Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol
The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO 2 (CZZ) catalyst for CO 2 hydrogenation to...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 1166 - 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.03.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO
2
(CZZ) catalyst for CO
2
hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO
2
hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO
2
interfaces are the active sites for CO
2
adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H
2
dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO
2
can be considered as another important factor for designing high performance catalysts for methanol generation from CO
2
.
Despite great efforts, the reaction mechanism of CO
2
hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO
2
(CZZ) catalysts are still under debate. Herein, the authors report the interactions among the three components in controlling the catalytic performance of CZZ catalyst for CO
2
hydrogenation to methanol. |
---|---|
AbstractList | The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO2 (CZZ) catalyst for CO2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO2 interfaces are the active sites for CO2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2. Despite great efforts, the reaction mechanism of CO2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO2 (CZZ) catalysts are still under debate. Herein, the authors report the interactions among the three components in controlling the catalytic performance of CZZ catalyst for CO2 hydrogenation to methanol. The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu-ZnO-ZrO2 (CZZ) catalyst for CO2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO-ZrO2 interfaces are the active sites for CO2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2.The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu-ZnO-ZrO2 (CZZ) catalyst for CO2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO-ZrO2 interfaces are the active sites for CO2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2. The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO 2 (CZZ) catalyst for CO 2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO 2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO 2 interfaces are the active sites for CO 2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H 2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO 2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO 2 . Despite great efforts, the reaction mechanism of CO 2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO 2 (CZZ) catalysts are still under debate. Herein, the authors report the interactions among the three components in controlling the catalytic performance of CZZ catalyst for CO 2 hydrogenation to methanol. The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO2 (CZZ) catalyst for CO2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO2 interfaces are the active sites for CO2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2.Despite great efforts, the reaction mechanism of CO2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO2 (CZZ) catalysts are still under debate. Herein, the authors report the interactions among the three components in controlling the catalytic performance of CZZ catalyst for CO2 hydrogenation to methanol. The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO 2 (CZZ) catalyst for CO 2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO 2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO 2 interfaces are the active sites for CO 2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H 2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO 2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO 2 . |
ArticleNumber | 1166 |
Author | Wang, Yuhao Gao, Wengui Kattel, Shyam Li, Kongzhai Liu, Ping Chen, Jingguang G. Wang, Hua |
Author_xml | – sequence: 1 givenname: Yuhao surname: Wang fullname: Wang, Yuhao organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology – sequence: 2 givenname: Shyam surname: Kattel fullname: Kattel, Shyam organization: Chemistry Division, Brookhaven National Laboratory – sequence: 3 givenname: Wengui surname: Gao fullname: Gao, Wengui organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology – sequence: 4 givenname: Kongzhai surname: Li fullname: Li, Kongzhai email: kongzhai.li@foxmail.com organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Department of Earth and Environmental Engineering, Columbia University – sequence: 5 givenname: Ping surname: Liu fullname: Liu, Ping organization: Chemistry Division, Brookhaven National Laboratory – sequence: 6 givenname: Jingguang G. surname: Chen fullname: Chen, Jingguang G. email: jgchen@columbia.edu organization: Chemistry Division, Brookhaven National Laboratory, Department of Chemical Engineering, Columbia University – sequence: 7 givenname: Hua surname: Wang fullname: Wang, Hua email: wanghua65@163.com organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, School of Pharmacy and Chemistry, Dali University |
BackLink | https://www.osti.gov/servlets/purl/1504379$$D View this record in Osti.gov |
BookMark | eNp9Uj1vFDEQXaEgEkL-ANUKGpoFf669DRI6BYgU6RpoaCyvPb7zsWcftg-Rjv_AP-SX4LuNgKSIi_GM_d7zjPyeNichBmia5xi9xojKN5lh1osO4aFDAxKk6x81ZwQx3GFB6Ml_-WlzkfMG1UUHLBl70pxSJLmkEp01Xy9_7KaYfFi1ZQ1tgRR0uml9qJk2xceQa9Eu9r9__voSloeYlqQ1uujpJpfcuphacM4bD6G0i3q3vrEpriDoA7stsd1CWesQp2fNY6enDBe3-3nz-f3lp8XH7nr54Wrx7roznKHScTIQ65yxveXEctFLxCUxjCBDxWjMKAS1I6pBS04MOCwBjdYKMjrogdPz5mrWtVFv1C75bR1JRe3V8SCmldKpeDOBctISwYRxzGCmRzEKNzJGqpqUpNZV6-2stduPW7CmDpn0dEf07k3wa7WK31XPMB44rQIvZoGYi1fZ-AJmbWIIYIrCHDEqhgp6dftKit_2kIva-mxgmnSAuM-K4AGxAXPKKvTlPegm7uunTTMKCT7gA4rMKJNizgnc344xUgf_qNk_qvpHHf2j-kqS90i12-Mv1sn89DCVztS8O3gJ0r-uHmD9Ad3i3Z8 |
CitedBy_id | crossref_primary_10_1021_acs_iecr_2c04266 crossref_primary_10_1021_acscatal_4c01946 crossref_primary_10_1109_TDEI_2022_3218261 crossref_primary_10_1016_j_jcou_2021_101825 crossref_primary_10_1021_acscatal_4c03206 crossref_primary_10_1016_j_jcat_2023_115119 crossref_primary_10_1126_sciadv_adr3332 crossref_primary_10_1002_aenm_202203506 crossref_primary_10_1016_j_chemosphere_2022_134299 crossref_primary_10_1016_j_jcat_2022_01_032 crossref_primary_10_1039_D4CP04088K crossref_primary_10_1002_cctc_202001030 crossref_primary_10_1016_j_ces_2023_118693 crossref_primary_10_1016_j_jcat_2022_01_035 crossref_primary_10_1021_acscatal_9b03738 crossref_primary_10_1016_j_apcata_2024_120006 crossref_primary_10_1021_acscatal_4c07257 crossref_primary_10_1016_j_cej_2023_146102 crossref_primary_10_1016_j_cej_2023_144289 crossref_primary_10_1021_jacs_4c00781 crossref_primary_10_1016_j_cej_2022_135071 crossref_primary_10_1039_D2CS00214K crossref_primary_10_1002_slct_202100735 crossref_primary_10_1016_j_cattod_2022_05_034 crossref_primary_10_1007_s11426_023_1789_3 crossref_primary_10_1021_acscatal_4c05085 crossref_primary_10_1002_ange_202416899 crossref_primary_10_1016_j_ces_2022_117536 crossref_primary_10_1016_j_gce_2024_11_005 crossref_primary_10_1016_j_fuel_2024_131057 crossref_primary_10_1016_j_ijhydene_2024_05_175 crossref_primary_10_1021_acs_chemrev_4c00618 crossref_primary_10_1016_j_cej_2024_158163 crossref_primary_10_1016_j_catcom_2020_106264 crossref_primary_10_1016_j_fuel_2022_125023 crossref_primary_10_1021_acscatal_4c01929 crossref_primary_10_1038_s41467_023_38731_y crossref_primary_10_1007_s11814_020_0573_7 crossref_primary_10_3389_fenrg_2020_545431 crossref_primary_10_1016_j_cej_2022_140559 crossref_primary_10_1016_j_fuel_2023_129945 crossref_primary_10_1002_cjce_25139 crossref_primary_10_1016_j_mtsust_2025_101086 crossref_primary_10_1021_acs_jpcc_9b02120 crossref_primary_10_1007_s40974_020_00156_4 crossref_primary_10_1016_j_cej_2022_135649 crossref_primary_10_1016_j_cej_2023_148195 crossref_primary_10_1016_j_cej_2023_147783 crossref_primary_10_1016_j_renene_2024_119951 crossref_primary_10_1021_acscatal_3c05524 crossref_primary_10_1007_s10562_023_04521_w crossref_primary_10_1021_jacs_3c09947 crossref_primary_10_1063_5_0049293 crossref_primary_10_1080_15435075_2023_2281330 crossref_primary_10_1016_j_mcat_2021_111870 crossref_primary_10_1021_acs_jpcc_0c06624 crossref_primary_10_1021_acscatal_9b05270 crossref_primary_10_1021_acsomega_4c03075 crossref_primary_10_1016_j_cej_2024_158033 crossref_primary_10_1021_acscatal_1c00131 crossref_primary_10_1016_j_jtice_2021_03_049 crossref_primary_10_1021_acs_energyfuels_1c00762 crossref_primary_10_1002_ange_202311241 crossref_primary_10_1039_D3EN00235G crossref_primary_10_1016_j_cej_2024_152052 crossref_primary_10_1080_01614940_2024_2340582 crossref_primary_10_3390_catal11050592 crossref_primary_10_1021_acs_jpcc_2c07240 crossref_primary_10_1038_s41929_022_00871_7 crossref_primary_10_1038_s41467_021_25784_0 crossref_primary_10_1007_s11244_020_01405_w crossref_primary_10_1016_j_jechem_2022_03_034 crossref_primary_10_1002_smll_202407318 crossref_primary_10_1016_j_jcat_2022_04_004 crossref_primary_10_1016_j_ccr_2023_215409 crossref_primary_10_3390_catal14040232 crossref_primary_10_1021_acsaem_2c03045 crossref_primary_10_1007_s11426_023_1802_7 crossref_primary_10_1039_D3NR05853K crossref_primary_10_1016_j_mcat_2024_113942 crossref_primary_10_1039_D3SC01163A crossref_primary_10_1016_j_apcatb_2024_123829 crossref_primary_10_1016_j_chempr_2020_09_025 crossref_primary_10_1021_acscatal_5c00504 crossref_primary_10_1002_adsu_202200416 crossref_primary_10_1021_cbe_3c00072 crossref_primary_10_1002_anie_202216803 crossref_primary_10_1016_j_cej_2024_158821 crossref_primary_10_1016_j_fuel_2023_127943 crossref_primary_10_1016_j_ijhydene_2020_02_145 crossref_primary_10_1038_s41467_019_13638_9 crossref_primary_10_1021_acs_est_4c06229 crossref_primary_10_1039_D4SU00749B crossref_primary_10_1016_j_micromeso_2023_112937 crossref_primary_10_1021_acs_chemrev_4c00282 crossref_primary_10_1016_j_fuel_2023_130432 crossref_primary_10_1016_j_ijhydene_2022_05_226 crossref_primary_10_1021_acscatal_0c04371 crossref_primary_10_1039_D3MA00872J crossref_primary_10_1016_j_apcatb_2024_124246 crossref_primary_10_1021_acscatal_3c01785 crossref_primary_10_1021_jacsau_4c01097 crossref_primary_10_1021_acsnano_4c09197 crossref_primary_10_1007_s11356_024_33959_7 crossref_primary_10_1016_j_jcat_2021_09_030 crossref_primary_10_1016_j_cej_2023_144008 crossref_primary_10_1016_j_mcat_2024_114588 crossref_primary_10_1039_D0CP03414B crossref_primary_10_1002_ange_202218694 crossref_primary_10_1016_j_fuel_2022_124042 crossref_primary_10_1039_D1TA03327A crossref_primary_10_1039_D0CY01395A crossref_primary_10_1002_smtd_202001231 crossref_primary_10_1002_hlca_202200007 crossref_primary_10_1016_j_cej_2024_157608 crossref_primary_10_1039_D2EY00004K crossref_primary_10_3390_nano13101664 crossref_primary_10_1039_D2CY00210H crossref_primary_10_1039_D3TA01025B crossref_primary_10_1021_acs_jpcc_1c08725 crossref_primary_10_1126_sciadv_abi6012 crossref_primary_10_1016_j_jcat_2024_115382 crossref_primary_10_1016_j_apcatb_2022_122046 crossref_primary_10_1016_j_apcatb_2019_117941 crossref_primary_10_1039_D0CY01762K crossref_primary_10_1016_j_apcata_2021_118330 crossref_primary_10_3390_nano14050476 crossref_primary_10_1002_cctc_202300662 crossref_primary_10_1016_j_apsusc_2022_152884 crossref_primary_10_1016_j_fuel_2022_123848 crossref_primary_10_1039_D2TA03441G crossref_primary_10_1021_acscatal_0c04273 crossref_primary_10_1021_acs_jpcc_1c08814 crossref_primary_10_1016_j_cej_2023_147732 crossref_primary_10_1021_acs_jpcc_1c07862 crossref_primary_10_1002_anie_202416899 crossref_primary_10_1021_acscatal_9b01943 crossref_primary_10_1007_s11144_022_02307_6 crossref_primary_10_1038_s41467_023_42325_z crossref_primary_10_1039_D4SC07418A crossref_primary_10_1016_j_fuel_2022_125470 crossref_primary_10_1021_acscatal_2c04480 crossref_primary_10_1016_j_chempr_2019_10_023 crossref_primary_10_1016_j_fuel_2022_125475 crossref_primary_10_1016_j_jallcom_2023_171577 crossref_primary_10_1016_j_apsusc_2023_156737 crossref_primary_10_1016_j_jcou_2024_102997 crossref_primary_10_1016_j_jechem_2021_03_054 crossref_primary_10_1016_j_cej_2025_161144 crossref_primary_10_1002_ange_202216803 crossref_primary_10_1021_acsami_9b11547 crossref_primary_10_1016_j_advmem_2023_100070 crossref_primary_10_1002_cssc_202100859 crossref_primary_10_20517_microstructures_2024_36 crossref_primary_10_1016_j_ces_2024_120099 crossref_primary_10_1073_pnas_2408297121 crossref_primary_10_1016_j_enconman_2023_116755 crossref_primary_10_1088_1361_6463_ac017f crossref_primary_10_1039_D0EE01882A crossref_primary_10_1039_D4CS01042F crossref_primary_10_1021_acs_iecr_9b06996 crossref_primary_10_1016_j_cej_2025_159953 crossref_primary_10_1039_D3NJ00142C crossref_primary_10_1016_j_jcat_2025_115997 crossref_primary_10_1021_acssuschemeng_3c07133 crossref_primary_10_1039_D2CY00037G crossref_primary_10_1021_acscatal_4c06447 crossref_primary_10_1021_acs_iecr_1c03117 crossref_primary_10_1039_D1NJ03684J crossref_primary_10_1016_j_mcat_2025_114966 crossref_primary_10_1021_acs_iecr_2c00172 crossref_primary_10_1021_acs_iecr_2c03583 crossref_primary_10_1016_j_ccr_2024_215775 crossref_primary_10_3389_fenrg_2020_621119 crossref_primary_10_1016_j_ccr_2023_215272 crossref_primary_10_1002_nano_202000010 crossref_primary_10_1021_acscatal_0c01968 crossref_primary_10_1021_acscatal_1c04678 crossref_primary_10_1039_D4CC05129G crossref_primary_10_1016_j_apcatb_2024_124439 crossref_primary_10_1016_j_cej_2022_135114 crossref_primary_10_1016_j_jcat_2024_115584 crossref_primary_10_1021_acscatal_1c00747 crossref_primary_10_1039_D4SC04344H crossref_primary_10_1016_j_jes_2022_10_002 crossref_primary_10_1021_acsami_1c00432 crossref_primary_10_1016_j_jcat_2024_115469 crossref_primary_10_1021_acsami_2c07252 crossref_primary_10_1016_j_isci_2022_105343 crossref_primary_10_1002_smll_202407939 crossref_primary_10_3390_catal12121555 crossref_primary_10_1016_j_apcatb_2022_122137 crossref_primary_10_1016_j_mcat_2023_113288 crossref_primary_10_1002_adma_202409322 crossref_primary_10_1016_j_fuel_2025_134895 crossref_primary_10_1021_acscatal_3c00101 crossref_primary_10_1016_j_chempr_2024_02_017 crossref_primary_10_1002_anie_202218694 crossref_primary_10_15407_kataliz2020_30_001 crossref_primary_10_1016_j_mcat_2025_114979 crossref_primary_10_1039_D1CY00922B crossref_primary_10_1002_anie_201916032 crossref_primary_10_1016_j_ijhydene_2022_09_224 crossref_primary_10_1021_acsami_1c20056 crossref_primary_10_1021_acs_iecr_1c02803 crossref_primary_10_1038_s41467_022_30344_1 crossref_primary_10_1016_j_apcata_2023_119141 crossref_primary_10_1038_s41570_021_00289_y crossref_primary_10_3390_en17153701 crossref_primary_10_1021_accountsmr_2c00006 crossref_primary_10_1038_s44296_024_00007_x crossref_primary_10_1021_acssuschemeng_3c00960 crossref_primary_10_1016_j_jcat_2022_07_041 crossref_primary_10_1021_acssuschemeng_3c00600 crossref_primary_10_1039_D0NR00717J crossref_primary_10_1021_acs_jpcc_0c07433 crossref_primary_10_1039_D1MA00107H crossref_primary_10_3390_catal13101337 crossref_primary_10_1016_j_cej_2023_148227 crossref_primary_10_1016_j_ijhydene_2024_05_101 crossref_primary_10_1016_j_micromeso_2024_113140 crossref_primary_10_1016_j_cej_2024_155160 crossref_primary_10_1007_s10562_024_04800_0 crossref_primary_10_1016_j_jes_2023_05_010 crossref_primary_10_1021_acs_iecr_2c00858 crossref_primary_10_1039_C9TA13389E crossref_primary_10_1002_ange_202106277 crossref_primary_10_1016_j_jcat_2024_115561 crossref_primary_10_1038_s41929_024_01236_y crossref_primary_10_1016_j_memsci_2022_121010 crossref_primary_10_1021_acs_energyfuels_4c05059 crossref_primary_10_1002_ange_201916032 crossref_primary_10_32434_0321_4095_2024_153_2_32_38 crossref_primary_10_1039_D1SE00635E crossref_primary_10_1002_adfm_201903774 crossref_primary_10_1039_D0RA07660K crossref_primary_10_1134_S0020168521110108 crossref_primary_10_3390_catal13091231 crossref_primary_10_1016_j_chempr_2020_10_019 crossref_primary_10_1039_D3DT00222E crossref_primary_10_1021_acs_jpclett_3c01692 crossref_primary_10_1016_j_jcou_2023_102413 crossref_primary_10_1039_D2NJ05903G crossref_primary_10_1016_j_jechem_2022_02_039 crossref_primary_10_1016_j_mcat_2019_110499 crossref_primary_10_1016_j_ccr_2025_216438 crossref_primary_10_1016_j_jechem_2020_02_038 crossref_primary_10_1039_D0CY00961J crossref_primary_10_1016_j_rser_2023_114086 crossref_primary_10_1016_j_jiec_2023_08_012 crossref_primary_10_1016_j_mcat_2023_112977 crossref_primary_10_1002_anie_202311241 crossref_primary_10_1021_acs_jpclett_0c02011 crossref_primary_10_1002_anie_202003847 crossref_primary_10_3390_catal12111375 crossref_primary_10_1039_D3CY01221B crossref_primary_10_1039_D4CP00070F crossref_primary_10_1002_er_7793 crossref_primary_10_1007_s10562_024_04828_2 crossref_primary_10_1021_acscatal_4c07573 crossref_primary_10_1002_smll_202409801 crossref_primary_10_1016_j_apcatb_2023_122743 crossref_primary_10_1021_acsnano_3c07630 crossref_primary_10_1038_s41467_025_57274_y crossref_primary_10_26599_CF_2025_9200032 crossref_primary_10_1002_anie_202106277 crossref_primary_10_1002_aenm_202203150 crossref_primary_10_1016_j_apcatb_2021_121016 crossref_primary_10_1021_acs_chemrev_9b00723 crossref_primary_10_1016_j_fuel_2024_133262 crossref_primary_10_3390_pr12071518 crossref_primary_10_1007_s10562_024_04756_1 crossref_primary_10_1007_s40242_024_4051_3 crossref_primary_10_1016_j_apcatb_2025_125213 crossref_primary_10_1016_j_jechem_2024_01_066 crossref_primary_10_1021_acsami_4c18398 crossref_primary_10_1021_jacs_4c00981 crossref_primary_10_1016_j_jechem_2021_12_053 crossref_primary_10_1039_C9CS00614A crossref_primary_10_1038_s41467_021_22568_4 crossref_primary_10_1021_acsami_0c18600 crossref_primary_10_1021_jacs_1c03283 crossref_primary_10_1016_j_seppur_2025_131514 crossref_primary_10_1016_j_apcata_2023_119394 crossref_primary_10_1021_acscatal_4c07462 crossref_primary_10_1002_anie_202213024 crossref_primary_10_1039_D4NJ01468E crossref_primary_10_1016_j_jcat_2021_12_034 crossref_primary_10_1016_j_jece_2021_105299 crossref_primary_10_1007_s12274_021_4030_7 crossref_primary_10_1039_D0MA00208A crossref_primary_10_1016_j_cej_2024_155826 crossref_primary_10_1021_acscatal_0c01253 crossref_primary_10_1021_jacsau_2c00632 crossref_primary_10_1080_00986445_2022_2135505 crossref_primary_10_1039_C9QI00397E crossref_primary_10_1021_acs_iecr_2c00160 crossref_primary_10_1016_j_jcat_2020_05_023 crossref_primary_10_1038_s41467_020_19634_8 crossref_primary_10_59761_RCR5101 crossref_primary_10_1021_acscatal_2c03443 crossref_primary_10_1021_acscatal_1c02340 crossref_primary_10_1016_j_cattod_2024_114702 crossref_primary_10_1016_j_jcis_2021_11_172 crossref_primary_10_1039_D1GC01152A crossref_primary_10_1016_j_mcat_2021_111820 crossref_primary_10_1016_j_nanoen_2025_110650 crossref_primary_10_1039_D3RE00022B crossref_primary_10_1007_s11356_024_34139_3 crossref_primary_10_1021_acs_jpcc_4c01300 crossref_primary_10_1016_j_jechem_2021_10_017 crossref_primary_10_1021_acscatal_0c02930 crossref_primary_10_1002_ange_202213024 crossref_primary_10_1002_ange_202003847 crossref_primary_10_1016_j_chempr_2022_01_004 crossref_primary_10_1016_j_pecs_2021_100905 crossref_primary_10_1016_j_apcatb_2023_123257 crossref_primary_10_1021_acs_jpclett_2c01159 crossref_primary_10_1021_acssuschemeng_1c04751 crossref_primary_10_1002_ghg_2102 crossref_primary_10_1021_jacs_0c07195 crossref_primary_10_1002_ejic_202400684 crossref_primary_10_1016_j_ces_2023_119394 crossref_primary_10_1021_acsaem_1c02175 crossref_primary_10_1039_D1NJ04951H crossref_primary_10_1021_acscatal_8b03975 crossref_primary_10_1021_acsestengg_2c00371 crossref_primary_10_1016_j_ccr_2022_214982 crossref_primary_10_3390_catal14060390 crossref_primary_10_1016_j_memsci_2023_122312 crossref_primary_10_1021_acscatal_9b05226 crossref_primary_10_1016_j_jechem_2024_11_010 crossref_primary_10_1021_acssuschemeng_4c05811 crossref_primary_10_1039_D4CY00604F crossref_primary_10_1021_acssuschemeng_3c04853 crossref_primary_10_1039_D4TA04883K crossref_primary_10_1016_j_nanoen_2023_108305 crossref_primary_10_1039_D2NJ03441G crossref_primary_10_1039_D3CY00549F crossref_primary_10_1002_smll_202007025 crossref_primary_10_1016_j_fuproc_2023_107995 crossref_primary_10_1016_j_jcat_2020_11_039 |
Cites_doi | 10.1016/j.apcatb.2016.03.014 10.1016/j.apcatb.2016.05.007 10.1016/S0926-860X(98)00096-9 10.1126/science.aal3573 10.1021/jp208448c 10.1103/PhysRevB.13.5188 10.1021/acs.accounts.7b00039 10.1016/j.jcat.2005.04.027 10.1016/j.apcata.2008.07.028 10.1016/j.jcat.2013.06.022 10.1103/PhysRevB.45.13244 10.1021/jacs.7b05362 10.1006/jcat.2000.2930 10.1039/C6RA28305E 10.1002/anie.200462374 10.1021/jp407970a 10.1002/cctc.201300665 10.1002/anie.201100011 10.1016/j.jcat.2005.04.026 10.1103/PhysRevB.57.1505 10.1016/j.jcat.2008.11.028 10.1103/PhysRev.140.A1133 10.1002/ange.201007108 10.1021/acscatal.6b01805 10.1016/j.apcatb.2014.01.035 10.1021/jacs.6b05791 10.1021/cm100703e 10.1016/j.jcat.2012.12.019 10.1002/anie.201411581 10.1016/j.jpowsour.2014.12.142 10.1016/j.jcat.2007.04.003 10.1126/science.aah6133 10.1016/j.jcat.2012.10.030 10.1126/sciadv.1701290 10.1063/1.1329672 10.1039/c1cs15008a 10.1103/PhysRevB.54.11169 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.50.17953 10.1002/anie.201200903 10.1002/1521-3773(20011203)40:23<4437::AID-ANIE4437>3.0.CO;2-L 10.1126/science.aaf0718 10.1016/j.cej.2017.02.010 10.1038/ncomms13057 10.1039/c3nr04126c 10.1006/jcat.1997.1870 10.1016/j.jcat.2010.01.009 10.1103/PhysRev.136.B864 10.1016/j.jcat.2015.01.021 10.1126/science.1253057 10.1016/j.apcata.2005.04.051 10.1016/j.enconman.2016.03.075 10.1021/acs.chemrev.6b00816 10.1126/science.1219831 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) Kunming Univ. of Science and Technology (China) |
CorporateAuthor_xml | – name: Kunming Univ. of Science and Technology (China) – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-019-09072-6 |
DatabaseName | Springer Nature Link CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_f8d2747cf4c14ab7b7fb442bdd882ab7 PMC6411953 1504379 10_1038_s41467_019_09072_6 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAADF AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-5292dffcd6d52d57680582c420c37bccb773db073da852cef18e0bdd72bfe6e53 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:09:57 EDT 2025 Thu Aug 21 14:10:45 EDT 2025 Mon Jul 03 03:58:42 EDT 2023 Fri Jul 11 15:25:51 EDT 2025 Wed Aug 13 08:05:34 EDT 2025 Thu Apr 24 22:59:47 EDT 2025 Tue Jul 01 02:21:25 EDT 2025 Fri Feb 21 02:38:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-5292dffcd6d52d57680582c420c37bccb773db073da852cef18e0bdd72bfe6e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 BNL-211494-2019-JAAM USDOE Office of Science (SC) SC0012704; AC02-05CH11231; 51774159; 51304099; 51404122; 2011BAC01B03; 2014HB006 National Natural Science Foundation of China (NSFC) Candidate Talents Training Fund of Yunnan Province (China) National Key Technologies R & D Program of China |
OpenAccessLink | https://doaj.org/article/f8d2747cf4c14ab7b7fb442bdd882ab7 |
PMID | 30858380 |
PQID | 2190075914 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f8d2747cf4c14ab7b7fb442bdd882ab7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6411953 osti_scitechconnect_1504379 proquest_miscellaneous_2190491534 proquest_journals_2190075914 crossref_primary_10_1038_s41467_019_09072_6 crossref_citationtrail_10_1038_s41467_019_09072_6 springer_journals_10_1038_s41467_019_09072_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-11 |
PublicationDateYYYYMMDD | 2019-03-11 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Graciani (CR2) 2014; 345 Witoon (CR14) 2016; 118 Liao (CR30) 2015; 123 Kattel, Yan, Yang, Chen, Liu (CR27) 2016; 138 Bernskoetter, Hazari (CR4) 2017; 50 Vesborg (CR24) 2009; 262 Lunkenbein, Schumann, Behrens, Willinger (CR28) 2015; 54 Wang (CR32) 2017; 7 Guo, Mao, Lu, Wang, Wu (CR9) 2010; 271 Dong (CR17) 2016; 191 Bu (CR23) 2016; 354 Fisher, Bell, Fisher, Bell (CR33) 1998; 172 Blochl (CR50) 1994; 50 Gao (CR11) 2013; 298 Kurtz (CR39) 2005; 44 Rhodes, Pokrovski, Bell (CR41) 2005; 233 Xie (CR45) 2013; 5 Li, Mao, Yu, Guo (CR16) 2015; 279 Bonura, Cordaro, Cannilla, Arena, Frusteri (CR12) 2014; 152-153 Galván (CR31) 2016; 195 Tang, Luo (CR53) 2013; 117 Kresse, Furthmüller (CR48) 1996; 6 Frei, Schaadt, Ludwig, Hillebrecht, Krossing (CR15) 2014; 6 Dudarev, Botton, Savrasov, Humphreys, Sutton (CR54) 1998; 57 Du, Williams, Ebner, Ritter (CR38) 2010; 22 Hohenberg, Kohn (CR46) 1964; 136 Álvarez (CR1) 2017; 117 French (CR43) 2001; 40 Arena (CR20) 2013; 300 Qi, Liu, Wei, Zhu, Deng (CR36) 1998; 171 Liao (CR29) 2012; 51 Arena (CR8) 2007; 249 Kresse, Furthmuller (CR49) 1996; 54 Sato (CR37) 2013; 307 Yang, Zhang, Iwama, Tsubaki (CR35) 2005; 288 Kuld (CR19) 2016; 352 Meunier (CR25) 2011; 50 Ro (CR26) 2016; 6 Kurtz (CR42) 2005; 44 Berg (CR6) 2016; 7 Valant (CR22) 2015; 324 Rhodes, Bell (CR40) 2005; 233 Kattel, Liu, Chen (CR5) 2017; 139 Phongamwong (CR13) 2017; 316 Kattel, Ramírez, Chen, Rodriguez, Liu (CR3) 2017; 357 Perdew, Wang (CR51) 1992; 45 Grunwaldt, Molenbroek, Topsøe, Topsøe, Clausen (CR21) 2000; 194 Kohn, Sham (CR47) 1965; 140 Henkelman, Uberuaga, Jonsson (CR55) 2000; 113 Arena (CR10) 2008; 350 Yang, White, Liu (CR44) 2012; 116 Monkhorst, Pack (CR52) 1976; 13 Behrens (CR7) 2012; 336 Wang (CR34) 2017; 3 Wang, Wang, Ma, Gong (CR18) 2011; 40 G Bonura (9072_CR12) 2014; 152-153 YH Wang (9072_CR32) 2017; 7 G Henkelman (9072_CR55) 2000; 113 I Ro (9072_CR26) 2016; 6 YX Yang (9072_CR44) 2012; 116 X Guo (9072_CR9) 2010; 271 S Kattel (9072_CR3) 2017; 357 T Witoon (9072_CR14) 2016; 118 G Kresse (9072_CR49) 1996; 54 A Álvarez (9072_CR1) 2017; 117 S Qi (9072_CR36) 1998; 171 HJ Monkhorst (9072_CR52) 1976; 13 AL Valant (9072_CR22) 2015; 324 F Arena (9072_CR8) 2007; 249 SH Xie (9072_CR45) 2013; 5 E Frei (9072_CR15) 2014; 6 G Kresse (9072_CR48) 1996; 6 IA Fisher (9072_CR33) 1998; 172 JP Perdew (9072_CR51) 1992; 45 JD Grunwaldt (9072_CR21) 2000; 194 L Bu (9072_CR23) 2016; 354 PE Blochl (9072_CR50) 1994; 50 F Arena (9072_CR10) 2008; 350 F Liao (9072_CR30) 2015; 123 J Wang (9072_CR34) 2017; 3 MD Rhodes (9072_CR41) 2005; 233 P Hohenberg (9072_CR46) 1964; 136 AG Sato (9072_CR37) 2013; 307 P Gao (9072_CR11) 2013; 298 S Kuld (9072_CR19) 2016; 352 R Yang (9072_CR35) 2005; 288 W Kohn (9072_CR47) 1965; 140 M Behrens (9072_CR7) 2012; 336 T Lunkenbein (9072_CR28) 2015; 54 CAacute Galván (9072_CR31) 2016; 195 SA French (9072_CR43) 2001; 40 M Kurtz (9072_CR42) 2005; 44 RVD Berg (9072_CR6) 2016; 7 T Phongamwong (9072_CR13) 2017; 316 WH Bernskoetter (9072_CR4) 2017; 50 J Graciani (9072_CR2) 2014; 345 M Kurtz (9072_CR39) 2005; 44 SL Dudarev (9072_CR54) 1998; 57 F Liao (9072_CR29) 2012; 51 QL Tang (9072_CR53) 2013; 117 PCK Vesborg (9072_CR24) 2009; 262 F Arena (9072_CR20) 2013; 300 S Kattel (9072_CR5) 2017; 139 MD Rhodes (9072_CR40) 2005; 233 H Du (9072_CR38) 2010; 22 L Li (9072_CR16) 2015; 279 X Dong (9072_CR17) 2016; 191 W Wang (9072_CR18) 2011; 40 FC Meunier (9072_CR25) 2011; 50 S Kattel (9072_CR27) 2016; 138 |
References_xml | – volume: 191 start-page: 8 year: 2016 end-page: 17 ident: CR17 article-title: CO hydrogenation to methanol over Cu/ZnO/ZrO catalysts prepared by precipitation-reduction method publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.03.014 – volume: 195 start-page: 104 year: 2016 end-page: 111 ident: CR31 article-title: Reverse water-gas shift reaction at the Cu/ZnO interface: influence of the Cu/Zn ratio on structure-activity correlations publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.05.007 – volume: 171 start-page: 301 year: 1998 end-page: 308 ident: CR36 article-title: In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al O catalyst publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(98)00096-9 – volume: 357 start-page: 1296 year: 2017 end-page: 1299 ident: CR3 article-title: Active sites for CO hydrogenation to methanol on Cu/ZnO catalysts publication-title: Science doi: 10.1126/science.aal3573 – volume: 116 start-page: 248 year: 2012 end-page: 256 ident: CR44 article-title: Theoretical study of methanol synthesis from CO hydrogenation on metal-doped Cu(111) surfaces publication-title: J. Phys. Chem. C. doi: 10.1021/jp208448c – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR52 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 50 start-page: 1049 year: 2017 end-page: 1058 ident: CR4 article-title: Reversible hydrogenation of carbon dioxide to formic acid and methanol: Lewis acid enhancement of base metal catalysts publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00039 – volume: 233 start-page: 210 year: 2005 end-page: 220 ident: CR41 article-title: The effects of zirconia morphology on methanol synthesis from CO and H over Cu/ZrO catalysts: Part II. Transient-response infrared studies publication-title: J. Catal. doi: 10.1016/j.jcat.2005.04.027 – volume: 350 start-page: 16 year: 2008 end-page: 23 ident: CR10 article-title: Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO catalysts in the CO hydrogenation to CH OH publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2008.07.028 – volume: 307 start-page: 1 year: 2013 end-page: 17 ident: CR37 article-title: Effect of the ZrO phase on the structure and behavior of supported Cu catalysts for ethanol conversion publication-title: J. Catal. doi: 10.1016/j.jcat.2013.06.022 – volume: 45 start-page: 13244 year: 1992 end-page: 13249 ident: CR51 article-title: Accurate and simple analytic representation of the electron-gas correlation-energy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 139 start-page: 9739 year: 2017 ident: CR5 article-title: Tuning selectivity of CO hydrogenation reactions at the metal/oxide interface publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05362 – volume: 194 start-page: 452 year: 2000 end-page: 460 ident: CR21 article-title: In Situ Investigations of Structural Changes in Cu/ZnO Catalysts publication-title: J. Catal. doi: 10.1006/jcat.2000.2930 – volume: 7 start-page: 8709 year: 2017 end-page: 8717 ident: CR32 article-title: Structure–activity relationships of Cu-ZrO catalysts for CO hydrogenation to methanol: interaction effects and reaction mechanism publication-title: RSC Adv. doi: 10.1039/C6RA28305E – volume: 44 start-page: 2790 year: 2005 end-page: 2794 ident: CR42 article-title: Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462374 – volume: 117 start-page: 22954 year: 2013 end-page: 22966 ident: CR53 article-title: Adsorption of CO at ZnO: a surface structure effect from DFT+U calculations publication-title: J. Phys. Chem. C. doi: 10.1021/jp407970a – volume: 6 start-page: 1721 year: 2014 end-page: 1730 ident: CR15 article-title: The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO catalyst for methanol synthesis from H and CO publication-title: Chemcatchem doi: 10.1002/cctc.201300665 – volume: 50 start-page: 4053 year: 2011 end-page: 4054 ident: CR25 article-title: Mixing copper nanoparticles and ZnO nanocrystals: a route towards understanding the hydrogenation of CO to methanol? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201100011 – volume: 233 start-page: 198 year: 2005 end-page: 209 ident: CR40 article-title: The effects of zirconia morphology on methanol synthesis from CO and H over Cu/ZrO catalysts: Part I. Steady-state studies publication-title: J. Catal. doi: 10.1016/j.jcat.2005.04.026 – volume: 57 start-page: 1505 year: 1998 end-page: 1509 ident: CR54 article-title: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.1505 – volume: 262 start-page: 65 year: 2009 end-page: 72 ident: CR24 article-title: Transient behavior of Cu/ZnO-based methanol synthesis catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2008.11.028 – volume: 140 start-page: 1133 year: 1965 end-page: 113 ident: CR47 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 123 start-page: 2210 year: 2015 end-page: 2213 ident: CR30 article-title: Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO to CH OH publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201007108 – volume: 6 start-page: 7040 year: 2016 end-page: 7050 ident: CR26 article-title: The role of the Cu-ZrO interfacial sites for ethanol conversion to ethyl acetate and methanol synthesis from CO and H publication-title: ACS Catal. doi: 10.1021/acscatal.6b01805 – volume: 152-153 start-page: 152 year: 2014 end-page: 161 ident: CR12 article-title: The changing nature of the active site of Cu-Zn-Zr catalysts for the CO hydrogenation reaction to methanol publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.01.035 – volume: 138 start-page: 12440 year: 2016 end-page: 12450 ident: CR27 article-title: Optimizing binding energies of key intermediates for CO hydrogenation to methanol over oxide-supported copper publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05791 – volume: 22 start-page: 3519 year: 2010 end-page: 3526 ident: CR38 article-title: In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO in K-promoted HTlc publication-title: Chem. Mater. doi: 10.1021/cm100703e – volume: 300 start-page: 141 year: 2013 end-page: 151 ident: CR20 article-title: Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO hydrogenation publication-title: J. Catal. doi: 10.1016/j.jcat.2012.12.019 – volume: 54 start-page: 4544 year: 2015 end-page: 4548 ident: CR28 article-title: Formation of a ZnO overlayer in industrial Cu/ZnO/Al O catalysts induced by strong metal-support interaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411581 – volume: 279 start-page: 394 year: 2015 end-page: 404 ident: CR16 article-title: Highly selective hydrogenation of CO to methanol over CuO-ZnO-ZrO catalysts prepared by a surfactant-assisted co-precipitation method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.142 – volume: 249 start-page: 185 year: 2007 end-page: 194 ident: CR8 article-title: Synthesis, characterization and activity pattern of Cu–ZnO/ZrO catalysts in the hydrogenation of carbon dioxide to methanol publication-title: J. Catal. doi: 10.1016/j.jcat.2007.04.003 – volume: 354 start-page: 1410 year: 2016 ident: CR23 article-title: Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis publication-title: Science doi: 10.1126/science.aah6133 – volume: 298 start-page: 51 year: 2013 end-page: 60 ident: CR11 article-title: Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO hydrogenation to methanol publication-title: J. Catal. doi: 10.1016/j.jcat.2012.10.030 – volume: 3 start-page: e1701290 year: 2017 ident: CR34 article-title: A highly selective and stable ZnO-ZrO solid solution catalyst for CO hydrogenation to methanol publication-title: Sci. Adv. doi: 10.1126/sciadv.1701290 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR55 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 40 start-page: 3703 year: 2011 ident: CR18 article-title: Recent advances in catalytic hydrogenation of carbon dioxide publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR49 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR48 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR50 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 51 start-page: 5832 year: 2012 end-page: 5836 ident: CR29 article-title: Electronic modulation of a copper/zinc oxide catalyst by a heterojunction for selective hydrogenation of carbon dioxide to methanol publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200903 – volume: 40 start-page: 4437 year: 2001 end-page: 4440 ident: CR43 article-title: From CO to methanol by hybrid QM/MM embedding publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20011203)40:23<4437::AID-ANIE4437>3.0.CO;2-L – volume: 352 start-page: 969 year: 2016 ident: CR19 article-title: Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis publication-title: Science doi: 10.1126/science.aaf0718 – volume: 316 start-page: 692 year: 2017 end-page: 703 ident: CR13 article-title: CO hydrogenation to methanol over CuO-ZnO-ZrO -SiO catalysts: Effects of SiO contents publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.010 – volume: 7 year: 2016 ident: CR6 article-title: Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis publication-title: Nat. Commun. doi: 10.1038/ncomms13057 – volume: 5 start-page: 11207 year: 2013 end-page: 11219 ident: CR45 article-title: Au/3DOM Co O : highly active nanocatalysts for the oxidation of carbon monoxide and toluene publication-title: Nanoscale doi: 10.1039/c3nr04126c – volume: 172 start-page: 222 year: 1998 end-page: 237 ident: CR33 article-title: In situ infrared study of methanol synthesis from H /CO over Cu/SiO and Cu/ZrO /SiO publication-title: J. Catal. doi: 10.1006/jcat.1997.1870 – volume: 271 start-page: 178 year: 2010 end-page: 185 ident: CR9 article-title: Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO catalysts for methanol synthesis from CO hydrogenation publication-title: J. Catal. doi: 10.1016/j.jcat.2010.01.009 – volume: 44 start-page: 2790 year: 2005 end-page: 2794 ident: CR39 article-title: Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462374 – volume: 136 start-page: B864 year: 1964 end-page: B864 ident: CR46 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. B doi: 10.1103/PhysRev.136.B864 – volume: 324 start-page: 41 year: 2015 end-page: 49 ident: CR22 article-title: The Cu-ZnO synergy in methanol synthesis from CO , Part 1: origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ZnO mechanical mixtures publication-title: J. Catal. doi: 10.1016/j.jcat.2015.01.021 – volume: 345 start-page: 546 year: 2014 end-page: 550 ident: CR2 article-title: Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO publication-title: Science doi: 10.1126/science.1253057 – volume: 288 start-page: 126 year: 2005 end-page: 133 ident: CR35 article-title: Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2005.04.051 – volume: 118 start-page: 21 year: 2016 end-page: 31 ident: CR14 article-title: Tuning of catalytic CO hydrogenation by changing composition of CuO-ZnO-ZrO catalysts publication-title: Energ. Convers. & Manag. doi: 10.1016/j.enconman.2016.03.075 – volume: 117 start-page: 9804 year: 2017 ident: CR1 article-title: Challengesin the greener production of formates/formicacid, methanol, and DME by heterogeneously catalyzed CO hydrogenation processes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00816 – volume: 336 start-page: 893 year: 2012 ident: CR7 article-title: The active site of methanol synthesis over Cu/ZnO/Al O industrial catalysts publication-title: Science doi: 10.1126/science.1219831 – volume: 117 start-page: 9804 year: 2017 ident: 9072_CR1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00816 – volume: 171 start-page: 301 year: 1998 ident: 9072_CR36 publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(98)00096-9 – volume: 117 start-page: 22954 year: 2013 ident: 9072_CR53 publication-title: J. Phys. Chem. C. doi: 10.1021/jp407970a – volume: 116 start-page: 248 year: 2012 ident: 9072_CR44 publication-title: J. Phys. Chem. C. doi: 10.1021/jp208448c – volume: 271 start-page: 178 year: 2010 ident: 9072_CR9 publication-title: J. Catal. doi: 10.1016/j.jcat.2010.01.009 – volume: 279 start-page: 394 year: 2015 ident: 9072_CR16 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.142 – volume: 233 start-page: 210 year: 2005 ident: 9072_CR41 publication-title: J. Catal. doi: 10.1016/j.jcat.2005.04.027 – volume: 50 start-page: 17953 year: 1994 ident: 9072_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 3 start-page: e1701290 year: 2017 ident: 9072_CR34 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701290 – volume: 172 start-page: 222 year: 1998 ident: 9072_CR33 publication-title: J. Catal. doi: 10.1006/jcat.1997.1870 – volume: 50 start-page: 1049 year: 2017 ident: 9072_CR4 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00039 – volume: 6 start-page: 1721 year: 2014 ident: 9072_CR15 publication-title: Chemcatchem doi: 10.1002/cctc.201300665 – volume: 54 start-page: 11169 year: 1996 ident: 9072_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 316 start-page: 692 year: 2017 ident: 9072_CR13 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.010 – volume: 352 start-page: 969 year: 2016 ident: 9072_CR19 publication-title: Science doi: 10.1126/science.aaf0718 – volume: 298 start-page: 51 year: 2013 ident: 9072_CR11 publication-title: J. Catal. doi: 10.1016/j.jcat.2012.10.030 – volume: 307 start-page: 1 year: 2013 ident: 9072_CR37 publication-title: J. Catal. doi: 10.1016/j.jcat.2013.06.022 – volume: 357 start-page: 1296 year: 2017 ident: 9072_CR3 publication-title: Science doi: 10.1126/science.aal3573 – volume: 118 start-page: 21 year: 2016 ident: 9072_CR14 publication-title: Energ. Convers. & Manag. doi: 10.1016/j.enconman.2016.03.075 – volume: 194 start-page: 452 year: 2000 ident: 9072_CR21 publication-title: J. Catal. doi: 10.1006/jcat.2000.2930 – volume: 44 start-page: 2790 year: 2005 ident: 9072_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462374 – volume: 13 start-page: 5188 year: 1976 ident: 9072_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 233 start-page: 198 year: 2005 ident: 9072_CR40 publication-title: J. Catal. doi: 10.1016/j.jcat.2005.04.026 – volume: 45 start-page: 13244 year: 1992 ident: 9072_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 7 start-page: 8709 year: 2017 ident: 9072_CR32 publication-title: RSC Adv. doi: 10.1039/C6RA28305E – volume: 54 start-page: 4544 year: 2015 ident: 9072_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411581 – volume: 195 start-page: 104 year: 2016 ident: 9072_CR31 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.05.007 – volume: 5 start-page: 11207 year: 2013 ident: 9072_CR45 publication-title: Nanoscale doi: 10.1039/c3nr04126c – volume: 138 start-page: 12440 year: 2016 ident: 9072_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05791 – volume: 6 start-page: 15 year: 1996 ident: 9072_CR48 publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 50 start-page: 4053 year: 2011 ident: 9072_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201100011 – volume: 22 start-page: 3519 year: 2010 ident: 9072_CR38 publication-title: Chem. Mater. doi: 10.1021/cm100703e – volume: 345 start-page: 546 year: 2014 ident: 9072_CR2 publication-title: Science doi: 10.1126/science.1253057 – volume: 113 start-page: 9901 year: 2000 ident: 9072_CR55 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 288 start-page: 126 year: 2005 ident: 9072_CR35 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2005.04.051 – volume: 123 start-page: 2210 year: 2015 ident: 9072_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201007108 – volume: 40 start-page: 4437 year: 2001 ident: 9072_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20011203)40:23<4437::AID-ANIE4437>3.0.CO;2-L – volume: 191 start-page: 8 year: 2016 ident: 9072_CR17 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.03.014 – volume: 300 start-page: 141 year: 2013 ident: 9072_CR20 publication-title: J. Catal. doi: 10.1016/j.jcat.2012.12.019 – volume: 6 start-page: 7040 year: 2016 ident: 9072_CR26 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01805 – volume: 152-153 start-page: 152 year: 2014 ident: 9072_CR12 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.01.035 – volume: 324 start-page: 41 year: 2015 ident: 9072_CR22 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.01.021 – volume: 249 start-page: 185 year: 2007 ident: 9072_CR8 publication-title: J. Catal. doi: 10.1016/j.jcat.2007.04.003 – volume: 354 start-page: 1410 year: 2016 ident: 9072_CR23 publication-title: Science doi: 10.1126/science.aah6133 – volume: 7 year: 2016 ident: 9072_CR6 publication-title: Nat. Commun. doi: 10.1038/ncomms13057 – volume: 44 start-page: 2790 year: 2005 ident: 9072_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462374 – volume: 40 start-page: 3703 year: 2011 ident: 9072_CR18 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a – volume: 139 start-page: 9739 year: 2017 ident: 9072_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05362 – volume: 140 start-page: 1133 year: 1965 ident: 9072_CR47 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 350 start-page: 16 year: 2008 ident: 9072_CR10 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2008.07.028 – volume: 136 start-page: B864 year: 1964 ident: 9072_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRev.136.B864 – volume: 51 start-page: 5832 year: 2012 ident: 9072_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200903 – volume: 57 start-page: 1505 year: 1998 ident: 9072_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.1505 – volume: 336 start-page: 893 year: 2012 ident: 9072_CR7 publication-title: Science doi: 10.1126/science.1219831 – volume: 262 start-page: 65 year: 2009 ident: 9072_CR24 publication-title: J. Catal. doi: 10.1016/j.jcat.2008.11.028 |
SSID | ssj0000391844 |
Score | 2.679105 |
Snippet | The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report... Despite great efforts, the reaction mechanism of CO2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO2 (CZZ) catalysts are still... |
SourceID | doaj pubmedcentral osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1166 |
SubjectTerms | 639/638/77/885 639/638/77/887 639/638/898 Carbon dioxide Catalysis Catalysts catalytic mechanisms chemical engineering Copper Density functional theory Diffuse reflectance spectroscopy Fourier transforms heterogeneous catalysis Humanities and Social Sciences Hydrogen storage Hydrogenation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Interfaces Methanol multidisciplinary Science Science (multidisciplinary) Zinc oxide Zirconium dioxide |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN4iaOE7snBCsqCok6IVKKy6WnxRRJSXJHvbW_9B_yC9hxsmmSiV62SjrWa2TmfE8PP6GkLdgA0RpSpfWWaVTrqVJa-3KVFsTZJ7rIgTMd3z9Vh2f8i_rcj0l3PqprHK3JsaF2rUWc-SHoFlo3uqcf7j4k2LXKNxdnVpo3CX3ELoMS7rEWsw5FkQ_l5xPZ2WyQh72PK4MGZ7cgbCQpdXCHkXYfri0oF4Ll_NmweSNXdNojI4ekYeTF0k_jmx_TO745gm5P_aV3D4lv-fKOgr-HY05v25LERqiGw8y9HBDV5u_l1c_mhP87E4YjamcbT_0FDxZ6iO4BEyFrmDsbOu6FoQtMpIOLcXW07ppz5-R06PP31fH6dRVIbXgnQ0QedbMhWBd5UrmMNzISsksZ5kthLHWCFE4A5rvtCyZ9SGXPjPOCWaCr3xZPCd7Tdv4F4RWlbPGMyASmhvJjK2YLl0tQmFcwVxC8t27VXaCHMfOF-cqbn0XUo38UMAPFfmhqoS8m39zMQJu3Er9CVk2UyJYdvyi7X6qSfdUkA5jbxu4zbk2wohgOGfwTBBewH1C9pHhCnwOBM61WGFkB5UjuJuoE3KwkwM16XevrqUxIW_mYdBM3G7RjW83Iw2vwaIAjVjIz2K6y5Hm11nE-K44CnSRkPc7Sbv-8_-_jpe3z3WfPGBR9Is0zw_I3tBt_CvwqQbzOirOP1YmI1E priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG7WFcGL-MS4q7TgTaNJd6c7OYjo4LII614cWLw0_XTFIdEkA-bmf_Af-kus7iQjWVZPXmbIdIVkuqq6vurHVwg9gRggCl3YtMq4SpkqdVopW6TKaF_muaLeh_mOk_f8eM3enRVne2gudzR1YHdpahfqSa3bzfPv34ZX4PAvxyPj5YuORXfPwnEcyPVIyq-gqxCZRHDUkwnux5GZVpDQsOnszOW3LuJTpPGHrwbcbQFBL26gvLCKGoPT0U10Y0KV-PVoBrfQnqtvo2tjncnhDvqy22mHAe_hOAfYDjhQRbTjwYYOLvBq--vHz4_1afhsTwmOUztD13cYkC12kWwCXgWvoO18sG0DxhcVi_sGh1LUqm42d9H66O2H1XE6VVlIDaC1HjLRiljvjeW2IDakH1lREsNIZqjQxmghqNUwElhVFsQ4n5cu09YKor3jrqD30H7d1O4-wpxbox0BIaGYLok2nKjCVsJTbSmxCcrnvpVmoiAPlTA2Mi6F01KO-pCgDxn1IXmCnu7u-ToScPxT-k1Q2U4ykGfHH5r2k5x8UfrShlzceGZyprTQwmvGCPwnSDfgOkEHQeESMEgg0jVhx5HpZR7I3kSVoMPZDuRsrhLG_QC-qpwl6PGuGTw1LL-o2jXbUYZVEGFARizsZ_G6y5b683nk_OYscPPRBD2bLe3Pw__eHQ_-R3ccoOskOghN8_wQ7fft1j0EJNbrR9G9fgM9PTQp priority: 102 providerName: Scholars Portal – databaseName: Springer Nature Link dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ni9YwEA7riuBF_MS6q0TwpsU2SZP0qMVlEXQvLixeQj5dcWmXtu_hve1_2H_oL3GStq90UcFLS5sJTTMzmZlk8gShV2ADRGUql9cF1znT0uS1dlWurQmyLDUNIc53fPrMj0_Zx7PqbA-RZS9MStpPkJZpmF6yw94OLKl0EbfcQDxHcn4L3Y7Q7VGqG97s5lUi4rlkbN4fU1D5h6orG5Sg-uHWgUqt3MybSZI3VkqTATq6j-7NniN-N7X1Adrz7UN0ZzpLcvsI_dhl02Hw6XCa5-u3OMJB9NPmhQEecLP5eXX9tT2J1_6E4DR9sx3GAYP3in0ClICm4AbKzreu70DAEvPw2OF43LRuu4vH6PTow5fmOJ9PUsgteGQjRJs1cSFYx11FXAwxikoSy0hhqTDWGiGoM6DtTsuKWB9K6QvjnCAmeO4r-gTtt13rnyLMubPGEyASmhlJjOVEV64WgRpHictQufStsjPMeDzt4kKl5W4q1cQPBfxQiR-KZ-j1rs7lBLLxT-r3kWU7ygiQnV50_Tc1C4wK0sV42wZmS6aNMCIYxgj8E4QU8Jyhg8hwBX5GBMu1MavIjqqMgG6iztDhIgdq1ulBwdgeHay6ZBl6uSsGbYxLLLr13WaiYTVYEaARK_lZNXdd0n4_T7jenEX8PZqhN4uk_f7437vj2f-RH6C7JKkCzcvyEO2P_cY_B79qNC-SIv0C7nghKQ priority: 102 providerName: Springer Nature |
Title | Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol |
URI | https://link.springer.com/article/10.1038/s41467-019-09072-6 https://www.proquest.com/docview/2190075914 https://www.proquest.com/docview/2190491534 https://www.osti.gov/servlets/purl/1504379 https://pubmed.ncbi.nlm.nih.gov/PMC6411953 https://doaj.org/article/f8d2747cf4c14ab7b7fb442bdd882ab7 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4ilCy8pI3CBqYju2c9xGXaqV2iKg0oqL5UesVlQJ2s0e9sZ_4B_ySxg72aWpBFy4OEo8q7Xm4Znx4xuE3oAPEIUpXFpmXKdMS5OW2hWptsbLPNfU-7DecXrGTy7YfFEsbpT6CmfCenjgnnGHXrqQOFnPbM60EUZ4wxgxzkFsCO9h9gWfdyOZinMwLSF1YcMtmYzKwxWLc0IW7uxAQkhSPvJEEbAfHi0Y1ijYvH1U8tZ-aXRDs0fo4RA_4mk_7sfoTt08Qff7ipKbp-jr7kwdhsgOx9W-5QYHUIhlf4VhBS-4Wv_8_uNLcx7a5TnBcRFns-pWGGJYXEdYCRgKrqDvcuOWLahZFCHuWhyKTuumvX6GLmbHn6uTdKinkFqIyzrIOUvivLeOu4K4kGhkhSSWkcxSYaw1QlBnwOadlgWxtc9lnQGjBTG-5nVBn6O9pm3qFwhz7qypCRAJzYwkxnKiC1cKT42jxCUo3_JW2QFsPNS8uFZx05tK1ctDgTxUlIfiCXq7-823Hmrjr9RHQWQ7ygCTHT-A8qhBedS_lCdB-0HgCqKNAJlrw9ki26k8wLqJMkEHWz1Qg2WvFMzwIcwqc5ag17tusMmw0aKbul33NKwEXwI0YqQ_o-GOe5qry4juzVlA4aMJerfVtN9__md2vPwf7NhHD0g0EJrm-QHa65br-hXEXJ2ZoLtiIaCVs_cTdG86nX-aw_Po-OzDR_ha8WoSDRDaUyZ_AcV6M8A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFOEFjASnCBq4jhxckAIFqotfV1aacXF-JUWUSUlyQrtjf_A_-BH8UuYcZKtthK99bKrrGe1Xs97bH9DyEvwASLVqQ2LKFMhV7kOC2XTUBld5nGskrLEesf-QTY95p9n6WyN_BnvwuCxytEmekNta4M18i3QLHRvRczfnf8IsWsU7q6OLTR6sdh1i5-QsrVvdz4Cf18xtv3paDINh64CoYHopIPMq2C2LI3NbMoshttRmjPDWWQSoY3RQiRWg-RblafMuDLOXaStFUyXLnPYJQJM_g1wvBFqlJiJZU0H0dZzzoe7OVGSb7XcW6IIbwpBGsrCbMX_-TYB8FaDOq-EuJcPaF7apfXOb_suuTNErfR9L2b3yJqr7pObfR_LxQPyfXmSj0I8SX2NsVlQhKJo-osTLTzQyfzvr99fqkN8bQ4Z9aWjRdu1FCJn6jyYBUyFTmDsdGGbGoTbCw7taoqtrlVVnz0kx9ey3o_IelVX7jGhWWaNdgyIhOI6Z9pkTKW2EGWibcJsQOJxbaUZIM6x08aZ9FvtSS57fkjgh_T8kFlAXi-_c94DfFxJ_QFZtqREcG7_Qd2cyEHXZZlbzPVNyU3MlRZalJpzBv8J0hl4DsgGMlxCjINAvQZPNJlOxggmJ4qAbI5yIAd70soL6Q_Ii-UwWALc3lGVq-c9DS_AgwGNWJGflemujlTfTj2meMYR-y8JyJtR0i5-_P_L8eTquT4nt6ZH-3tyb-dgd4PcZl4NkjCON8l618zdU4jnOv3MKxElX69ba_8BLJthcA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIhAXxK8ILWAkOEG0iePEyQEh2LJqKbQcqLTiYvwTU0SVlCQrtDfegbfhcXgSZpxkq61Eb73sKutZrdfzP7a_IeQp-ACR6tSGRZSpkKtch4WyaaiMdnkcq8Q5rHd8OMh2j_i7eTrfIH_GuzB4rHK0id5Q29pgjXwCmoXurYj5xA3HIj7uzF6d_gixgxTutI7tNHoR2S-XPyF9a1_u7QCvnzE2e_tpuhsOHQZCA5FKB1lYwaxzxmY2ZRZD7yjNmeEsMonQxmghEqtBC6zKU2ZKF-dlpK0VTLsyK7FjBJj_KyJJY9QxMRer-g4ir-ecD_d0oiSftNxbpQhvDUFKysJszRf6lgHwVoNqr4W75w9rntux9Y5wdpPcGCJY-roXuVtko6xuk6t9T8vlHfJ9daqPQmxJfb2xWVKEpWj6SxQtPNDp4u-v35-rQ3xtDhn1ZaRl27UUomhaemALmAqdwtjx0jY1CLoXItrVFNteq6o-uUuOLmW975HNqq7K-4RmmTW6ZEAkFNc50yZjKrWFcIm2CbMBice1lWaAO8euGyfSb7snuez5IYEf0vNDZgF5vvrOaQ_2cSH1G2TZihKBuv0HdfNVDnovXW4x7zeOm5grLbRwmnMG_wlSG3gOyBYyXEK8g6C9Bk83mU7GCCwnioBsj3IgB9vSyjNNCMiT1TBYBdzqUVVZL3oaXoA3AxqxJj9r010fqb4de3zxjCMOYBKQF6Oknf34_5fjwcVzfUyugb7K93sH-1vkOvNakIRxvE02u2ZRPoTQrtOPvA5R8uWylfYfda1lpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+ternary+interactions+in+Cu%E2%80%93ZnO%E2%80%93ZrO2+catalysts+for+efficient+CO2+hydrogenation+to+methanol&rft.jtitle=Nature+communications&rft.au=Yuhao+Wang&rft.au=Shyam+Kattel&rft.au=Wengui+Gao&rft.au=Kongzhai+Li&rft.date=2019-03-11&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-019-09072-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f8d2747cf4c14ab7b7fb442bdd882ab7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |