Cryptic variation in RNA-directed DNA-methylation controls lateral root development when auxin signalling is perturbed
Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions. Developmental plasticity of plant root systems has been the subject of intensive research, but the mechanisms underpinning robustness remain u...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 218 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.01.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions. Developmental plasticity of plant root systems has been the subject of intensive research, but the mechanisms underpinning robustness remain unclear. Here, we show that potassium deficiency inhibits lateral root organogenesis by delaying early stages in the formation of lateral root primordia. However, the severity of the symptoms arising from this perturbation varies within a natural population of
Arabidopsis
and is associated with the genetic variation in
CLSY1
, a key component of the RNA-directed DNA-methylation machinery. Mechanistically,
CLSY1
mediates the transcriptional repression of a negative regulator of root branching,
IAA27
, and promotes lateral root development when the auxin-dependent proteolysis pathway fails. Our study identifies DNA-methylation-mediated transcriptional repression as a backup system for post-translational protein degradation which ensures robust development and performance of plants in a challenging environment.
Developmental plasticity of plant root systems has been intensively studied, but the mechanisms underpinning robustness remain unclear. Here, the authors show that DNA-methylation-mediated transcriptional repression serves as a backup system to control lateral root development when auxin signalling is perturbed. |
---|---|
AbstractList | Developmental plasticity of plant root systems has been intensively studied, but the mechanisms underpinning robustness remain unclear. Here, the authors show that DNA-methylation-mediated transcriptional repression serves as a backup system to control lateral root development when auxin signalling is perturbed. Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions. Developmental plasticity of plant root systems has been the subject of intensive research, but the mechanisms underpinning robustness remain unclear. Here, we show that potassium deficiency inhibits lateral root organogenesis by delaying early stages in the formation of lateral root primordia. However, the severity of the symptoms arising from this perturbation varies within a natural population of Arabidopsis and is associated with the genetic variation in CLSY1, a key component of the RNA-directed DNA-methylation machinery. Mechanistically, CLSY1 mediates the transcriptional repression of a negative regulator of root branching, IAA27, and promotes lateral root development when the auxin-dependent proteolysis pathway fails. Our study identifies DNA-methylation-mediated transcriptional repression as a backup system for post-translational protein degradation which ensures robust development and performance of plants in a challenging environment. Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions. Developmental plasticity of plant root systems has been the subject of intensive research, but the mechanisms underpinning robustness remain unclear. Here, we show that potassium deficiency inhibits lateral root organogenesis by delaying early stages in the formation of lateral root primordia. However, the severity of the symptoms arising from this perturbation varies within a natural population of Arabidopsis and is associated with the genetic variation in CLSY1 , a key component of the RNA-directed DNA-methylation machinery. Mechanistically, CLSY1 mediates the transcriptional repression of a negative regulator of root branching, IAA27 , and promotes lateral root development when the auxin-dependent proteolysis pathway fails. Our study identifies DNA-methylation-mediated transcriptional repression as a backup system for post-translational protein degradation which ensures robust development and performance of plants in a challenging environment. Developmental plasticity of plant root systems has been intensively studied, but the mechanisms underpinning robustness remain unclear. Here, the authors show that DNA-methylation-mediated transcriptional repression serves as a backup system to control lateral root development when auxin signalling is perturbed. Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions. Developmental plasticity of plant root systems has been the subject of intensive research, but the mechanisms underpinning robustness remain unclear. Here, we show that potassium deficiency inhibits lateral root organogenesis by delaying early stages in the formation of lateral root primordia. However, the severity of the symptoms arising from this perturbation varies within a natural population of Arabidopsis and is associated with the genetic variation in CLSY1, a key component of the RNA-directed DNA-methylation machinery. Mechanistically, CLSY1 mediates the transcriptional repression of a negative regulator of root branching, IAA27, and promotes lateral root development when the auxin-dependent proteolysis pathway fails. Our study identifies DNA-methylation-mediated transcriptional repression as a backup system for post-translational protein degradation which ensures robust development and performance of plants in a challenging environment.Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions. Developmental plasticity of plant root systems has been the subject of intensive research, but the mechanisms underpinning robustness remain unclear. Here, we show that potassium deficiency inhibits lateral root organogenesis by delaying early stages in the formation of lateral root primordia. However, the severity of the symptoms arising from this perturbation varies within a natural population of Arabidopsis and is associated with the genetic variation in CLSY1, a key component of the RNA-directed DNA-methylation machinery. Mechanistically, CLSY1 mediates the transcriptional repression of a negative regulator of root branching, IAA27, and promotes lateral root development when the auxin-dependent proteolysis pathway fails. Our study identifies DNA-methylation-mediated transcriptional repression as a backup system for post-translational protein degradation which ensures robust development and performance of plants in a challenging environment. Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions. Developmental plasticity of plant root systems has been the subject of intensive research, but the mechanisms underpinning robustness remain unclear. Here, we show that potassium deficiency inhibits lateral root organogenesis by delaying early stages in the formation of lateral root primordia. However, the severity of the symptoms arising from this perturbation varies within a natural population of Arabidopsis and is associated with the genetic variation in CLSY1, a key component of the RNA-directed DNA-methylation machinery. Mechanistically, CLSY1 mediates the transcriptional repression of a negative regulator of root branching, IAA27, and promotes lateral root development when the auxin-dependent proteolysis pathway fails. Our study identifies DNA-methylation-mediated transcriptional repression as a backup system for post-translational protein degradation which ensures robust development and performance of plants in a challenging environment.Developmental plasticity of plant root systems has been intensively studied, but the mechanisms underpinning robustness remain unclear. Here, the authors show that DNA-methylation-mediated transcriptional repression serves as a backup system to control lateral root development when auxin signalling is perturbed. Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions. Developmental plasticity of plant root systems has been the subject of intensive research, but the mechanisms underpinning robustness remain unclear. Here, we show that potassium deficiency inhibits lateral root organogenesis by delaying early stages in the formation of lateral root primordia. However, the severity of the symptoms arising from this perturbation varies within a natural population of Arabidopsis and is associated with the genetic variation in CLSY1 , a key component of the RNA-directed DNA-methylation machinery. Mechanistically, CLSY1 mediates the transcriptional repression of a negative regulator of root branching, IAA27 , and promotes lateral root development when the auxin-dependent proteolysis pathway fails. Our study identifies DNA-methylation-mediated transcriptional repression as a backup system for post-translational protein degradation which ensures robust development and performance of plants in a challenging environment. |
ArticleNumber | 218 |
Author | Shahzad, Zaigham Amtmann, Anna Eaglesfield, Ross Carr, Craig |
Author_xml | – sequence: 1 givenname: Zaigham surname: Shahzad fullname: Shahzad, Zaigham email: Zaigham.Shahzad@glasgow.ac.uk organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow – sequence: 2 givenname: Ross surname: Eaglesfield fullname: Eaglesfield, Ross organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow – sequence: 3 givenname: Craig surname: Carr fullname: Carr, Craig organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow – sequence: 4 givenname: Anna orcidid: 0000-0001-8533-121X surname: Amtmann fullname: Amtmann, Anna email: Anna.Amtmann@glasgow.ac.uk organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31924796$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOyxIVLwF9x1hekavmqVIGE4Gw5znjXK68d7GRh_z3eTSltD_XFM_Z7z_PG87w6CTFAVb0k-C3BbPEuc8JFW2Mia8IkbWv2pDqjmJOatJSd3IlPq4ucN7gsJsmC82fVKSOS8laKs2q3TPthdAbtdHJ6dDEgF9D3r5d17xKYEXr0oSRbGNd7P9-bGMYUfUYlh6Q9SjGOqIcd-DhsIYzo9xoC0tOfopTdKmjvXVghl9EAaZxSB_2L6qnVPsPFzX5e_fz08cfyS3397fPV8vK6Ng3HY80t59BJznphwAClveg07rmhWBAhtW2ppcAb6AzoEhd3VEomu8YaS03HzqurWbePeqOG5LY67VXUTh0PYlopnYp9D6plPRaNbcHihheuFFZaUhpoGSy4ZkXr_aw1TN0WelOcFvf3RO_fBLdWq7hTQhZBzIvAmxuBFH9NkEe1ddmA9zpAnLKijAnaYMJlgb5-AN3EKZVOHlAHj40koqBe3a3otpR_31sAdAaYFHNOYG8hBKvDGKl5jFQZI3UcI3XwuXhAMm48fn1x5fzjVDZTc3knrCD9L_sR1l9gSd46 |
CitedBy_id | crossref_primary_10_1007_s11104_022_05415_3 crossref_primary_10_1093_jxb_eraa483 crossref_primary_10_1101_cshperspect_a039941 crossref_primary_10_1007_s00425_021_03644_x crossref_primary_10_1016_j_pbi_2023_102435 crossref_primary_10_1093_plphys_kiaa093 crossref_primary_10_1093_jxb_erae520 crossref_primary_10_1093_plphys_kiae333 crossref_primary_10_1186_s12870_023_04356_y crossref_primary_10_1093_plphys_kiae089 crossref_primary_10_1093_jxb_erae141 crossref_primary_10_1038_s41467_024_54268_0 crossref_primary_10_3390_plants12101941 crossref_primary_10_1016_j_pbi_2020_08_007 crossref_primary_10_1016_j_tplants_2024_09_018 crossref_primary_10_1016_j_molp_2021_12_004 crossref_primary_10_1038_s41467_024_52239_z crossref_primary_10_32604_phyton_2022_023572 crossref_primary_10_3389_fpls_2024_1398818 crossref_primary_10_3390_plants13192684 crossref_primary_10_1186_s13059_020_02099_9 crossref_primary_10_1111_jipb_13225 crossref_primary_10_3390_cimb44090279 |
Cites_doi | 10.1371/journal.pgen.1000911 10.1093/molbev/msw054 10.1242/dev.041277 10.1038/nrg3683 10.1038/msb.2011.39 10.1016/j.tplants.2013.04.006 10.1126/science.280.5365.918 10.1073/pnas.0401707101 10.1104/pp.112.211144 10.1016/j.cub.2005.09.052 10.1371/journal.pbio.0060307 10.1038/nrg3949 10.1105/tpc.113.122101 10.1038/s41588-018-0115-y 10.1073/pnas.1300585110 10.1016/j.cell.2016.06.044 10.1104/pp.18.00217 10.1105/tpc.16.00972 10.1016/j.cell.2016.05.063 10.1105/tpc.112.108068 10.1038/s41467-018-06430-8 10.1016/B978-0-12-384905-2.00014-5 10.1016/j.pbi.2017.06.008 10.1016/j.copbio.2014.11.015 10.1104/pp.111.189845 10.1093/bioinformatics/btm308 10.1016/j.cell.2016.08.068 10.3389/fpls.2014.00744 10.1038/ncb2573 10.1016/j.cell.2006.06.011 10.1007/978-1-62703-414-2_3 10.1101/sqb.2012.77.014720 10.1038/cr.2015.145 10.1038/ng.1042 10.1038/emboj.2012.303 10.1086/330822 10.1126/science.aau3956 10.1300/J064v26n01_10 10.1111/tpj.12443 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-13927-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_73d065f7ef0542cb96f9f1172f3e84a3 PMC6954204 31924796 10_1038_s41467_019_13927_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/R019894/1; BB/N018508/1; BB/R019894/1; BB/N018508/1; BB/R019894/1 funderid: https://doi.org/10.13039/501100000268 – fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/R019894/1 – fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/N018508/1 – fundername: ; grantid: BB/R019894/1; BB/N018508/1; BB/R019894/1; BB/N018508/1; BB/R019894/1 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-4f44eb943d6cece22d6ba0d4c206169af72f2e45ebcea72f84429939b5fcf2cb3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:09:26 EDT 2025 Thu Aug 21 18:33:00 EDT 2025 Thu Jul 10 23:14:18 EDT 2025 Wed Aug 13 11:26:06 EDT 2025 Wed Feb 19 02:29:16 EST 2025 Tue Jul 01 04:08:48 EDT 2025 Thu Apr 24 22:50:46 EDT 2025 Fri Feb 21 02:40:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-4f44eb943d6cece22d6ba0d4c206169af72f2e45ebcea72f84429939b5fcf2cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8533-121X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-13927-3 |
PMID | 31924796 |
PQID | 2342995916 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_73d065f7ef0542cb96f9f1172f3e84a3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6954204 proquest_miscellaneous_2336250149 proquest_journals_2342995916 pubmed_primary_31924796 crossref_primary_10_1038_s41467_019_13927_3 crossref_citationtrail_10_1038_s41467_019_13927_3 springer_journals_10_1038_s41467_019_13927_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-10 |
PublicationDateYYYYMMDD | 2020-01-10 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | KellermeierFChardonFAmtmannANatural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvationPlant Physiol.2013161142114321:CAS:528:DC%2BC3sXmvFKrurY%3D10.1104/pp.112.211144 HirschRELewisBDSpaldingEPSussmanMRA role for the AKT1 potassium channel in plant nutritionScience19982809189211998Sci...280..918H1:CAS:528:DyaK1cXjtFKlurk%3D10.1126/science.280.5365.918 LavenusJLateral root development in Arabidopsis: fifty shades of auxinTrends Plant Sci.2013181360138510.1016/j.tplants.2013.04.006 TangNNatural variation at XND1 impacts root hydraulics and trade-off for stress responses in ArabidopsisNat. Commun.201892018NatCo...9.3884T10.1038/s41467-018-06430-8 PiyaSShresthaSKBinderBNeal StewartCHeweziTProtein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in ArabidopsisFront. Plant Sci.201451910.3389/fpls.2014.00744 YangDLDicer-independent RNA-directed DNA methylation in ArabidopsisCell Res20162666821:CAS:528:DC%2BC2MXitVSiurnJ10.1038/cr.2015.145 ShinRSchachtmanDPHydrogen peroxide mediates plant root cell response to nutrient deprivationProc. Natl Acad. Sci. USA2004101882788322004PNAS..101.8827S1:CAS:528:DC%2BD2cXltFKkt7w%3D10.1073/pnas.0401707101 BradburyPJTASSEL: software for association mapping of complex traits in diverse samplesBioinformatics200723263326351:CAS:528:DC%2BD2sXht1ejtr7F10.1093/bioinformatics/btm308 PéretBAuxin regulates aquaporin function to facilitate lateral root emergenceNat. Cell Biol.20121499199810.1038/ncb2573 ShahzadZEZ-Root-VIS: a software pipeline for the rapid analysis and visual reconstruction of root system architecturePlant Physiol.2018177136813811:CAS:528:DC%2BC1cXitl2msrbF10.1104/pp.18.00217 SerenUGWAPP: a web application for genome-wide association mapping in ArabidopsisPlant Cell201224479348051:CAS:528:DC%2BC3sXisVKktro%3D10.1105/tpc.112.108068 KumarSStecherGTamuraKMEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasetsMol. Biol. Evol.201633187018741:CAS:528:DC%2BC28XhsF2ltrzN10.1093/molbev/msw054 XuJA protein Kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in ArabidopsisCell2006125134713601:CAS:528:DC%2BD28XmvVGrs7s%3D10.1016/j.cell.2006.06.011 ShahzadZA potassium-dependent oxygen sensing pathway regulates plant root hydraulicsCell201616787981:CAS:528:DC%2BC28XhsFamt7nI10.1016/j.cell.2016.08.068e14 ZhouMPalancaAMSLawJALocus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY familyNat. Genet2018508658731:CAS:528:DC%2BC1cXpt1Gksrk%3D10.1038/s41588-018-0115-y de Jong, M. & Leyser, O. Developmental plasticity in plants. Cold Spring Harb. Symp. Quant. Biol. Press77, 63–73 (2012). MarhavýPAuxin reflux between the endodermis and pericycle promotes lateral root initiationEMBO J.20133214915810.1038/emboj.2012.303 ShahzadZAmtmannAFood for thought: how nutrients regulate root system architectureCurr. Opin. Plant Biol.20173980871:CAS:528:DC%2BC2sXhtVGnsLfM10.1016/j.pbi.2017.06.008 KellermeierFAmtmannAPhenotyping jasmonate regulation of root growthMethods Mol. Biol.2013101125321:CAS:528:DC%2BC3sXhs1Cms7nO10.1007/978-1-62703-414-2_3 VernouxTThe auxin signalling network translates dynamic input into robust patterning at the shoot apexMol. Syst. Biol.2011750810.1038/msb.2011.39 LiHNRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in ArabidopsisPlant Cell201729201620261:CAS:528:DC%2BC1cXivVWhtL8%3D10.1105/tpc.16.00972 WeigelDNatural variation in Arabidopsis: from molecular genetics to ecological genomicsPlant Physiol.20121582221:CAS:528:DC%2BC38XltFSns7Y%3D10.1104/pp.111.189845 ŽádníkováPRole of PIN-mediated auxin efflux in apical hook development of Arabidopsis thalianaDevelopment201013760761710.1242/dev.041277 TanZXLalRWiebeKDGlobal soil nutrient depletion and yield reductionJ. Sustain. Agric20052612314610.1300/J064v26n01_10 HortonMWGenome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panelNat. Genet2012442122161:CAS:528:DC%2BC38XlsF2jsw%3D%3D10.1038/ng.1042 NeumannGünterRömheldVolkerRhizosphere Chemistry in Relation to Plant NutritionMarschner's Mineral Nutrition of Higher Plants201234736810.1016/B978-0-12-384905-2.00014-5 Orosa-PuenteBRoot branching toward water involves posttranslational modification of transcription factor ARF7Science2018362140714102018Sci...362.1407O1:CAS:528:DC%2BC1cXisFeksLrN10.1126/science.aau3956 MatzkeMAMosherRARNA-directed DNA methylation: an epigenetic pathway of increasing complexityNat. Rev. Genet2014153944081:CAS:528:DC%2BC2cXns1Wrurg%3D10.1038/nrg3683 ZhangHDTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IVProc. Natl Acad. Sci. USA2013110829082952013PNAS..110.8290Z1:CAS:528:DC%2BC3sXhtV2ntLfK10.1073/pnas.1300585110 LaskowskiMRoot system architecture from coupling cell shape to auxin transportPLoS Biol.20086272127351:CAS:528:DC%2BD1MXlsFGitg%3D%3D10.1371/journal.pbio.0060307 Alonso-BlancoC1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thalianaCell201616648149110.1016/j.cell.2016.05.063 KawakatsuTEpigenomic diversity in a global collection of Arabidopsis thaliana accessionsCell20161664925061:CAS:528:DC%2BC28XhtFynu7bO10.1016/j.cell.2016.06.044 FélixMABarkoulasMPervasive robustness in biological systemsNat. Rev. Genet20151648349610.1038/nrg3949 CrockerWilliamPotassium in PlantsBotanical Gazette191253436236210.1086/330822 ShahzadZThe five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleriPLoS Genet.20106e100091110.1371/journal.pgen.1000911 CoegoAThe TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpressionPlant J.2014779449531:CAS:528:DC%2BC2cXjvFOrs7Y%3D10.1111/tpj.12443 HeislerMGPatterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristemCurr. Biol.200515189919111:CAS:528:DC%2BD2MXhtFyks7nI10.1016/j.cub.2005.09.052 RogersEDBenfeyPNRegulation of plant root system architecture: itmplications for crop advancementCurr. Opin. Biotechnol.20153293981:CAS:528:DC%2BC2cXhvF2mt7fF10.1016/j.copbio.2014.11.015 KellermeierFAnalysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signalsPlant Cell201426148014961:CAS:528:DC%2BC2cXps12qu7w%3D10.1105/tpc.113.122101 N Tang (13927_CR13) 2018; 9 Günter Neumann (13927_CR24) 2012 J Xu (13927_CR18) 2006; 125 13927_CR1 William Crocker (13927_CR22) 1912; 53 S Kumar (13927_CR37) 2016; 33 Z Shahzad (13927_CR36) 2016; 167 F Kellermeier (13927_CR8) 2013; 161 PJ Bradbury (13927_CR33) 2007; 23 S Piya (13927_CR19) 2014; 5 MA Félix (13927_CR2) 2015; 16 B Péret (13927_CR27) 2012; 14 Z Shahzad (13927_CR35) 2010; 6 D Weigel (13927_CR34) 2012; 158 M Laskowski (13927_CR31) 2008; 6 ZX Tan (13927_CR23) 2005; 26 MG Heisler (13927_CR38) 2005; 15 T Kawakatsu (13927_CR11) 2016; 166 F Kellermeier (13927_CR4) 2014; 26 F Kellermeier (13927_CR29) 2013; 1011 RE Hirsch (13927_CR17) 1998; 280 U Seren (13927_CR32) 2012; 24 M Zhou (13927_CR10) 2018; 50 DL Yang (13927_CR14) 2016; 26 Z Shahzad (13927_CR30) 2018; 177 ED Rogers (13927_CR3) 2015; 32 MW Horton (13927_CR26) 2012; 44 P Marhavý (13927_CR21) 2013; 32 T Vernoux (13927_CR20) 2011; 7 R Shin (13927_CR25) 2004; 101 P Žádníková (13927_CR39) 2010; 137 MA Matzke (13927_CR9) 2014; 15 B Orosa-Puente (13927_CR7) 2018; 362 A Coego (13927_CR28) 2014; 77 Z Shahzad (13927_CR5) 2017; 39 J Lavenus (13927_CR6) 2013; 18 H Zhang (13927_CR15) 2013; 110 H Li (13927_CR16) 2017; 29 C Alonso-Blanco (13927_CR12) 2016; 166 |
References_xml | – reference: de Jong, M. & Leyser, O. Developmental plasticity in plants. Cold Spring Harb. Symp. Quant. Biol. Press77, 63–73 (2012). – reference: KumarSStecherGTamuraKMEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasetsMol. Biol. Evol.201633187018741:CAS:528:DC%2BC28XhsF2ltrzN10.1093/molbev/msw054 – reference: PéretBAuxin regulates aquaporin function to facilitate lateral root emergenceNat. Cell Biol.20121499199810.1038/ncb2573 – reference: HeislerMGPatterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristemCurr. Biol.200515189919111:CAS:528:DC%2BD2MXhtFyks7nI10.1016/j.cub.2005.09.052 – reference: Alonso-BlancoC1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thalianaCell201616648149110.1016/j.cell.2016.05.063 – reference: WeigelDNatural variation in Arabidopsis: from molecular genetics to ecological genomicsPlant Physiol.20121582221:CAS:528:DC%2BC38XltFSns7Y%3D10.1104/pp.111.189845 – reference: ShahzadZA potassium-dependent oxygen sensing pathway regulates plant root hydraulicsCell201616787981:CAS:528:DC%2BC28XhsFamt7nI10.1016/j.cell.2016.08.068e14 – reference: ShahzadZAmtmannAFood for thought: how nutrients regulate root system architectureCurr. Opin. Plant Biol.20173980871:CAS:528:DC%2BC2sXhtVGnsLfM10.1016/j.pbi.2017.06.008 – reference: ZhangHDTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IVProc. Natl Acad. Sci. USA2013110829082952013PNAS..110.8290Z1:CAS:528:DC%2BC3sXhtV2ntLfK10.1073/pnas.1300585110 – reference: KawakatsuTEpigenomic diversity in a global collection of Arabidopsis thaliana accessionsCell20161664925061:CAS:528:DC%2BC28XhtFynu7bO10.1016/j.cell.2016.06.044 – reference: LaskowskiMRoot system architecture from coupling cell shape to auxin transportPLoS Biol.20086272127351:CAS:528:DC%2BD1MXlsFGitg%3D%3D10.1371/journal.pbio.0060307 – reference: ŽádníkováPRole of PIN-mediated auxin efflux in apical hook development of Arabidopsis thalianaDevelopment201013760761710.1242/dev.041277 – reference: XuJA protein Kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in ArabidopsisCell2006125134713601:CAS:528:DC%2BD28XmvVGrs7s%3D10.1016/j.cell.2006.06.011 – reference: KellermeierFAmtmannAPhenotyping jasmonate regulation of root growthMethods Mol. Biol.2013101125321:CAS:528:DC%2BC3sXhs1Cms7nO10.1007/978-1-62703-414-2_3 – reference: TanZXLalRWiebeKDGlobal soil nutrient depletion and yield reductionJ. Sustain. Agric20052612314610.1300/J064v26n01_10 – reference: KellermeierFChardonFAmtmannANatural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvationPlant Physiol.2013161142114321:CAS:528:DC%2BC3sXmvFKrurY%3D10.1104/pp.112.211144 – reference: CoegoAThe TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpressionPlant J.2014779449531:CAS:528:DC%2BC2cXjvFOrs7Y%3D10.1111/tpj.12443 – reference: SerenUGWAPP: a web application for genome-wide association mapping in ArabidopsisPlant Cell201224479348051:CAS:528:DC%2BC3sXisVKktro%3D10.1105/tpc.112.108068 – reference: ZhouMPalancaAMSLawJALocus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY familyNat. Genet2018508658731:CAS:528:DC%2BC1cXpt1Gksrk%3D10.1038/s41588-018-0115-y – reference: CrockerWilliamPotassium in PlantsBotanical Gazette191253436236210.1086/330822 – reference: TangNNatural variation at XND1 impacts root hydraulics and trade-off for stress responses in ArabidopsisNat. Commun.201892018NatCo...9.3884T10.1038/s41467-018-06430-8 – reference: NeumannGünterRömheldVolkerRhizosphere Chemistry in Relation to Plant NutritionMarschner's Mineral Nutrition of Higher Plants201234736810.1016/B978-0-12-384905-2.00014-5 – reference: Orosa-PuenteBRoot branching toward water involves posttranslational modification of transcription factor ARF7Science2018362140714102018Sci...362.1407O1:CAS:528:DC%2BC1cXisFeksLrN10.1126/science.aau3956 – reference: ShahzadZThe five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleriPLoS Genet.20106e100091110.1371/journal.pgen.1000911 – reference: FélixMABarkoulasMPervasive robustness in biological systemsNat. Rev. Genet20151648349610.1038/nrg3949 – reference: BradburyPJTASSEL: software for association mapping of complex traits in diverse samplesBioinformatics200723263326351:CAS:528:DC%2BD2sXht1ejtr7F10.1093/bioinformatics/btm308 – reference: VernouxTThe auxin signalling network translates dynamic input into robust patterning at the shoot apexMol. Syst. Biol.2011750810.1038/msb.2011.39 – reference: MarhavýPAuxin reflux between the endodermis and pericycle promotes lateral root initiationEMBO J.20133214915810.1038/emboj.2012.303 – reference: MatzkeMAMosherRARNA-directed DNA methylation: an epigenetic pathway of increasing complexityNat. Rev. Genet2014153944081:CAS:528:DC%2BC2cXns1Wrurg%3D10.1038/nrg3683 – reference: YangDLDicer-independent RNA-directed DNA methylation in ArabidopsisCell Res20162666821:CAS:528:DC%2BC2MXitVSiurnJ10.1038/cr.2015.145 – reference: KellermeierFAnalysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signalsPlant Cell201426148014961:CAS:528:DC%2BC2cXps12qu7w%3D10.1105/tpc.113.122101 – reference: HirschRELewisBDSpaldingEPSussmanMRA role for the AKT1 potassium channel in plant nutritionScience19982809189211998Sci...280..918H1:CAS:528:DyaK1cXjtFKlurk%3D10.1126/science.280.5365.918 – reference: ShinRSchachtmanDPHydrogen peroxide mediates plant root cell response to nutrient deprivationProc. Natl Acad. Sci. USA2004101882788322004PNAS..101.8827S1:CAS:528:DC%2BD2cXltFKkt7w%3D10.1073/pnas.0401707101 – reference: LavenusJLateral root development in Arabidopsis: fifty shades of auxinTrends Plant Sci.2013181360138510.1016/j.tplants.2013.04.006 – reference: PiyaSShresthaSKBinderBNeal StewartCHeweziTProtein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in ArabidopsisFront. Plant Sci.201451910.3389/fpls.2014.00744 – reference: ShahzadZEZ-Root-VIS: a software pipeline for the rapid analysis and visual reconstruction of root system architecturePlant Physiol.2018177136813811:CAS:528:DC%2BC1cXitl2msrbF10.1104/pp.18.00217 – reference: HortonMWGenome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panelNat. Genet2012442122161:CAS:528:DC%2BC38XlsF2jsw%3D%3D10.1038/ng.1042 – reference: RogersEDBenfeyPNRegulation of plant root system architecture: itmplications for crop advancementCurr. Opin. Biotechnol.20153293981:CAS:528:DC%2BC2cXhvF2mt7fF10.1016/j.copbio.2014.11.015 – reference: LiHNRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in ArabidopsisPlant Cell201729201620261:CAS:528:DC%2BC1cXivVWhtL8%3D10.1105/tpc.16.00972 – volume: 6 start-page: e1000911 year: 2010 ident: 13927_CR35 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000911 – volume: 33 start-page: 1870 year: 2016 ident: 13927_CR37 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw054 – volume: 137 start-page: 607 year: 2010 ident: 13927_CR39 publication-title: Development doi: 10.1242/dev.041277 – volume: 15 start-page: 394 year: 2014 ident: 13927_CR9 publication-title: Nat. Rev. Genet doi: 10.1038/nrg3683 – volume: 7 start-page: 508 year: 2011 ident: 13927_CR20 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.39 – volume: 18 start-page: 1360 year: 2013 ident: 13927_CR6 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.04.006 – volume: 280 start-page: 918 year: 1998 ident: 13927_CR17 publication-title: Science doi: 10.1126/science.280.5365.918 – volume: 101 start-page: 8827 year: 2004 ident: 13927_CR25 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0401707101 – volume: 161 start-page: 1421 year: 2013 ident: 13927_CR8 publication-title: Plant Physiol. doi: 10.1104/pp.112.211144 – volume: 15 start-page: 1899 year: 2005 ident: 13927_CR38 publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.09.052 – volume: 6 start-page: 2721 year: 2008 ident: 13927_CR31 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060307 – volume: 16 start-page: 483 year: 2015 ident: 13927_CR2 publication-title: Nat. Rev. Genet doi: 10.1038/nrg3949 – volume: 26 start-page: 1480 year: 2014 ident: 13927_CR4 publication-title: Plant Cell doi: 10.1105/tpc.113.122101 – volume: 50 start-page: 865 year: 2018 ident: 13927_CR10 publication-title: Nat. Genet doi: 10.1038/s41588-018-0115-y – volume: 110 start-page: 8290 year: 2013 ident: 13927_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1300585110 – volume: 166 start-page: 492 year: 2016 ident: 13927_CR11 publication-title: Cell doi: 10.1016/j.cell.2016.06.044 – volume: 177 start-page: 1368 year: 2018 ident: 13927_CR30 publication-title: Plant Physiol. doi: 10.1104/pp.18.00217 – volume: 29 start-page: 2016 year: 2017 ident: 13927_CR16 publication-title: Plant Cell doi: 10.1105/tpc.16.00972 – volume: 166 start-page: 481 year: 2016 ident: 13927_CR12 publication-title: Cell doi: 10.1016/j.cell.2016.05.063 – volume: 24 start-page: 4793 year: 2012 ident: 13927_CR32 publication-title: Plant Cell doi: 10.1105/tpc.112.108068 – volume: 9 year: 2018 ident: 13927_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06430-8 – start-page: 347 volume-title: Marschner's Mineral Nutrition of Higher Plants year: 2012 ident: 13927_CR24 doi: 10.1016/B978-0-12-384905-2.00014-5 – volume: 39 start-page: 80 year: 2017 ident: 13927_CR5 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.06.008 – volume: 32 start-page: 93 year: 2015 ident: 13927_CR3 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.11.015 – volume: 158 start-page: 2 year: 2012 ident: 13927_CR34 publication-title: Plant Physiol. doi: 10.1104/pp.111.189845 – volume: 23 start-page: 2633 year: 2007 ident: 13927_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm308 – volume: 167 start-page: 87 year: 2016 ident: 13927_CR36 publication-title: Cell doi: 10.1016/j.cell.2016.08.068 – volume: 5 start-page: 1 year: 2014 ident: 13927_CR19 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00744 – volume: 14 start-page: 991 year: 2012 ident: 13927_CR27 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2573 – volume: 125 start-page: 1347 year: 2006 ident: 13927_CR18 publication-title: Cell doi: 10.1016/j.cell.2006.06.011 – volume: 1011 start-page: 25 year: 2013 ident: 13927_CR29 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-414-2_3 – ident: 13927_CR1 doi: 10.1101/sqb.2012.77.014720 – volume: 26 start-page: 66 year: 2016 ident: 13927_CR14 publication-title: Cell Res doi: 10.1038/cr.2015.145 – volume: 44 start-page: 212 year: 2012 ident: 13927_CR26 publication-title: Nat. Genet doi: 10.1038/ng.1042 – volume: 32 start-page: 149 year: 2013 ident: 13927_CR21 publication-title: EMBO J. doi: 10.1038/emboj.2012.303 – volume: 53 start-page: 362 issue: 4 year: 1912 ident: 13927_CR22 publication-title: Botanical Gazette doi: 10.1086/330822 – volume: 362 start-page: 1407 year: 2018 ident: 13927_CR7 publication-title: Science doi: 10.1126/science.aau3956 – volume: 26 start-page: 123 year: 2005 ident: 13927_CR23 publication-title: J. Sustain. Agric doi: 10.1300/J064v26n01_10 – volume: 77 start-page: 944 year: 2014 ident: 13927_CR28 publication-title: Plant J. doi: 10.1111/tpj.12443 |
SSID | ssj0000391844 |
Score | 2.4357395 |
Snippet | Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions.... Developmental plasticity of plant root systems has been intensively studied, but the mechanisms underpinning robustness remain unclear. Here, the authors show... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 218 |
SubjectTerms | 38/23 38/77 45/43 631/208/176/1988 631/449/1870 631/449/2653/1359 96/35 Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Back up systems Biodegradation Deoxyribonucleic acid Developmental plasticity DNA DNA Methylation Gene Expression Regulation, Plant - drug effects Gene silencing Genetic diversity Humanities and Social Sciences Indoleacetic Acids - metabolism Indoleacetic Acids - pharmacology Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism Methylation multidisciplinary Organogenesis Organogenesis, Plant - drug effects Perturbation Plant Development - drug effects Plant Growth Regulators - genetics Plant Growth Regulators - metabolism Plant roots Plant Roots - cytology Plant Roots - growth & development Plastic properties Plasticity Post-translation Primordia Proteolysis Ribonucleic acid RNA RNA - metabolism Robustness Root development Roots Science Science (multidisciplinary) Signal transduction Signal Transduction - drug effects Signaling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUpcELR8BAoyEjewmtpOdn0shapCogdEpd4sxx6rK6G02o_C_nue7ey2CxQuXFabjbOazIz93sSTGcbeaKBS8JGE1CEIjU_h2qgE1WNfg542MWcTfj5tT870p_Pm_Farr5QTVsoDF8Xtj1QASsYRRZAL6TvTRhMPALtR0Vi7XOcTmHcrmMprsDIIXfTwlkytxvszndcEMBoB0iMxszaQKBfs_xPL_D1Z8pcd0wxExw_Zg4FB8sMi-SN2j_odtl16Si532fXRdIllwPNrRMFZ7XzS8y-nh6KgFwX-AQepc_Sy5MHxIV19xnGcHlFxsOk5DzfpRPz7BfXcLX7gn1LCh8uFvPlkxq9oCszqKDxmZ8cfvx6diKG5gvAgaXOho9bUGViq9eRJytB2rg7aSyB8a1yEhiXphjpPDt-hTSCXMl0TfYQd1BO21V_29Izx1sCszjhZk9FNEzpyCIqAe00KVyRV7GClaOuHyuOpAcY3m3fA1dgW41gYx2bjWFWxt-trrkrdjb-Ofp_stx6ZambnH-BJdvAk-y9Pqtjeyvp2mMgzK1W67QYkumKv16cxBdO-iuvpcpHGgAWk_VlTsafFWdaSqBTgjgyuHm240Yaom2f6yUUu890aiFnrir1bOdyNWHer4vn_UMULdl-m5wp1SnfcY1vz6YJegnzNu1d5nv0EJVsrUQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKu_QgozEDaxmbefhU1UKS4VED4hKvVmOPaYrVdlls9t2_33Hjjer5dFLlIdjOR7PzOeZyQwh7yVqJWc9MC6dYxKPzJReMMhrmyM8LXyMJvx-Wp6cyW_nxXkyuHUprHItE6OgdlMbbOQHXATJWSCaOZz9ZqFqVPCuphIa98mDEWqaENJVj78ONpaQ_byWMv0rk4v6oJNRMiCuYQh9OPLXlj6Kafv_hTX_Dpn8w28a1dF4lzxOOJIe9YR_Qu5B-5Q87CtLrp6Rq-P5CoWBpVe4F46TTyct_XF6xHodBo5-xotQP3rVR8PRFLTeUbwOhiqKmHpB3SaoiF5fQEvN8gZ7CmEfJqbzppOOzmCOmqsB95ycjb_8PD5hqcQCswjVFkx6KaFRSK_SggXOXdmY3EnLUc-XyviKew6ygMaCwXOcTaSCUE3hree2ES_ITjtt4RWhpULiGmV4DkoWhWvA4NYItV8RNi0cMjJaT7S2Kf94KINxqaMfXNS6J45G4uhIHC0y8mF4Z9Zn37iz9adAv6FlyJwdb0znv3RiRF0Jh6jLV-ARrOIXqNIrP0IY5wXU0mAn-2vq68TOnd4svoy8Gx4jIwbvimlhugxtEAsEL63KyMt-sQwjEWGbWyl8u9paRltD3X7STi5isu9S4TBzmZGP6wW3Gdb_p-L13V-xRx7xYDfIQzjjPtlZzJfwBsHVonkbOegWQXIjEQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG9SCjISN7BIbefh41KoqpXoAajUm-XYY7oSylb7KN1_z9h5VAsFictqk9jRZB6Zz_bkM8AbRVnJu4BcKO-5ol9uyyA55rXLCZ4WIVUTfj4tT87U9Lw43wExfAuTivYTpWV6TQ_VYe-XKoU0ARJOmEVQYNyBvUjVTr69N5lMv07HmZXIeV4r1X8hk8v6ls5bWSiR9d-GMP8slPxttTQloeMHcL9Hj2zSyfsQdrB9BHe7_SQ3j-HqaLGhV4BjVzQCTipns5Z9OZ3wLnOhZx_pIO4avelq4Fhfqr5kdBynpxgh6RXzN6VE7OcFtsyur-lOsdjDJhJvNluyS1yQBhv0T-Ds-NO3oxPeb6zAHQG0FVdBKWw0Wal06FAIXzY298oJyu6ltqESQaAqsHFo6T9pk7KW1E0RXBCukU9ht523-BxYqcmkVluRo1ZF4Ru0NCCinFfEoYrADA4HRRvXs47HzS9-mLT6LWvTGceQcUwyjpEZvB37XHacG_9s_SHab2wZ-bLTifniu-n9x1TSE9YKFQaCqPQEugw6HBJ4CxJrZekmB4P1TR_ESyNkfOyCAHQGr8fLFH5xTcW2OF_HNoQA4tqszuBZ5yyjJDIObitNvastN9oSdftKO7tIFN-lJjFzlcG7weFuxPq7Kvb_r_kLuCfi7EEeixoPYHe1WONLglir5lUfU78AQMciMg priority: 102 providerName: Springer Nature |
Title | Cryptic variation in RNA-directed DNA-methylation controls lateral root development when auxin signalling is perturbed |
URI | https://link.springer.com/article/10.1038/s41467-019-13927-3 https://www.ncbi.nlm.nih.gov/pubmed/31924796 https://www.proquest.com/docview/2342995916 https://www.proquest.com/docview/2336250149 https://pubmed.ncbi.nlm.nih.gov/PMC6954204 https://doaj.org/article/73d065f7ef0542cb96f9f1172f3e84a3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN8ERmUk3sCQ2k5SPyDUlZWp0io0qNS3yLHPrNKUjrQd63_P2Uk6FQriJZ-OdfHd5X5nX-4IeS3RKlnjgHFpLZO4ZTp1gkHcMzHC08SFaMKzcXo6kaNpMt0jbbmjZgAXO107X09qUl2-u_mx_ogK_6H-Zbz3fiGDuiNYYYhnOCrNPjlEy5T5igZnDdwPX2ah0KHxC808ll2GDUTzH83ubrZsVUjpvwuH_hlO-duaajBVw_vkXoMxab8WigdkD8qH5E5ddXL9iFwPqjV-KAy9Rj85MIbOSno-7rPavoGln_DE15Ze15FytAloX1A895NYFPH2ktrbgCP68wJKqlc32JMPCdEh1TedLegVVGjVCrCPyWR48m1wypryC8wgjFsy6aSEQiEvUwMGOLdpoWMrDUcMkCrtMu44yAQKAxqPcWTRtglVJM44bgrxhByU8xKeEZoqZLxWmsegZJLYAjS6TWgZE-_QcIhItx3o3DS5yX2JjMs8rJGLXl4zJ0fm5IE5uYjIm80zV3Vmjn-2Pvb827T0WbXDhXn1PW-UNM-ERUTmMnAIZPENVOqU66KYOAE9qbGTo5b7eSupORf-tROE2RF5tbmNSupXXnQJ85VvgzjBr-CqiDythWVDifAucKbw6WxLjLZI3b5Tzi5CIvBUIZmxjMjbVuBuyfr7UDz_DzJfkLvcTyzEPt7xiBwsqxW8RPS1LDpkP5tmuO0NP3fIYb8_-jrC_fHJ-Ms5Xh2kg06Y1-gE1fsFU9cwzQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEaIXxJtAASPBCVbd2t5NfECotISUtjmgVurNeO0xjVRtQh4t-VP8Rma8u4nCo7deomzW63g9r8-e8QxjrxVaJe8CJEJ5nyj8TGweZAJpx6UIT7MQowmP-nnvRH05zU7X2K_mLAyFVTY6MSpqP3S0R74lJGnODNHMh9GPhKpGkXe1KaFRscUBzC9xyTZ5v7-H9H0jRPfT8W4vqasKJA7RyTRRQSkoNA4xd-BACJ8XNvXKCTRtubahLYIAlUHhwOL3jqI_lrrIggvCFRL7vcFuKomWnE6mdz8v9nQo2zo2r8_mpLKzNVFREyGOShBqCZTnFfsXywT8C9v-HaL5h582mr_uXXanxq18p2K0e2wNyvvsVlXJcv6AXeyO56h8HL_AtXckNh-U_Gt_J6lsJni-hxdUr3peRd_xOkh-wvGaNsY4Yvgp98sgJn55BiW3s5_YE4WZ2Jg-nA8mfARjtJQF-Ifs5Fom_xFbL4clPGE818hMVluRglZZ5guwuBRDa5vRIklAi203E21cne-cym6cm-h3lx1TEccgcUwkjpEt9nbxzKjK9nFl649Ev0VLytQdfxiOv5ta8E1bekR5oQ0BwTG-gc6DDtsIG4OEjrLYyWZDfVOrj4lZMnuLvVrcRsEnb44tYTijNog9yCusW-xxxSyLkUhaVrc1Pt1eYaOVoa7eKQdnMbl4rnGYqWqxdw3DLYf1_6l4evVbvGS3e8dHh-Zwv3_wjG0I2rNIKZRyk61PxzN4jsBuWryI0sTZt-sW398OF2Gf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8KA4wETxA1c5ykfkBoW1dtDKppYtLejGOfWSWUln5s9F_jr-POSVqVj73tpWoS27r4zne_sy93jL2WaJWc9RAJ6Vwk8TcymU8iiLs2Rnia-hBN-HmQHZzKj2fp2Qb71XwLQ2GVjU4MitqNLO2Rd0RCmjNFNNPxdVjEca__YfwjogpSdNLalNOoROQIFpfovk3fH_aQ12-E6O9_2TuI6goDkUWkMouklxIKheRmFiwI4bLCxE5agWYuU8bnwguQKRQWDP7vSiIiUUXqrRe2SHDcG2wzJ6-oxTZ39wfHJ8sdHsq9jh3qL3XipNuZyqCXEFVFCLwEru41axiKBvwL6f4dsPnHqW0whv277E6NYvlOJXb32AaU99nNqq7l4gG72JssUBVZfoGeeGA9H5b8ZLATVRYUHO_hBVWvXlSxeLwOmZ9yvKZtMo6IfsbdKqSJX55Dyc38J45EQScmJBPnwykfwwTtZgHuITu9lul_xFrlqIQnjGcKRcsoI2JQMk1dAQYdM7S9KblMAtpsu5lobevs51SE47sOp_BJV1fM0cgcHZijkzZ7u-wzrnJ_XNl6l_i3bEl5u8ON0eSbrtWAzhOHmM_n4BEq4xuozCu_jSDSJ9CVBgfZariva2Uy1SvRb7NXy8eoBuhsx5QwmlMbRCJ0Rqza7HElLEtKEnKyc4W98zUxWiN1_Uk5PA-pxjOFZMayzd41Arci6_9T8fTqt3jJbuHS1Z8OB0fP2G1BGxgxxVVusdZsMofniPJmxYt6OXH29bpX8G9biWcx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryptic+variation+in+RNA-directed+DNA-methylation+controls+lateral+root+development+when+auxin+signalling+is+perturbed&rft.jtitle=Nature+communications&rft.au=Shahzad%2C+Zaigham&rft.au=Eaglesfield%2C+Ross&rft.au=Carr%2C+Craig&rft.au=Amtmann%2C+Anna&rft.date=2020-01-10&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=218&rft_id=info:doi/10.1038%2Fs41467-019-13927-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |