Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia
Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 5087 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.03.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-019-41572-9 |
Cover
Abstract | Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness. |
---|---|
AbstractList | Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness.Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness. Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness. |
ArticleNumber | 5087 |
Author | Funk, Adam Mielnik, Catharine A. Bentea, Eduard Pletnikov, Mikhail Ramsey, Amy J. Wen, Zhexing McCullumsmith, Robert E. Sullivan, Courtney R. O’Donovan, Sinead M. Rowland, Laura M. |
Author_xml | – sequence: 1 givenname: Courtney R. surname: Sullivan fullname: Sullivan, Courtney R. organization: Taconic Biosciences – sequence: 2 givenname: Catharine A. surname: Mielnik fullname: Mielnik, Catharine A. organization: Department of Pharmacology and Toxicology, University of Toronto, Toronto Ontario M5S, 1A8 – sequence: 3 givenname: Adam surname: Funk fullname: Funk, Adam organization: Department of Neurosciences, University of Toledo – sequence: 4 givenname: Sinead M. surname: O’Donovan fullname: O’Donovan, Sinead M. organization: Department of Neurosciences, University of Toledo – sequence: 5 givenname: Eduard surname: Bentea fullname: Bentea, Eduard organization: Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel – sequence: 6 givenname: Mikhail surname: Pletnikov fullname: Pletnikov, Mikhail organization: Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine – sequence: 7 givenname: Amy J. orcidid: 0000-0002-2717-5279 surname: Ramsey fullname: Ramsey, Amy J. organization: Department of Pharmacology and Toxicology, University of Toronto, Toronto Ontario M5S, 1A8 – sequence: 8 givenname: Zhexing orcidid: 0000-0002-1518-3845 surname: Wen fullname: Wen, Zhexing organization: Department of Psychiatry and Behavioral Sciences, Emory University – sequence: 9 givenname: Laura M. surname: Rowland fullname: Rowland, Laura M. organization: Department of Psychiatry, University of Maryland School of Medicine – sequence: 10 givenname: Robert E. surname: McCullumsmith fullname: McCullumsmith, Robert E. email: Robert.mccullumsmith@utoledo.edu organization: Department of Neurosciences, University of Toledo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30911039$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1LHDEUhoNY1G79A15IwJteOG0-JtnkRihLPwRLC23vCiGbOeNGMsmazAjtr2_WVateeCAkkOd9ec85r9FuTBEQOqLkHSVcvS8tFVo1hOqmvuas0TvogJFWNIwztvvovY8OS7kitQTTLdV7aJ8TTauLPkC_v4ItU4YB4ohTj4N1ox0BB7iBULCPeJ3KOKQ8woCX2fp4iv33H4tyim3s6vGDDXhI3Yau-uJW_m9arzJEb9-gV70NBQ7v7hn69enjz8WX5uLb5_PFh4vGiZaMjeC27aXr-04zZwWr5bjqXFebo1ZIrV2_BG2FUkRKIoigXauElEvVS95pPkNnW9_1tBygc7WXbINZ5xou_zHJevP0J_qVuUw3RracKyGqwds7g5yuJyijGXxxEIKNkKZiGNVzTQivNUMnz9CrNOVY27ul5i2RRFXq-HGihyj3g6-A2gIup1Iy9Mb5OnifNgF9MJSYzZrNds2mTsLcrtlspOyZ9N79RRHfikqF4yXk_7FfUP0DxnO5zA |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2021_06_015 crossref_primary_10_1016_j_neulet_2021_136003 crossref_primary_10_3390_ijms25020990 crossref_primary_10_1248_bpb_b24_00396 crossref_primary_10_1016_j_schres_2020_01_016 crossref_primary_10_1007_s44192_022_00011_4 crossref_primary_10_1002_adbi_202300409 crossref_primary_10_1016_j_schres_2019_05_032 crossref_primary_10_1038_s41598_019_53605_4 crossref_primary_10_1038_s41380_022_01494_x crossref_primary_10_1038_s41398_023_02716_8 crossref_primary_10_1016_j_schres_2020_09_003 crossref_primary_10_1038_s41398_023_02336_2 crossref_primary_10_7554_eLife_89376_3 crossref_primary_10_1007_s40473_019_00174_5 crossref_primary_10_1038_s41537_022_00326_9 crossref_primary_10_1097_MED_0000000000000564 crossref_primary_10_1016_j_bbagen_2022_130137 crossref_primary_10_1016_j_schres_2020_03_018 crossref_primary_10_3390_metabo14010025 crossref_primary_10_1002_bies_201900202 crossref_primary_10_1038_s41398_021_01617_y crossref_primary_10_3390_metabo11080548 crossref_primary_10_3390_neuroglia4020009 crossref_primary_10_1038_s41598_021_83886_7 crossref_primary_10_3390_ijms24097991 crossref_primary_10_1016_j_schres_2023_11_013 crossref_primary_10_3390_biomedicines12020457 crossref_primary_10_1016_j_schres_2020_03_070 crossref_primary_10_3390_ijms22168358 crossref_primary_10_1016_j_psychres_2024_116220 crossref_primary_10_1016_j_schres_2020_03_037 crossref_primary_10_3390_ijms221910254 crossref_primary_10_1007_s10517_020_04754_4 crossref_primary_10_20900_jpbs_20220009 crossref_primary_10_3390_bios10110183 crossref_primary_10_3389_fnut_2024_1444483 crossref_primary_10_7554_eLife_89376 crossref_primary_10_1093_schbul_sbae193 crossref_primary_10_1093_schbul_sbz119 crossref_primary_10_1016_j_bios_2021_112983 crossref_primary_10_1016_j_phmed_2020_100030 crossref_primary_10_1002_hup_2758 crossref_primary_10_3389_fpsyt_2021_656459 crossref_primary_10_1097_YCO_0000000000000535 crossref_primary_10_1016_j_schres_2022_08_027 crossref_primary_10_1016_j_schres_2022_04_003 |
Cites_doi | 10.1016/S0092-8674(00)81972-8 10.1038/tp.2016.226 10.1073/pnas.91.22.10625 10.1523/jneurosci.4687-12.2014 10.1038/mp.2010.71 10.1016/j.schres.2008.06.001 10.1111/j.1600-0404.2006.00671.x 10.1038/s41398-018-0123-9 10.1038/mp.2015.148 10.1038/ncb1881 10.1007/s00330-016-4454-8 10.1016/j.cell.2011.02.018 10.1038/npp.2017.167 10.1046/j.1460-9568.2000.00269.x 10.1007/s10059-012-2284-3 10.1016/j.biopsych.2008.11.010 10.1016/j.jneumeth.2007.11.017S0165-0270(07)00560-2 10.1038/nature13595 10.1038/sj.mp.4002079 10.1038/tp.2016.239 10.1007/s12035-018-1390-4 10.15761/CNM.1000105 10.1159/000017324 10.1016/j.neubiorev.2014.11.005 10.1073/pnas.1004361107 10.1038/s41380-41018-40035-41383 10.1073/pnas.261560998 10.1159/000441252 10.1016/j.biopsych.2017.10.014 10.1016/j.schres.2015.10.041 10.1016/0003-2697(85)90442-7 10.1007/s10545-005-5518-0 10.1016/j.schres.2017.01.053 10.1523/JNEUROSCI.23-19-07337.2003 10.1002/glia.20528 10.3389/fphys.2014.00043 10.1038/sj.mp.4001511 10.1016/j.psychres.2007.10.006 10.1002/syn.20623 10.1016/j.schres.2018.11.011 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-019-41572-9 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC6433855 30911039 10_1038_s41598_019_41572_9 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Local Initiative for Excellence Foundation – fundername: NIMH NIH HHS grantid: R01 MH083728 – fundername: NIMH NIH HHS grantid: R21 MH107916 – fundername: NIDA NIH HHS grantid: R01 DA041208 – fundername: NIMH NIH HHS grantid: R01 MH107487 – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-53a4f6cffd92ca52222c38dcd0191a5699cfbe9a58806605051d48566b8f63d93 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 14:10:33 EDT 2025 Thu Sep 04 16:56:52 EDT 2025 Wed Aug 13 10:55:16 EDT 2025 Thu Apr 03 07:06:24 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Tue Jul 01 03:08:31 EDT 2025 Fri Feb 21 02:41:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-53a4f6cffd92ca52222c38dcd0191a5699cfbe9a58806605051d48566b8f63d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1518-3845 0000-0002-2717-5279 |
OpenAccessLink | https://www.nature.com/articles/s41598-019-41572-9 |
PMID | 30911039 |
PQID | 2197740608 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433855 proquest_miscellaneous_2197900333 proquest_journals_2197740608 pubmed_primary_30911039 crossref_citationtrail_10_1038_s41598_019_41572_9 crossref_primary_10_1038_s41598_019_41572_9 springer_journals_10_1038_s41598_019_41572_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-25 |
PublicationDateYYYYMMDD | 2019-03-25 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | ZanelloACurtisLBadan BaMMerloMCWorking memory impairments in first-episode psychosis and chronic schizophreniaPsychiatry Res2009165101810.1016/j.psychres.2007.10.00619046607 RajasekaranAVenkatasubramanianGBerkMDebnathMMitochondrial dysfunction in schizophrenia: pathways, mechanisms and implicationsNeurosci Biobehav Rev20154810211:CAS:528:DC%2BC2cXhvFCnt77O10.1016/j.neubiorev.2014.11.00525446950 HjelmBEEvidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of SchizophreniaMol Neuropsychiatry201512012191:CAS:528:DC%2BC28XhsFersrvI10.1159/000441252265505614635522 Gilbert-JaramilloJThe effects of the ketogenic diet on psychiatric symptomatology, weight and metabolic dysfunction in schizophrenia patientsClinical Nutrition and Metabolism201811510.15761/CNM.1000105 FleischhackerWNegative symptoms in patients with schizophrenia with special reference to the primary versus secondary distinctionEncephale200026Spec No 1121411294057 McCullumsmithRECell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons?Mol Psychiatry2016218238301:CAS:528:DC%2BC2MXhsF2qsr%2FN10.1038/mp.2015.14826416546 Buchanan, R. W. & Carpenter, W. T. In Comprehensive Textbook of Psychiatry Vol. 1 (eds Sadock, B. J. & Sadock, V. A.) 1096–1110 (Lippincott, Williams, and Wilkins, 2000). RowlandLMElevated brain lactate in schizophrenia: a 7T magnetic resonance spectroscopy studyTransl Psychiatry201661:CAS:528:DC%2BC28XitVWqurvI10.1038/tp.2016.239278980725290358 KraeuterAKLoxtonHLimaBCRuddDSarnyaiZKetogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophreniaSchizophr Res201516949149310.1016/j.schres.2015.10.04126547882 LunsingRJStratingKde KoningTJSijensPEDiagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disordersEur Radiol20172797698410.1007/s00330-016-4454-827271921 SuzukiAAstrocyte-neuron lactate transport is required for long-term memory formationCell20111448108231:CAS:528:DC%2BC3MXjsFeqt7Y%3D10.1016/j.cell.2011.02.018213762393073831 AlmeidaAAlmeidaJBolanosJPMoncadaSDifferent responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protectionProc Natl Acad Sci USA20019815294152992001PNAS...9815294A1:CAS:528:DC%2BD38XpsVCg10.1073/pnas.2615609981174209665023 RobertsRCRocheJKConleyRRLahtiACDopaminergic synapses in the caudate of subjects with schizophrenia: relationship to treatment responseSynapse2009635205301:CAS:528:DC%2BD1MXlt1Kqsb0%3D10.1002/syn.20623192266042770250 WobrockTReduced cortical inhibition in first-episode schizophreniaSchizophr Res20081052522611:STN:280:DC%2BD1cnmvVGhtw%3D%3D10.1016/j.schres.2008.06.00118625547 PellerinLEvidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttleDev Neurosci1998202912991:CAS:528:DyaK1cXntl2lsLc%3D10.1159/0000173249778565 HerberthMImpaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patientsMol Psychiatry2011168488591:CAS:528:DC%2BC3MXpt1ahtbg%3D10.1038/mp.2010.7120585325 Association, A. P. (American Psychiatric Association, Washington, D.C., 2000). HagiharaHDecreased Brain pH as a Shared Endophenotype of Psychiatric DisordersNeuropsychopharmacology2018434594681:CAS:528:DC%2BC2sXhsVKmu7jP10.1038/npp.2017.16728776581 FinstererJCentral nervous system manifestations of mitochondrial disordersActa Neurol Scand20061142172381:CAS:528:DC%2BD28XhtFehtr3J10.1111/j.1600-0404.2006.00671.x16942541 SullivanCRO’DonovanSMMcCullumsmithRERamseyADefects in Bioenergetic Coupling in SchizophreniaBiol Psychiatry2018837397501:CAS:528:DC%2BC2sXhvFahu73J10.1016/j.biopsych.2017.10.01429217297 ParkYUDisrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with MitofilinProc Natl Acad Sci USA201010717785177902010PNAS..10717785P10.1073/pnas.1004361107208808362955093 RuffinVASalamehAIBoronWFParkerMDIntracellular pH regulation by acid-base transporters in mammalian neuronsFront Physiol201454310.3389/fphys.2014.00043245922393923155 LoaizaAPorrasOHBarrosLFGlutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopyJ Neurosci200323733773421:CAS:528:DC%2BD3sXms1Wntr8%3D10.1523/JNEUROSCI.23-19-07337.2003129173676740433 PrabakaranSMitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stressMol Psychiatry20049684-6976431:CAS:528:DC%2BD2cXltFWntLs%3D10.1038/sj.mp.4001511 HalimNDIncreased lactate levels and reduced pH in postmortem brains of schizophrenics: medication confoundsJ Neurosci Methods20081692082131:CAS:528:DC%2BD1cXislGksrc%3D10.1016/j.jneumeth.2007.11.017S0165-0270(07)00560-218177946 ParkCParkSKMolecular links between mitochondrial dysfunctions and schizophreniaMol Cells2012331051101:CAS:528:DC%2BC38Xisl2mtLs%3D10.1007/s10059-012-2284-3223585093887718 PellerinLMagistrettiPJGlutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilizationProc Natl Acad Sci USA19949110625106291994PNAS...9110625P1:CAS:528:DyaK2cXmvFentr8%3D10.1073/pnas.91.22.10625793800345074 Kraeuter, A. K., van den Buuse, M. & Sarnyai, Z. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res, https://doi.org/10.1016/j.schres.2018.11.011 (2018). PalmerCMKetogenic diet in the treatment of schizoaffective disorder: Two case studiesSchizophr Res20171892082092017avsi.book.....P10.1016/j.schres.2017.01.05328162810 JouroukhinYDISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disordersTransl Psychiatry201881:CAS:528:DC%2BC1cXhtFOms77L10.1038/s41398-018-0123-9296433565895599 Biological insights from 108 schizophrenia-associated genetic loci. Nature511, 421–427, https://doi.org/10.1038/nature13595 (2014). ChattonJYMarquetPMagistrettiPJA quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergeticsEur J Neurosci200012384338531:STN:280:DC%2BD3M%2FmtVKgtw%3D%3D10.1046/j.1460-9568.2000.00269.x11069579 Herrero-MendezAThe bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1Nature cell biology2009117477521:CAS:528:DC%2BD1MXms1als74%3D10.1038/ncb188119448625 Sullivan, C., Hasselfeld, K., O’Donovan, S., Ramsey, A. & McCullumsmith, R. Neuron-specific deficits of neuroenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Molecular Psychiatry, https://doi.org/10.1038/s41380-41018-40035-41383 (2019). SullivanCRConnectivity Analyses of Bioenergetic Changes in Schizophrenia: Identification of Novel TreatmentsMol Neurobiol201810.1007/s12035-018-1390-4303384837584383 SmithPKMeasurement of protein using bicinchoninic acidAnal Biochem198515076851:CAS:528:DyaL2MXlsFKksL0%3D10.1016/0003-2697(85)90442-73843705 PellerinLActivity-dependent regulation of energy metabolism by astrocytes: an updateGlia2007551251126210.1002/glia.2052817659524 MorrisAACerebral ketone body metabolismJ Inherit Metab Dis2005281091211:CAS:528:DC%2BD2MXjvFKqsLc%3D10.1007/s10545-005-5518-015877199 DeanBThomasNScarrEUdawelaMEvidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophreniaTransl Psychiatry201661:CAS:528:DC%2BC28XhvV2is7nL10.1038/tp.2016.226278457815314134 MohnARGainetdinovRRCaronMGKollerBHMice with reduced NMDA receptor expression display behaviors related to schizophreniaCell1999984274361:CAS:528:DyaK1MXlslWmsb0%3D10.1016/S0092-8674(00)81972-810481908 RegenoldWTElevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesisBiol Psychiatry2009654894941:CAS:528:DC%2BD1MXit1Wku7w%3D10.1016/j.biopsych.2008.11.01019103439 NagaseMTakahashiYWatabeAMKuboYKatoFOn-site energy supply at synapses through monocarboxylate transporters maintains excitatory synaptic transmissionJ Neurosci201434260526171:CAS:528:DC%2BC2cXjtlSgt7o%3D10.1523/jneurosci.4687-12.2014245235506802746 PletnikovMVInducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophreniaMol Psychiatry200813173-1861151:CAS:528:DC%2BD1cXnt1Gnug%3D%3D10.1038/sj.mp.400207918202691 T Wobrock (41572_CR5) 2008; 105 A Herrero-Mendez (41572_CR12) 2009; 11 RC Roberts (41572_CR40) 2009; 63 A Zanello (41572_CR4) 2009; 165 L Pellerin (41572_CR10) 2007; 55 LM Rowland (41572_CR17) 2016; 6 YU Park (41572_CR31) 2010; 107 CM Palmer (41572_CR38) 2017; 189 M Nagase (41572_CR9) 2014; 34 A Suzuki (41572_CR14) 2011; 144 B Dean (41572_CR20) 2016; 6 PK Smith (41572_CR42) 1985; 150 VA Ruffin (41572_CR22) 2014; 5 H Hagihara (41572_CR21) 2018; 43 CR Sullivan (41572_CR32) 2018 BE Hjelm (41572_CR33) 2015; 1 W Fleischhacker (41572_CR3) 2000; 26 41572_CR37 41572_CR30 L Pellerin (41572_CR11) 1998; 20 JY Chatton (41572_CR7) 2000; 12 RJ Lunsing (41572_CR25) 2017; 27 WT Regenold (41572_CR15) 2009; 65 J Finsterer (41572_CR24) 2006; 114 41572_CR2 41572_CR1 S Prabakaran (41572_CR18) 2004; 9 L Pellerin (41572_CR6) 1994; 91 A Rajasekaran (41572_CR26) 2015; 48 AR Mohn (41572_CR43) 1999; 98 M Herberth (41572_CR16) 2011; 16 A Loaiza (41572_CR8) 2003; 23 ND Halim (41572_CR19) 2008; 169 AA Morris (41572_CR35) 2005; 28 Y Jouroukhin (41572_CR27) 2018; 8 RE McCullumsmith (41572_CR41) 2016; 21 41572_CR23 MV Pletnikov (41572_CR28) 2008; 13 A Almeida (41572_CR13) 2001; 98 C Park (41572_CR34) 2012; 33 AK Kraeuter (41572_CR36) 2015; 169 CR Sullivan (41572_CR29) 2018; 83 J Gilbert-Jaramillo (41572_CR39) 2018; 1 |
References_xml | – reference: ParkCParkSKMolecular links between mitochondrial dysfunctions and schizophreniaMol Cells2012331051101:CAS:528:DC%2BC38Xisl2mtLs%3D10.1007/s10059-012-2284-3223585093887718 – reference: SullivanCRO’DonovanSMMcCullumsmithRERamseyADefects in Bioenergetic Coupling in SchizophreniaBiol Psychiatry2018837397501:CAS:528:DC%2BC2sXhvFahu73J10.1016/j.biopsych.2017.10.01429217297 – reference: HerberthMImpaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patientsMol Psychiatry2011168488591:CAS:528:DC%2BC3MXpt1ahtbg%3D10.1038/mp.2010.7120585325 – reference: HjelmBEEvidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of SchizophreniaMol Neuropsychiatry201512012191:CAS:528:DC%2BC28XhsFersrvI10.1159/000441252265505614635522 – reference: MorrisAACerebral ketone body metabolismJ Inherit Metab Dis2005281091211:CAS:528:DC%2BD2MXjvFKqsLc%3D10.1007/s10545-005-5518-015877199 – reference: SuzukiAAstrocyte-neuron lactate transport is required for long-term memory formationCell20111448108231:CAS:528:DC%2BC3MXjsFeqt7Y%3D10.1016/j.cell.2011.02.018213762393073831 – reference: RowlandLMElevated brain lactate in schizophrenia: a 7T magnetic resonance spectroscopy studyTransl Psychiatry201661:CAS:528:DC%2BC28XitVWqurvI10.1038/tp.2016.239278980725290358 – reference: LunsingRJStratingKde KoningTJSijensPEDiagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disordersEur Radiol20172797698410.1007/s00330-016-4454-827271921 – reference: Buchanan, R. W. & Carpenter, W. T. In Comprehensive Textbook of Psychiatry Vol. 1 (eds Sadock, B. J. & Sadock, V. A.) 1096–1110 (Lippincott, Williams, and Wilkins, 2000). – reference: Herrero-MendezAThe bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1Nature cell biology2009117477521:CAS:528:DC%2BD1MXms1als74%3D10.1038/ncb188119448625 – reference: McCullumsmithRECell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons?Mol Psychiatry2016218238301:CAS:528:DC%2BC2MXhsF2qsr%2FN10.1038/mp.2015.14826416546 – reference: HalimNDIncreased lactate levels and reduced pH in postmortem brains of schizophrenics: medication confoundsJ Neurosci Methods20081692082131:CAS:528:DC%2BD1cXislGksrc%3D10.1016/j.jneumeth.2007.11.017S0165-0270(07)00560-218177946 – reference: AlmeidaAAlmeidaJBolanosJPMoncadaSDifferent responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protectionProc Natl Acad Sci USA20019815294152992001PNAS...9815294A1:CAS:528:DC%2BD38XpsVCg10.1073/pnas.2615609981174209665023 – reference: HagiharaHDecreased Brain pH as a Shared Endophenotype of Psychiatric DisordersNeuropsychopharmacology2018434594681:CAS:528:DC%2BC2sXhsVKmu7jP10.1038/npp.2017.16728776581 – reference: PellerinLActivity-dependent regulation of energy metabolism by astrocytes: an updateGlia2007551251126210.1002/glia.2052817659524 – reference: ZanelloACurtisLBadan BaMMerloMCWorking memory impairments in first-episode psychosis and chronic schizophreniaPsychiatry Res2009165101810.1016/j.psychres.2007.10.00619046607 – reference: Kraeuter, A. K., van den Buuse, M. & Sarnyai, Z. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res, https://doi.org/10.1016/j.schres.2018.11.011 (2018). – reference: LoaizaAPorrasOHBarrosLFGlutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopyJ Neurosci200323733773421:CAS:528:DC%2BD3sXms1Wntr8%3D10.1523/JNEUROSCI.23-19-07337.2003129173676740433 – reference: KraeuterAKLoxtonHLimaBCRuddDSarnyaiZKetogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophreniaSchizophr Res201516949149310.1016/j.schres.2015.10.04126547882 – reference: PrabakaranSMitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stressMol Psychiatry20049684-6976431:CAS:528:DC%2BD2cXltFWntLs%3D10.1038/sj.mp.4001511 – reference: SmithPKMeasurement of protein using bicinchoninic acidAnal Biochem198515076851:CAS:528:DyaL2MXlsFKksL0%3D10.1016/0003-2697(85)90442-73843705 – reference: ChattonJYMarquetPMagistrettiPJA quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergeticsEur J Neurosci200012384338531:STN:280:DC%2BD3M%2FmtVKgtw%3D%3D10.1046/j.1460-9568.2000.00269.x11069579 – reference: Association, A. P. (American Psychiatric Association, Washington, D.C., 2000). – reference: MohnARGainetdinovRRCaronMGKollerBHMice with reduced NMDA receptor expression display behaviors related to schizophreniaCell1999984274361:CAS:528:DyaK1MXlslWmsb0%3D10.1016/S0092-8674(00)81972-810481908 – reference: PellerinLEvidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttleDev Neurosci1998202912991:CAS:528:DyaK1cXntl2lsLc%3D10.1159/0000173249778565 – reference: FinstererJCentral nervous system manifestations of mitochondrial disordersActa Neurol Scand20061142172381:CAS:528:DC%2BD28XhtFehtr3J10.1111/j.1600-0404.2006.00671.x16942541 – reference: SullivanCRConnectivity Analyses of Bioenergetic Changes in Schizophrenia: Identification of Novel TreatmentsMol Neurobiol201810.1007/s12035-018-1390-4303384837584383 – reference: Gilbert-JaramilloJThe effects of the ketogenic diet on psychiatric symptomatology, weight and metabolic dysfunction in schizophrenia patientsClinical Nutrition and Metabolism201811510.15761/CNM.1000105 – reference: PletnikovMVInducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophreniaMol Psychiatry200813173-1861151:CAS:528:DC%2BD1cXnt1Gnug%3D%3D10.1038/sj.mp.400207918202691 – reference: Sullivan, C., Hasselfeld, K., O’Donovan, S., Ramsey, A. & McCullumsmith, R. Neuron-specific deficits of neuroenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Molecular Psychiatry, https://doi.org/10.1038/s41380-41018-40035-41383 (2019). – reference: PalmerCMKetogenic diet in the treatment of schizoaffective disorder: Two case studiesSchizophr Res20171892082092017avsi.book.....P10.1016/j.schres.2017.01.05328162810 – reference: Biological insights from 108 schizophrenia-associated genetic loci. Nature511, 421–427, https://doi.org/10.1038/nature13595 (2014). – reference: NagaseMTakahashiYWatabeAMKuboYKatoFOn-site energy supply at synapses through monocarboxylate transporters maintains excitatory synaptic transmissionJ Neurosci201434260526171:CAS:528:DC%2BC2cXjtlSgt7o%3D10.1523/jneurosci.4687-12.2014245235506802746 – reference: JouroukhinYDISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disordersTransl Psychiatry201881:CAS:528:DC%2BC1cXhtFOms77L10.1038/s41398-018-0123-9296433565895599 – reference: FleischhackerWNegative symptoms in patients with schizophrenia with special reference to the primary versus secondary distinctionEncephale200026Spec No 1121411294057 – reference: ParkYUDisrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with MitofilinProc Natl Acad Sci USA201010717785177902010PNAS..10717785P10.1073/pnas.1004361107208808362955093 – reference: RobertsRCRocheJKConleyRRLahtiACDopaminergic synapses in the caudate of subjects with schizophrenia: relationship to treatment responseSynapse2009635205301:CAS:528:DC%2BD1MXlt1Kqsb0%3D10.1002/syn.20623192266042770250 – reference: WobrockTReduced cortical inhibition in first-episode schizophreniaSchizophr Res20081052522611:STN:280:DC%2BD1cnmvVGhtw%3D%3D10.1016/j.schres.2008.06.00118625547 – reference: RuffinVASalamehAIBoronWFParkerMDIntracellular pH regulation by acid-base transporters in mammalian neuronsFront Physiol201454310.3389/fphys.2014.00043245922393923155 – reference: PellerinLMagistrettiPJGlutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilizationProc Natl Acad Sci USA19949110625106291994PNAS...9110625P1:CAS:528:DyaK2cXmvFentr8%3D10.1073/pnas.91.22.10625793800345074 – reference: DeanBThomasNScarrEUdawelaMEvidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophreniaTransl Psychiatry201661:CAS:528:DC%2BC28XhvV2is7nL10.1038/tp.2016.226278457815314134 – reference: RegenoldWTElevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesisBiol Psychiatry2009654894941:CAS:528:DC%2BD1MXit1Wku7w%3D10.1016/j.biopsych.2008.11.01019103439 – reference: RajasekaranAVenkatasubramanianGBerkMDebnathMMitochondrial dysfunction in schizophrenia: pathways, mechanisms and implicationsNeurosci Biobehav Rev20154810211:CAS:528:DC%2BC2cXhvFCnt77O10.1016/j.neubiorev.2014.11.00525446950 – volume: 98 start-page: 427 year: 1999 ident: 41572_CR43 publication-title: Cell doi: 10.1016/S0092-8674(00)81972-8 – volume: 6 year: 2016 ident: 41572_CR20 publication-title: Transl Psychiatry doi: 10.1038/tp.2016.226 – volume: 91 start-page: 10625 year: 1994 ident: 41572_CR6 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.91.22.10625 – volume: 34 start-page: 2605 year: 2014 ident: 41572_CR9 publication-title: J Neurosci doi: 10.1523/jneurosci.4687-12.2014 – volume: 16 start-page: 848 year: 2011 ident: 41572_CR16 publication-title: Mol Psychiatry doi: 10.1038/mp.2010.71 – volume: 105 start-page: 252 year: 2008 ident: 41572_CR5 publication-title: Schizophr Res doi: 10.1016/j.schres.2008.06.001 – volume: 114 start-page: 217 year: 2006 ident: 41572_CR24 publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.2006.00671.x – volume: 8 year: 2018 ident: 41572_CR27 publication-title: Transl Psychiatry doi: 10.1038/s41398-018-0123-9 – volume: 21 start-page: 823 year: 2016 ident: 41572_CR41 publication-title: Mol Psychiatry doi: 10.1038/mp.2015.148 – volume: 11 start-page: 747 year: 2009 ident: 41572_CR12 publication-title: Nature cell biology doi: 10.1038/ncb1881 – volume: 27 start-page: 976 year: 2017 ident: 41572_CR25 publication-title: Eur Radiol doi: 10.1007/s00330-016-4454-8 – volume: 144 start-page: 810 year: 2011 ident: 41572_CR14 publication-title: Cell doi: 10.1016/j.cell.2011.02.018 – volume: 43 start-page: 459 year: 2018 ident: 41572_CR21 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2017.167 – volume: 12 start-page: 3843 year: 2000 ident: 41572_CR7 publication-title: Eur J Neurosci doi: 10.1046/j.1460-9568.2000.00269.x – volume: 33 start-page: 105 year: 2012 ident: 41572_CR34 publication-title: Mol Cells doi: 10.1007/s10059-012-2284-3 – volume: 65 start-page: 489 year: 2009 ident: 41572_CR15 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2008.11.010 – volume: 169 start-page: 208 year: 2008 ident: 41572_CR19 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.11.017S0165-0270(07)00560-2 – ident: 41572_CR30 doi: 10.1038/nature13595 – volume: 13 start-page: 115 issue: 173-186 year: 2008 ident: 41572_CR28 publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4002079 – volume: 6 year: 2016 ident: 41572_CR17 publication-title: Transl Psychiatry doi: 10.1038/tp.2016.239 – year: 2018 ident: 41572_CR32 publication-title: Mol Neurobiol doi: 10.1007/s12035-018-1390-4 – ident: 41572_CR2 – volume: 1 start-page: 1 year: 2018 ident: 41572_CR39 publication-title: Clinical Nutrition and Metabolism doi: 10.15761/CNM.1000105 – volume: 20 start-page: 291 year: 1998 ident: 41572_CR11 publication-title: Dev Neurosci doi: 10.1159/000017324 – volume: 48 start-page: 10 year: 2015 ident: 41572_CR26 publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2014.11.005 – volume: 107 start-page: 17785 year: 2010 ident: 41572_CR31 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1004361107 – ident: 41572_CR23 doi: 10.1038/s41380-41018-40035-41383 – volume: 98 start-page: 15294 year: 2001 ident: 41572_CR13 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.261560998 – volume: 1 start-page: 201 year: 2015 ident: 41572_CR33 publication-title: Mol Neuropsychiatry doi: 10.1159/000441252 – volume: 83 start-page: 739 year: 2018 ident: 41572_CR29 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.10.014 – volume: 169 start-page: 491 year: 2015 ident: 41572_CR36 publication-title: Schizophr Res doi: 10.1016/j.schres.2015.10.041 – volume: 150 start-page: 76 year: 1985 ident: 41572_CR42 publication-title: Anal Biochem doi: 10.1016/0003-2697(85)90442-7 – volume: 28 start-page: 109 year: 2005 ident: 41572_CR35 publication-title: J Inherit Metab Dis doi: 10.1007/s10545-005-5518-0 – volume: 189 start-page: 208 year: 2017 ident: 41572_CR38 publication-title: Schizophr Res doi: 10.1016/j.schres.2017.01.053 – volume: 23 start-page: 7337 year: 2003 ident: 41572_CR8 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-19-07337.2003 – volume: 26 start-page: 12 issue: Spec No 1 year: 2000 ident: 41572_CR3 publication-title: Encephale – volume: 55 start-page: 1251 year: 2007 ident: 41572_CR10 publication-title: Glia doi: 10.1002/glia.20528 – volume: 5 start-page: 43 year: 2014 ident: 41572_CR22 publication-title: Front Physiol doi: 10.3389/fphys.2014.00043 – volume: 9 start-page: 643 issue: 684-697 year: 2004 ident: 41572_CR18 publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001511 – volume: 165 start-page: 10 year: 2009 ident: 41572_CR4 publication-title: Psychiatry Res doi: 10.1016/j.psychres.2007.10.006 – volume: 63 start-page: 520 year: 2009 ident: 41572_CR40 publication-title: Synapse doi: 10.1002/syn.20623 – ident: 41572_CR1 – ident: 41572_CR37 doi: 10.1016/j.schres.2018.11.011 |
SSID | ssj0000529419 |
Score | 2.4590585 |
Snippet | Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5087 |
SubjectTerms | 631/378/2649 631/378/340 Animal models Animals Astrocytes Astrocytes - metabolism Bioenergetics Brain - cytology Brain - metabolism Cognitive ability Diagnosis Disc1 protein Disease Models, Animal Frontal Lobe - cytology Frontal Lobe - metabolism Humanities and Social Sciences Humans Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Inhibitory postsynaptic potentials Lactates - metabolism Lactic acid Male Mental disorders Mice multidisciplinary Mutation Nerve Tissue Proteins - metabolism Neurons - cytology Neurons - metabolism Pluripotency Prefrontal cortex Prefrontal Cortex - cytology Prefrontal Cortex - metabolism Rats Rats, Sprague-Dawley Rodents Schizophrenia Schizophrenia - metabolism Science Science (multidisciplinary) Stem cell transplantation Stem cells |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddy2AvZWv3ka0rHvRtZ5rYsZM8jVJWSqFlsBXuYRAcO2YH1-TWXB_631dycrneyvoQCNiOY0uyfkiyBHCkvdHS5jUXWgmeGql5lTrB60RXqO50YsI97ssrfX6dXkzVdDC4dUNY5epMDAe1ay3ZyI9RshCpxDrOvy3-cqoaRd7VoYTGC9gJqcuQn7NpNtpYyIuVJsVwVyaW-XGH-orulCXk_lSZ4MWmPnoCMp_GSv7jMA166Ow17A4Akp30FH8DW3WzBy_7kpL3-_D7cm30Y61nc2MJTrI5BQd1bNawRdstb0KILauoPsSEzX78PO0mzDQOn9kNfj3Ux-lofPc4KO8tXJ99_3V6zocKCtwiEltyJU3qtfXeFcIahFpCWJk763ADEqN0UVhf1YVRKMVaU1G7xKU5Irwq91q6Qr6D7aZt6g_AfOx0jB0rY0QqZV1l-CoMqjPvcQ4fQbLax9IO6cWpysW8DG5umZf93pc4dRn2viwi-DqOWfTJNZ7tfbAiTzkIWleu2SKCL2Mzigj5PUxTt3d9HzLYShnB-56a43QS8RJ5wyPINug8dqD025stzexPSMONWE7mSkUwWXHE-rf-v4qPz6_iE7wSxJ2x5EIdwPby9q7-jLBnWR0G3n4Axev_ZQ priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD7Mjizsi3jZXeuNLPi2E7ZNmkz6OAwOMqAIrjAPQknThh0YO2LHB_-9J-lFR1fBh0IhJ016cjkf5wpwIq2W3KiCMikYjTWXNItzRotIZijuZKR9HPf5hTy7jqczMesBa2NhvNO-T2npr-nWO-xPhYLGBYNFzm4phowmX2BDofhjfdgYjaZX006z4mxXcZQ0ETIhV__pvC6F3kDLtx6Sr8ykXvpMtmCzgY1kVE90G3pFuQNf60KSj7twc_6s6iNLSxbaOBBJFs4lqCLzktwtq9Wtd6wlmasKMSDzy6txNSC6zPGZ3-LXfVWcyvWvXrrifYfryenf8Rlt6iZQg_hrRQXXsZXG2jxhRiPAYsxwlZscGRBpIZPE2KxItMCzK6UrZRflsUJclykreZ7wH9Avl2WxB8SGuQyRMNOaxZwX2RBfmUYhZi2OYQOIWj6mpkkq7mpbLFJv3OYqrXmf4tCp532aBPC763NXp9T4kPqwXZ60OV5VitcswtZQhiqAX10zHgxn7dBlsXyoaZyalvMAftar2Q3HESU5G3gAw7V17ghc0u31lnL-zyffRgTHlRABDNod8Tyt9_9i_3PkB_CNud0acsrEIfRX9w_FEYKfVXbc7PYnuqL-oA priority: 102 providerName: Springer Nature |
Title | Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia |
URI | https://link.springer.com/article/10.1038/s41598-019-41572-9 https://www.ncbi.nlm.nih.gov/pubmed/30911039 https://www.proquest.com/docview/2197740608 https://www.proquest.com/docview/2197900333 https://pubmed.ncbi.nlm.nih.gov/PMC6433855 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD70wmAvpV3XzWsXNNjbotaWLNl-GCMNLSWQUtoF8lAwsmyxQOK0dQrrv9-RbKdLL2MPxsa6-kjy-aQjnQ_gqzRKch0XlEnBaKi4pFmYM1oEMkN1JwPlznEPz-XZKByMxXgNWrqjRoDVi1M7yyc1upse_r59-IED_nt9ZDw-qlAJ2YNigbVpiojRZB02UTNJOxkbNnC_9vXNktBxfVgn7BTBBGvO0byczaquegZAn--jfGJMdTrqdBu2GnBJenVv2IG1onwHb2q6yYdduB4-LgiSuSFTpS3UJFO7cagik5LczKvFzG2_JZnljuiSycVVv-oSVeZ4TWaYu-POqWz66u8Ne-9hdHrys39GG3YFqhGlLajgKjRSG5MnTCuEYYxpHuc6RwEESsgk0SYrEiVwhEtpCe-CPIwR_WWxkTxP-B5slPOy-AjE-Ln0MWKmFAs5L7IIH5lCVWcMlmE8CFo5prpxPW4ZMKapM4HzOK1ln2LRqZN9mnjwbZnmpna88c_YB23zpG0fSvFnjODWl37swZdlMA4faxNRZTG_r-PYxVzOPfhQt-ayOI5YylrKPYhW2nkZwbrmXg0pJ7-ci27EeTwWwoNu2yMeq_X6V3z6j2ruw1tmu6jPKRMHsLG4uy8-Iy5aZB1Yj8ZRBzZ7vcHVAO_HJ-cXl_i2L_sdt9bQccPhD4LKDGU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4EChgJTqzVxE68yQEhKK22tLuqoJV6QDKOE4uVtslCtkL9U_xGZvJaloreeogUKXYcz4w9XzwvgFfKGSVtnHOhIsFDIxVPw0zwPFApqjsVmDqOezJV45Pw02l0ugG_u1gYcqvs9sR6o85KS2fk27iyEKn4yo_fLX5wqhpF1tWuhEYjFgf5xS_8Zave7n9E_r4WYm_3eGfM26oC3CI6WfJImtAp61yWCGsQfghhZZzZDMFOYCKVJNaleWIilGylqNBbkIUxop40dkpmlHwJt_zNkCJaB7D5YXd69Lk_1SG7WRgkbXSOL-PtCjUkRbEFZHCNRoIn6xrwEqy97J35j4m21nx7d-B2C1nZ-0bG7sJGXtyDG00Ry4v78HWyOmZkpWNzYwnAsjm5I1VsVrBFWS3PaqdellJFiiGbHX3ZqYbMFBleszN8e12Rp6L-1d9ugA_g5Fqo-xAGRVnkj4E5P1M-NkyNEaGUeTrCW2FQgTqHYzgPgo6O2rYJzamuxlzXhnUZ64b2GofWNe114sGbvs-iSedxZeutjj26XdqVXgmiBy_7x7goydJiirw8b9rQEbGUHjxquNkPJxGhkf3dg9Ean_sGlPB7_Ukx-14n_kb0KOMo8mDYScTqs_4_iydXz-IF3BwfTw714f704CncEiSpvuQi2oLB8ud5_gxB1zJ93ko6g2_Xvbj-ANo9POc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB5VW4F4QdyEHhgJnlhrEzvxJg-ooseqpXS1Air1ASl1nFistE22ZCvUv8avYybXslT0rQ-RItmOrxnPF88F8FZZraQJMy5UILivpeKJnwqeeSpBcac8Xflxn4zV4an_6Sw4W4PfrS8MmVW2Z2J1UKeFoTvyAXIWIhVXueHANmYRk_3RzvySUwYp0rS26TRqEjnOrn_h71v54Wgf9_qdEKODb3uHvMkwwA0ilQUPpPatMtamkTAaoYgQRoapSRH4eDpQUWRskkU6QCpXipK-eakfIgJKQqtkSoGY8Phfp3H5PVjfPRhPvnQ3PKRD872o8dRxZTgoUVqSR5tHytdgKHi0Kg1vQNyblpr_qGsrKTh6BA8b-Mo-1vT2GNay_AncqxNaXj-F7yfLK0dWWDbThsAsm5FpUsmmOZsX5eKiMvBlCWWn6LPp5Ote2Wc6T_GZXuDXq-w8JbUv_zYJfAand7K6z6GXF3n2Eph1U-VixURr4UuZJUN8FRqFqbXYh3XAa9cxNk1wc8qxMYsrJbsM43rtY-w6rtY-jhx437WZ16E9bq292W5P3LB5GS-J0oE3XTEyKGlddJ4VV3Udui6W0oEX9W523UlEa6SLd2C4ss9dBQr-vVqST39UQcARScowCBzotxSxHNb_Z_Hq9lm8hvvIVPHno_HxBjwQRKiu5CLYhN7i51W2hfhrkWw3hM7g_K556w-FqUET |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+lactate+levels+in+postmortem+brain%2C+iPSCs%2C+and+animal+models+of+schizophrenia&rft.jtitle=Scientific+reports&rft.au=Sullivan%2C+Courtney+R&rft.au=Mielnik%2C+Catharine+A&rft.au=Funk%2C+Adam&rft.au=O%27Donovan%2C+Sinead+M&rft.date=2019-03-25&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=5087&rft_id=info:doi/10.1038%2Fs41598-019-41572-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |