Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol

The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO 2 (CZZ) catalyst for CO 2 hydrogenation to...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 1166 - 10
Main Authors Wang, Yuhao, Kattel, Shyam, Gao, Wengui, Li, Kongzhai, Liu, Ping, Chen, Jingguang G., Wang, Hua
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.03.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO 2 (CZZ) catalyst for CO 2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO 2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO 2 interfaces are the active sites for CO 2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H 2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO 2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO 2 . Despite great efforts, the reaction mechanism of CO 2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO 2 (CZZ) catalysts are still under debate. Herein, the authors report the interactions among the three components in controlling the catalytic performance of CZZ catalyst for CO 2 hydrogenation to methanol.
AbstractList The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO2 (CZZ) catalyst for CO2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO2 interfaces are the active sites for CO2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2.
Despite great efforts, the reaction mechanism of CO2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO2 (CZZ) catalysts are still under debate. Herein, the authors report the interactions among the three components in controlling the catalytic performance of CZZ catalyst for CO2 hydrogenation to methanol.
The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu-ZnO-ZrO2 (CZZ) catalyst for CO2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO-ZrO2 interfaces are the active sites for CO2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2.The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu-ZnO-ZrO2 (CZZ) catalyst for CO2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO-ZrO2 interfaces are the active sites for CO2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2.
The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO 2 (CZZ) catalyst for CO 2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO 2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO 2 interfaces are the active sites for CO 2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H 2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO 2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO 2 . Despite great efforts, the reaction mechanism of CO 2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO 2 (CZZ) catalysts are still under debate. Herein, the authors report the interactions among the three components in controlling the catalytic performance of CZZ catalyst for CO 2 hydrogenation to methanol.
The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO2 (CZZ) catalyst for CO2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO2 interfaces are the active sites for CO2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2.Despite great efforts, the reaction mechanism of CO2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO2 (CZZ) catalysts are still under debate. Herein, the authors report the interactions among the three components in controlling the catalytic performance of CZZ catalyst for CO2 hydrogenation to methanol.
The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO 2 (CZZ) catalyst for CO 2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO 2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO 2 interfaces are the active sites for CO 2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H 2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO 2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO 2 .
ArticleNumber 1166
Author Wang, Yuhao
Gao, Wengui
Kattel, Shyam
Li, Kongzhai
Liu, Ping
Chen, Jingguang G.
Wang, Hua
Author_xml – sequence: 1
  givenname: Yuhao
  surname: Wang
  fullname: Wang, Yuhao
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology
– sequence: 2
  givenname: Shyam
  surname: Kattel
  fullname: Kattel, Shyam
  organization: Chemistry Division, Brookhaven National Laboratory
– sequence: 3
  givenname: Wengui
  surname: Gao
  fullname: Gao, Wengui
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology
– sequence: 4
  givenname: Kongzhai
  surname: Li
  fullname: Li, Kongzhai
  email: kongzhai.li@foxmail.com
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Department of Earth and Environmental Engineering, Columbia University
– sequence: 5
  givenname: Ping
  surname: Liu
  fullname: Liu, Ping
  organization: Chemistry Division, Brookhaven National Laboratory
– sequence: 6
  givenname: Jingguang G.
  surname: Chen
  fullname: Chen, Jingguang G.
  email: jgchen@columbia.edu
  organization: Chemistry Division, Brookhaven National Laboratory, Department of Chemical Engineering, Columbia University
– sequence: 7
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  email: wanghua65@163.com
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, School of Pharmacy and Chemistry, Dali University
BackLink https://www.osti.gov/servlets/purl/1504379$$D View this record in Osti.gov
BookMark eNp9Uj1vFDEQXaEgEkL-ANUKGpoFf669DRI6BYgU6RpoaCyvPb7zsWcftg-Rjv_AP-SX4LuNgKSIi_GM_d7zjPyeNichBmia5xi9xojKN5lh1osO4aFDAxKk6x81ZwQx3GFB6Ml_-WlzkfMG1UUHLBl70pxSJLmkEp01Xy9_7KaYfFi1ZQ1tgRR0uml9qJk2xceQa9Eu9r9__voSloeYlqQ1uujpJpfcuphacM4bD6G0i3q3vrEpriDoA7stsd1CWesQp2fNY6enDBe3-3nz-f3lp8XH7nr54Wrx7roznKHScTIQ65yxveXEctFLxCUxjCBDxWjMKAS1I6pBS04MOCwBjdYKMjrogdPz5mrWtVFv1C75bR1JRe3V8SCmldKpeDOBctISwYRxzGCmRzEKNzJGqpqUpNZV6-2stduPW7CmDpn0dEf07k3wa7WK31XPMB44rQIvZoGYi1fZ-AJmbWIIYIrCHDEqhgp6dftKit_2kIva-mxgmnSAuM-K4AGxAXPKKvTlPegm7uunTTMKCT7gA4rMKJNizgnc344xUgf_qNk_qvpHHf2j-kqS90i12-Mv1sn89DCVztS8O3gJ0r-uHmD9Ad3i3Z8
CitedBy_id crossref_primary_10_1021_acs_iecr_2c04266
crossref_primary_10_1021_acscatal_4c01946
crossref_primary_10_1109_TDEI_2022_3218261
crossref_primary_10_1016_j_jcou_2021_101825
crossref_primary_10_1021_acscatal_4c03206
crossref_primary_10_1016_j_jcat_2023_115119
crossref_primary_10_1126_sciadv_adr3332
crossref_primary_10_1002_aenm_202203506
crossref_primary_10_1016_j_chemosphere_2022_134299
crossref_primary_10_1016_j_jcat_2022_01_032
crossref_primary_10_1039_D4CP04088K
crossref_primary_10_1002_cctc_202001030
crossref_primary_10_1016_j_ces_2023_118693
crossref_primary_10_1016_j_jcat_2022_01_035
crossref_primary_10_1021_acscatal_9b03738
crossref_primary_10_1016_j_apcata_2024_120006
crossref_primary_10_1021_acscatal_4c07257
crossref_primary_10_1016_j_cej_2023_146102
crossref_primary_10_1016_j_cej_2023_144289
crossref_primary_10_1021_jacs_4c00781
crossref_primary_10_1016_j_cej_2022_135071
crossref_primary_10_1039_D2CS00214K
crossref_primary_10_1002_slct_202100735
crossref_primary_10_1016_j_cattod_2022_05_034
crossref_primary_10_1007_s11426_023_1789_3
crossref_primary_10_1021_acscatal_4c05085
crossref_primary_10_1002_ange_202416899
crossref_primary_10_1016_j_ces_2022_117536
crossref_primary_10_1016_j_gce_2024_11_005
crossref_primary_10_1016_j_fuel_2024_131057
crossref_primary_10_1016_j_ijhydene_2024_05_175
crossref_primary_10_1021_acs_chemrev_4c00618
crossref_primary_10_1016_j_cej_2024_158163
crossref_primary_10_1016_j_catcom_2020_106264
crossref_primary_10_1016_j_fuel_2022_125023
crossref_primary_10_1021_acscatal_4c01929
crossref_primary_10_1038_s41467_023_38731_y
crossref_primary_10_1007_s11814_020_0573_7
crossref_primary_10_3389_fenrg_2020_545431
crossref_primary_10_1016_j_cej_2022_140559
crossref_primary_10_1016_j_fuel_2023_129945
crossref_primary_10_1002_cjce_25139
crossref_primary_10_1016_j_mtsust_2025_101086
crossref_primary_10_1021_acs_jpcc_9b02120
crossref_primary_10_1007_s40974_020_00156_4
crossref_primary_10_1016_j_cej_2022_135649
crossref_primary_10_1016_j_cej_2023_148195
crossref_primary_10_1016_j_cej_2023_147783
crossref_primary_10_1016_j_renene_2024_119951
crossref_primary_10_1021_acscatal_3c05524
crossref_primary_10_1007_s10562_023_04521_w
crossref_primary_10_1021_jacs_3c09947
crossref_primary_10_1063_5_0049293
crossref_primary_10_1080_15435075_2023_2281330
crossref_primary_10_1016_j_mcat_2021_111870
crossref_primary_10_1021_acs_jpcc_0c06624
crossref_primary_10_1021_acscatal_9b05270
crossref_primary_10_1021_acsomega_4c03075
crossref_primary_10_1016_j_cej_2024_158033
crossref_primary_10_1021_acscatal_1c00131
crossref_primary_10_1016_j_jtice_2021_03_049
crossref_primary_10_1021_acs_energyfuels_1c00762
crossref_primary_10_1002_ange_202311241
crossref_primary_10_1039_D3EN00235G
crossref_primary_10_1016_j_cej_2024_152052
crossref_primary_10_1080_01614940_2024_2340582
crossref_primary_10_3390_catal11050592
crossref_primary_10_1021_acs_jpcc_2c07240
crossref_primary_10_1038_s41929_022_00871_7
crossref_primary_10_1038_s41467_021_25784_0
crossref_primary_10_1007_s11244_020_01405_w
crossref_primary_10_1016_j_jechem_2022_03_034
crossref_primary_10_1002_smll_202407318
crossref_primary_10_1016_j_jcat_2022_04_004
crossref_primary_10_1016_j_ccr_2023_215409
crossref_primary_10_3390_catal14040232
crossref_primary_10_1021_acsaem_2c03045
crossref_primary_10_1007_s11426_023_1802_7
crossref_primary_10_1039_D3NR05853K
crossref_primary_10_1016_j_mcat_2024_113942
crossref_primary_10_1039_D3SC01163A
crossref_primary_10_1016_j_apcatb_2024_123829
crossref_primary_10_1016_j_chempr_2020_09_025
crossref_primary_10_1021_acscatal_5c00504
crossref_primary_10_1002_adsu_202200416
crossref_primary_10_1021_cbe_3c00072
crossref_primary_10_1002_anie_202216803
crossref_primary_10_1016_j_cej_2024_158821
crossref_primary_10_1016_j_fuel_2023_127943
crossref_primary_10_1016_j_ijhydene_2020_02_145
crossref_primary_10_1038_s41467_019_13638_9
crossref_primary_10_1021_acs_est_4c06229
crossref_primary_10_1039_D4SU00749B
crossref_primary_10_1016_j_micromeso_2023_112937
crossref_primary_10_1021_acs_chemrev_4c00282
crossref_primary_10_1016_j_fuel_2023_130432
crossref_primary_10_1016_j_ijhydene_2022_05_226
crossref_primary_10_1021_acscatal_0c04371
crossref_primary_10_1039_D3MA00872J
crossref_primary_10_1016_j_apcatb_2024_124246
crossref_primary_10_1021_acscatal_3c01785
crossref_primary_10_1021_jacsau_4c01097
crossref_primary_10_1021_acsnano_4c09197
crossref_primary_10_1007_s11356_024_33959_7
crossref_primary_10_1016_j_jcat_2021_09_030
crossref_primary_10_1016_j_cej_2023_144008
crossref_primary_10_1016_j_mcat_2024_114588
crossref_primary_10_1039_D0CP03414B
crossref_primary_10_1002_ange_202218694
crossref_primary_10_1016_j_fuel_2022_124042
crossref_primary_10_1039_D1TA03327A
crossref_primary_10_1039_D0CY01395A
crossref_primary_10_1002_smtd_202001231
crossref_primary_10_1002_hlca_202200007
crossref_primary_10_1016_j_cej_2024_157608
crossref_primary_10_1039_D2EY00004K
crossref_primary_10_3390_nano13101664
crossref_primary_10_1039_D2CY00210H
crossref_primary_10_1039_D3TA01025B
crossref_primary_10_1021_acs_jpcc_1c08725
crossref_primary_10_1126_sciadv_abi6012
crossref_primary_10_1016_j_jcat_2024_115382
crossref_primary_10_1016_j_apcatb_2022_122046
crossref_primary_10_1016_j_apcatb_2019_117941
crossref_primary_10_1039_D0CY01762K
crossref_primary_10_1016_j_apcata_2021_118330
crossref_primary_10_3390_nano14050476
crossref_primary_10_1002_cctc_202300662
crossref_primary_10_1016_j_apsusc_2022_152884
crossref_primary_10_1016_j_fuel_2022_123848
crossref_primary_10_1039_D2TA03441G
crossref_primary_10_1021_acscatal_0c04273
crossref_primary_10_1021_acs_jpcc_1c08814
crossref_primary_10_1016_j_cej_2023_147732
crossref_primary_10_1021_acs_jpcc_1c07862
crossref_primary_10_1002_anie_202416899
crossref_primary_10_1021_acscatal_9b01943
crossref_primary_10_1007_s11144_022_02307_6
crossref_primary_10_1038_s41467_023_42325_z
crossref_primary_10_1039_D4SC07418A
crossref_primary_10_1016_j_fuel_2022_125470
crossref_primary_10_1021_acscatal_2c04480
crossref_primary_10_1016_j_chempr_2019_10_023
crossref_primary_10_1016_j_fuel_2022_125475
crossref_primary_10_1016_j_jallcom_2023_171577
crossref_primary_10_1016_j_apsusc_2023_156737
crossref_primary_10_1016_j_jcou_2024_102997
crossref_primary_10_1016_j_jechem_2021_03_054
crossref_primary_10_1016_j_cej_2025_161144
crossref_primary_10_1002_ange_202216803
crossref_primary_10_1021_acsami_9b11547
crossref_primary_10_1016_j_advmem_2023_100070
crossref_primary_10_1002_cssc_202100859
crossref_primary_10_20517_microstructures_2024_36
crossref_primary_10_1016_j_ces_2024_120099
crossref_primary_10_1073_pnas_2408297121
crossref_primary_10_1016_j_enconman_2023_116755
crossref_primary_10_1088_1361_6463_ac017f
crossref_primary_10_1039_D0EE01882A
crossref_primary_10_1039_D4CS01042F
crossref_primary_10_1021_acs_iecr_9b06996
crossref_primary_10_1016_j_cej_2025_159953
crossref_primary_10_1039_D3NJ00142C
crossref_primary_10_1016_j_jcat_2025_115997
crossref_primary_10_1021_acssuschemeng_3c07133
crossref_primary_10_1039_D2CY00037G
crossref_primary_10_1021_acscatal_4c06447
crossref_primary_10_1021_acs_iecr_1c03117
crossref_primary_10_1039_D1NJ03684J
crossref_primary_10_1016_j_mcat_2025_114966
crossref_primary_10_1021_acs_iecr_2c00172
crossref_primary_10_1021_acs_iecr_2c03583
crossref_primary_10_1016_j_ccr_2024_215775
crossref_primary_10_3389_fenrg_2020_621119
crossref_primary_10_1016_j_ccr_2023_215272
crossref_primary_10_1002_nano_202000010
crossref_primary_10_1021_acscatal_0c01968
crossref_primary_10_1021_acscatal_1c04678
crossref_primary_10_1039_D4CC05129G
crossref_primary_10_1016_j_apcatb_2024_124439
crossref_primary_10_1016_j_cej_2022_135114
crossref_primary_10_1016_j_jcat_2024_115584
crossref_primary_10_1021_acscatal_1c00747
crossref_primary_10_1039_D4SC04344H
crossref_primary_10_1016_j_jes_2022_10_002
crossref_primary_10_1021_acsami_1c00432
crossref_primary_10_1016_j_jcat_2024_115469
crossref_primary_10_1021_acsami_2c07252
crossref_primary_10_1016_j_isci_2022_105343
crossref_primary_10_1002_smll_202407939
crossref_primary_10_3390_catal12121555
crossref_primary_10_1016_j_apcatb_2022_122137
crossref_primary_10_1016_j_mcat_2023_113288
crossref_primary_10_1002_adma_202409322
crossref_primary_10_1016_j_fuel_2025_134895
crossref_primary_10_1021_acscatal_3c00101
crossref_primary_10_1016_j_chempr_2024_02_017
crossref_primary_10_1002_anie_202218694
crossref_primary_10_15407_kataliz2020_30_001
crossref_primary_10_1016_j_mcat_2025_114979
crossref_primary_10_1039_D1CY00922B
crossref_primary_10_1002_anie_201916032
crossref_primary_10_1016_j_ijhydene_2022_09_224
crossref_primary_10_1021_acsami_1c20056
crossref_primary_10_1021_acs_iecr_1c02803
crossref_primary_10_1038_s41467_022_30344_1
crossref_primary_10_1016_j_apcata_2023_119141
crossref_primary_10_1038_s41570_021_00289_y
crossref_primary_10_3390_en17153701
crossref_primary_10_1021_accountsmr_2c00006
crossref_primary_10_1038_s44296_024_00007_x
crossref_primary_10_1021_acssuschemeng_3c00960
crossref_primary_10_1016_j_jcat_2022_07_041
crossref_primary_10_1021_acssuschemeng_3c00600
crossref_primary_10_1039_D0NR00717J
crossref_primary_10_1021_acs_jpcc_0c07433
crossref_primary_10_1039_D1MA00107H
crossref_primary_10_3390_catal13101337
crossref_primary_10_1016_j_cej_2023_148227
crossref_primary_10_1016_j_ijhydene_2024_05_101
crossref_primary_10_1016_j_micromeso_2024_113140
crossref_primary_10_1016_j_cej_2024_155160
crossref_primary_10_1007_s10562_024_04800_0
crossref_primary_10_1016_j_jes_2023_05_010
crossref_primary_10_1021_acs_iecr_2c00858
crossref_primary_10_1039_C9TA13389E
crossref_primary_10_1002_ange_202106277
crossref_primary_10_1016_j_jcat_2024_115561
crossref_primary_10_1038_s41929_024_01236_y
crossref_primary_10_1016_j_memsci_2022_121010
crossref_primary_10_1021_acs_energyfuels_4c05059
crossref_primary_10_1002_ange_201916032
crossref_primary_10_32434_0321_4095_2024_153_2_32_38
crossref_primary_10_1039_D1SE00635E
crossref_primary_10_1002_adfm_201903774
crossref_primary_10_1039_D0RA07660K
crossref_primary_10_1134_S0020168521110108
crossref_primary_10_3390_catal13091231
crossref_primary_10_1016_j_chempr_2020_10_019
crossref_primary_10_1039_D3DT00222E
crossref_primary_10_1021_acs_jpclett_3c01692
crossref_primary_10_1016_j_jcou_2023_102413
crossref_primary_10_1039_D2NJ05903G
crossref_primary_10_1016_j_jechem_2022_02_039
crossref_primary_10_1016_j_mcat_2019_110499
crossref_primary_10_1016_j_ccr_2025_216438
crossref_primary_10_1016_j_jechem_2020_02_038
crossref_primary_10_1039_D0CY00961J
crossref_primary_10_1016_j_rser_2023_114086
crossref_primary_10_1016_j_jiec_2023_08_012
crossref_primary_10_1016_j_mcat_2023_112977
crossref_primary_10_1002_anie_202311241
crossref_primary_10_1021_acs_jpclett_0c02011
crossref_primary_10_1002_anie_202003847
crossref_primary_10_3390_catal12111375
crossref_primary_10_1039_D3CY01221B
crossref_primary_10_1039_D4CP00070F
crossref_primary_10_1002_er_7793
crossref_primary_10_1007_s10562_024_04828_2
crossref_primary_10_1021_acscatal_4c07573
crossref_primary_10_1002_smll_202409801
crossref_primary_10_1016_j_apcatb_2023_122743
crossref_primary_10_1021_acsnano_3c07630
crossref_primary_10_1038_s41467_025_57274_y
crossref_primary_10_26599_CF_2025_9200032
crossref_primary_10_1002_anie_202106277
crossref_primary_10_1002_aenm_202203150
crossref_primary_10_1016_j_apcatb_2021_121016
crossref_primary_10_1021_acs_chemrev_9b00723
crossref_primary_10_1016_j_fuel_2024_133262
crossref_primary_10_3390_pr12071518
crossref_primary_10_1007_s10562_024_04756_1
crossref_primary_10_1007_s40242_024_4051_3
crossref_primary_10_1016_j_apcatb_2025_125213
crossref_primary_10_1016_j_jechem_2024_01_066
crossref_primary_10_1021_acsami_4c18398
crossref_primary_10_1021_jacs_4c00981
crossref_primary_10_1016_j_jechem_2021_12_053
crossref_primary_10_1039_C9CS00614A
crossref_primary_10_1038_s41467_021_22568_4
crossref_primary_10_1021_acsami_0c18600
crossref_primary_10_1021_jacs_1c03283
crossref_primary_10_1016_j_seppur_2025_131514
crossref_primary_10_1016_j_apcata_2023_119394
crossref_primary_10_1021_acscatal_4c07462
crossref_primary_10_1002_anie_202213024
crossref_primary_10_1039_D4NJ01468E
crossref_primary_10_1016_j_jcat_2021_12_034
crossref_primary_10_1016_j_jece_2021_105299
crossref_primary_10_1007_s12274_021_4030_7
crossref_primary_10_1039_D0MA00208A
crossref_primary_10_1016_j_cej_2024_155826
crossref_primary_10_1021_acscatal_0c01253
crossref_primary_10_1021_jacsau_2c00632
crossref_primary_10_1080_00986445_2022_2135505
crossref_primary_10_1039_C9QI00397E
crossref_primary_10_1021_acs_iecr_2c00160
crossref_primary_10_1016_j_jcat_2020_05_023
crossref_primary_10_1038_s41467_020_19634_8
crossref_primary_10_59761_RCR5101
crossref_primary_10_1021_acscatal_2c03443
crossref_primary_10_1021_acscatal_1c02340
crossref_primary_10_1016_j_cattod_2024_114702
crossref_primary_10_1016_j_jcis_2021_11_172
crossref_primary_10_1039_D1GC01152A
crossref_primary_10_1016_j_mcat_2021_111820
crossref_primary_10_1016_j_nanoen_2025_110650
crossref_primary_10_1039_D3RE00022B
crossref_primary_10_1007_s11356_024_34139_3
crossref_primary_10_1021_acs_jpcc_4c01300
crossref_primary_10_1016_j_jechem_2021_10_017
crossref_primary_10_1021_acscatal_0c02930
crossref_primary_10_1002_ange_202213024
crossref_primary_10_1002_ange_202003847
crossref_primary_10_1016_j_chempr_2022_01_004
crossref_primary_10_1016_j_pecs_2021_100905
crossref_primary_10_1016_j_apcatb_2023_123257
crossref_primary_10_1021_acs_jpclett_2c01159
crossref_primary_10_1021_acssuschemeng_1c04751
crossref_primary_10_1002_ghg_2102
crossref_primary_10_1021_jacs_0c07195
crossref_primary_10_1002_ejic_202400684
crossref_primary_10_1016_j_ces_2023_119394
crossref_primary_10_1021_acsaem_1c02175
crossref_primary_10_1039_D1NJ04951H
crossref_primary_10_1021_acscatal_8b03975
crossref_primary_10_1021_acsestengg_2c00371
crossref_primary_10_1016_j_ccr_2022_214982
crossref_primary_10_3390_catal14060390
crossref_primary_10_1016_j_memsci_2023_122312
crossref_primary_10_1021_acscatal_9b05226
crossref_primary_10_1016_j_jechem_2024_11_010
crossref_primary_10_1021_acssuschemeng_4c05811
crossref_primary_10_1039_D4CY00604F
crossref_primary_10_1021_acssuschemeng_3c04853
crossref_primary_10_1039_D4TA04883K
crossref_primary_10_1016_j_nanoen_2023_108305
crossref_primary_10_1039_D2NJ03441G
crossref_primary_10_1039_D3CY00549F
crossref_primary_10_1002_smll_202007025
crossref_primary_10_1016_j_fuproc_2023_107995
crossref_primary_10_1016_j_jcat_2020_11_039
Cites_doi 10.1016/j.apcatb.2016.03.014
10.1016/j.apcatb.2016.05.007
10.1016/S0926-860X(98)00096-9
10.1126/science.aal3573
10.1021/jp208448c
10.1103/PhysRevB.13.5188
10.1021/acs.accounts.7b00039
10.1016/j.jcat.2005.04.027
10.1016/j.apcata.2008.07.028
10.1016/j.jcat.2013.06.022
10.1103/PhysRevB.45.13244
10.1021/jacs.7b05362
10.1006/jcat.2000.2930
10.1039/C6RA28305E
10.1002/anie.200462374
10.1021/jp407970a
10.1002/cctc.201300665
10.1002/anie.201100011
10.1016/j.jcat.2005.04.026
10.1103/PhysRevB.57.1505
10.1016/j.jcat.2008.11.028
10.1103/PhysRev.140.A1133
10.1002/ange.201007108
10.1021/acscatal.6b01805
10.1016/j.apcatb.2014.01.035
10.1021/jacs.6b05791
10.1021/cm100703e
10.1016/j.jcat.2012.12.019
10.1002/anie.201411581
10.1016/j.jpowsour.2014.12.142
10.1016/j.jcat.2007.04.003
10.1126/science.aah6133
10.1016/j.jcat.2012.10.030
10.1126/sciadv.1701290
10.1063/1.1329672
10.1039/c1cs15008a
10.1103/PhysRevB.54.11169
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.50.17953
10.1002/anie.201200903
10.1002/1521-3773(20011203)40:23<4437::AID-ANIE4437>3.0.CO;2-L
10.1126/science.aaf0718
10.1016/j.cej.2017.02.010
10.1038/ncomms13057
10.1039/c3nr04126c
10.1006/jcat.1997.1870
10.1016/j.jcat.2010.01.009
10.1103/PhysRev.136.B864
10.1016/j.jcat.2015.01.021
10.1126/science.1253057
10.1016/j.apcata.2005.04.051
10.1016/j.enconman.2016.03.075
10.1021/acs.chemrev.6b00816
10.1126/science.1219831
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
Kunming Univ. of Science and Technology (China)
CorporateAuthor_xml – name: Kunming Univ. of Science and Technology (China)
– name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-019-09072-6
DatabaseName Springer Nature Link
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_f8d2747cf4c14ab7b7fb442bdd882ab7
PMC6411953
1504379
10_1038_s41467_019_09072_6
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c540t-5292dffcd6d52d57680582c420c37bccb773db073da852cef18e0bdd72bfe6e53
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:09:57 EDT 2025
Thu Aug 21 14:10:45 EDT 2025
Mon Jul 03 03:58:42 EDT 2023
Fri Jul 11 15:25:51 EDT 2025
Wed Aug 13 08:05:34 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Tue Jul 01 02:21:25 EDT 2025
Fri Feb 21 02:38:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-5292dffcd6d52d57680582c420c37bccb773db073da852cef18e0bdd72bfe6e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
BNL-211494-2019-JAAM
USDOE Office of Science (SC)
SC0012704; AC02-05CH11231; 51774159; 51304099; 51404122; 2011BAC01B03; 2014HB006
National Natural Science Foundation of China (NSFC)
Candidate Talents Training Fund of Yunnan Province (China)
National Key Technologies R & D Program of China
OpenAccessLink https://doaj.org/article/f8d2747cf4c14ab7b7fb442bdd882ab7
PMID 30858380
PQID 2190075914
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f8d2747cf4c14ab7b7fb442bdd882ab7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6411953
osti_scitechconnect_1504379
proquest_miscellaneous_2190491534
proquest_journals_2190075914
crossref_primary_10_1038_s41467_019_09072_6
crossref_citationtrail_10_1038_s41467_019_09072_6
springer_journals_10_1038_s41467_019_09072_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-11
PublicationDateYYYYMMDD 2019-03-11
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-11
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Graciani (CR2) 2014; 345
Witoon (CR14) 2016; 118
Liao (CR30) 2015; 123
Kattel, Yan, Yang, Chen, Liu (CR27) 2016; 138
Bernskoetter, Hazari (CR4) 2017; 50
Vesborg (CR24) 2009; 262
Lunkenbein, Schumann, Behrens, Willinger (CR28) 2015; 54
Wang (CR32) 2017; 7
Guo, Mao, Lu, Wang, Wu (CR9) 2010; 271
Dong (CR17) 2016; 191
Bu (CR23) 2016; 354
Fisher, Bell, Fisher, Bell (CR33) 1998; 172
Blochl (CR50) 1994; 50
Gao (CR11) 2013; 298
Kurtz (CR39) 2005; 44
Rhodes, Pokrovski, Bell (CR41) 2005; 233
Xie (CR45) 2013; 5
Li, Mao, Yu, Guo (CR16) 2015; 279
Bonura, Cordaro, Cannilla, Arena, Frusteri (CR12) 2014; 152-153
Galván (CR31) 2016; 195
Tang, Luo (CR53) 2013; 117
Kresse, Furthmüller (CR48) 1996; 6
Frei, Schaadt, Ludwig, Hillebrecht, Krossing (CR15) 2014; 6
Dudarev, Botton, Savrasov, Humphreys, Sutton (CR54) 1998; 57
Du, Williams, Ebner, Ritter (CR38) 2010; 22
Hohenberg, Kohn (CR46) 1964; 136
Álvarez (CR1) 2017; 117
French (CR43) 2001; 40
Arena (CR20) 2013; 300
Qi, Liu, Wei, Zhu, Deng (CR36) 1998; 171
Liao (CR29) 2012; 51
Arena (CR8) 2007; 249
Kresse, Furthmuller (CR49) 1996; 54
Sato (CR37) 2013; 307
Yang, Zhang, Iwama, Tsubaki (CR35) 2005; 288
Kuld (CR19) 2016; 352
Meunier (CR25) 2011; 50
Ro (CR26) 2016; 6
Kurtz (CR42) 2005; 44
Berg (CR6) 2016; 7
Valant (CR22) 2015; 324
Rhodes, Bell (CR40) 2005; 233
Kattel, Liu, Chen (CR5) 2017; 139
Phongamwong (CR13) 2017; 316
Kattel, Ramírez, Chen, Rodriguez, Liu (CR3) 2017; 357
Perdew, Wang (CR51) 1992; 45
Grunwaldt, Molenbroek, Topsøe, Topsøe, Clausen (CR21) 2000; 194
Kohn, Sham (CR47) 1965; 140
Henkelman, Uberuaga, Jonsson (CR55) 2000; 113
Arena (CR10) 2008; 350
Yang, White, Liu (CR44) 2012; 116
Monkhorst, Pack (CR52) 1976; 13
Behrens (CR7) 2012; 336
Wang (CR34) 2017; 3
Wang, Wang, Ma, Gong (CR18) 2011; 40
G Bonura (9072_CR12) 2014; 152-153
YH Wang (9072_CR32) 2017; 7
G Henkelman (9072_CR55) 2000; 113
I Ro (9072_CR26) 2016; 6
YX Yang (9072_CR44) 2012; 116
X Guo (9072_CR9) 2010; 271
S Kattel (9072_CR3) 2017; 357
T Witoon (9072_CR14) 2016; 118
G Kresse (9072_CR49) 1996; 54
A Álvarez (9072_CR1) 2017; 117
S Qi (9072_CR36) 1998; 171
HJ Monkhorst (9072_CR52) 1976; 13
AL Valant (9072_CR22) 2015; 324
F Arena (9072_CR8) 2007; 249
SH Xie (9072_CR45) 2013; 5
E Frei (9072_CR15) 2014; 6
G Kresse (9072_CR48) 1996; 6
IA Fisher (9072_CR33) 1998; 172
JP Perdew (9072_CR51) 1992; 45
JD Grunwaldt (9072_CR21) 2000; 194
L Bu (9072_CR23) 2016; 354
PE Blochl (9072_CR50) 1994; 50
F Arena (9072_CR10) 2008; 350
F Liao (9072_CR30) 2015; 123
J Wang (9072_CR34) 2017; 3
MD Rhodes (9072_CR41) 2005; 233
P Hohenberg (9072_CR46) 1964; 136
AG Sato (9072_CR37) 2013; 307
P Gao (9072_CR11) 2013; 298
S Kuld (9072_CR19) 2016; 352
R Yang (9072_CR35) 2005; 288
W Kohn (9072_CR47) 1965; 140
M Behrens (9072_CR7) 2012; 336
T Lunkenbein (9072_CR28) 2015; 54
CAacute Galván (9072_CR31) 2016; 195
SA French (9072_CR43) 2001; 40
M Kurtz (9072_CR42) 2005; 44
RVD Berg (9072_CR6) 2016; 7
T Phongamwong (9072_CR13) 2017; 316
WH Bernskoetter (9072_CR4) 2017; 50
J Graciani (9072_CR2) 2014; 345
M Kurtz (9072_CR39) 2005; 44
SL Dudarev (9072_CR54) 1998; 57
F Liao (9072_CR29) 2012; 51
QL Tang (9072_CR53) 2013; 117
PCK Vesborg (9072_CR24) 2009; 262
F Arena (9072_CR20) 2013; 300
S Kattel (9072_CR5) 2017; 139
MD Rhodes (9072_CR40) 2005; 233
H Du (9072_CR38) 2010; 22
L Li (9072_CR16) 2015; 279
X Dong (9072_CR17) 2016; 191
W Wang (9072_CR18) 2011; 40
FC Meunier (9072_CR25) 2011; 50
S Kattel (9072_CR27) 2016; 138
References_xml – volume: 191
  start-page: 8
  year: 2016
  end-page: 17
  ident: CR17
  article-title: CO hydrogenation to methanol over Cu/ZnO/ZrO catalysts prepared by precipitation-reduction method
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.03.014
– volume: 195
  start-page: 104
  year: 2016
  end-page: 111
  ident: CR31
  article-title: Reverse water-gas shift reaction at the Cu/ZnO interface: influence of the Cu/Zn ratio on structure-activity correlations
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.05.007
– volume: 171
  start-page: 301
  year: 1998
  end-page: 308
  ident: CR36
  article-title: In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al O catalyst
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(98)00096-9
– volume: 357
  start-page: 1296
  year: 2017
  end-page: 1299
  ident: CR3
  article-title: Active sites for CO hydrogenation to methanol on Cu/ZnO catalysts
  publication-title: Science
  doi: 10.1126/science.aal3573
– volume: 116
  start-page: 248
  year: 2012
  end-page: 256
  ident: CR44
  article-title: Theoretical study of methanol synthesis from CO hydrogenation on metal-doped Cu(111) surfaces
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp208448c
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR52
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 50
  start-page: 1049
  year: 2017
  end-page: 1058
  ident: CR4
  article-title: Reversible hydrogenation of carbon dioxide to formic acid and methanol: Lewis acid enhancement of base metal catalysts
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00039
– volume: 233
  start-page: 210
  year: 2005
  end-page: 220
  ident: CR41
  article-title: The effects of zirconia morphology on methanol synthesis from CO and H over Cu/ZrO catalysts: Part II. Transient-response infrared studies
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.04.027
– volume: 350
  start-page: 16
  year: 2008
  end-page: 23
  ident: CR10
  article-title: Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO catalysts in the CO hydrogenation to CH OH
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2008.07.028
– volume: 307
  start-page: 1
  year: 2013
  end-page: 17
  ident: CR37
  article-title: Effect of the ZrO phase on the structure and behavior of supported Cu catalysts for ethanol conversion
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.06.022
– volume: 45
  start-page: 13244
  year: 1992
  end-page: 13249
  ident: CR51
  article-title: Accurate and simple analytic representation of the electron-gas correlation-energy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 139
  start-page: 9739
  year: 2017
  ident: CR5
  article-title: Tuning selectivity of CO hydrogenation reactions at the metal/oxide interface
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05362
– volume: 194
  start-page: 452
  year: 2000
  end-page: 460
  ident: CR21
  article-title: In Situ Investigations of Structural Changes in Cu/ZnO Catalysts
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.2930
– volume: 7
  start-page: 8709
  year: 2017
  end-page: 8717
  ident: CR32
  article-title: Structure–activity relationships of Cu-ZrO catalysts for CO hydrogenation to methanol: interaction effects and reaction mechanism
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28305E
– volume: 44
  start-page: 2790
  year: 2005
  end-page: 2794
  ident: CR42
  article-title: Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462374
– volume: 117
  start-page: 22954
  year: 2013
  end-page: 22966
  ident: CR53
  article-title: Adsorption of CO at ZnO: a surface structure effect from DFT+U calculations
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp407970a
– volume: 6
  start-page: 1721
  year: 2014
  end-page: 1730
  ident: CR15
  article-title: The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO catalyst for methanol synthesis from H and CO
  publication-title: Chemcatchem
  doi: 10.1002/cctc.201300665
– volume: 50
  start-page: 4053
  year: 2011
  end-page: 4054
  ident: CR25
  article-title: Mixing copper nanoparticles and ZnO nanocrystals: a route towards understanding the hydrogenation of CO to methanol?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201100011
– volume: 233
  start-page: 198
  year: 2005
  end-page: 209
  ident: CR40
  article-title: The effects of zirconia morphology on methanol synthesis from CO and H over Cu/ZrO catalysts: Part I. Steady-state studies
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.04.026
– volume: 57
  start-page: 1505
  year: 1998
  end-page: 1509
  ident: CR54
  article-title: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.1505
– volume: 262
  start-page: 65
  year: 2009
  end-page: 72
  ident: CR24
  article-title: Transient behavior of Cu/ZnO-based methanol synthesis catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.11.028
– volume: 140
  start-page: 1133
  year: 1965
  end-page: 113
  ident: CR47
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 123
  start-page: 2210
  year: 2015
  end-page: 2213
  ident: CR30
  article-title: Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO to CH OH
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201007108
– volume: 6
  start-page: 7040
  year: 2016
  end-page: 7050
  ident: CR26
  article-title: The role of the Cu-ZrO interfacial sites for ethanol conversion to ethyl acetate and methanol synthesis from CO and H
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01805
– volume: 152-153
  start-page: 152
  year: 2014
  end-page: 161
  ident: CR12
  article-title: The changing nature of the active site of Cu-Zn-Zr catalysts for the CO hydrogenation reaction to methanol
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.01.035
– volume: 138
  start-page: 12440
  year: 2016
  end-page: 12450
  ident: CR27
  article-title: Optimizing binding energies of key intermediates for CO hydrogenation to methanol over oxide-supported copper
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05791
– volume: 22
  start-page: 3519
  year: 2010
  end-page: 3526
  ident: CR38
  article-title: In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO in K-promoted HTlc
  publication-title: Chem. Mater.
  doi: 10.1021/cm100703e
– volume: 300
  start-page: 141
  year: 2013
  end-page: 151
  ident: CR20
  article-title: Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO hydrogenation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.12.019
– volume: 54
  start-page: 4544
  year: 2015
  end-page: 4548
  ident: CR28
  article-title: Formation of a ZnO overlayer in industrial Cu/ZnO/Al O catalysts induced by strong metal-support interaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411581
– volume: 279
  start-page: 394
  year: 2015
  end-page: 404
  ident: CR16
  article-title: Highly selective hydrogenation of CO to methanol over CuO-ZnO-ZrO catalysts prepared by a surfactant-assisted co-precipitation method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.142
– volume: 249
  start-page: 185
  year: 2007
  end-page: 194
  ident: CR8
  article-title: Synthesis, characterization and activity pattern of Cu–ZnO/ZrO catalysts in the hydrogenation of carbon dioxide to methanol
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.04.003
– volume: 354
  start-page: 1410
  year: 2016
  ident: CR23
  article-title: Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis
  publication-title: Science
  doi: 10.1126/science.aah6133
– volume: 298
  start-page: 51
  year: 2013
  end-page: 60
  ident: CR11
  article-title: Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO hydrogenation to methanol
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.10.030
– volume: 3
  start-page: e1701290
  year: 2017
  ident: CR34
  article-title: A highly selective and stable ZnO-ZrO solid solution catalyst for CO hydrogenation to methanol
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701290
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR55
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 40
  start-page: 3703
  year: 2011
  ident: CR18
  article-title: Recent advances in catalytic hydrogenation of carbon dioxide
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15008a
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR49
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR48
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR50
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 51
  start-page: 5832
  year: 2012
  end-page: 5836
  ident: CR29
  article-title: Electronic modulation of a copper/zinc oxide catalyst by a heterojunction for selective hydrogenation of carbon dioxide to methanol
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201200903
– volume: 40
  start-page: 4437
  year: 2001
  end-page: 4440
  ident: CR43
  article-title: From CO to methanol by hybrid QM/MM embedding
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20011203)40:23<4437::AID-ANIE4437>3.0.CO;2-L
– volume: 352
  start-page: 969
  year: 2016
  ident: CR19
  article-title: Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis
  publication-title: Science
  doi: 10.1126/science.aaf0718
– volume: 316
  start-page: 692
  year: 2017
  end-page: 703
  ident: CR13
  article-title: CO hydrogenation to methanol over CuO-ZnO-ZrO -SiO catalysts: Effects of SiO contents
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.010
– volume: 7
  year: 2016
  ident: CR6
  article-title: Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13057
– volume: 5
  start-page: 11207
  year: 2013
  end-page: 11219
  ident: CR45
  article-title: Au/3DOM Co O : highly active nanocatalysts for the oxidation of carbon monoxide and toluene
  publication-title: Nanoscale
  doi: 10.1039/c3nr04126c
– volume: 172
  start-page: 222
  year: 1998
  end-page: 237
  ident: CR33
  article-title: In situ infrared study of methanol synthesis from H /CO over Cu/SiO and Cu/ZrO /SiO
  publication-title: J. Catal.
  doi: 10.1006/jcat.1997.1870
– volume: 271
  start-page: 178
  year: 2010
  end-page: 185
  ident: CR9
  article-title: Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO catalysts for methanol synthesis from CO hydrogenation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.01.009
– volume: 44
  start-page: 2790
  year: 2005
  end-page: 2794
  ident: CR39
  article-title: Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462374
– volume: 136
  start-page: B864
  year: 1964
  end-page: B864
  ident: CR46
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRev.136.B864
– volume: 324
  start-page: 41
  year: 2015
  end-page: 49
  ident: CR22
  article-title: The Cu-ZnO synergy in methanol synthesis from CO , Part 1: origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ZnO mechanical mixtures
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.01.021
– volume: 345
  start-page: 546
  year: 2014
  end-page: 550
  ident: CR2
  article-title: Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO
  publication-title: Science
  doi: 10.1126/science.1253057
– volume: 288
  start-page: 126
  year: 2005
  end-page: 133
  ident: CR35
  article-title: Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2005.04.051
– volume: 118
  start-page: 21
  year: 2016
  end-page: 31
  ident: CR14
  article-title: Tuning of catalytic CO hydrogenation by changing composition of CuO-ZnO-ZrO catalysts
  publication-title: Energ. Convers. & Manag.
  doi: 10.1016/j.enconman.2016.03.075
– volume: 117
  start-page: 9804
  year: 2017
  ident: CR1
  article-title: Challengesin the greener production of formates/formicacid, methanol, and DME by heterogeneously catalyzed CO hydrogenation processes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00816
– volume: 336
  start-page: 893
  year: 2012
  ident: CR7
  article-title: The active site of methanol synthesis over Cu/ZnO/Al O industrial catalysts
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 117
  start-page: 9804
  year: 2017
  ident: 9072_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00816
– volume: 171
  start-page: 301
  year: 1998
  ident: 9072_CR36
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(98)00096-9
– volume: 117
  start-page: 22954
  year: 2013
  ident: 9072_CR53
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp407970a
– volume: 116
  start-page: 248
  year: 2012
  ident: 9072_CR44
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp208448c
– volume: 271
  start-page: 178
  year: 2010
  ident: 9072_CR9
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.01.009
– volume: 279
  start-page: 394
  year: 2015
  ident: 9072_CR16
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.142
– volume: 233
  start-page: 210
  year: 2005
  ident: 9072_CR41
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.04.027
– volume: 50
  start-page: 17953
  year: 1994
  ident: 9072_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 3
  start-page: e1701290
  year: 2017
  ident: 9072_CR34
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701290
– volume: 172
  start-page: 222
  year: 1998
  ident: 9072_CR33
  publication-title: J. Catal.
  doi: 10.1006/jcat.1997.1870
– volume: 50
  start-page: 1049
  year: 2017
  ident: 9072_CR4
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00039
– volume: 6
  start-page: 1721
  year: 2014
  ident: 9072_CR15
  publication-title: Chemcatchem
  doi: 10.1002/cctc.201300665
– volume: 54
  start-page: 11169
  year: 1996
  ident: 9072_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 316
  start-page: 692
  year: 2017
  ident: 9072_CR13
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.010
– volume: 352
  start-page: 969
  year: 2016
  ident: 9072_CR19
  publication-title: Science
  doi: 10.1126/science.aaf0718
– volume: 298
  start-page: 51
  year: 2013
  ident: 9072_CR11
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.10.030
– volume: 307
  start-page: 1
  year: 2013
  ident: 9072_CR37
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.06.022
– volume: 357
  start-page: 1296
  year: 2017
  ident: 9072_CR3
  publication-title: Science
  doi: 10.1126/science.aal3573
– volume: 118
  start-page: 21
  year: 2016
  ident: 9072_CR14
  publication-title: Energ. Convers. & Manag.
  doi: 10.1016/j.enconman.2016.03.075
– volume: 194
  start-page: 452
  year: 2000
  ident: 9072_CR21
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.2930
– volume: 44
  start-page: 2790
  year: 2005
  ident: 9072_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462374
– volume: 13
  start-page: 5188
  year: 1976
  ident: 9072_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 233
  start-page: 198
  year: 2005
  ident: 9072_CR40
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.04.026
– volume: 45
  start-page: 13244
  year: 1992
  ident: 9072_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 7
  start-page: 8709
  year: 2017
  ident: 9072_CR32
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28305E
– volume: 54
  start-page: 4544
  year: 2015
  ident: 9072_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411581
– volume: 195
  start-page: 104
  year: 2016
  ident: 9072_CR31
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.05.007
– volume: 5
  start-page: 11207
  year: 2013
  ident: 9072_CR45
  publication-title: Nanoscale
  doi: 10.1039/c3nr04126c
– volume: 138
  start-page: 12440
  year: 2016
  ident: 9072_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05791
– volume: 6
  start-page: 15
  year: 1996
  ident: 9072_CR48
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 50
  start-page: 4053
  year: 2011
  ident: 9072_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201100011
– volume: 22
  start-page: 3519
  year: 2010
  ident: 9072_CR38
  publication-title: Chem. Mater.
  doi: 10.1021/cm100703e
– volume: 345
  start-page: 546
  year: 2014
  ident: 9072_CR2
  publication-title: Science
  doi: 10.1126/science.1253057
– volume: 113
  start-page: 9901
  year: 2000
  ident: 9072_CR55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 288
  start-page: 126
  year: 2005
  ident: 9072_CR35
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2005.04.051
– volume: 123
  start-page: 2210
  year: 2015
  ident: 9072_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201007108
– volume: 40
  start-page: 4437
  year: 2001
  ident: 9072_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20011203)40:23<4437::AID-ANIE4437>3.0.CO;2-L
– volume: 191
  start-page: 8
  year: 2016
  ident: 9072_CR17
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.03.014
– volume: 300
  start-page: 141
  year: 2013
  ident: 9072_CR20
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.12.019
– volume: 6
  start-page: 7040
  year: 2016
  ident: 9072_CR26
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01805
– volume: 152-153
  start-page: 152
  year: 2014
  ident: 9072_CR12
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.01.035
– volume: 324
  start-page: 41
  year: 2015
  ident: 9072_CR22
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.01.021
– volume: 249
  start-page: 185
  year: 2007
  ident: 9072_CR8
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.04.003
– volume: 354
  start-page: 1410
  year: 2016
  ident: 9072_CR23
  publication-title: Science
  doi: 10.1126/science.aah6133
– volume: 7
  year: 2016
  ident: 9072_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13057
– volume: 44
  start-page: 2790
  year: 2005
  ident: 9072_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462374
– volume: 40
  start-page: 3703
  year: 2011
  ident: 9072_CR18
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15008a
– volume: 139
  start-page: 9739
  year: 2017
  ident: 9072_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05362
– volume: 140
  start-page: 1133
  year: 1965
  ident: 9072_CR47
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 350
  start-page: 16
  year: 2008
  ident: 9072_CR10
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2008.07.028
– volume: 136
  start-page: B864
  year: 1964
  ident: 9072_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRev.136.B864
– volume: 51
  start-page: 5832
  year: 2012
  ident: 9072_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201200903
– volume: 57
  start-page: 1505
  year: 1998
  ident: 9072_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.1505
– volume: 336
  start-page: 893
  year: 2012
  ident: 9072_CR7
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 262
  start-page: 65
  year: 2009
  ident: 9072_CR24
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.11.028
SSID ssj0000391844
Score 2.679105
Snippet The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report...
Despite great efforts, the reaction mechanism of CO2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO2 (CZZ) catalysts are still...
SourceID doaj
pubmedcentral
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1166
SubjectTerms 639/638/77/885
639/638/77/887
639/638/898
Carbon dioxide
Catalysis
Catalysts
catalytic mechanisms
chemical engineering
Copper
Density functional theory
Diffuse reflectance spectroscopy
Fourier transforms
heterogeneous catalysis
Humanities and Social Sciences
Hydrogen storage
Hydrogenation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Interfaces
Methanol
multidisciplinary
Science
Science (multidisciplinary)
Zinc oxide
Zirconium dioxide
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN4iaOE7snBCsqCok6IVKKy6WnxRRJSXJHvbW_9B_yC9hxsmmSiV62SjrWa2TmfE8PP6GkLdgA0RpSpfWWaVTrqVJa-3KVFsTZJ7rIgTMd3z9Vh2f8i_rcj0l3PqprHK3JsaF2rUWc-SHoFlo3uqcf7j4k2LXKNxdnVpo3CX3ELoMS7rEWsw5FkQ_l5xPZ2WyQh72PK4MGZ7cgbCQpdXCHkXYfri0oF4Ll_NmweSNXdNojI4ekYeTF0k_jmx_TO745gm5P_aV3D4lv-fKOgr-HY05v25LERqiGw8y9HBDV5u_l1c_mhP87E4YjamcbT_0FDxZ6iO4BEyFrmDsbOu6FoQtMpIOLcXW07ppz5-R06PP31fH6dRVIbXgnQ0QedbMhWBd5UrmMNzISsksZ5kthLHWCFE4A5rvtCyZ9SGXPjPOCWaCr3xZPCd7Tdv4F4RWlbPGMyASmhvJjK2YLl0tQmFcwVxC8t27VXaCHMfOF-cqbn0XUo38UMAPFfmhqoS8m39zMQJu3Er9CVk2UyJYdvyi7X6qSfdUkA5jbxu4zbk2wohgOGfwTBBewH1C9pHhCnwOBM61WGFkB5UjuJuoE3KwkwM16XevrqUxIW_mYdBM3G7RjW83Iw2vwaIAjVjIz2K6y5Hm11nE-K44CnSRkPc7Sbv-8_-_jpe3z3WfPGBR9Is0zw_I3tBt_CvwqQbzOirOP1YmI1E
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG7WFcGL-MS4q7TgTaNJd6c7OYjo4LII614cWLw0_XTFIdEkA-bmf_Af-kus7iQjWVZPXmbIdIVkuqq6vurHVwg9gRggCl3YtMq4SpkqdVopW6TKaF_muaLeh_mOk_f8eM3enRVne2gudzR1YHdpahfqSa3bzfPv34ZX4PAvxyPj5YuORXfPwnEcyPVIyq-gqxCZRHDUkwnux5GZVpDQsOnszOW3LuJTpPGHrwbcbQFBL26gvLCKGoPT0U10Y0KV-PVoBrfQnqtvo2tjncnhDvqy22mHAe_hOAfYDjhQRbTjwYYOLvBq--vHz4_1afhsTwmOUztD13cYkC12kWwCXgWvoO18sG0DxhcVi_sGh1LUqm42d9H66O2H1XE6VVlIDaC1HjLRiljvjeW2IDakH1lREsNIZqjQxmghqNUwElhVFsQ4n5cu09YKor3jrqD30H7d1O4-wpxbox0BIaGYLok2nKjCVsJTbSmxCcrnvpVmoiAPlTA2Mi6F01KO-pCgDxn1IXmCnu7u-ToScPxT-k1Q2U4ykGfHH5r2k5x8UfrShlzceGZyprTQwmvGCPwnSDfgOkEHQeESMEgg0jVhx5HpZR7I3kSVoMPZDuRsrhLG_QC-qpwl6PGuGTw1LL-o2jXbUYZVEGFARizsZ_G6y5b683nk_OYscPPRBD2bLe3Pw__eHQ_-R3ccoOskOghN8_wQ7fft1j0EJNbrR9G9fgM9PTQp
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature Link
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ni9YwEA7riuBF_MS6q0TwpsU2SZP0qMVlEXQvLixeQj5dcWmXtu_hve1_2H_oL3GStq90UcFLS5sJTTMzmZlk8gShV2ADRGUql9cF1znT0uS1dlWurQmyLDUNIc53fPrMj0_Zx7PqbA-RZS9MStpPkJZpmF6yw94OLKl0EbfcQDxHcn4L3Y7Q7VGqG97s5lUi4rlkbN4fU1D5h6orG5Sg-uHWgUqt3MybSZI3VkqTATq6j-7NniN-N7X1Adrz7UN0ZzpLcvsI_dhl02Hw6XCa5-u3OMJB9NPmhQEecLP5eXX9tT2J1_6E4DR9sx3GAYP3in0ClICm4AbKzreu70DAEvPw2OF43LRuu4vH6PTow5fmOJ9PUsgteGQjRJs1cSFYx11FXAwxikoSy0hhqTDWGiGoM6DtTsuKWB9K6QvjnCAmeO4r-gTtt13rnyLMubPGEyASmhlJjOVEV64WgRpHictQufStsjPMeDzt4kKl5W4q1cQPBfxQiR-KZ-j1rs7lBLLxT-r3kWU7ygiQnV50_Tc1C4wK0sV42wZmS6aNMCIYxgj8E4QU8Jyhg8hwBX5GBMu1MavIjqqMgG6iztDhIgdq1ulBwdgeHay6ZBl6uSsGbYxLLLr13WaiYTVYEaARK_lZNXdd0n4_T7jenEX8PZqhN4uk_f7437vj2f-RH6C7JKkCzcvyEO2P_cY_B79qNC-SIv0C7nghKQ
  priority: 102
  providerName: Springer Nature
Title Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol
URI https://link.springer.com/article/10.1038/s41467-019-09072-6
https://www.proquest.com/docview/2190075914
https://www.proquest.com/docview/2190491534
https://www.osti.gov/servlets/purl/1504379
https://pubmed.ncbi.nlm.nih.gov/PMC6411953
https://doaj.org/article/f8d2747cf4c14ab7b7fb442bdd882ab7
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4ilCy8pI3CBqYju2c9xGXaqV2iKg0oqL5UesVlQJ2s0e9sZ_4B_ySxg72aWpBFy4OEo8q7Xm4Znx4xuE3oAPEIUpXFpmXKdMS5OW2hWptsbLPNfU-7DecXrGTy7YfFEsbpT6CmfCenjgnnGHXrqQOFnPbM60EUZ4wxgxzkFsCO9h9gWfdyOZinMwLSF1YcMtmYzKwxWLc0IW7uxAQkhSPvJEEbAfHi0Y1ijYvH1U8tZ-aXRDs0fo4RA_4mk_7sfoTt08Qff7ipKbp-jr7kwdhsgOx9W-5QYHUIhlf4VhBS-4Wv_8_uNLcx7a5TnBcRFns-pWGGJYXEdYCRgKrqDvcuOWLahZFCHuWhyKTuumvX6GLmbHn6uTdKinkFqIyzrIOUvivLeOu4K4kGhkhSSWkcxSYaw1QlBnwOadlgWxtc9lnQGjBTG-5nVBn6O9pm3qFwhz7qypCRAJzYwkxnKiC1cKT42jxCUo3_JW2QFsPNS8uFZx05tK1ctDgTxUlIfiCXq7-823Hmrjr9RHQWQ7ygCTHT-A8qhBedS_lCdB-0HgCqKNAJlrw9ki26k8wLqJMkEHWz1Qg2WvFMzwIcwqc5ag17tusMmw0aKbul33NKwEXwI0YqQ_o-GOe5qry4juzVlA4aMJerfVtN9__md2vPwf7NhHD0g0EJrm-QHa65br-hXEXJ2ZoLtiIaCVs_cTdG86nX-aw_Po-OzDR_ha8WoSDRDaUyZ_AcV6M8A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFOEFjASnCBq4jhxckAIFqotfV1aacXF-JUWUSUlyQrtjf_A_-BH8UuYcZKtthK99bKrrGe1Xs97bH9DyEvwASLVqQ2LKFMhV7kOC2XTUBld5nGskrLEesf-QTY95p9n6WyN_BnvwuCxytEmekNta4M18i3QLHRvRczfnf8IsWsU7q6OLTR6sdh1i5-QsrVvdz4Cf18xtv3paDINh64CoYHopIPMq2C2LI3NbMoshttRmjPDWWQSoY3RQiRWg-RblafMuDLOXaStFUyXLnPYJQJM_g1wvBFqlJiJZU0H0dZzzoe7OVGSb7XcW6IIbwpBGsrCbMX_-TYB8FaDOq-EuJcPaF7apfXOb_suuTNErfR9L2b3yJqr7pObfR_LxQPyfXmSj0I8SX2NsVlQhKJo-osTLTzQyfzvr99fqkN8bQ4Z9aWjRdu1FCJn6jyYBUyFTmDsdGGbGoTbCw7taoqtrlVVnz0kx9ey3o_IelVX7jGhWWaNdgyIhOI6Z9pkTKW2EGWibcJsQOJxbaUZIM6x08aZ9FvtSS57fkjgh_T8kFlAXi-_c94DfFxJ_QFZtqREcG7_Qd2cyEHXZZlbzPVNyU3MlRZalJpzBv8J0hl4DsgGMlxCjINAvQZPNJlOxggmJ4qAbI5yIAd70soL6Q_Ii-UwWALc3lGVq-c9DS_AgwGNWJGflemujlTfTj2meMYR-y8JyJtR0i5-_P_L8eTquT4nt6ZH-3tyb-dgd4PcZl4NkjCON8l618zdU4jnOv3MKxElX69ba_8BLJthcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIhAXxK8ILWAkOEG0iePEyQEh2LJqKbQcqLTiYvwTU0SVlCQrtDfegbfhcXgSZpxkq61Eb73sKutZrdfzP7a_IeQp-ACR6tSGRZSpkKtch4WyaaiMdnkcq8Q5rHd8OMh2j_i7eTrfIH_GuzB4rHK0id5Q29pgjXwCmoXurYj5xA3HIj7uzF6d_gixgxTutI7tNHoR2S-XPyF9a1_u7QCvnzE2e_tpuhsOHQZCA5FKB1lYwaxzxmY2ZRZD7yjNmeEsMonQxmghEqtBC6zKU2ZKF-dlpK0VTLsyK7FjBJj_KyJJY9QxMRer-g4ir-ecD_d0oiSftNxbpQhvDUFKysJszRf6lgHwVoNqr4W75w9rntux9Y5wdpPcGCJY-roXuVtko6xuk6t9T8vlHfJ9daqPQmxJfb2xWVKEpWj6SxQtPNDp4u-v35-rQ3xtDhn1ZaRl27UUomhaemALmAqdwtjx0jY1CLoXItrVFNteq6o-uUuOLmW975HNqq7K-4RmmTW6ZEAkFNc50yZjKrWFcIm2CbMBice1lWaAO8euGyfSb7snuez5IYEf0vNDZgF5vvrOaQ_2cSH1G2TZihKBuv0HdfNVDnovXW4x7zeOm5grLbRwmnMG_wlSG3gOyBYyXEK8g6C9Bk83mU7GCCwnioBsj3IgB9vSyjNNCMiT1TBYBdzqUVVZL3oaXoA3AxqxJj9r010fqb4de3zxjCMOYBKQF6Oknf34_5fjwcVzfUyugb7K93sH-1vkOvNakIRxvE02u2ZRPoTQrtOPvA5R8uWylfYfda1lpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+ternary+interactions+in+Cu%E2%80%93ZnO%E2%80%93ZrO2+catalysts+for+efficient+CO2+hydrogenation+to+methanol&rft.jtitle=Nature+communications&rft.au=Yuhao+Wang&rft.au=Shyam+Kattel&rft.au=Wengui+Gao&rft.au=Kongzhai+Li&rft.date=2019-03-11&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-019-09072-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f8d2747cf4c14ab7b7fb442bdd882ab7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon