Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling
Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-mea...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 18816 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.11.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels. |
---|---|
AbstractList | Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels. Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney's shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney's shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels. Abstract Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels. |
ArticleNumber | 18816 |
Author | Shehata, Mohamed Khalifa, Fahmi El-Baz, Ayman Kamel, Rasha El-Melegy, Moumen El-Ghar, Mohamed Abou |
Author_xml | – sequence: 1 givenname: Moumen surname: El-Melegy fullname: El-Melegy, Moumen email: moumen@aun.edu.eg organization: Electrical Engineering Department, Assiut University – sequence: 2 givenname: Rasha surname: Kamel fullname: Kamel, Rasha organization: Computer Science Department, Assiut University – sequence: 3 givenname: Mohamed Abou surname: El-Ghar fullname: El-Ghar, Mohamed Abou organization: Radiology Department, Urology and Nephrology Center, Mansoura University – sequence: 4 givenname: Mohamed surname: Shehata fullname: Shehata, Mohamed organization: Bioengineering Department, University of Louisville – sequence: 5 givenname: Fahmi surname: Khalifa fullname: Khalifa, Fahmi organization: Bioengineering Department, University of Louisville, Electronics and Communications Engineering Department, Mansoura University – sequence: 6 givenname: Ayman surname: El-Baz fullname: El-Baz, Ayman organization: Bioengineering Department, University of Louisville |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36335227$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1vFCEYxiemxtbaf8CDIfHiwVE-5-NiYtaqG9uYGD0TBt7ZsjKwwswm279edqfVtody4QV-78MTeJ4XRz54KIqXBL8jmDXvEyeibUpMaUkZx01JnhQnFHORl5Qe3amPi7OU1jgPQVtO2mfFMasYE5TWJ8XmmzUedijBagA_qtEGj_oYBvRpcV5e_lgiHfwW4sr6FXKwBZfREQ0wXgWT3qJ-ur7eIe2mNELcM8obdKni77BFMddZqLfgDBqCAZeBF8XTXrkEZzfzafHr8_nPxdfy4vuX5eLjRakFx2PJexCM0BqqqsctZx2uq47hrsVMCKp0Q5qu7Q0mRoPqGiCgBdQsVxXGoAQ7LZazrglqLTfRDiruZFBWHjZCXEkVR6sdyM5UtFEYm4Zr3pledYqqChMwgrO-JVnrw6y1mboB8o1-jMrdE71_4u2VXIWtbCtW44PAmxuBGP5MkEY52KTBOeUhTEnSmlHBRFXTjL5-gK7DFH1-qgNFOGasydSru47-Wbn92Aw0M6BjSClCL7WdfzcbtE4SLPcxknOMZI6RPMRI7s3SB6236o82sbkpbfYxgPjf9iNdfwHZpNq- |
CitedBy_id | crossref_primary_10_3390_bioengineering10070755 crossref_primary_10_3390_biomedicines11010006 crossref_primary_10_4108_eetpht_10_5632 crossref_primary_10_3390_bioengineering9110654 crossref_primary_10_1016_j_procs_2024_04_158 crossref_primary_10_1007_s11255_024_04082_w |
Cites_doi | 10.1109/ACCESS.2021.3078430 10.1016/j.ins.2019.08.021 10.1109/TMI.2013.2269139 10.1016/j.amc.2018.05.064 10.1109/TIP.2010.2066982 10.1016/j.media.2020.101950 10.1007/978-81-322-2208-8_14 10.1109/TPAMI.2007.1100 10.1177/1077546307077417 10.1023/A:1007958904918 10.1038/s41592-020-01008-z 10.1109/TMI.2002.808355 10.3390/e20050344 10.1007/s11760-020-01673-9 10.1109/TIP.2014.2372615 10.1186/s12911-019-0988-4 10.1109/TIP.2014.2315155 10.1186/1687-5281-2014-21 10.1007/978-3-319-24553-9_10 10.1109/ISBI.2018.8363865 10.48550/arXiv.1505.04597 10.48550/arXiv.1904.00445 10.7916/D85M6CFF 10.1007/978-3-642-15705-9_2 10.1109/FUZZ48607.2020.9177563 10.1111/j.2517-6161.1974.tb00999.x 10.1109/FUZZ-IEEE.2018.8491552 10.1109/ISBI48211.2021.9433854 10.48550/arXiv.1909.00166 10.1007/978-3-642-04268-3_35 10.1109/CVPR.2012.6247957 10.1007/978-3-030-26969-2_60 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-23408-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91 PMC9637091 36335227 10_1038_s41598_022_23408_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Science and Technology Development Fund grantid: USC 17:253; USC 17:253; USC 17:253 funderid: http://dx.doi.org/10.13039/501100003009 – fundername: Assiut University – fundername: Science and Technology Development Fund grantid: USC 17:253 – fundername: ; – fundername: ; grantid: USC 17:253; USC 17:253; USC 17:253 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:48 EDT 2025 Thu Aug 21 18:39:40 EDT 2025 Fri Jul 11 01:41:48 EDT 2025 Wed Aug 13 08:18:38 EDT 2025 Thu Jan 02 22:53:43 EST 2025 Thu Apr 24 22:58:57 EDT 2025 Tue Jul 01 00:55:20 EDT 2025 Fri Feb 21 02:40:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2732140338?pq-origsite=%requestingapplication% |
PMID | 36335227 |
PQID | 2732140338 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9637091 proquest_miscellaneous_2732535672 proquest_journals_2732140338 pubmed_primary_36335227 crossref_citationtrail_10_1038_s41598_022_23408_1 crossref_primary_10_1038_s41598_022_23408_1 springer_journals_10_1038_s41598_022_23408_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-05 |
PublicationDateYYYYMMDD | 2022-11-05 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Kavur, Gezer, Barış, Aslan, Conze, Groza, Pham, Chatterjee, Ernst, Özkan, Baydar (CR19) 2021; 69 El Munim, Farag (CR32) 2007; 29 Khalifa, Beache, El-Ghar, El-Diasty, Gimel'farb, Kong, El-Baz (CR6) 2013; 32 CR17 CR15 CR14 Fedkiw, Osher (CR22) 2002 Li, Cao, Wang, Cui, Wang (CR30) 2020; 506 CR36 CR13 CR35 Zöllner, Kociński, Hansen, Golla, Trbalić, Lundervold, Materka, Rogelj (CR2) 2021; 9 CR12 CR34 Hodneland, Hanson, Lundervold, Modersitzki, Eikefjord, Munthe-Kaas (CR10) 2014; 23 Nayak, Naik, Behera (CR21) 2015; 2 El-Melegy, Mokhtar (CR25) 2014; 21 Viola, Wells (CR26) 1997; 24 Mostapha, Khalifa, Alansary, Soliman, Suri, El-Baz (CR1) 2014 Salah, Mitiche, Ayed (CR33) 2010; 20 Eltanboly, Ghazal, Hajjdiab, Shalaby, Switala, Mahmoud, Sahoo, El-Azab, El-Baz (CR11) 2019; 340 CR4 Besag (CR28) 1974; 36 CR5 CR7 Tsai, Yezzi, Wells, Tempany, Tucker, Fan, Willsky (CR31) 2003; 22 CR27 CR24 CR23 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (CR18) 2021; 18 Al-Shamasneh, Jalab, Palaiahnakote, Obaidellah, Ibrahim, El-Melegy (CR8) 2018; 20 CR20 Yuksel, El-Baz, Farag, El-Ghar, Eldiasty, Ghoneim (CR3) 2007; 13 Al-Shamasneh, Jalab, Shivakumara, Ibrahim, Obaidellah (CR9) 2020; 14 Bevilacqua, Brunetti, Cascarano, Guerriero, Pesce, Moschetta, Gesualdo (CR16) 2019; 19 Yang, Gao, Tao, Li, Li (CR29) 2015; 24 A Eltanboly (23408_CR11) 2019; 340 A Tsai (23408_CR31) 2003; 22 F Khalifa (23408_CR6) 2013; 32 R Fedkiw (23408_CR22) 2002 23408_CR27 FG Zöllner (23408_CR2) 2021; 9 J Nayak (23408_CR21) 2015; 2 23408_CR23 AR Al-Shamasneh (23408_CR8) 2018; 20 23408_CR24 Y Li (23408_CR30) 2020; 506 HEA El Munim (23408_CR32) 2007; 29 23408_CR20 M Mostapha (23408_CR1) 2014 23408_CR7 MB Salah (23408_CR33) 2010; 20 X Yang (23408_CR29) 2015; 24 23408_CR5 V Bevilacqua (23408_CR16) 2019; 19 23408_CR4 E Hodneland (23408_CR10) 2014; 23 AE Kavur (23408_CR19) 2021; 69 F Isensee (23408_CR18) 2021; 18 J Besag (23408_CR28) 1974; 36 SE Yuksel (23408_CR3) 2007; 13 23408_CR17 23408_CR12 23408_CR34 23408_CR13 23408_CR35 23408_CR14 23408_CR36 23408_CR15 P Viola (23408_CR26) 1997; 24 M El-Melegy (23408_CR25) 2014; 21 AR Al-Shamasneh (23408_CR9) 2020; 14 |
References_xml | – volume: 9 start-page: 71577 year: 2021 end-page: 71605 ident: CR2 article-title: Kidney segmentation in renal magnetic resonance imaging-current status and prospects publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3078430 – volume: 506 start-page: 443 year: 2020 end-page: 456 ident: CR30 article-title: A novel local region-based active contour model for image segmentation using Bayes theorem publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.08.021 – ident: CR4 – volume: 32 start-page: 1910 issue: 10 year: 2013 end-page: 1927 ident: CR6 article-title: Dynamic contrast-enhanced MRI-based early detection of acute renal transplant rejection publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2269139 – ident: CR14 – volume: 36 start-page: 192 issue: 2 year: 1974 end-page: 236 ident: CR28 article-title: Spatial interaction and the statistical analysis of lattice systems publication-title: J. R. Stat. Soc. Ser. B (Methodol.) – volume: 340 start-page: 164 year: 2019 end-page: 179 ident: CR11 article-title: Level sets-based image segmentation approach using statistical shape priors publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2018.05.064 – volume: 20 start-page: 545 issue: 2 year: 2010 end-page: 557 ident: CR33 article-title: Multiregion image segmentation by parametric kernel graph cuts publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2066982 – start-page: 1 year: 2014 end-page: 35 ident: CR1 article-title: Computer-aided diagnosis systems for acute renal transplant rejection: Challenges and methodologies publication-title: Abdomen and Thoracic Imaging – ident: CR12 – volume: 69 start-page: 101950 year: 2021 ident: CR19 article-title: CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101950 – volume: 2 start-page: 133 year: 2015 end-page: 149 ident: CR21 article-title: Fuzzy C-means (FCM) clustering algorithm: A decade review from 2000 to 2014 publication-title: Comput. Intell. Data Min. doi: 10.1007/978-81-322-2208-8_14 – ident: CR35 – volume: 29 start-page: 945 issue: 6 year: 2007 end-page: 958 ident: CR32 article-title: Curve/surface representation and evolution using vector level sets with application to the shape-based segmentation problem publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1100 – volume: 13 start-page: 1505 issue: 9–10 year: 2007 end-page: 1516 ident: CR3 article-title: A kidney segmentation framework for dynamic contrast enhanced magnetic resonance imaging publication-title: J. Vib. Control doi: 10.1177/1077546307077417 – volume: 24 start-page: 137 issue: 2 year: 1997 end-page: 154 ident: CR26 article-title: Alignment by maximization of mutual information publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1007958904918 – volume: 18 start-page: 203 issue: 2 year: 2021 end-page: 211 ident: CR18 article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – ident: CR27 – volume: 22 start-page: 137 issue: 2 year: 2003 end-page: 154 ident: CR31 article-title: A shape-based approach to the segmentation of medical imagery using level sets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.808355 – volume: 20 start-page: 344 issue: 5 year: 2018 ident: CR8 article-title: A new local fractional entropy-based model for kidney MRI image enhancement publication-title: Entropy doi: 10.3390/e20050344 – ident: CR23 – volume: 14 start-page: 1361 issue: 7 year: 2020 end-page: 1368 ident: CR9 article-title: Kidney segmentation in MR images using active contour model driven by fractional-based energy minimization publication-title: SIViP doi: 10.1007/s11760-020-01673-9 – volume: 24 start-page: 9 issue: 1 year: 2015 end-page: 21 ident: CR29 article-title: An efficient MRF embedded level set method for image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2372615 – volume: 19 start-page: 1 issue: 9 year: 2019 end-page: 12 ident: CR16 article-title: A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-0988-4 – ident: CR15 – ident: CR17 – ident: CR13 – ident: CR34 – ident: CR36 – ident: CR5 – ident: CR7 – volume: 23 start-page: 2392 issue: 5 year: 2014 end-page: 2404 ident: CR10 article-title: Segmentation-driven image registration-application to 4D DCE-MRI recordings of the moving kidneys publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2315155 – ident: CR24 – ident: CR20 – volume: 21 start-page: 1 issue: 1 year: 2014 end-page: 14 ident: CR25 article-title: Tumor segmentation in brain MRI using a fuzzy approach with class center priors publication-title: EURASIP J. Image Video Process. doi: 10.1186/1687-5281-2014-21 – year: 2002 ident: CR22 publication-title: Level Set Methods and Dynamic Implicit Surfaces – volume: 19 start-page: 1 issue: 9 year: 2019 ident: 23408_CR16 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-0988-4 – volume: 21 start-page: 1 issue: 1 year: 2014 ident: 23408_CR25 publication-title: EURASIP J. Image Video Process. doi: 10.1186/1687-5281-2014-21 – volume: 13 start-page: 1505 issue: 9–10 year: 2007 ident: 23408_CR3 publication-title: J. Vib. Control doi: 10.1177/1077546307077417 – volume: 69 start-page: 101950 year: 2021 ident: 23408_CR19 publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101950 – volume: 24 start-page: 9 issue: 1 year: 2015 ident: 23408_CR29 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2372615 – ident: 23408_CR7 doi: 10.1007/978-3-319-24553-9_10 – ident: 23408_CR13 doi: 10.1109/ISBI.2018.8363865 – ident: 23408_CR14 doi: 10.48550/arXiv.1505.04597 – volume-title: Level Set Methods and Dynamic Implicit Surfaces year: 2002 ident: 23408_CR22 – volume: 506 start-page: 443 year: 2020 ident: 23408_CR30 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.08.021 – start-page: 1 volume-title: Abdomen and Thoracic Imaging year: 2014 ident: 23408_CR1 – volume: 22 start-page: 137 issue: 2 year: 2003 ident: 23408_CR31 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.808355 – ident: 23408_CR24 – volume: 14 start-page: 1361 issue: 7 year: 2020 ident: 23408_CR9 publication-title: SIViP doi: 10.1007/s11760-020-01673-9 – ident: 23408_CR35 doi: 10.48550/arXiv.1904.00445 – volume: 20 start-page: 545 issue: 2 year: 2010 ident: 23408_CR33 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2066982 – volume: 18 start-page: 203 issue: 2 year: 2021 ident: 23408_CR18 publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – volume: 23 start-page: 2392 issue: 5 year: 2014 ident: 23408_CR10 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2315155 – ident: 23408_CR27 doi: 10.7916/D85M6CFF – volume: 24 start-page: 137 issue: 2 year: 1997 ident: 23408_CR26 publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1007958904918 – ident: 23408_CR5 doi: 10.1007/978-3-642-15705-9_2 – volume: 9 start-page: 71577 year: 2021 ident: 23408_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3078430 – ident: 23408_CR12 – ident: 23408_CR36 doi: 10.1109/FUZZ48607.2020.9177563 – volume: 36 start-page: 192 issue: 2 year: 1974 ident: 23408_CR28 publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1974.tb00999.x – ident: 23408_CR20 doi: 10.1109/FUZZ-IEEE.2018.8491552 – ident: 23408_CR15 doi: 10.1109/ISBI48211.2021.9433854 – volume: 20 start-page: 344 issue: 5 year: 2018 ident: 23408_CR8 publication-title: Entropy doi: 10.3390/e20050344 – ident: 23408_CR34 doi: 10.48550/arXiv.1909.00166 – volume: 32 start-page: 1910 issue: 10 year: 2013 ident: 23408_CR6 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2269139 – ident: 23408_CR4 doi: 10.1007/978-3-642-04268-3_35 – volume: 340 start-page: 164 year: 2019 ident: 23408_CR11 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2018.05.064 – ident: 23408_CR23 doi: 10.1109/CVPR.2012.6247957 – volume: 29 start-page: 945 issue: 6 year: 2007 ident: 23408_CR32 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1100 – ident: 23408_CR17 doi: 10.1007/978-3-030-26969-2_60 – volume: 2 start-page: 133 year: 2015 ident: 23408_CR21 publication-title: Comput. Intell. Data Min. doi: 10.1007/978-81-322-2208-8_14 |
SSID | ssj0000529419 |
Score | 2.4005134 |
Snippet | Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a... Abstract Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18816 |
SubjectTerms | 639/166/985 639/166/987 692/700/1421/1770 Accuracy Cluster Analysis Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Kidney - diagnostic imaging Kidney transplantation Kidneys Magnetic resonance imaging Magnetic Resonance Imaging - methods multidisciplinary Neural networks Noise levels Science Science (multidisciplinary) Segmentation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9wwDI8Q0iRe0D6AFdiUSbxBRZqkTfvIGIiB4GEaEm9RvrohHT3E3U06_nrspHdwsI-XvVWtW7mxXduN_TMhOx7SDMZantuCu1wqK8Dmgs9N5eCDKbz1sTbn_KI6uZSnV-XVk1FfWBOW4IHTwu1bX_HaMOZr6aT1rbGGG8gigi-lSH3rHHzek2QqoXrzRhZN3yXDRL0_Ak-F3WSQe3EhEdN0wRNFwP7fRZkviyWf7ZhGR3T8mqz2ESQ9SJy_IUuhe0tepZmS03fk9uzad2FKR-HHTd9X1FFsIqFfDo_y829faSw0v8PhRHSAJUNAOqZpkvRoj7aT-_spdYMJIiggjek8xY6e4S8Kfs3Dg2LVG40zdIBgjVweH30_PMn7sQq5g_BsnMs2gOFxFaqqxbpCy1RlBbMNg9iDGwcu3DatZwW8srF1KIIrgxJwBFINphTrZLkbduE9oQp8WeN5AQJxEp7SeFeCW3TK-RZyuSIjxWyJtesxx3H0xUDHvW9R6yQWDWLRUSwa7tmd33ObEDf-Sv0ZJTenRLTseAJ0SPc6pP-lQxnZnsld9yY80hDXcQQzFHVGPs0vg_HhjorpwnCSaEpRVopnZCOpyZwTUWE7G1cZUQsKtMDq4pXu-mcE-IaPomLI1t5M1R7Z-vNSbP6PpdgiKxxtBH-cl9tkeXw3CR8g7Brbj9HCHgAhISk2 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6IN1sKMhI3GtWxEzs5ISitCqgcEJX2ZvmVUmlJtptdpO3XM-N4Uy2P3qJ4bE0yM56x50XIGw_HDMYantmcu6xQVoDMBZ8Z6WDDFN76GJtz-lWenBWfp-U0Xbj1KaxysyfGjdp3Du_ID0DNcqwtJ6p388sMu0ahdzW10LhN7mDpMgzpUlM13rGgF6vI65Qrw0R10IO-wpwyOIFxUWBl0y19FMv2_8vW_Dtk8g-_aVRHxw_I_WRH0vcD4R-SW6F9RO4OnSXXj8n8y4Vvw5r24fxnyi5qKaaS0I-HR9npt080hpsvsEURnWHgEIAu6dBPut-nzerqak3dbIV1FBDGtJ5iXk_3i4J287BQjH2jsZMOADwhZ8dH3w9PstRcIXNgpC2zogkgflwFKRuMLrRMSSuYrRlYINw4UOS2bjzL4ZONrUIeXBmUgCegbTCleEp22q4NzwlVoNFqz3MjmStgldq7EpSjU843cKLLJyTf_GLtUuVxbIAx09EDLio9kEUDWXQki4Y5b8c586Huxo3QH5ByIyTWzI4vusW5TiKorZe8Moz5qnCF9Y2xhgPKefBlIZoaFtnb0F0nQe71NdtNyOtxGEQQ_SqmDd1qgClFKRWfkGcDm4yYCIlJbVxNiNpioC1Ut0faix-xzDdsjYohWvsbVrtG6_-_Yvfmr3hB7nHkfrwYL_fIznKxCi_BrFraV1F2fgMabx-Z priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuCFoeW0plJG40wrEdOznC0qqAyqFqpd4sv1IqLdlqH5W2v54Z54G2lErcomRsTTIznnE88w0h7wNsMxireeZy7jOpnQCbiyGzysOCKYILKTfn5Ic6PpffLoqLDcL7WpiUtJ8gLdMy3WeHfZyDo8FiMNg6cSERkvQR2ULodtTqsRoP_1Xw5ErmVVcfw0R5z9A1H5Sg-u-LL_9Ok7xzVppc0NEz8rSLHemnltvnZCM22-Rx201ytUOuv1-FJq7oPF7-6iqKGorlI_TL-DA7Of1KU4r5DNsS0QkmCwHpgrY9pOcHtF7e3q6onywROwFpbBMo1vJMbyh4tAATpXw3mrrnAMELcn50eDY-zrqGCpmHwGyRyTqCyXEdlaoxo9AxrZxgrmIQdXDrwXm7qg4sh1e2rox59EXUAq5AntEW4iXZbKZNfE2oBi9WBZ5bxbyEWargC3CIXvtQwy4uH5G8_8TGd2jj2PRiYtKptyhNKxYDYjFJLAbGfBjGXLdYGw9Sf0bJDZSIk51uTGeXptMb44LipWUslNJLF2rrLAeW8xgKKeoKJtnr5W46450biOg4whiKckTeDY_B7PAsxTZxumxpClEozUfkVasmAydCYSEb1yOi1xRojdX1J83VzwTtDcuhZsjWQa9qf9j696fY_T_yN-QJR2vAn-PFHtlczJbxLYRWC7efbOk3Y9AdbQ priority: 102 providerName: Springer Nature |
Title | Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling |
URI | https://link.springer.com/article/10.1038/s41598-022-23408-1 https://www.ncbi.nlm.nih.gov/pubmed/36335227 https://www.proquest.com/docview/2732140338 https://www.proquest.com/docview/2732535672 https://pubmed.ncbi.nlm.nih.gov/PMC9637091 https://doaj.org/article/bd628a00d84c4bdfaba2a601ed543f91 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf2IdBeJr4pG5WReGMBx07s5AGhrnQaRZ3QoFLfovgjY1JJRz-mdX89d05SKHQ8tUrO1sV3lzvHd78j5LWFbQZjBQ90yE0QKS3A5pwNcmnghSmstj43Z3AmT4dRfxSPtkjT7qhewNnGrR32kxpOx29vfi4_gMG_r0rGk3czcEJYKAbbKi4ihCvdJrvgmRQa6qAO9yusb55GYVrXzmweukfuC4mFSNhn5g9X5RH9N4Wh_2ZT_nWk6j3VyQOyX4eYtFPpxEOy5cpH5F7VdHL5mFx9vrSlW9KZu_hRFx6VFKtM6MduLxicf6I-E32K3YvoGHOKgHROq1bTsyNaLG5vl9SMFwixgDR5aSmW_EyuKTg-CxP5tDjqm-wAwRMyPOl9654Gdd-FwED8Ng-iwoFlcuWkLDDxUDMltWA6ZRCc8NyAj9dpYVkIj5zrxIXOxE4J-Adid3ksnpKdclK654QqcHap5WEumYlgltSaGPymUcYWsNkLWyRsljgzNSg59sYYZ_5wXCRZJaEMJJR5CWUw5s1qzFUFyfFf6mOU3IoS4bT9hcn0IqutM9NW8iRnzCaRibQtcp1zYDl0No5EkcIkh43cs0ZFMwj8OKIdiqRFXq1ug3XikUteusmioolFLBVvkWeVmqw4adSsRdSaAq2xun6nvPzuEcDhrakYsnXUqNpvtu5eihd3snBA9jjaAH4ujw_Jzny6cC8h2JrrNtlWI9Umu51O_2sffo97Z1_O4WpXdtv-A0bb29gvs0Qogg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFWlQvCCuEkpsEjwRK2ud30-IETbVAlpIlS1Ut8W7-FSKdhpnIDSj-IbmVnbqcLRt75F8Xg13rl2di5C3hpwMxjLuad8rr0gVgJkzhovizQoTGGUcbk5o3HUPw0-n4VnG-RXWwuDaZWtTnSK2pQa78h3wcxy7C0nko_TSw-nRmF0tR2hUbPF0C5_gstWfRgcAH3fcX7YO9nve81UAU_D6WTuBbkFvuOxjaIc0-oUePJKMJUyML0802DBVJob5httM5VY3-rQxgJ-wUfZDKdEgMrfDAS4Mh2yudcbfzle3epg3Czw06Y6h4lktwILiVVs4PNxEWAv1TUL6AYF_Ot0-3eS5h-RWmcADx-Q-83JlX6qWe0h2bDFI3KnnmW5fEymwwtT2CWt7Pn3pp6poFi8Qg_2e97oeEBdgvsMhyLRCaYqAeic1hOsqx2aL66ullRPFti5AWGywlCsJCp_ULCnBhZy2XbUze4BgCfk9FY2_inpFGVhnxMagw1NDfeziOkAVkmNDsEc61ibHHxIv0v8doulbnqd48iNiXQxd5HImiwSyCIdWSS88371zrTu9HEj9B5SbgWJXbrdH-XsXDZCL5WJeJIxZpJAB8rkmco4oOxbEwYiT2GR7ZbuslEdlbxm9C55s3oMQo-RnKyw5aKGCUUYxbxLntVsssJERFhGx-MuidcYaA3V9SfFxTfXWByUccwQrZ2W1a7R-v9WbN38Fa_J3f7J6EgeDcbDF-QeR0nAa_lwm3Tms4V9CYe6uXrVSBIlX29beH8D5q9d4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFUVgXhB3A0tsEjwRK2ud22v_YAQNI0aQiuEqJS3xXu4VAp2mgOUfhpfx8z6qMLRt75F8Xg13rl2di5CXlpwMxgreKBDboJIagEy52yQJwYUprDa-tyco-Pk8CT6MI7HG-RXWwuDaZWtTvSK2lYG78j3wMxy7C0n0r2iSYv41B-8nZ4HOEEKI63tOI2aRUZu9RPct_mbYR9o_YrzwcGX_cOgmTAQGDipLIKocMCDXLokKTDFToNXrwXTGQMzzHMD1kxnhWWhNS7XqQudiZ0U8As-0OU4MQLU_w0p4hBlTI5ld7-DEbQozJo6HQZoz8FWYj0beH9cRNhVdc0W-pEB_zrn_p2u-UfM1pvCwV1ypznD0nc1090jG668T27WUy1XD8h0dGZLt6Jzd_q9qWwqKZax0P7-QXD0eUh9qvsMxyPRCSYtAeiC1rOs57u0WF5crKiZLLGHA8LkpaVYU1T9oGBZLSzk8-6on-IDAA_JybVs-yOyWVal2yJUgjXNLA_zhJkIVsmsicEwG2lsAd5k2CNhu8XKNF3PcfjGRPnou0hVTRYFZFGeLAreed29M617flwJ_R4p10Fiv27_RzU7VY34K20TnuaM2TQykbZFrnMOKIfOxpEoMlhkp6W7apTIXF2yfI-86B6D-GNMJy9dtaxhYhEnkvfI45pNOkxEggV1XPaIXGOgNVTXn5Rn33yLcVDLkiFauy2rXaL1_614cvVXPCe3QGTVx-HxaJvc5igIeD8f75DNxWzpnsLpbqGfeTGi5Ot1y-1vU7Jgsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kidney+segmentation+from+DCE-MRI+converging+level+set+methods%2C+fuzzy+clustering+and+Markov+random+field+modeling&rft.jtitle=Scientific+reports&rft.au=El-Melegy%2C+Moumen&rft.au=Kamel%2C+Rasha&rft.au=El-Ghar%2C+Mohamed+Abou&rft.au=Shehata%2C+Mohamed&rft.date=2022-11-05&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=18816&rft_id=info:doi/10.1038%2Fs41598-022-23408-1&rft_id=info%3Apmid%2F36335227&rft.externalDocID=36335227 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |