publication-title: ACS Nano doi: 10.1021/acsnano.7b07534 – volume: 40 start-page: 203 year: 2017 end-page: 213 ident: CR29 article-title: Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.018 – volume: 44 start-page: 647 year: 2015 end-page: 662 ident: CR2 article-title: Emergence of fiber supercapacitors publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00286E – volume: 2 start-page: 693 year: 2013 end-page: 701 ident: CR25 article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.08.004 – volume: 39 start-page: 673 year: 2017 end-page: 683 ident: CR15 article-title: A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.003 – volume: 27 start-page: 1604378 year: 2017 ident: CR18 article-title: A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604378 – volume: 11 start-page: 9490 year: 2017 end-page: 9499 ident: CR20 article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors publication-title: ACS Nano doi: 10.1021/acsnano.7b05317 – volume: 21 start-page: 88 year: 2017 end-page: 97 ident: CR26 article-title: Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator publication-title: Mater. Today doi: 10.1016/j.mattod.2017.10.006 – volume: 38 start-page: 101 year: 2017 end-page: 108 ident: CR27 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.053 – volume: 27 start-page: 1604462 year: 2017 ident: CR32 article-title: Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth‐based self‐powered human-interactive and biomedical sensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604462 – volume: 6 year: 2016 ident: CR17 article-title: Stretchable triboelectric fiber for self-powered kinematic sensing textile publication-title: Sci. Rep. doi: 10.1038/srep35153 – volume: 11 start-page: 2046 year: 2018 end-page: 2056 ident: CR10 article-title: Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00595H – volume: 56 start-page: 12940 year: 2017 end-page: 12945 ident: CR11 article-title: A one-dimensional fluidic nanogenerator with a high power conversion efficiency publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706620 – volume: 360 start-page: 1339 year: 2018 end-page: 1342 ident: CR42 article-title: Anomalously low dielectric constant of confined water publication-title: Science doi: 10.1126/science.aat4191 – volume: 2 start-page: 17023 year: 2017 ident: CR1 article-title: Energy harvesting and storage in 1D devices publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.23 – volume: 50 start-page: 1683 year: 2011 end-page: 1687 ident: CR7 article-title: Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201006062 – volume: 10 start-page: 9201 year: 2016 end-page: 9207 ident: CR8 article-title: Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage publication-title: ACS Nano doi: 10.1021/acsnano.6b05293 – volume: 7 start-page: 1600988 year: 2017 ident: CR37 article-title: Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600988 – volume: 117 start-page: 048001 year: 2016 ident: CR44 article-title: Water dielectric effects in planar confinement publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.048001 – volume: 4 start-page: 2477 year: 2013 end-page: 2481 ident: CR47 article-title: Strongly anisotropic dielectric relaxation of water at the nanoscale publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401108n – ident: CR9 – volume: 29 start-page: 1702648 year: 2017 ident: CR19 article-title: 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors publication-title: Adv. Mater. doi: 10.1002/adma.201702648 – volume: 41 start-page: 511 year: 2017 end-page: 518 ident: CR16 article-title: A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.010 – volume: 30 start-page: 1706790 year: 2018 ident: CR36 article-title: On the electron-transfer mechanism in the contact-electrification effect publication-title: Adv. Mater. doi: 10.1002/adma.201706790 – volume: 2 start-page: e1600097 year: 2016 ident: CR40 article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors publication-title: Sci. Adv. doi: 10.1126/sciadv.1600097 – volume: 27 start-page: 2472 year: 2015 end-page: 2478 ident: CR5 article-title: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics publication-title: Adv. Mater. doi: 10.1002/adma.201500311 – volume: 7 start-page: 9533 year: 2013 end-page: 9557 ident: CR12 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 6 start-page: 17184 year: 2014 end-page: 17189 ident: CR24 article-title: Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504919w – volume: 134 start-page: 074705 year: 2011 ident: CR45 article-title: Dielectric decrement as a source of ion-specific effects publication-title: J. Chem. Phys. doi: 10.1063/1.3549915 – volume: 113 start-page: 903 year: 2000 end-page: 905 ident: CR46 article-title: Static dielectric constant of aqueous electrolyte solutions: is there any dynamic contribution? publication-title: J. Chem. Phys. doi: 10.1063/1.481870 – volume: 1 start-page: 16138 year: 2016 ident: CR41 article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy publication-title: Nat. Energy doi: 10.1038/nenergy.2016.138 – volume: 360 start-page: 1302 year: 2018 end-page: 1302 ident: CR43 article-title: Feel the dielectric force publication-title: Science doi: 10.1126/science.aat9875 – volume: 25 start-page: 18 year: 2016 end-page: 25 ident: CR31 article-title: Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.033 – volume: 2 start-page: 604 year: 2013 end-page: 608 ident: CR23 article-title: Effect of humidity and pressure on the triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.07.012 – volume: 11 start-page: 10733 year: 2017 end-page: 10741 ident: CR34 article-title: Fully stretchable textile triboelectric nanogenerator with knitted fabric structures publication-title: ACS Nano doi: 10.1021/acsnano.7b05203 – volume: 26 start-page: 6599 year: 2014 end-page: 6607 ident: CR14 article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency publication-title: Adv. Mater. doi: 10.1002/adma.201402428 – volume: 39 start-page: 608 year: 2017 ident: 8846_CR28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.045 – volume: 30 start-page: 1706790 year: 2018 ident: 8846_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.201706790 – volume: 6 start-page: 17184 year: 2014 ident: 8846_CR24 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504919w – volume: 27 start-page: 2472 year: 2015 ident: 8846_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201500311 – volume: 1 start-page: 16138 year: 2016 ident: 8846_CR41 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.138 – volume: 360 start-page: 1302 year: 2018 ident: 8846_CR43 publication-title: Science doi: 10.1126/science.aat9875 – volume: 27 start-page: 1604378 year: 2017 ident: 8846_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604378 – volume: 38 start-page: 101 year: 2017 ident: 8846_CR27 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.053 – volume: 360 start-page: 1339 year: 2018 ident: 8846_CR42 publication-title: Science doi: 10.1126/science.aat4191 – volume: 50 start-page: 1683 year: 2011 ident: 8846_CR7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201006062 – volume: 40 start-page: 203 year: 2017 ident: 8846_CR29 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.018 – volume: 25 start-page: 18 year: 2016 ident: 8846_CR31 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.033 – volume: 56 start-page: 12940 year: 2017 ident: 8846_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706620 – volume: 11 start-page: 12764 year: 2017 ident: 8846_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.7b07534 – volume: 2 start-page: 604 year: 2013 ident: 8846_CR23 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.07.012 – volume: 5 start-page: 6032 year: 2017 ident: 8846_CR22 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00248C – volume: 7 start-page: 9533 year: 2013 ident: 8846_CR12 publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 4 start-page: 2477 year: 2013 ident: 8846_CR47 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401108n – volume: 2 start-page: 17023 year: 2017 ident: 8846_CR1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.23 – volume: 2 start-page: 693 year: 2013 ident: 8846_CR25 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.08.004 – ident: 8846_CR9 doi: 10.1007/978-0-387-76464-1 – volume: 113 start-page: 903 year: 2000 ident: 8846_CR46 publication-title: J. Chem. Phys. doi: 10.1063/1.481870 – volume: 27 start-page: 1604462 year: 2017 ident: 8846_CR32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604462 – volume: 2 start-page: e1600097 year: 2016 ident: 8846_CR40 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600097 – volume: 29 start-page: 1603436 year: 2017 ident: 8846_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.201603436 – volume: 26 start-page: 6599 year: 2014 ident: 8846_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201402428 – volume: 29 start-page: 1702648 year: 2017 ident: 8846_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201702648 – volume: 11 start-page: 10733 year: 2017 ident: 8846_CR34 publication-title: ACS Nano doi: 10.1021/acsnano.7b05203 – volume: 126 start-page: 7998 year: 2014 ident: 8846_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201402388 – volume: 11 start-page: 2046 year: 2018 ident: 8846_CR10 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00595H – volume: 12 start-page: 1849 year: 2018 ident: 8846_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.7b08674 – volume: 8 start-page: 1199 year: 1992 ident: 8846_CR38 publication-title: Langmuir doi: 10.1021/la00040a030 – volume: 10 start-page: 9201 year: 2016 ident: 8846_CR8 publication-title: ACS Nano doi: 10.1021/acsnano.6b05293 – volume: 41 start-page: 511 year: 2017 ident: 8846_CR16 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.010 – volume: 11 start-page: 9490 year: 2017 ident: 8846_CR20 publication-title: ACS Nano doi: 10.1021/acsnano.7b05317 – volume: 25 start-page: 1798 year: 2015 ident: 8846_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404087 – volume: 6 year: 2016 ident: 8846_CR17 publication-title: Sci. Rep. doi: 10.1038/srep35153 – volume: 28 start-page: 10267 year: 2016 ident: 8846_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201603679 – volume: 117 start-page: 048001 year: 2016 ident: 8846_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.048001 – volume: 357 start-page: 773 year: 2017 ident: 8846_CR4 publication-title: Science doi: 10.1126/science.aam8771 – volume: 8 year: 2017 ident: 8846_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00131-4 – volume: 44 start-page: 647 year: 2015 ident: 8846_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00286E – volume: 21 start-page: 88 year: 2017 ident: 8846_CR26 publication-title: Mater. Today doi: 10.1016/j.mattod.2017.10.006 – volume: 39 start-page: 673 year: 2017 ident: 8846_CR15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.003 – volume: 134 start-page: 074705 year: 2011 ident: 8846_CR45 publication-title: J. Chem. Phys. doi: 10.1063/1.3549915 – volume: 7 start-page: 1600988 year: 2017 ident: 8846_CR37 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600988 – volume: 8 start-page: 2250 year: 2015 ident: 8846_CR13 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D |
SSID | ssj0000391844 |
Score | 2.6118917 |
Snippet | Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in... Textiles that can convert mechanical energy into electricity are attractive for wearable electronic devices, but application is hindered by stability,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 868 |
SubjectTerms | 639/301/1005/1007 639/4077/4072/4062 Biomechanics Electric power generation Electricity Electronic devices Electronic equipment Energy Energy harvesting Fabrication Humanities and Social Sciences Melt spinning multidisciplinary Nanogenerators Rubber Science Science (multidisciplinary) Silicone rubber Silicones Stainless steel Stainless steels Stretchability Textiles Wearable technology Weaving Yarn Yarns |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxUxFG4MiYkbIj5wBE1J2OmE3nbaaZdIIESiK0nYNX2chptoMfex4N9z2pl74aroxu20nXS-c3oe0_Mg5BBM1zs0h1qdjGk7gX6KRlHc9kmp4KOJjJcE5y9f1fll9_lKXj1o9VViwobywANwRzr0kYEGmYTqGDgnWfCAL_UCLWNeK4GiznvgTFUZLAy6Lt2YJcOEPpp3VSawkrOjUem2fEMT1YL9f7Iyfw-W_OXGtCqis-dke7Qg6fGw8x3yBPIL8nToKXn7klyUelPTvESPnroc6RyJUNKj6A-XlyWNYTkDepOoQzJOfYmApVDz_-itm-VhTYkGQWkxf0Uuz06_nZy3Y8eENqDltWilAPxIPGdRhaRBcxe515KjGZC0ECExFlKKoucudMwH5ZgB6KWRRiHKTrwmW_kmwxtCZYhJuyRVRBx98mbSgZLQu-CY6IE1ZLJCz4axnHjpavHd1mttoe2AuEXEbUXc8oZ8WK_5ORTT-OvsT4Uo65mlEHZ9gOxhR_aw_2KPhuyvSGrH0zm3xa2doCIWsiEH62E8V-WyxGVA6OscKcoPsobsDhyw3gnKRY1OCWLQb_DGxlY3R_L0utbuRnHHtTYN-bjiovttPQ7F2_8BxR55xiv7cxSN-2RrMVvCO7SoFv59PTx3LDkcfg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCIkLomULtMhI3CCqx1vsEwLEtALBiUq9WV5hpOIpk5lD_z3PTibVsPSa2JL9ls_v2W9B6FXUvLNgDrUqad1yBn6KAihuuySld0EHQkuC85ev8vSMfzoX5-OFWz-GVW4xsQJ1WPpyR35cXJEZgCcTby9_taVrVHldHVto3EZ3ZnDSlJAuNT-Z7lhK9XPF-ZgrQ5g67nlFBlIydxQcvS3dOY9q2f5_2Zp_h0z-8W5aj6P5A3R_tCPxu4Hx--hWzAfo7tBZ8uoh-lyqTi3yBvx6bHPAPbCiJEnhnzZvSjLDZhXxMmELzFy4EgeLY80CxFd2lYc5JSYEMKN_hM7mH799OG3HvgmtB_tr3QoWYZOgbUH6pKKiNlCnBAVjICnGfCLEpxRYR63nxHlpiY6xE1poGUi07DHay8scnyIsfEjKJiED0NElp2c8ShE76y1hXSQNmm2pZ_xYVLz0trgw9XGbKTNQ3ADFTaW4oQ16Pc25HEpq3Dj6fWHKNLKUw64flqvvZtQuo3wHC1dRJCY57MAK4l0EyXMM3CfKG3S4ZakZdbQ31xLVoJfTb9Cu8mRicwTS1zGClWuyBj0ZJGBaCaCjAtcEaNDtyMbOUnf_5MWPWsEbQI8qpRv0ZitF18v6Pyme3byL5-gerYJNAfoO0d56tYlHYDGt3YuqFr8BF4QT5g priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La1QxFA6lRXAjWl9Xa0nBnV7M5HWT5SiWMlI3Wugu5KkDmpF5LPrvPcl9yGgV3N4kcHJeOefmnC8IvYyadxbCoVYlrVvOIE9R4IrbLknpXdCB0NLgfPlRXlzxxbW4PkB07IWpRfsV0rK66bE67M2GV5MmpeVGwZnZgts9KlDtoNtH8_ni02L6s1IwzxXnQ4cMYeqWxXunUAXrvy3C_LNQ8rfb0noInd9H94boEc97eh-gg5iP0Z3-Pcmbh-hDwZpa5h1k89jmgDcggNIahb_bvCstDLBhvErYggiXrlS_4lh7__CNXed-TakEAU-xeYSuzt9_fnfRDq8ltB6irm0rWIRNgo0F6ZOKitpAnRIUQoCkGPOJEJ9SYB21nhPnpSU6xk5ooWUg0bLH6DCvcnyKsPAhKZuEDMBHl5ye8ShF7Ky3hHWRNGg2cs_4AUq8vGjxzdQrbaZMz3EDHDeV44Y26NW05kcPpPHP2W-LUKaZBQS7flitv5hBKYzyHRCuokhMctiBFcS7CPrmGCRNlDfoZBSpGSxzY0pKO4NDmIkGnU3DYFPlosTmCKyvcwQrP8ca9KTXgIkS8IkKEhLgQbenG3uk7o_k5deK2w2ujiqlG_R61KJfZP2dFc_-b_pzdJdWRafgAE_Q4Xa9iy8gbtq608FQfgIpyBMj priority: 102 providerName: Springer Nature |
Title | Continuous and scalable manufacture of amphibious energy yarns and textiles |
URI | https://link.springer.com/article/10.1038/s41467-019-08846-2 https://www.ncbi.nlm.nih.gov/pubmed/30787290 https://www.proquest.com/docview/2184142935 https://www.proquest.com/docview/2184534222 https://pubmed.ncbi.nlm.nih.gov/PMC6382889 https://doaj.org/article/8c7d0e8e5f3640eaa50cbe437b382624 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_OOwRfDr-NniWCbxrd7ma_HkR65epRuUPUQt_CZrOrhTM9-wH2v3d2k1SqVXxJINmEyW_nM7szA_Dc6VwadIcy5bXOcoZxikJVnEkvhC0rXREaEpwvLsX5JB9P-fQAunZHLYDLvaFd6Cc1WVy9-vF98xYF_k2TMq5eL_Mo7iSk4yi0pxmq5CO0TDJ0NLho3f2omZnGgCYsNFOS9zMcwNo8mv2v2bFVsaT_Pj_0z-2Uv62pRlM1ug3HrY-ZDhqmuAMHrr4LN5uuk5t78D5UpJrVa4z5U1NX6RKnKSRQpd9MvQ6JDuuFS-c-NTjRszLskU1dzBBMN2ZRN8-E_SKoT5b3YTI6-zw8z9qeCplF32yVcebwI1ESK2G9coqaipaKU3QUvGLMekKs9xWT1NiclFYYop2TXHMtKuIMewCH9bx2jyDltvLKeC4qxLT0pe7nTnAnjTWESUcS6HfoFbYtOB76XlwVceGbqaJBvEDEi4h4QRN4sX3muim38c_Rp2FStiNDqex4Yb74UrSSVygrkXDluGcixy8wnNjSIVeWDEMrmidw0k1p0bFfEQLfPppqxhN4tr2NkheWU0ztEPo4hrPwCy2Bhw0HbClBzakwbEEM5A5v7JC6e6eefY3VvVEhUqV0Ai87LvpF1t-hePwfZD6BWzRyN0XdeAKHq8XaPUWXalX24IacSjyq0bseHA0G409jPJ-eXX74iFeHYtiLPyt6UZ5-AuLVIbk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCaJ6_UicA0K8li3b9tRKvRnHsWElSMpmI7R_it_I2HlUy6O3XhM7csafv5mxPTMAz2zOM43mUCJdniecoZ8ikYqTzKWpKcq8JNQHOB8cprNj_ulEnGzBryEWxl-rHDgxEHVZG79HvutdkQmSJxOvT38kvmqUP10dSmh0sJjb9U902ZpXe-9xfp9TOv1w9G6W9FUFEoPWySoRzCI5IBbL1DhpJdUlLaSgqCqdZMw4QoxzJcuoNpwUJtUktzYTucjTkljN8LuX4DJnqMl9ZPr047in47OtS8772BzC5G7DAxMRHykkUdUndEP_hTIB_7Jt_76i-cc5bVB_0xtwvbdb4zcd0G7Clq1uwZWukuX6Nsx9lqtF1dZtE-uqjBuceh-UFX_XVeuDJ9qljWsXawTPovD3bmMbog7jtV5WXR9_BwU5qrkDxxci0buwXdWVvQ-xMKWT2om0RDkWrsgn3KbCZtpowjJLIpgM0lOmT2Lua2l8U-EwnUnVSVyhxFWQuKIRvBj7nHYpPM5t_dZPytjSp98OD-rlF9WvZiVNhgOXVjiWcvwDLYgpLCK9YOiuUR7BzjClqueERp0hOIKn42tczf6IRlcWRR_aCOa35SK41yFgHAmysURXCGWQbWBjY6ibb6rF15AxHEmWSplH8HJA0dmw_i-KB-f_xRO4Ojs62Ff7e4fzh3CNBpBTpN0d2F4tW_sIrbVV8TgskRg-X_Sa_A3-SlD8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ4jWa8eJc0CI0q5aFlYVolJvruPYsBIkZbMR2r_Gr2PsPKrl0VuvG2flfP7ms8f2zAA8N1mcKlwORcJmWRQz9FMESnGU2iTReZEVhLoA54_z5OA4fn_CT7bgVx8L465V9prohbqotNsjHztXZILiyfjYdtcijvamb85-RK6ClDtp7ctptBSZmfVPdN_q14d7ONYvKJ3uf353EHUVBiKNK5VVxJlBoUBeFom2wgiqCpoLTnHatIIxbQnR1hYspUrHJNeJIpkxKc94lhTEKIb_ewW2U-cVjWB7d39-9GnY4XG510Ucd5E6hIlxHXtdIi5uSODEH9GN2dAXDfjXSvfvC5t_nNr6yXB6E250q9jwbUu7W7Blyttwta1rub4DM5fzalE2VVOHqizCGongQrTC76psXChFszRhZUOFVFrk7hZuaHwMYrhWy7J9x0GPilXfheNLwfQejMqqNA8g5LqwQlmeFIhjbvNsEpuEm1RpRVhqSACTHj2pu5TmrrLGN-mP1pmQLeISEZcecUkDeDm8c9Ym9Liw9a4blKGlS8btf6iWX2Rn21LoFDsuDLcsifELFCc6N8j7nKHzRuMAdvohlZ1C1PKczwE8Gx6jbbsDG1UahN634cxt0gVwv2XA0BPUZoGOEWKQbnBjo6ubT8rFV58_HCWXCpEF8Kpn0Xm3_g_Fw4u_4ilcQ3uUHw7ns0dwnXqOU9TgHRitlo15jEu3Vf6ks5EQTi_bLH8DXbVWjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+and+scalable+manufacture+of+amphibious+energy+yarns+and+textiles&rft.jtitle=Nature+communications&rft.au=Gong%2C+Wei&rft.au=Hou%2C+Chengyi&rft.au=Zhou%2C+Jie&rft.au=Guo%2C+Yinben&rft.date=2019-02-20&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=868&rft_id=info:doi/10.1038%2Fs41467-019-08846-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |