Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia

Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 5087
Main Authors Sullivan, Courtney R., Mielnik, Catharine A., Funk, Adam, O’Donovan, Sinead M., Bentea, Eduard, Pletnikov, Mikhail, Ramsey, Amy J., Wen, Zhexing, Rowland, Laura M., McCullumsmith, Robert E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.03.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-019-41572-9

Cover

Abstract Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness.
AbstractList Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness.Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness.
Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness.
ArticleNumber 5087
Author Funk, Adam
Mielnik, Catharine A.
Bentea, Eduard
Pletnikov, Mikhail
Ramsey, Amy J.
Wen, Zhexing
McCullumsmith, Robert E.
Sullivan, Courtney R.
O’Donovan, Sinead M.
Rowland, Laura M.
Author_xml – sequence: 1
  givenname: Courtney R.
  surname: Sullivan
  fullname: Sullivan, Courtney R.
  organization: Taconic Biosciences
– sequence: 2
  givenname: Catharine A.
  surname: Mielnik
  fullname: Mielnik, Catharine A.
  organization: Department of Pharmacology and Toxicology, University of Toronto, Toronto Ontario M5S, 1A8
– sequence: 3
  givenname: Adam
  surname: Funk
  fullname: Funk, Adam
  organization: Department of Neurosciences, University of Toledo
– sequence: 4
  givenname: Sinead M.
  surname: O’Donovan
  fullname: O’Donovan, Sinead M.
  organization: Department of Neurosciences, University of Toledo
– sequence: 5
  givenname: Eduard
  surname: Bentea
  fullname: Bentea, Eduard
  organization: Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel
– sequence: 6
  givenname: Mikhail
  surname: Pletnikov
  fullname: Pletnikov, Mikhail
  organization: Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine
– sequence: 7
  givenname: Amy J.
  orcidid: 0000-0002-2717-5279
  surname: Ramsey
  fullname: Ramsey, Amy J.
  organization: Department of Pharmacology and Toxicology, University of Toronto, Toronto Ontario M5S, 1A8
– sequence: 8
  givenname: Zhexing
  orcidid: 0000-0002-1518-3845
  surname: Wen
  fullname: Wen, Zhexing
  organization: Department of Psychiatry and Behavioral Sciences, Emory University
– sequence: 9
  givenname: Laura M.
  surname: Rowland
  fullname: Rowland, Laura M.
  organization: Department of Psychiatry, University of Maryland School of Medicine
– sequence: 10
  givenname: Robert E.
  surname: McCullumsmith
  fullname: McCullumsmith, Robert E.
  email: Robert.mccullumsmith@utoledo.edu
  organization: Department of Neurosciences, University of Toledo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30911039$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LHDEUhoNY1G79A15IwJteOG0-JtnkRihLPwRLC23vCiGbOeNGMsmazAjtr2_WVateeCAkkOd9ec85r9FuTBEQOqLkHSVcvS8tFVo1hOqmvuas0TvogJFWNIwztvvovY8OS7kitQTTLdV7aJ8TTauLPkC_v4ItU4YB4ohTj4N1ox0BB7iBULCPeJ3KOKQ8woCX2fp4iv33H4tyim3s6vGDDXhI3Yau-uJW_m9arzJEb9-gV70NBQ7v7hn69enjz8WX5uLb5_PFh4vGiZaMjeC27aXr-04zZwWr5bjqXFebo1ZIrV2_BG2FUkRKIoigXauElEvVS95pPkNnW9_1tBygc7WXbINZ5xou_zHJevP0J_qVuUw3RracKyGqwds7g5yuJyijGXxxEIKNkKZiGNVzTQivNUMnz9CrNOVY27ul5i2RRFXq-HGihyj3g6-A2gIup1Iy9Mb5OnifNgF9MJSYzZrNds2mTsLcrtlspOyZ9N79RRHfikqF4yXk_7FfUP0DxnO5zA
CitedBy_id crossref_primary_10_1016_j_brainresbull_2021_06_015
crossref_primary_10_1016_j_neulet_2021_136003
crossref_primary_10_3390_ijms25020990
crossref_primary_10_1248_bpb_b24_00396
crossref_primary_10_1016_j_schres_2020_01_016
crossref_primary_10_1007_s44192_022_00011_4
crossref_primary_10_1002_adbi_202300409
crossref_primary_10_1016_j_schres_2019_05_032
crossref_primary_10_1038_s41598_019_53605_4
crossref_primary_10_1038_s41380_022_01494_x
crossref_primary_10_1038_s41398_023_02716_8
crossref_primary_10_1016_j_schres_2020_09_003
crossref_primary_10_1038_s41398_023_02336_2
crossref_primary_10_7554_eLife_89376_3
crossref_primary_10_1007_s40473_019_00174_5
crossref_primary_10_1038_s41537_022_00326_9
crossref_primary_10_1097_MED_0000000000000564
crossref_primary_10_1016_j_bbagen_2022_130137
crossref_primary_10_1016_j_schres_2020_03_018
crossref_primary_10_3390_metabo14010025
crossref_primary_10_1002_bies_201900202
crossref_primary_10_1038_s41398_021_01617_y
crossref_primary_10_3390_metabo11080548
crossref_primary_10_3390_neuroglia4020009
crossref_primary_10_1038_s41598_021_83886_7
crossref_primary_10_3390_ijms24097991
crossref_primary_10_1016_j_schres_2023_11_013
crossref_primary_10_3390_biomedicines12020457
crossref_primary_10_1016_j_schres_2020_03_070
crossref_primary_10_3390_ijms22168358
crossref_primary_10_1016_j_psychres_2024_116220
crossref_primary_10_1016_j_schres_2020_03_037
crossref_primary_10_3390_ijms221910254
crossref_primary_10_1007_s10517_020_04754_4
crossref_primary_10_20900_jpbs_20220009
crossref_primary_10_3390_bios10110183
crossref_primary_10_3389_fnut_2024_1444483
crossref_primary_10_7554_eLife_89376
crossref_primary_10_1093_schbul_sbae193
crossref_primary_10_1093_schbul_sbz119
crossref_primary_10_1016_j_bios_2021_112983
crossref_primary_10_1016_j_phmed_2020_100030
crossref_primary_10_1002_hup_2758
crossref_primary_10_3389_fpsyt_2021_656459
crossref_primary_10_1097_YCO_0000000000000535
crossref_primary_10_1016_j_schres_2022_08_027
crossref_primary_10_1016_j_schres_2022_04_003
Cites_doi 10.1016/S0092-8674(00)81972-8
10.1038/tp.2016.226
10.1073/pnas.91.22.10625
10.1523/jneurosci.4687-12.2014
10.1038/mp.2010.71
10.1016/j.schres.2008.06.001
10.1111/j.1600-0404.2006.00671.x
10.1038/s41398-018-0123-9
10.1038/mp.2015.148
10.1038/ncb1881
10.1007/s00330-016-4454-8
10.1016/j.cell.2011.02.018
10.1038/npp.2017.167
10.1046/j.1460-9568.2000.00269.x
10.1007/s10059-012-2284-3
10.1016/j.biopsych.2008.11.010
10.1016/j.jneumeth.2007.11.017S0165-0270(07)00560-2
10.1038/nature13595
10.1038/sj.mp.4002079
10.1038/tp.2016.239
10.1007/s12035-018-1390-4
10.15761/CNM.1000105
10.1159/000017324
10.1016/j.neubiorev.2014.11.005
10.1073/pnas.1004361107
10.1038/s41380-41018-40035-41383
10.1073/pnas.261560998
10.1159/000441252
10.1016/j.biopsych.2017.10.014
10.1016/j.schres.2015.10.041
10.1016/0003-2697(85)90442-7
10.1007/s10545-005-5518-0
10.1016/j.schres.2017.01.053
10.1523/JNEUROSCI.23-19-07337.2003
10.1002/glia.20528
10.3389/fphys.2014.00043
10.1038/sj.mp.4001511
10.1016/j.psychres.2007.10.006
10.1002/syn.20623
10.1016/j.schres.2018.11.011
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-019-41572-9
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC6433855
30911039
10_1038_s41598_019_41572_9
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Local Initiative for Excellence Foundation
– fundername: NIMH NIH HHS
  grantid: R01 MH083728
– fundername: NIMH NIH HHS
  grantid: R21 MH107916
– fundername: NIDA NIH HHS
  grantid: R01 DA041208
– fundername: NIMH NIH HHS
  grantid: R01 MH107487
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-53a4f6cffd92ca52222c38dcd0191a5699cfbe9a58806605051d48566b8f63d93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 14:10:33 EDT 2025
Thu Sep 04 16:56:52 EDT 2025
Wed Aug 13 10:55:16 EDT 2025
Thu Apr 03 07:06:24 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Tue Jul 01 03:08:31 EDT 2025
Fri Feb 21 02:41:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-53a4f6cffd92ca52222c38dcd0191a5699cfbe9a58806605051d48566b8f63d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1518-3845
0000-0002-2717-5279
OpenAccessLink https://www.nature.com/articles/s41598-019-41572-9
PMID 30911039
PQID 2197740608
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433855
proquest_miscellaneous_2197900333
proquest_journals_2197740608
pubmed_primary_30911039
crossref_citationtrail_10_1038_s41598_019_41572_9
crossref_primary_10_1038_s41598_019_41572_9
springer_journals_10_1038_s41598_019_41572_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-25
PublicationDateYYYYMMDD 2019-03-25
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-25
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References ZanelloACurtisLBadan BaMMerloMCWorking memory impairments in first-episode psychosis and chronic schizophreniaPsychiatry Res2009165101810.1016/j.psychres.2007.10.00619046607
RajasekaranAVenkatasubramanianGBerkMDebnathMMitochondrial dysfunction in schizophrenia: pathways, mechanisms and implicationsNeurosci Biobehav Rev20154810211:CAS:528:DC%2BC2cXhvFCnt77O10.1016/j.neubiorev.2014.11.00525446950
HjelmBEEvidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of SchizophreniaMol Neuropsychiatry201512012191:CAS:528:DC%2BC28XhsFersrvI10.1159/000441252265505614635522
Gilbert-JaramilloJThe effects of the ketogenic diet on psychiatric symptomatology, weight and metabolic dysfunction in schizophrenia patientsClinical Nutrition and Metabolism201811510.15761/CNM.1000105
FleischhackerWNegative symptoms in patients with schizophrenia with special reference to the primary versus secondary distinctionEncephale200026Spec No 1121411294057
McCullumsmithRECell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons?Mol Psychiatry2016218238301:CAS:528:DC%2BC2MXhsF2qsr%2FN10.1038/mp.2015.14826416546
Buchanan, R. W. & Carpenter, W. T. In Comprehensive Textbook of Psychiatry Vol. 1 (eds Sadock, B. J. & Sadock, V. A.) 1096–1110 (Lippincott, Williams, and Wilkins, 2000).
RowlandLMElevated brain lactate in schizophrenia: a 7T magnetic resonance spectroscopy studyTransl Psychiatry201661:CAS:528:DC%2BC28XitVWqurvI10.1038/tp.2016.239278980725290358
KraeuterAKLoxtonHLimaBCRuddDSarnyaiZKetogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophreniaSchizophr Res201516949149310.1016/j.schres.2015.10.04126547882
LunsingRJStratingKde KoningTJSijensPEDiagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disordersEur Radiol20172797698410.1007/s00330-016-4454-827271921
SuzukiAAstrocyte-neuron lactate transport is required for long-term memory formationCell20111448108231:CAS:528:DC%2BC3MXjsFeqt7Y%3D10.1016/j.cell.2011.02.018213762393073831
AlmeidaAAlmeidaJBolanosJPMoncadaSDifferent responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protectionProc Natl Acad Sci USA20019815294152992001PNAS...9815294A1:CAS:528:DC%2BD38XpsVCg10.1073/pnas.2615609981174209665023
RobertsRCRocheJKConleyRRLahtiACDopaminergic synapses in the caudate of subjects with schizophrenia: relationship to treatment responseSynapse2009635205301:CAS:528:DC%2BD1MXlt1Kqsb0%3D10.1002/syn.20623192266042770250
WobrockTReduced cortical inhibition in first-episode schizophreniaSchizophr Res20081052522611:STN:280:DC%2BD1cnmvVGhtw%3D%3D10.1016/j.schres.2008.06.00118625547
PellerinLEvidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttleDev Neurosci1998202912991:CAS:528:DyaK1cXntl2lsLc%3D10.1159/0000173249778565
HerberthMImpaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patientsMol Psychiatry2011168488591:CAS:528:DC%2BC3MXpt1ahtbg%3D10.1038/mp.2010.7120585325
Association, A. P. (American Psychiatric Association, Washington, D.C., 2000).
HagiharaHDecreased Brain pH as a Shared Endophenotype of Psychiatric DisordersNeuropsychopharmacology2018434594681:CAS:528:DC%2BC2sXhsVKmu7jP10.1038/npp.2017.16728776581
FinstererJCentral nervous system manifestations of mitochondrial disordersActa Neurol Scand20061142172381:CAS:528:DC%2BD28XhtFehtr3J10.1111/j.1600-0404.2006.00671.x16942541
SullivanCRO’DonovanSMMcCullumsmithRERamseyADefects in Bioenergetic Coupling in SchizophreniaBiol Psychiatry2018837397501:CAS:528:DC%2BC2sXhvFahu73J10.1016/j.biopsych.2017.10.01429217297
ParkYUDisrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with MitofilinProc Natl Acad Sci USA201010717785177902010PNAS..10717785P10.1073/pnas.1004361107208808362955093
RuffinVASalamehAIBoronWFParkerMDIntracellular pH regulation by acid-base transporters in mammalian neuronsFront Physiol201454310.3389/fphys.2014.00043245922393923155
LoaizaAPorrasOHBarrosLFGlutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopyJ Neurosci200323733773421:CAS:528:DC%2BD3sXms1Wntr8%3D10.1523/JNEUROSCI.23-19-07337.2003129173676740433
PrabakaranSMitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stressMol Psychiatry20049684-6976431:CAS:528:DC%2BD2cXltFWntLs%3D10.1038/sj.mp.4001511
HalimNDIncreased lactate levels and reduced pH in postmortem brains of schizophrenics: medication confoundsJ Neurosci Methods20081692082131:CAS:528:DC%2BD1cXislGksrc%3D10.1016/j.jneumeth.2007.11.017S0165-0270(07)00560-218177946
ParkCParkSKMolecular links between mitochondrial dysfunctions and schizophreniaMol Cells2012331051101:CAS:528:DC%2BC38Xisl2mtLs%3D10.1007/s10059-012-2284-3223585093887718
PellerinLMagistrettiPJGlutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilizationProc Natl Acad Sci USA19949110625106291994PNAS...9110625P1:CAS:528:DyaK2cXmvFentr8%3D10.1073/pnas.91.22.10625793800345074
Kraeuter, A. K., van den Buuse, M. & Sarnyai, Z. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res, https://doi.org/10.1016/j.schres.2018.11.011 (2018).
PalmerCMKetogenic diet in the treatment of schizoaffective disorder: Two case studiesSchizophr Res20171892082092017avsi.book.....P10.1016/j.schres.2017.01.05328162810
JouroukhinYDISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disordersTransl Psychiatry201881:CAS:528:DC%2BC1cXhtFOms77L10.1038/s41398-018-0123-9296433565895599
Biological insights from 108 schizophrenia-associated genetic loci. Nature511, 421–427, https://doi.org/10.1038/nature13595 (2014).
ChattonJYMarquetPMagistrettiPJA quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergeticsEur J Neurosci200012384338531:STN:280:DC%2BD3M%2FmtVKgtw%3D%3D10.1046/j.1460-9568.2000.00269.x11069579
Herrero-MendezAThe bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1Nature cell biology2009117477521:CAS:528:DC%2BD1MXms1als74%3D10.1038/ncb188119448625
Sullivan, C., Hasselfeld, K., O’Donovan, S., Ramsey, A. & McCullumsmith, R. Neuron-specific deficits of neuroenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Molecular Psychiatry, https://doi.org/10.1038/s41380-41018-40035-41383 (2019).
SullivanCRConnectivity Analyses of Bioenergetic Changes in Schizophrenia: Identification of Novel TreatmentsMol Neurobiol201810.1007/s12035-018-1390-4303384837584383
SmithPKMeasurement of protein using bicinchoninic acidAnal Biochem198515076851:CAS:528:DyaL2MXlsFKksL0%3D10.1016/0003-2697(85)90442-73843705
PellerinLActivity-dependent regulation of energy metabolism by astrocytes: an updateGlia2007551251126210.1002/glia.2052817659524
MorrisAACerebral ketone body metabolismJ Inherit Metab Dis2005281091211:CAS:528:DC%2BD2MXjvFKqsLc%3D10.1007/s10545-005-5518-015877199
DeanBThomasNScarrEUdawelaMEvidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophreniaTransl Psychiatry201661:CAS:528:DC%2BC28XhvV2is7nL10.1038/tp.2016.226278457815314134
MohnARGainetdinovRRCaronMGKollerBHMice with reduced NMDA receptor expression display behaviors related to schizophreniaCell1999984274361:CAS:528:DyaK1MXlslWmsb0%3D10.1016/S0092-8674(00)81972-810481908
RegenoldWTElevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesisBiol Psychiatry2009654894941:CAS:528:DC%2BD1MXit1Wku7w%3D10.1016/j.biopsych.2008.11.01019103439
NagaseMTakahashiYWatabeAMKuboYKatoFOn-site energy supply at synapses through monocarboxylate transporters maintains excitatory synaptic transmissionJ Neurosci201434260526171:CAS:528:DC%2BC2cXjtlSgt7o%3D10.1523/jneurosci.4687-12.2014245235506802746
PletnikovMVInducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophreniaMol Psychiatry200813173-1861151:CAS:528:DC%2BD1cXnt1Gnug%3D%3D10.1038/sj.mp.400207918202691
T Wobrock (41572_CR5) 2008; 105
A Herrero-Mendez (41572_CR12) 2009; 11
RC Roberts (41572_CR40) 2009; 63
A Zanello (41572_CR4) 2009; 165
L Pellerin (41572_CR10) 2007; 55
LM Rowland (41572_CR17) 2016; 6
YU Park (41572_CR31) 2010; 107
CM Palmer (41572_CR38) 2017; 189
M Nagase (41572_CR9) 2014; 34
A Suzuki (41572_CR14) 2011; 144
B Dean (41572_CR20) 2016; 6
PK Smith (41572_CR42) 1985; 150
VA Ruffin (41572_CR22) 2014; 5
H Hagihara (41572_CR21) 2018; 43
CR Sullivan (41572_CR32) 2018
BE Hjelm (41572_CR33) 2015; 1
W Fleischhacker (41572_CR3) 2000; 26
41572_CR37
41572_CR30
L Pellerin (41572_CR11) 1998; 20
JY Chatton (41572_CR7) 2000; 12
RJ Lunsing (41572_CR25) 2017; 27
WT Regenold (41572_CR15) 2009; 65
J Finsterer (41572_CR24) 2006; 114
41572_CR2
41572_CR1
S Prabakaran (41572_CR18) 2004; 9
L Pellerin (41572_CR6) 1994; 91
A Rajasekaran (41572_CR26) 2015; 48
AR Mohn (41572_CR43) 1999; 98
M Herberth (41572_CR16) 2011; 16
A Loaiza (41572_CR8) 2003; 23
ND Halim (41572_CR19) 2008; 169
AA Morris (41572_CR35) 2005; 28
Y Jouroukhin (41572_CR27) 2018; 8
RE McCullumsmith (41572_CR41) 2016; 21
41572_CR23
MV Pletnikov (41572_CR28) 2008; 13
A Almeida (41572_CR13) 2001; 98
C Park (41572_CR34) 2012; 33
AK Kraeuter (41572_CR36) 2015; 169
CR Sullivan (41572_CR29) 2018; 83
J Gilbert-Jaramillo (41572_CR39) 2018; 1
References_xml – reference: ParkCParkSKMolecular links between mitochondrial dysfunctions and schizophreniaMol Cells2012331051101:CAS:528:DC%2BC38Xisl2mtLs%3D10.1007/s10059-012-2284-3223585093887718
– reference: SullivanCRO’DonovanSMMcCullumsmithRERamseyADefects in Bioenergetic Coupling in SchizophreniaBiol Psychiatry2018837397501:CAS:528:DC%2BC2sXhvFahu73J10.1016/j.biopsych.2017.10.01429217297
– reference: HerberthMImpaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patientsMol Psychiatry2011168488591:CAS:528:DC%2BC3MXpt1ahtbg%3D10.1038/mp.2010.7120585325
– reference: HjelmBEEvidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of SchizophreniaMol Neuropsychiatry201512012191:CAS:528:DC%2BC28XhsFersrvI10.1159/000441252265505614635522
– reference: MorrisAACerebral ketone body metabolismJ Inherit Metab Dis2005281091211:CAS:528:DC%2BD2MXjvFKqsLc%3D10.1007/s10545-005-5518-015877199
– reference: SuzukiAAstrocyte-neuron lactate transport is required for long-term memory formationCell20111448108231:CAS:528:DC%2BC3MXjsFeqt7Y%3D10.1016/j.cell.2011.02.018213762393073831
– reference: RowlandLMElevated brain lactate in schizophrenia: a 7T magnetic resonance spectroscopy studyTransl Psychiatry201661:CAS:528:DC%2BC28XitVWqurvI10.1038/tp.2016.239278980725290358
– reference: LunsingRJStratingKde KoningTJSijensPEDiagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disordersEur Radiol20172797698410.1007/s00330-016-4454-827271921
– reference: Buchanan, R. W. & Carpenter, W. T. In Comprehensive Textbook of Psychiatry Vol. 1 (eds Sadock, B. J. & Sadock, V. A.) 1096–1110 (Lippincott, Williams, and Wilkins, 2000).
– reference: Herrero-MendezAThe bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1Nature cell biology2009117477521:CAS:528:DC%2BD1MXms1als74%3D10.1038/ncb188119448625
– reference: McCullumsmithRECell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons?Mol Psychiatry2016218238301:CAS:528:DC%2BC2MXhsF2qsr%2FN10.1038/mp.2015.14826416546
– reference: HalimNDIncreased lactate levels and reduced pH in postmortem brains of schizophrenics: medication confoundsJ Neurosci Methods20081692082131:CAS:528:DC%2BD1cXislGksrc%3D10.1016/j.jneumeth.2007.11.017S0165-0270(07)00560-218177946
– reference: AlmeidaAAlmeidaJBolanosJPMoncadaSDifferent responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protectionProc Natl Acad Sci USA20019815294152992001PNAS...9815294A1:CAS:528:DC%2BD38XpsVCg10.1073/pnas.2615609981174209665023
– reference: HagiharaHDecreased Brain pH as a Shared Endophenotype of Psychiatric DisordersNeuropsychopharmacology2018434594681:CAS:528:DC%2BC2sXhsVKmu7jP10.1038/npp.2017.16728776581
– reference: PellerinLActivity-dependent regulation of energy metabolism by astrocytes: an updateGlia2007551251126210.1002/glia.2052817659524
– reference: ZanelloACurtisLBadan BaMMerloMCWorking memory impairments in first-episode psychosis and chronic schizophreniaPsychiatry Res2009165101810.1016/j.psychres.2007.10.00619046607
– reference: Kraeuter, A. K., van den Buuse, M. & Sarnyai, Z. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res, https://doi.org/10.1016/j.schres.2018.11.011 (2018).
– reference: LoaizaAPorrasOHBarrosLFGlutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopyJ Neurosci200323733773421:CAS:528:DC%2BD3sXms1Wntr8%3D10.1523/JNEUROSCI.23-19-07337.2003129173676740433
– reference: KraeuterAKLoxtonHLimaBCRuddDSarnyaiZKetogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophreniaSchizophr Res201516949149310.1016/j.schres.2015.10.04126547882
– reference: PrabakaranSMitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stressMol Psychiatry20049684-6976431:CAS:528:DC%2BD2cXltFWntLs%3D10.1038/sj.mp.4001511
– reference: SmithPKMeasurement of protein using bicinchoninic acidAnal Biochem198515076851:CAS:528:DyaL2MXlsFKksL0%3D10.1016/0003-2697(85)90442-73843705
– reference: ChattonJYMarquetPMagistrettiPJA quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergeticsEur J Neurosci200012384338531:STN:280:DC%2BD3M%2FmtVKgtw%3D%3D10.1046/j.1460-9568.2000.00269.x11069579
– reference: Association, A. P. (American Psychiatric Association, Washington, D.C., 2000).
– reference: MohnARGainetdinovRRCaronMGKollerBHMice with reduced NMDA receptor expression display behaviors related to schizophreniaCell1999984274361:CAS:528:DyaK1MXlslWmsb0%3D10.1016/S0092-8674(00)81972-810481908
– reference: PellerinLEvidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttleDev Neurosci1998202912991:CAS:528:DyaK1cXntl2lsLc%3D10.1159/0000173249778565
– reference: FinstererJCentral nervous system manifestations of mitochondrial disordersActa Neurol Scand20061142172381:CAS:528:DC%2BD28XhtFehtr3J10.1111/j.1600-0404.2006.00671.x16942541
– reference: SullivanCRConnectivity Analyses of Bioenergetic Changes in Schizophrenia: Identification of Novel TreatmentsMol Neurobiol201810.1007/s12035-018-1390-4303384837584383
– reference: Gilbert-JaramilloJThe effects of the ketogenic diet on psychiatric symptomatology, weight and metabolic dysfunction in schizophrenia patientsClinical Nutrition and Metabolism201811510.15761/CNM.1000105
– reference: PletnikovMVInducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophreniaMol Psychiatry200813173-1861151:CAS:528:DC%2BD1cXnt1Gnug%3D%3D10.1038/sj.mp.400207918202691
– reference: Sullivan, C., Hasselfeld, K., O’Donovan, S., Ramsey, A. & McCullumsmith, R. Neuron-specific deficits of neuroenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Molecular Psychiatry, https://doi.org/10.1038/s41380-41018-40035-41383 (2019).
– reference: PalmerCMKetogenic diet in the treatment of schizoaffective disorder: Two case studiesSchizophr Res20171892082092017avsi.book.....P10.1016/j.schres.2017.01.05328162810
– reference: Biological insights from 108 schizophrenia-associated genetic loci. Nature511, 421–427, https://doi.org/10.1038/nature13595 (2014).
– reference: NagaseMTakahashiYWatabeAMKuboYKatoFOn-site energy supply at synapses through monocarboxylate transporters maintains excitatory synaptic transmissionJ Neurosci201434260526171:CAS:528:DC%2BC2cXjtlSgt7o%3D10.1523/jneurosci.4687-12.2014245235506802746
– reference: JouroukhinYDISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disordersTransl Psychiatry201881:CAS:528:DC%2BC1cXhtFOms77L10.1038/s41398-018-0123-9296433565895599
– reference: FleischhackerWNegative symptoms in patients with schizophrenia with special reference to the primary versus secondary distinctionEncephale200026Spec No 1121411294057
– reference: ParkYUDisrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with MitofilinProc Natl Acad Sci USA201010717785177902010PNAS..10717785P10.1073/pnas.1004361107208808362955093
– reference: RobertsRCRocheJKConleyRRLahtiACDopaminergic synapses in the caudate of subjects with schizophrenia: relationship to treatment responseSynapse2009635205301:CAS:528:DC%2BD1MXlt1Kqsb0%3D10.1002/syn.20623192266042770250
– reference: WobrockTReduced cortical inhibition in first-episode schizophreniaSchizophr Res20081052522611:STN:280:DC%2BD1cnmvVGhtw%3D%3D10.1016/j.schres.2008.06.00118625547
– reference: RuffinVASalamehAIBoronWFParkerMDIntracellular pH regulation by acid-base transporters in mammalian neuronsFront Physiol201454310.3389/fphys.2014.00043245922393923155
– reference: PellerinLMagistrettiPJGlutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilizationProc Natl Acad Sci USA19949110625106291994PNAS...9110625P1:CAS:528:DyaK2cXmvFentr8%3D10.1073/pnas.91.22.10625793800345074
– reference: DeanBThomasNScarrEUdawelaMEvidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophreniaTransl Psychiatry201661:CAS:528:DC%2BC28XhvV2is7nL10.1038/tp.2016.226278457815314134
– reference: RegenoldWTElevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesisBiol Psychiatry2009654894941:CAS:528:DC%2BD1MXit1Wku7w%3D10.1016/j.biopsych.2008.11.01019103439
– reference: RajasekaranAVenkatasubramanianGBerkMDebnathMMitochondrial dysfunction in schizophrenia: pathways, mechanisms and implicationsNeurosci Biobehav Rev20154810211:CAS:528:DC%2BC2cXhvFCnt77O10.1016/j.neubiorev.2014.11.00525446950
– volume: 98
  start-page: 427
  year: 1999
  ident: 41572_CR43
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81972-8
– volume: 6
  year: 2016
  ident: 41572_CR20
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2016.226
– volume: 91
  start-page: 10625
  year: 1994
  ident: 41572_CR6
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.91.22.10625
– volume: 34
  start-page: 2605
  year: 2014
  ident: 41572_CR9
  publication-title: J Neurosci
  doi: 10.1523/jneurosci.4687-12.2014
– volume: 16
  start-page: 848
  year: 2011
  ident: 41572_CR16
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2010.71
– volume: 105
  start-page: 252
  year: 2008
  ident: 41572_CR5
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2008.06.001
– volume: 114
  start-page: 217
  year: 2006
  ident: 41572_CR24
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.2006.00671.x
– volume: 8
  year: 2018
  ident: 41572_CR27
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-018-0123-9
– volume: 21
  start-page: 823
  year: 2016
  ident: 41572_CR41
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2015.148
– volume: 11
  start-page: 747
  year: 2009
  ident: 41572_CR12
  publication-title: Nature cell biology
  doi: 10.1038/ncb1881
– volume: 27
  start-page: 976
  year: 2017
  ident: 41572_CR25
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4454-8
– volume: 144
  start-page: 810
  year: 2011
  ident: 41572_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.018
– volume: 43
  start-page: 459
  year: 2018
  ident: 41572_CR21
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2017.167
– volume: 12
  start-page: 3843
  year: 2000
  ident: 41572_CR7
  publication-title: Eur J Neurosci
  doi: 10.1046/j.1460-9568.2000.00269.x
– volume: 33
  start-page: 105
  year: 2012
  ident: 41572_CR34
  publication-title: Mol Cells
  doi: 10.1007/s10059-012-2284-3
– volume: 65
  start-page: 489
  year: 2009
  ident: 41572_CR15
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2008.11.010
– volume: 169
  start-page: 208
  year: 2008
  ident: 41572_CR19
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2007.11.017S0165-0270(07)00560-2
– ident: 41572_CR30
  doi: 10.1038/nature13595
– volume: 13
  start-page: 115
  issue: 173-186
  year: 2008
  ident: 41572_CR28
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4002079
– volume: 6
  year: 2016
  ident: 41572_CR17
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2016.239
– year: 2018
  ident: 41572_CR32
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-018-1390-4
– ident: 41572_CR2
– volume: 1
  start-page: 1
  year: 2018
  ident: 41572_CR39
  publication-title: Clinical Nutrition and Metabolism
  doi: 10.15761/CNM.1000105
– volume: 20
  start-page: 291
  year: 1998
  ident: 41572_CR11
  publication-title: Dev Neurosci
  doi: 10.1159/000017324
– volume: 48
  start-page: 10
  year: 2015
  ident: 41572_CR26
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2014.11.005
– volume: 107
  start-page: 17785
  year: 2010
  ident: 41572_CR31
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1004361107
– ident: 41572_CR23
  doi: 10.1038/s41380-41018-40035-41383
– volume: 98
  start-page: 15294
  year: 2001
  ident: 41572_CR13
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.261560998
– volume: 1
  start-page: 201
  year: 2015
  ident: 41572_CR33
  publication-title: Mol Neuropsychiatry
  doi: 10.1159/000441252
– volume: 83
  start-page: 739
  year: 2018
  ident: 41572_CR29
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.10.014
– volume: 169
  start-page: 491
  year: 2015
  ident: 41572_CR36
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2015.10.041
– volume: 150
  start-page: 76
  year: 1985
  ident: 41572_CR42
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(85)90442-7
– volume: 28
  start-page: 109
  year: 2005
  ident: 41572_CR35
  publication-title: J Inherit Metab Dis
  doi: 10.1007/s10545-005-5518-0
– volume: 189
  start-page: 208
  year: 2017
  ident: 41572_CR38
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2017.01.053
– volume: 23
  start-page: 7337
  year: 2003
  ident: 41572_CR8
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-19-07337.2003
– volume: 26
  start-page: 12
  issue: Spec No 1
  year: 2000
  ident: 41572_CR3
  publication-title: Encephale
– volume: 55
  start-page: 1251
  year: 2007
  ident: 41572_CR10
  publication-title: Glia
  doi: 10.1002/glia.20528
– volume: 5
  start-page: 43
  year: 2014
  ident: 41572_CR22
  publication-title: Front Physiol
  doi: 10.3389/fphys.2014.00043
– volume: 9
  start-page: 643
  issue: 684-697
  year: 2004
  ident: 41572_CR18
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4001511
– volume: 165
  start-page: 10
  year: 2009
  ident: 41572_CR4
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2007.10.006
– volume: 63
  start-page: 520
  year: 2009
  ident: 41572_CR40
  publication-title: Synapse
  doi: 10.1002/syn.20623
– ident: 41572_CR1
– ident: 41572_CR37
  doi: 10.1016/j.schres.2018.11.011
SSID ssj0000529419
Score 2.4590585
Snippet Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5087
SubjectTerms 631/378/2649
631/378/340
Animal models
Animals
Astrocytes
Astrocytes - metabolism
Bioenergetics
Brain - cytology
Brain - metabolism
Cognitive ability
Diagnosis
Disc1 protein
Disease Models, Animal
Frontal Lobe - cytology
Frontal Lobe - metabolism
Humanities and Social Sciences
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Inhibitory postsynaptic potentials
Lactates - metabolism
Lactic acid
Male
Mental disorders
Mice
multidisciplinary
Mutation
Nerve Tissue Proteins - metabolism
Neurons - cytology
Neurons - metabolism
Pluripotency
Prefrontal cortex
Prefrontal Cortex - cytology
Prefrontal Cortex - metabolism
Rats
Rats, Sprague-Dawley
Rodents
Schizophrenia
Schizophrenia - metabolism
Science
Science (multidisciplinary)
Stem cell transplantation
Stem cells
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddy2AvZWv3ka0rHvRtZ5rYsZM8jVJWSqFlsBXuYRAcO2YH1-TWXB_631dycrneyvoQCNiOY0uyfkiyBHCkvdHS5jUXWgmeGql5lTrB60RXqO50YsI97ssrfX6dXkzVdDC4dUNY5epMDAe1ay3ZyI9RshCpxDrOvy3-cqoaRd7VoYTGC9gJqcuQn7NpNtpYyIuVJsVwVyaW-XGH-orulCXk_lSZ4MWmPnoCMp_GSv7jMA166Ow17A4Akp30FH8DW3WzBy_7kpL3-_D7cm30Y61nc2MJTrI5BQd1bNawRdstb0KILauoPsSEzX78PO0mzDQOn9kNfj3Ux-lofPc4KO8tXJ99_3V6zocKCtwiEltyJU3qtfXeFcIahFpCWJk763ADEqN0UVhf1YVRKMVaU1G7xKU5Irwq91q6Qr6D7aZt6g_AfOx0jB0rY0QqZV1l-CoMqjPvcQ4fQbLax9IO6cWpysW8DG5umZf93pc4dRn2viwi-DqOWfTJNZ7tfbAiTzkIWleu2SKCL2Mzigj5PUxTt3d9HzLYShnB-56a43QS8RJ5wyPINug8dqD025stzexPSMONWE7mSkUwWXHE-rf-v4qPz6_iE7wSxJ2x5EIdwPby9q7-jLBnWR0G3n4Axev_ZQ
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD7Mjizsi3jZXeuNLPi2E7ZNmkz6OAwOMqAIrjAPQknThh0YO2LHB_-9J-lFR1fBh0IhJ016cjkf5wpwIq2W3KiCMikYjTWXNItzRotIZijuZKR9HPf5hTy7jqczMesBa2NhvNO-T2npr-nWO-xPhYLGBYNFzm4phowmX2BDofhjfdgYjaZX006z4mxXcZQ0ETIhV__pvC6F3kDLtx6Sr8ykXvpMtmCzgY1kVE90G3pFuQNf60KSj7twc_6s6iNLSxbaOBBJFs4lqCLzktwtq9Wtd6wlmasKMSDzy6txNSC6zPGZ3-LXfVWcyvWvXrrifYfryenf8Rlt6iZQg_hrRQXXsZXG2jxhRiPAYsxwlZscGRBpIZPE2KxItMCzK6UrZRflsUJclykreZ7wH9Avl2WxB8SGuQyRMNOaxZwX2RBfmUYhZi2OYQOIWj6mpkkq7mpbLFJv3OYqrXmf4tCp532aBPC763NXp9T4kPqwXZ60OV5VitcswtZQhiqAX10zHgxn7dBlsXyoaZyalvMAftar2Q3HESU5G3gAw7V17ghc0u31lnL-zyffRgTHlRABDNod8Tyt9_9i_3PkB_CNud0acsrEIfRX9w_FEYKfVXbc7PYnuqL-oA
  priority: 102
  providerName: Springer Nature
Title Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia
URI https://link.springer.com/article/10.1038/s41598-019-41572-9
https://www.ncbi.nlm.nih.gov/pubmed/30911039
https://www.proquest.com/docview/2197740608
https://www.proquest.com/docview/2197900333
https://pubmed.ncbi.nlm.nih.gov/PMC6433855
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD70wmAvpV3XzWsXNNjbotaWLNl-GCMNLSWQUtoF8lAwsmyxQOK0dQrrv9-RbKdLL2MPxsa6-kjy-aQjnQ_gqzRKch0XlEnBaKi4pFmYM1oEMkN1JwPlznEPz-XZKByMxXgNWrqjRoDVi1M7yyc1upse_r59-IED_nt9ZDw-qlAJ2YNigbVpiojRZB02UTNJOxkbNnC_9vXNktBxfVgn7BTBBGvO0byczaquegZAn--jfGJMdTrqdBu2GnBJenVv2IG1onwHb2q6yYdduB4-LgiSuSFTpS3UJFO7cagik5LczKvFzG2_JZnljuiSycVVv-oSVeZ4TWaYu-POqWz66u8Ne-9hdHrys39GG3YFqhGlLajgKjRSG5MnTCuEYYxpHuc6RwEESsgk0SYrEiVwhEtpCe-CPIwR_WWxkTxP-B5slPOy-AjE-Ln0MWKmFAs5L7IIH5lCVWcMlmE8CFo5prpxPW4ZMKapM4HzOK1ln2LRqZN9mnjwbZnmpna88c_YB23zpG0fSvFnjODWl37swZdlMA4faxNRZTG_r-PYxVzOPfhQt-ayOI5YylrKPYhW2nkZwbrmXg0pJ7-ci27EeTwWwoNu2yMeq_X6V3z6j2ruw1tmu6jPKRMHsLG4uy8-Iy5aZB1Yj8ZRBzZ7vcHVAO_HJ-cXl_i2L_sdt9bQccPhD4LKDGU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4EChgJTqzVxE68yQEhKK22tLuqoJV6QDKOE4uVtslCtkL9U_xGZvJaloreeogUKXYcz4w9XzwvgFfKGSVtnHOhIsFDIxVPw0zwPFApqjsVmDqOezJV45Pw02l0ugG_u1gYcqvs9sR6o85KS2fk27iyEKn4yo_fLX5wqhpF1tWuhEYjFgf5xS_8Zave7n9E_r4WYm_3eGfM26oC3CI6WfJImtAp61yWCGsQfghhZZzZDMFOYCKVJNaleWIilGylqNBbkIUxop40dkpmlHwJt_zNkCJaB7D5YXd69Lk_1SG7WRgkbXSOL-PtCjUkRbEFZHCNRoIn6xrwEqy97J35j4m21nx7d-B2C1nZ-0bG7sJGXtyDG00Ry4v78HWyOmZkpWNzYwnAsjm5I1VsVrBFWS3PaqdellJFiiGbHX3ZqYbMFBleszN8e12Rp6L-1d9ugA_g5Fqo-xAGRVnkj4E5P1M-NkyNEaGUeTrCW2FQgTqHYzgPgo6O2rYJzamuxlzXhnUZ64b2GofWNe114sGbvs-iSedxZeutjj26XdqVXgmiBy_7x7goydJiirw8b9rQEbGUHjxquNkPJxGhkf3dg9Ean_sGlPB7_Ukx-14n_kb0KOMo8mDYScTqs_4_iydXz-IF3BwfTw714f704CncEiSpvuQi2oLB8ud5_gxB1zJ93ko6g2_Xvbj-ANo9POc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB5VW4F4QdyEHhgJnlhrEzvxJg-ooseqpXS1Air1ASl1nFistE22ZCvUv8avYybXslT0rQ-RItmOrxnPF88F8FZZraQJMy5UILivpeKJnwqeeSpBcac8Xflxn4zV4an_6Sw4W4PfrS8MmVW2Z2J1UKeFoTvyAXIWIhVXueHANmYRk_3RzvySUwYp0rS26TRqEjnOrn_h71v54Wgf9_qdEKODb3uHvMkwwA0ilQUPpPatMtamkTAaoYgQRoapSRH4eDpQUWRskkU6QCpXipK-eakfIgJKQqtkSoGY8Phfp3H5PVjfPRhPvnQ3PKRD872o8dRxZTgoUVqSR5tHytdgKHi0Kg1vQNyblpr_qGsrKTh6BA8b-Mo-1vT2GNay_AncqxNaXj-F7yfLK0dWWDbThsAsm5FpUsmmOZsX5eKiMvBlCWWn6LPp5Ote2Wc6T_GZXuDXq-w8JbUv_zYJfAand7K6z6GXF3n2Eph1U-VixURr4UuZJUN8FRqFqbXYh3XAa9cxNk1wc8qxMYsrJbsM43rtY-w6rtY-jhx437WZ16E9bq292W5P3LB5GS-J0oE3XTEyKGlddJ4VV3Udui6W0oEX9W523UlEa6SLd2C4ss9dBQr-vVqST39UQcARScowCBzotxSxHNb_Z_Hq9lm8hvvIVPHno_HxBjwQRKiu5CLYhN7i51W2hfhrkWw3hM7g_K556w-FqUET
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+lactate+levels+in+postmortem+brain%2C+iPSCs%2C+and+animal+models+of+schizophrenia&rft.jtitle=Scientific+reports&rft.au=Sullivan%2C+Courtney+R&rft.au=Mielnik%2C+Catharine+A&rft.au=Funk%2C+Adam&rft.au=O%27Donovan%2C+Sinead+M&rft.date=2019-03-25&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=5087&rft_id=info:doi/10.1038%2Fs41598-019-41572-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon