Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling

Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-mea...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 18816 - 11
Main Authors El-Melegy, Moumen, Kamel, Rasha, El-Ghar, Mohamed Abou, Shehata, Mohamed, Khalifa, Fahmi, El-Baz, Ayman
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.11.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.
AbstractList Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.
Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney's shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney's shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.
Abstract Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.
ArticleNumber 18816
Author Shehata, Mohamed
Khalifa, Fahmi
El-Baz, Ayman
Kamel, Rasha
El-Melegy, Moumen
El-Ghar, Mohamed Abou
Author_xml – sequence: 1
  givenname: Moumen
  surname: El-Melegy
  fullname: El-Melegy, Moumen
  email: moumen@aun.edu.eg
  organization: Electrical Engineering Department, Assiut University
– sequence: 2
  givenname: Rasha
  surname: Kamel
  fullname: Kamel, Rasha
  organization: Computer Science Department, Assiut University
– sequence: 3
  givenname: Mohamed Abou
  surname: El-Ghar
  fullname: El-Ghar, Mohamed Abou
  organization: Radiology Department, Urology and Nephrology Center, Mansoura University
– sequence: 4
  givenname: Mohamed
  surname: Shehata
  fullname: Shehata, Mohamed
  organization: Bioengineering Department, University of Louisville
– sequence: 5
  givenname: Fahmi
  surname: Khalifa
  fullname: Khalifa, Fahmi
  organization: Bioengineering Department, University of Louisville, Electronics and Communications Engineering Department, Mansoura University
– sequence: 6
  givenname: Ayman
  surname: El-Baz
  fullname: El-Baz, Ayman
  organization: Bioengineering Department, University of Louisville
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36335227$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vFCEYxiemxtbaf8CDIfHiwVE-5-NiYtaqG9uYGD0TBt7ZsjKwwswm279edqfVtody4QV-78MTeJ4XRz54KIqXBL8jmDXvEyeibUpMaUkZx01JnhQnFHORl5Qe3amPi7OU1jgPQVtO2mfFMasYE5TWJ8XmmzUedijBagA_qtEGj_oYBvRpcV5e_lgiHfwW4sr6FXKwBZfREQ0wXgWT3qJ-ur7eIe2mNELcM8obdKni77BFMddZqLfgDBqCAZeBF8XTXrkEZzfzafHr8_nPxdfy4vuX5eLjRakFx2PJexCM0BqqqsctZx2uq47hrsVMCKp0Q5qu7Q0mRoPqGiCgBdQsVxXGoAQ7LZazrglqLTfRDiruZFBWHjZCXEkVR6sdyM5UtFEYm4Zr3pledYqqChMwgrO-JVnrw6y1mboB8o1-jMrdE71_4u2VXIWtbCtW44PAmxuBGP5MkEY52KTBOeUhTEnSmlHBRFXTjL5-gK7DFH1-qgNFOGasydSru47-Wbn92Aw0M6BjSClCL7WdfzcbtE4SLPcxknOMZI6RPMRI7s3SB6236o82sbkpbfYxgPjf9iNdfwHZpNq-
CitedBy_id crossref_primary_10_3390_bioengineering10070755
crossref_primary_10_3390_biomedicines11010006
crossref_primary_10_4108_eetpht_10_5632
crossref_primary_10_3390_bioengineering9110654
crossref_primary_10_1016_j_procs_2024_04_158
crossref_primary_10_1007_s11255_024_04082_w
Cites_doi 10.1109/ACCESS.2021.3078430
10.1016/j.ins.2019.08.021
10.1109/TMI.2013.2269139
10.1016/j.amc.2018.05.064
10.1109/TIP.2010.2066982
10.1016/j.media.2020.101950
10.1007/978-81-322-2208-8_14
10.1109/TPAMI.2007.1100
10.1177/1077546307077417
10.1023/A:1007958904918
10.1038/s41592-020-01008-z
10.1109/TMI.2002.808355
10.3390/e20050344
10.1007/s11760-020-01673-9
10.1109/TIP.2014.2372615
10.1186/s12911-019-0988-4
10.1109/TIP.2014.2315155
10.1186/1687-5281-2014-21
10.1007/978-3-319-24553-9_10
10.1109/ISBI.2018.8363865
10.48550/arXiv.1505.04597
10.48550/arXiv.1904.00445
10.7916/D85M6CFF
10.1007/978-3-642-15705-9_2
10.1109/FUZZ48607.2020.9177563
10.1111/j.2517-6161.1974.tb00999.x
10.1109/FUZZ-IEEE.2018.8491552
10.1109/ISBI48211.2021.9433854
10.48550/arXiv.1909.00166
10.1007/978-3-642-04268-3_35
10.1109/CVPR.2012.6247957
10.1007/978-3-030-26969-2_60
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-23408-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91
PMC9637091
36335227
10_1038_s41598_022_23408_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science and Technology Development Fund
  grantid: USC 17:253; USC 17:253; USC 17:253
  funderid: http://dx.doi.org/10.13039/501100003009
– fundername: Assiut University
– fundername: Science and Technology Development Fund
  grantid: USC 17:253
– fundername: ;
– fundername: ;
  grantid: USC 17:253; USC 17:253; USC 17:253
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:48 EDT 2025
Thu Aug 21 18:39:40 EDT 2025
Fri Jul 11 01:41:48 EDT 2025
Wed Aug 13 08:18:38 EDT 2025
Thu Jan 02 22:53:43 EST 2025
Thu Apr 24 22:58:57 EDT 2025
Tue Jul 01 00:55:20 EDT 2025
Fri Feb 21 02:40:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2732140338?pq-origsite=%requestingapplication%
PMID 36335227
PQID 2732140338
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9637091
proquest_miscellaneous_2732535672
proquest_journals_2732140338
pubmed_primary_36335227
crossref_citationtrail_10_1038_s41598_022_23408_1
crossref_primary_10_1038_s41598_022_23408_1
springer_journals_10_1038_s41598_022_23408_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-05
PublicationDateYYYYMMDD 2022-11-05
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kavur, Gezer, Barış, Aslan, Conze, Groza, Pham, Chatterjee, Ernst, Özkan, Baydar (CR19) 2021; 69
El Munim, Farag (CR32) 2007; 29
Khalifa, Beache, El-Ghar, El-Diasty, Gimel'farb, Kong, El-Baz (CR6) 2013; 32
CR17
CR15
CR14
Fedkiw, Osher (CR22) 2002
Li, Cao, Wang, Cui, Wang (CR30) 2020; 506
CR36
CR13
CR35
Zöllner, Kociński, Hansen, Golla, Trbalić, Lundervold, Materka, Rogelj (CR2) 2021; 9
CR12
CR34
Hodneland, Hanson, Lundervold, Modersitzki, Eikefjord, Munthe-Kaas (CR10) 2014; 23
Nayak, Naik, Behera (CR21) 2015; 2
El-Melegy, Mokhtar (CR25) 2014; 21
Viola, Wells (CR26) 1997; 24
Mostapha, Khalifa, Alansary, Soliman, Suri, El-Baz (CR1) 2014
Salah, Mitiche, Ayed (CR33) 2010; 20
Eltanboly, Ghazal, Hajjdiab, Shalaby, Switala, Mahmoud, Sahoo, El-Azab, El-Baz (CR11) 2019; 340
CR4
Besag (CR28) 1974; 36
CR5
CR7
Tsai, Yezzi, Wells, Tempany, Tucker, Fan, Willsky (CR31) 2003; 22
CR27
CR24
CR23
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (CR18) 2021; 18
Al-Shamasneh, Jalab, Palaiahnakote, Obaidellah, Ibrahim, El-Melegy (CR8) 2018; 20
CR20
Yuksel, El-Baz, Farag, El-Ghar, Eldiasty, Ghoneim (CR3) 2007; 13
Al-Shamasneh, Jalab, Shivakumara, Ibrahim, Obaidellah (CR9) 2020; 14
Bevilacqua, Brunetti, Cascarano, Guerriero, Pesce, Moschetta, Gesualdo (CR16) 2019; 19
Yang, Gao, Tao, Li, Li (CR29) 2015; 24
A Eltanboly (23408_CR11) 2019; 340
A Tsai (23408_CR31) 2003; 22
F Khalifa (23408_CR6) 2013; 32
R Fedkiw (23408_CR22) 2002
23408_CR27
FG Zöllner (23408_CR2) 2021; 9
J Nayak (23408_CR21) 2015; 2
23408_CR23
AR Al-Shamasneh (23408_CR8) 2018; 20
23408_CR24
Y Li (23408_CR30) 2020; 506
HEA El Munim (23408_CR32) 2007; 29
23408_CR20
M Mostapha (23408_CR1) 2014
23408_CR7
MB Salah (23408_CR33) 2010; 20
X Yang (23408_CR29) 2015; 24
23408_CR5
V Bevilacqua (23408_CR16) 2019; 19
23408_CR4
E Hodneland (23408_CR10) 2014; 23
AE Kavur (23408_CR19) 2021; 69
F Isensee (23408_CR18) 2021; 18
J Besag (23408_CR28) 1974; 36
SE Yuksel (23408_CR3) 2007; 13
23408_CR17
23408_CR12
23408_CR34
23408_CR13
23408_CR35
23408_CR14
23408_CR36
23408_CR15
P Viola (23408_CR26) 1997; 24
M El-Melegy (23408_CR25) 2014; 21
AR Al-Shamasneh (23408_CR9) 2020; 14
References_xml – volume: 9
  start-page: 71577
  year: 2021
  end-page: 71605
  ident: CR2
  article-title: Kidney segmentation in renal magnetic resonance imaging-current status and prospects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3078430
– volume: 506
  start-page: 443
  year: 2020
  end-page: 456
  ident: CR30
  article-title: A novel local region-based active contour model for image segmentation using Bayes theorem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.08.021
– ident: CR4
– volume: 32
  start-page: 1910
  issue: 10
  year: 2013
  end-page: 1927
  ident: CR6
  article-title: Dynamic contrast-enhanced MRI-based early detection of acute renal transplant rejection
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2269139
– ident: CR14
– volume: 36
  start-page: 192
  issue: 2
  year: 1974
  end-page: 236
  ident: CR28
  article-title: Spatial interaction and the statistical analysis of lattice systems
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– volume: 340
  start-page: 164
  year: 2019
  end-page: 179
  ident: CR11
  article-title: Level sets-based image segmentation approach using statistical shape priors
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.05.064
– volume: 20
  start-page: 545
  issue: 2
  year: 2010
  end-page: 557
  ident: CR33
  article-title: Multiregion image segmentation by parametric kernel graph cuts
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2066982
– start-page: 1
  year: 2014
  end-page: 35
  ident: CR1
  article-title: Computer-aided diagnosis systems for acute renal transplant rejection: Challenges and methodologies
  publication-title: Abdomen and Thoracic Imaging
– ident: CR12
– volume: 69
  start-page: 101950
  year: 2021
  ident: CR19
  article-title: CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101950
– volume: 2
  start-page: 133
  year: 2015
  end-page: 149
  ident: CR21
  article-title: Fuzzy C-means (FCM) clustering algorithm: A decade review from 2000 to 2014
  publication-title: Comput. Intell. Data Min.
  doi: 10.1007/978-81-322-2208-8_14
– ident: CR35
– volume: 29
  start-page: 945
  issue: 6
  year: 2007
  end-page: 958
  ident: CR32
  article-title: Curve/surface representation and evolution using vector level sets with application to the shape-based segmentation problem
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1100
– volume: 13
  start-page: 1505
  issue: 9–10
  year: 2007
  end-page: 1516
  ident: CR3
  article-title: A kidney segmentation framework for dynamic contrast enhanced magnetic resonance imaging
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307077417
– volume: 24
  start-page: 137
  issue: 2
  year: 1997
  end-page: 154
  ident: CR26
  article-title: Alignment by maximization of mutual information
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1007958904918
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  end-page: 211
  ident: CR18
  article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– ident: CR27
– volume: 22
  start-page: 137
  issue: 2
  year: 2003
  end-page: 154
  ident: CR31
  article-title: A shape-based approach to the segmentation of medical imagery using level sets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2002.808355
– volume: 20
  start-page: 344
  issue: 5
  year: 2018
  ident: CR8
  article-title: A new local fractional entropy-based model for kidney MRI image enhancement
  publication-title: Entropy
  doi: 10.3390/e20050344
– ident: CR23
– volume: 14
  start-page: 1361
  issue: 7
  year: 2020
  end-page: 1368
  ident: CR9
  article-title: Kidney segmentation in MR images using active contour model driven by fractional-based energy minimization
  publication-title: SIViP
  doi: 10.1007/s11760-020-01673-9
– volume: 24
  start-page: 9
  issue: 1
  year: 2015
  end-page: 21
  ident: CR29
  article-title: An efficient MRF embedded level set method for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2372615
– volume: 19
  start-page: 1
  issue: 9
  year: 2019
  end-page: 12
  ident: CR16
  article-title: A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-0988-4
– ident: CR15
– ident: CR17
– ident: CR13
– ident: CR34
– ident: CR36
– ident: CR5
– ident: CR7
– volume: 23
  start-page: 2392
  issue: 5
  year: 2014
  end-page: 2404
  ident: CR10
  article-title: Segmentation-driven image registration-application to 4D DCE-MRI recordings of the moving kidneys
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2315155
– ident: CR24
– ident: CR20
– volume: 21
  start-page: 1
  issue: 1
  year: 2014
  end-page: 14
  ident: CR25
  article-title: Tumor segmentation in brain MRI using a fuzzy approach with class center priors
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/1687-5281-2014-21
– year: 2002
  ident: CR22
  publication-title: Level Set Methods and Dynamic Implicit Surfaces
– volume: 19
  start-page: 1
  issue: 9
  year: 2019
  ident: 23408_CR16
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-0988-4
– volume: 21
  start-page: 1
  issue: 1
  year: 2014
  ident: 23408_CR25
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/1687-5281-2014-21
– volume: 13
  start-page: 1505
  issue: 9–10
  year: 2007
  ident: 23408_CR3
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307077417
– volume: 69
  start-page: 101950
  year: 2021
  ident: 23408_CR19
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101950
– volume: 24
  start-page: 9
  issue: 1
  year: 2015
  ident: 23408_CR29
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2372615
– ident: 23408_CR7
  doi: 10.1007/978-3-319-24553-9_10
– ident: 23408_CR13
  doi: 10.1109/ISBI.2018.8363865
– ident: 23408_CR14
  doi: 10.48550/arXiv.1505.04597
– volume-title: Level Set Methods and Dynamic Implicit Surfaces
  year: 2002
  ident: 23408_CR22
– volume: 506
  start-page: 443
  year: 2020
  ident: 23408_CR30
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.08.021
– start-page: 1
  volume-title: Abdomen and Thoracic Imaging
  year: 2014
  ident: 23408_CR1
– volume: 22
  start-page: 137
  issue: 2
  year: 2003
  ident: 23408_CR31
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2002.808355
– ident: 23408_CR24
– volume: 14
  start-page: 1361
  issue: 7
  year: 2020
  ident: 23408_CR9
  publication-title: SIViP
  doi: 10.1007/s11760-020-01673-9
– ident: 23408_CR35
  doi: 10.48550/arXiv.1904.00445
– volume: 20
  start-page: 545
  issue: 2
  year: 2010
  ident: 23408_CR33
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2066982
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  ident: 23408_CR18
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 23
  start-page: 2392
  issue: 5
  year: 2014
  ident: 23408_CR10
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2315155
– ident: 23408_CR27
  doi: 10.7916/D85M6CFF
– volume: 24
  start-page: 137
  issue: 2
  year: 1997
  ident: 23408_CR26
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1007958904918
– ident: 23408_CR5
  doi: 10.1007/978-3-642-15705-9_2
– volume: 9
  start-page: 71577
  year: 2021
  ident: 23408_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3078430
– ident: 23408_CR12
– ident: 23408_CR36
  doi: 10.1109/FUZZ48607.2020.9177563
– volume: 36
  start-page: 192
  issue: 2
  year: 1974
  ident: 23408_CR28
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– ident: 23408_CR20
  doi: 10.1109/FUZZ-IEEE.2018.8491552
– ident: 23408_CR15
  doi: 10.1109/ISBI48211.2021.9433854
– volume: 20
  start-page: 344
  issue: 5
  year: 2018
  ident: 23408_CR8
  publication-title: Entropy
  doi: 10.3390/e20050344
– ident: 23408_CR34
  doi: 10.48550/arXiv.1909.00166
– volume: 32
  start-page: 1910
  issue: 10
  year: 2013
  ident: 23408_CR6
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2269139
– ident: 23408_CR4
  doi: 10.1007/978-3-642-04268-3_35
– volume: 340
  start-page: 164
  year: 2019
  ident: 23408_CR11
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.05.064
– ident: 23408_CR23
  doi: 10.1109/CVPR.2012.6247957
– volume: 29
  start-page: 945
  issue: 6
  year: 2007
  ident: 23408_CR32
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1100
– ident: 23408_CR17
  doi: 10.1007/978-3-030-26969-2_60
– volume: 2
  start-page: 133
  year: 2015
  ident: 23408_CR21
  publication-title: Comput. Intell. Data Min.
  doi: 10.1007/978-81-322-2208-8_14
SSID ssj0000529419
Score 2.4005134
Snippet Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a...
Abstract Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18816
SubjectTerms 639/166/985
639/166/987
692/700/1421/1770
Accuracy
Cluster Analysis
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted - methods
Kidney - diagnostic imaging
Kidney transplantation
Kidneys
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
multidisciplinary
Neural networks
Noise levels
Science
Science (multidisciplinary)
Segmentation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9wwDI8Q0iRe0D6AFdiUSbxBRZqkTfvIGIiB4GEaEm9RvrohHT3E3U06_nrspHdwsI-XvVWtW7mxXduN_TMhOx7SDMZantuCu1wqK8Dmgs9N5eCDKbz1sTbn_KI6uZSnV-XVk1FfWBOW4IHTwu1bX_HaMOZr6aT1rbGGG8gigi-lSH3rHHzek2QqoXrzRhZN3yXDRL0_Ak-F3WSQe3EhEdN0wRNFwP7fRZkviyWf7ZhGR3T8mqz2ESQ9SJy_IUuhe0tepZmS03fk9uzad2FKR-HHTd9X1FFsIqFfDo_y829faSw0v8PhRHSAJUNAOqZpkvRoj7aT-_spdYMJIiggjek8xY6e4S8Kfs3Dg2LVG40zdIBgjVweH30_PMn7sQq5g_BsnMs2gOFxFaqqxbpCy1RlBbMNg9iDGwcu3DatZwW8srF1KIIrgxJwBFINphTrZLkbduE9oQp8WeN5AQJxEp7SeFeCW3TK-RZyuSIjxWyJtesxx3H0xUDHvW9R6yQWDWLRUSwa7tmd33ObEDf-Sv0ZJTenRLTseAJ0SPc6pP-lQxnZnsld9yY80hDXcQQzFHVGPs0vg_HhjorpwnCSaEpRVopnZCOpyZwTUWE7G1cZUQsKtMDq4pXu-mcE-IaPomLI1t5M1R7Z-vNSbP6PpdgiKxxtBH-cl9tkeXw3CR8g7Brbj9HCHgAhISk2
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6IN1sKMhI3GtWxEzs5ISitCqgcEJX2ZvmVUmlJtptdpO3XM-N4Uy2P3qJ4bE0yM56x50XIGw_HDMYantmcu6xQVoDMBZ8Z6WDDFN76GJtz-lWenBWfp-U0Xbj1KaxysyfGjdp3Du_ID0DNcqwtJ6p388sMu0ahdzW10LhN7mDpMgzpUlM13rGgF6vI65Qrw0R10IO-wpwyOIFxUWBl0y19FMv2_8vW_Dtk8g-_aVRHxw_I_WRH0vcD4R-SW6F9RO4OnSXXj8n8y4Vvw5r24fxnyi5qKaaS0I-HR9npt080hpsvsEURnWHgEIAu6dBPut-nzerqak3dbIV1FBDGtJ5iXk_3i4J287BQjH2jsZMOADwhZ8dH3w9PstRcIXNgpC2zogkgflwFKRuMLrRMSSuYrRlYINw4UOS2bjzL4ZONrUIeXBmUgCegbTCleEp22q4NzwlVoNFqz3MjmStgldq7EpSjU843cKLLJyTf_GLtUuVxbIAx09EDLio9kEUDWXQki4Y5b8c586Huxo3QH5ByIyTWzI4vusW5TiKorZe8Moz5qnCF9Y2xhgPKefBlIZoaFtnb0F0nQe71NdtNyOtxGEQQ_SqmDd1qgClFKRWfkGcDm4yYCIlJbVxNiNpioC1Ut0faix-xzDdsjYohWvsbVrtG6_-_Yvfmr3hB7nHkfrwYL_fIznKxCi_BrFraV1F2fgMabx-Z
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuCFoeW0plJG40wrEdOznC0qqAyqFqpd4sv1IqLdlqH5W2v54Z54G2lErcomRsTTIznnE88w0h7wNsMxireeZy7jOpnQCbiyGzysOCKYILKTfn5Ic6PpffLoqLDcL7WpiUtJ8gLdMy3WeHfZyDo8FiMNg6cSERkvQR2ULodtTqsRoP_1Xw5ErmVVcfw0R5z9A1H5Sg-u-LL_9Ok7xzVppc0NEz8rSLHemnltvnZCM22-Rx201ytUOuv1-FJq7oPF7-6iqKGorlI_TL-DA7Of1KU4r5DNsS0QkmCwHpgrY9pOcHtF7e3q6onywROwFpbBMo1vJMbyh4tAATpXw3mrrnAMELcn50eDY-zrqGCpmHwGyRyTqCyXEdlaoxo9AxrZxgrmIQdXDrwXm7qg4sh1e2rox59EXUAq5AntEW4iXZbKZNfE2oBi9WBZ5bxbyEWargC3CIXvtQwy4uH5G8_8TGd2jj2PRiYtKptyhNKxYDYjFJLAbGfBjGXLdYGw9Sf0bJDZSIk51uTGeXptMb44LipWUslNJLF2rrLAeW8xgKKeoKJtnr5W46450biOg4whiKckTeDY_B7PAsxTZxumxpClEozUfkVasmAydCYSEb1yOi1xRojdX1J83VzwTtDcuhZsjWQa9qf9j696fY_T_yN-QJR2vAn-PFHtlczJbxLYRWC7efbOk3Y9AdbQ
  priority: 102
  providerName: Springer Nature
Title Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling
URI https://link.springer.com/article/10.1038/s41598-022-23408-1
https://www.ncbi.nlm.nih.gov/pubmed/36335227
https://www.proquest.com/docview/2732140338
https://www.proquest.com/docview/2732535672
https://pubmed.ncbi.nlm.nih.gov/PMC9637091
https://doaj.org/article/bd628a00d84c4bdfaba2a601ed543f91
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf2IdBeJr4pG5WReGMBx07s5AGhrnQaRZ3QoFLfovgjY1JJRz-mdX89d05SKHQ8tUrO1sV3lzvHd78j5LWFbQZjBQ90yE0QKS3A5pwNcmnghSmstj43Z3AmT4dRfxSPtkjT7qhewNnGrR32kxpOx29vfi4_gMG_r0rGk3czcEJYKAbbKi4ihCvdJrvgmRQa6qAO9yusb55GYVrXzmweukfuC4mFSNhn5g9X5RH9N4Wh_2ZT_nWk6j3VyQOyX4eYtFPpxEOy5cpH5F7VdHL5mFx9vrSlW9KZu_hRFx6VFKtM6MduLxicf6I-E32K3YvoGHOKgHROq1bTsyNaLG5vl9SMFwixgDR5aSmW_EyuKTg-CxP5tDjqm-wAwRMyPOl9654Gdd-FwED8Ng-iwoFlcuWkLDDxUDMltWA6ZRCc8NyAj9dpYVkIj5zrxIXOxE4J-Adid3ksnpKdclK654QqcHap5WEumYlgltSaGPymUcYWsNkLWyRsljgzNSg59sYYZ_5wXCRZJaEMJJR5CWUw5s1qzFUFyfFf6mOU3IoS4bT9hcn0IqutM9NW8iRnzCaRibQtcp1zYDl0No5EkcIkh43cs0ZFMwj8OKIdiqRFXq1ug3XikUteusmioolFLBVvkWeVmqw4adSsRdSaAq2xun6nvPzuEcDhrakYsnXUqNpvtu5eihd3snBA9jjaAH4ujw_Jzny6cC8h2JrrNtlWI9Umu51O_2sffo97Z1_O4WpXdtv-A0bb29gvs0Qogg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFWlQvCCuEkpsEjwRK2ud30-IETbVAlpIlS1Ut8W7-FSKdhpnIDSj-IbmVnbqcLRt75F8Xg13rl2di5C3hpwMxjLuad8rr0gVgJkzhovizQoTGGUcbk5o3HUPw0-n4VnG-RXWwuDaZWtTnSK2pQa78h3wcxy7C0nko_TSw-nRmF0tR2hUbPF0C5_gstWfRgcAH3fcX7YO9nve81UAU_D6WTuBbkFvuOxjaIc0-oUePJKMJUyML0802DBVJob5httM5VY3-rQxgJ-wUfZDKdEgMrfDAS4Mh2yudcbfzle3epg3Czw06Y6h4lktwILiVVs4PNxEWAv1TUL6AYF_Ot0-3eS5h-RWmcADx-Q-83JlX6qWe0h2bDFI3KnnmW5fEymwwtT2CWt7Pn3pp6poFi8Qg_2e97oeEBdgvsMhyLRCaYqAeic1hOsqx2aL66ullRPFti5AWGywlCsJCp_ULCnBhZy2XbUze4BgCfk9FY2_inpFGVhnxMagw1NDfeziOkAVkmNDsEc61ibHHxIv0v8doulbnqd48iNiXQxd5HImiwSyCIdWSS88371zrTu9HEj9B5SbgWJXbrdH-XsXDZCL5WJeJIxZpJAB8rkmco4oOxbEwYiT2GR7ZbuslEdlbxm9C55s3oMQo-RnKyw5aKGCUUYxbxLntVsssJERFhGx-MuidcYaA3V9SfFxTfXWByUccwQrZ2W1a7R-v9WbN38Fa_J3f7J6EgeDcbDF-QeR0nAa_lwm3Tms4V9CYe6uXrVSBIlX29beH8D5q9d4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFUVgXhB3A0tsEjwRK2ud22v_YAQNI0aQiuEqJS3xXu4VAp2mgOUfhpfx8z6qMLRt75F8Xg13rl2di5CXlpwMxgreKBDboJIagEy52yQJwYUprDa-tyco-Pk8CT6MI7HG-RXWwuDaZWtTvSK2lYG78j3wMxy7C0n0r2iSYv41B-8nZ4HOEEKI63tOI2aRUZu9RPct_mbYR9o_YrzwcGX_cOgmTAQGDipLIKocMCDXLokKTDFToNXrwXTGQMzzHMD1kxnhWWhNS7XqQudiZ0U8As-0OU4MQLU_w0p4hBlTI5ld7-DEbQozJo6HQZoz8FWYj0beH9cRNhVdc0W-pEB_zrn_p2u-UfM1pvCwV1ypznD0nc1090jG668T27WUy1XD8h0dGZLt6Jzd_q9qWwqKZax0P7-QXD0eUh9qvsMxyPRCSYtAeiC1rOs57u0WF5crKiZLLGHA8LkpaVYU1T9oGBZLSzk8-6on-IDAA_JybVs-yOyWVal2yJUgjXNLA_zhJkIVsmsicEwG2lsAd5k2CNhu8XKNF3PcfjGRPnou0hVTRYFZFGeLAreed29M617flwJ_R4p10Fiv27_RzU7VY34K20TnuaM2TQykbZFrnMOKIfOxpEoMlhkp6W7apTIXF2yfI-86B6D-GNMJy9dtaxhYhEnkvfI45pNOkxEggV1XPaIXGOgNVTXn5Rn33yLcVDLkiFauy2rXaL1_614cvVXPCe3QGTVx-HxaJvc5igIeD8f75DNxWzpnsLpbqGfeTGi5Ot1y-1vU7Jgsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kidney+segmentation+from+DCE-MRI+converging+level+set+methods%2C+fuzzy+clustering+and+Markov+random+field+modeling&rft.jtitle=Scientific+reports&rft.au=El-Melegy%2C+Moumen&rft.au=Kamel%2C+Rasha&rft.au=El-Ghar%2C+Mohamed+Abou&rft.au=Shehata%2C+Mohamed&rft.date=2022-11-05&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=18816&rft_id=info:doi/10.1038%2Fs41598-022-23408-1&rft_id=info%3Apmid%2F36335227&rft.externalDocID=36335227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon