Optical tweezers in single-molecule biophysics

Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the me...

Full description

Saved in:
Bibliographic Details
Published inNature Reviews Methods Primers Vol. 1; no. 1; p. 25
Main Authors Bustamante, Carlos J, Chemla, Yann R, Liu, Shixin, Wang, Michelle D
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 25.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein-nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.
AbstractList Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein-nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.
Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein–nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.This Primer on optical tweezers describes the instrumentation and experimental designs used in most single-molecule optical tweezers assays and discusses optical tweezers measurements in systems of biophysical interest such as DNA elasticity, protein and RNA folding, and molecular motors.
Author Bustamante, Carlos J
Chemla, Yann R
Liu, Shixin
Wang, Michelle D
Author_xml – sequence: 1
  givenname: Carlos J
  orcidid: 0000-0002-2970-0073
  surname: Bustamante
  fullname: Bustamante, Carlos J
  organization: Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
– sequence: 2
  givenname: Yann R
  orcidid: 0000-0001-9167-0234
  surname: Chemla
  fullname: Chemla, Yann R
  organization: Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 3
  givenname: Shixin
  orcidid: 0000-0003-4238-7066
  surname: Liu
  fullname: Liu, Shixin
  organization: Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
– sequence: 4
  givenname: Michelle D
  surname: Wang
  fullname: Wang, Michelle D
  organization: Department of Physics, Laboratory of Atomic and Solid State Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34849486$$D View this record in MEDLINE/PubMed
BookMark eNo1j01Lw0AYhBdRbK39Ax4k4Hnr7r7vfh2l-AWFXvQcks0bTUmTmE2Q-utNsV5mDvMww1yx86ZtiLEbKVZSgLuPCNoZLpTkQhzVnLG5MkZxh-hnbBnj7hhoCcLgJZsBOvTozJyttt1QhaxOhm-iH-pjUjVJrJqPmvi-rSmMNSV51Xafh1iFeM0uyqyOtDz5gr0_Pb6tX_hm-_y6ftjwoFEMHPNpB5Bk5jXkGpTOSmFNEBZ0gVgoUdjgtPLGeOcDQam9k9o4Yckqb2HB7v56u779GikO6a4d-2aaTEGp6ewE-Ym6PVFjvqci7fpqn_WH9P8e_AIs4U_o
CitedBy_id crossref_primary_10_1016_j_xinn_2024_100742
crossref_primary_10_1016_j_jmmm_2023_170481
crossref_primary_10_1360_TB_2022_1112
crossref_primary_10_3390_ijms24032668
crossref_primary_10_1021_acsnano_4c01534
crossref_primary_10_1038_s42003_024_05914_2
crossref_primary_10_1364_OE_537005
crossref_primary_10_1021_acs_analchem_3c04657
crossref_primary_10_1021_acsphotonics_4c00064
crossref_primary_10_14348_molcells_2022_2026
crossref_primary_10_1016_j_optcom_2024_131319
crossref_primary_10_1364_OE_465672
crossref_primary_10_1371_journal_pone_0262028
crossref_primary_10_1002_smtd_202402053
crossref_primary_10_1042_BST20230721
crossref_primary_10_3390_photonics10010001
crossref_primary_10_1002_advs_202403949
crossref_primary_10_1038_s41467_024_48538_0
crossref_primary_10_1146_annurev_physchem_090722_010601
crossref_primary_10_1088_2040_8986_ac9c6e
crossref_primary_10_1364_OE_507935
crossref_primary_10_1002_anie_202413647
crossref_primary_10_1021_acs_jpclett_1c03521
crossref_primary_10_1021_acs_nanolett_4c01431
crossref_primary_10_1103_PhysRevA_110_053518
crossref_primary_10_1021_acs_nanolett_4c03610
crossref_primary_10_1016_j_bpj_2024_01_008
crossref_primary_10_3390_ijms23179836
crossref_primary_10_1016_j_bpr_2025_100199
crossref_primary_10_1063_5_0088643
crossref_primary_10_1126_sciadv_adi7792
crossref_primary_10_1103_PhysRevE_106_044135
crossref_primary_10_1002_advs_202401418
crossref_primary_10_1364_OE_450837
crossref_primary_10_35848_1347_4065_ad622c
crossref_primary_10_1021_acs_chemrev_2c00215
crossref_primary_10_1038_s41377_024_01562_7
crossref_primary_10_3389_fchem_2024_1490847
crossref_primary_10_1103_PhysRevResearch_4_043186
crossref_primary_10_1088_1361_648X_ad7e70
crossref_primary_10_1364_JOSAB_484596
crossref_primary_10_1021_acsphotonics_3c00983
crossref_primary_10_1073_pnas_2405371121
crossref_primary_10_1515_nanoph_2024_0013
crossref_primary_10_1002_advs_202105254
crossref_primary_10_1364_OE_551645
crossref_primary_10_1016_j_smaim_2023_08_002
crossref_primary_10_1016_j_matt_2021_08_003
crossref_primary_10_1016_j_tcb_2022_01_005
crossref_primary_10_1038_s41586_022_05675_0
crossref_primary_10_1371_journal_pone_0260428
crossref_primary_10_1063_5_0068126
crossref_primary_10_1016_j_jcis_2024_07_237
crossref_primary_10_1038_s41467_023_40865_y
crossref_primary_10_3390_photonics9100700
crossref_primary_10_1364_OE_547393
crossref_primary_10_1002_anie_202309671
crossref_primary_10_1002_1873_3468_14750
crossref_primary_10_1063_5_0165100
crossref_primary_10_34133_research_0414
crossref_primary_10_1126_sciadv_adn2208
crossref_primary_10_37188_lam_2025_017
crossref_primary_10_1002_ange_202419476
crossref_primary_10_3390_photonics10101154
crossref_primary_10_1364_OE_541175
crossref_primary_10_1364_JOSAA_459301
crossref_primary_10_1016_j_tcb_2022_05_001
crossref_primary_10_1038_s41467_022_34928_9
crossref_primary_10_1038_s41598_024_63154_0
crossref_primary_10_1515_nanoph_2024_0121
crossref_primary_10_3390_photonics11111061
crossref_primary_10_1016_j_xcrp_2022_101216
crossref_primary_10_1364_BOE_517556
crossref_primary_10_1088_1748_0221_19_09_P09006
crossref_primary_10_1016_j_jmbbm_2024_106812
crossref_primary_10_1103_PhysRevX_12_041026
crossref_primary_10_1002_jcb_30531
crossref_primary_10_1063_5_0236610
crossref_primary_10_1103_PhysRevB_107_224307
crossref_primary_10_1021_acsnano_2c05634
crossref_primary_10_1007_s12551_025_01274_1
crossref_primary_10_1021_acs_jpclett_3c00088
crossref_primary_10_1063_5_0186018
crossref_primary_10_1002_smll_202207095
crossref_primary_10_34133_adi_0078
crossref_primary_10_1088_2040_8986_ad5f9e
crossref_primary_10_1038_s41567_023_01938_3
crossref_primary_10_1016_j_eml_2024_102236
crossref_primary_10_1039_D3CS00634D
crossref_primary_10_1364_AO_549455
crossref_primary_10_1002_advs_202403195
crossref_primary_10_1364_AOP_489300
crossref_primary_10_1002_bip_23487
crossref_primary_10_1016_j_bpj_2022_08_042
crossref_primary_10_1016_j_jcis_2022_04_044
crossref_primary_10_3788_PI_2023_C04
crossref_primary_10_1038_s41596_024_00965_5
crossref_primary_10_3103_S1068335623190107
crossref_primary_10_1103_PhysRevLett_131_163601
crossref_primary_10_1021_acsphotonics_3c01369
crossref_primary_10_1515_nanoph_2023_0850
crossref_primary_10_1016_j_bpj_2023_10_006
crossref_primary_10_1088_1361_6501_ad0e3d
crossref_primary_10_1002_adma_202107691
crossref_primary_10_1093_nar_gkae934
crossref_primary_10_1016_j_bpj_2024_07_005
crossref_primary_10_3389_fbioe_2022_947918
crossref_primary_10_1002_adpr_202100325
crossref_primary_10_1142_S021820252350001X
crossref_primary_10_1146_annurev_biophys_030722_113353
crossref_primary_10_1038_s41377_024_01734_5
crossref_primary_10_1021_acs_macromol_2c01039
crossref_primary_10_1103_PhysRevE_106_064127
crossref_primary_10_1109_LPT_2023_3292432
crossref_primary_10_1088_2632_2153_acc8b8
crossref_primary_10_1209_0295_5075_ace0d6
crossref_primary_10_1002_anie_202214754
crossref_primary_10_1073_pnas_2218425120
crossref_primary_10_1016_j_bpj_2024_11_3320
crossref_primary_10_1016_j_ijbiomac_2023_124089
crossref_primary_10_1364_OE_440866
crossref_primary_10_3389_fphy_2023_1108357
crossref_primary_10_47248_chp2401010004
crossref_primary_10_1007_s12551_023_01171_5
crossref_primary_10_1016_j_resmic_2023_104060
crossref_primary_10_1088_2399_6528_acbf04
crossref_primary_10_1038_s41598_023_47465_2
crossref_primary_10_1038_s41598_022_21224_1
crossref_primary_10_1038_s41377_024_01471_9
crossref_primary_10_1016_j_optlastec_2024_110681
crossref_primary_10_1186_s43074_024_00144_5
crossref_primary_10_1016_j_biomaterials_2023_122389
crossref_primary_10_1002_ange_202214754
crossref_primary_10_1364_JOSAB_468638
crossref_primary_10_1021_acsomega_2c06044
crossref_primary_10_1002_aisy_202200096
crossref_primary_10_3390_photonics10010019
crossref_primary_10_1126_science_abg3027
crossref_primary_10_1016_j_optcom_2024_130355
crossref_primary_10_1021_acsnano_4c15173
crossref_primary_10_1364_OE_484878
crossref_primary_10_1098_rspa_2022_0177
crossref_primary_10_1016_j_optlastec_2025_112815
crossref_primary_10_1021_acs_macromol_3c01487
crossref_primary_10_1038_s41467_022_31738_x
crossref_primary_10_1002_dro2_149
crossref_primary_10_1038_s43586_021_00075_6
crossref_primary_10_3390_ijms241512414
crossref_primary_10_1088_2515_7647_acb57b
crossref_primary_10_1364_JOSAB_546272
crossref_primary_10_1016_j_bios_2024_116185
crossref_primary_10_1063_5_0218040
crossref_primary_10_1364_OE_509421
crossref_primary_10_1002_adma_202300486
crossref_primary_10_1007_s00216_023_04796_3
crossref_primary_10_1016_j_rinp_2023_107122
crossref_primary_10_1063_5_0098033
crossref_primary_10_1038_s41377_024_01626_8
crossref_primary_10_1002_ange_202309671
crossref_primary_10_1088_2515_7647_ad5776
crossref_primary_10_1021_acsnano_4c12273
crossref_primary_10_1016_j_optlastec_2023_110509
crossref_primary_10_1016_j_jmb_2023_167988
crossref_primary_10_1364_JOSAB_524752
crossref_primary_10_5483_BMBRep_2024_0182
crossref_primary_10_1021_acs_nanolett_4c03323
crossref_primary_10_1109_TUFFC_2024_3456083
crossref_primary_10_3389_fmolb_2023_1184249
crossref_primary_10_3390_mi15070881
crossref_primary_10_3390_photonics10020200
crossref_primary_10_1016_j_aop_2023_169375
crossref_primary_10_1021_jacsau_3c00658
crossref_primary_10_1021_acs_cgd_4c00599
crossref_primary_10_3390_ma16083230
crossref_primary_10_1038_s42254_024_00707_2
crossref_primary_10_3390_photonics11010055
crossref_primary_10_1021_acs_jctc_1c01221
crossref_primary_10_1515_revce_2024_0052
crossref_primary_10_1002_lpor_202400767
crossref_primary_10_7554_eLife_86709
crossref_primary_10_1016_j_trac_2023_117083
crossref_primary_10_3390_biology11091358
crossref_primary_10_1016_j_jmb_2023_167975
crossref_primary_10_3390_photonics9090641
crossref_primary_10_1021_acs_macromol_4c01494
crossref_primary_10_3389_fphy_2023_1331835
crossref_primary_10_3389_fbioe_2022_973314
crossref_primary_10_1016_j_watbs_2022_100062
crossref_primary_10_1098_rsif_2021_0554
crossref_primary_10_1103_PhysRevA_111_013516
crossref_primary_10_3390_bios13100905
crossref_primary_10_1039_D3LC00221G
crossref_primary_10_1002_anie_202419476
crossref_primary_10_1016_j_physrep_2024_04_002
crossref_primary_10_1038_s41576_024_00740_y
crossref_primary_10_1016_j_optlaseng_2024_108059
crossref_primary_10_1021_acs_chemrev_1c00626
crossref_primary_10_1021_acs_biomac_3c00409
crossref_primary_10_1515_nanoph_2023_0600
crossref_primary_10_3390_ijms26020446
crossref_primary_10_1146_annurev_biophys_030822_032904
crossref_primary_10_1088_1367_2630_ad7ef1
crossref_primary_10_3788_PI_2023_R05
crossref_primary_10_3390_mi15101209
crossref_primary_10_3389_fcomp_2024_1415648
crossref_primary_10_3390_ijms24031877
crossref_primary_10_3390_nano13182585
crossref_primary_10_1002_smtd_202300076
crossref_primary_10_1016_j_physleta_2024_129629
crossref_primary_10_1021_acs_analchem_4c03040
crossref_primary_10_1016_j_ijleo_2022_169712
crossref_primary_10_1038_s41598_024_70056_8
crossref_primary_10_1088_1361_6501_ac83e1
crossref_primary_10_1063_5_0231573
crossref_primary_10_1103_PhysRevApplied_19_024049
crossref_primary_10_1002_smll_202300328
crossref_primary_10_1021_acsphotonics_2c00606
crossref_primary_10_1038_s41598_024_77596_z
crossref_primary_10_1364_AO_534133
crossref_primary_10_1016_j_ymeth_2023_09_007
crossref_primary_10_7498_aps_74_20241768
crossref_primary_10_1002_adbi_202300105
crossref_primary_10_1016_j_molcel_2023_07_020
crossref_primary_10_1073_pnas_2408313121
crossref_primary_10_3390_bioengineering11060542
crossref_primary_10_1021_acsnano_4c05970
crossref_primary_10_1039_D2CP01384C
crossref_primary_10_1021_acs_langmuir_4c01711
crossref_primary_10_1093_jmicro_dfad059
crossref_primary_10_1039_D2CC06955E
crossref_primary_10_1103_PhysRevE_108_064503
crossref_primary_10_1002_ange_202413647
crossref_primary_10_1039_D4NR02715A
crossref_primary_10_3390_nano13101682
crossref_primary_10_3788_CJL221542
crossref_primary_10_1038_s41565_023_01459_3
crossref_primary_10_1016_j_ijengsci_2023_103890
crossref_primary_10_1016_j_jbc_2024_107317
crossref_primary_10_1016_j_bpj_2022_07_030
crossref_primary_10_1038_s41598_022_10122_1
crossref_primary_10_1038_s41578_022_00488_z
crossref_primary_10_1063_5_0091280
crossref_primary_10_1063_5_0247331
crossref_primary_10_1016_j_bpj_2022_06_030
crossref_primary_10_1103_PhysRevResearch_6_043129
crossref_primary_10_1021_acs_jpcc_3c06450
crossref_primary_10_1051_jeos_2023026
crossref_primary_10_1088_1367_2630_ad7c72
crossref_primary_10_1016_j_bpr_2022_100045
crossref_primary_10_3367_UFNr_2022_02_039161
crossref_primary_10_3390_ijms25074001
crossref_primary_10_3390_nano12193524
crossref_primary_10_1002_pro_70098
crossref_primary_10_1088_1751_8121_ac726b
crossref_primary_10_1002_adom_202200572
crossref_primary_10_1103_PhysRevResearch_5_043251
crossref_primary_10_1038_s41567_024_02538_5
crossref_primary_10_1021_acsnano_4c12083
crossref_primary_10_1038_s41467_024_47126_6
crossref_primary_10_7554_eLife_102666
crossref_primary_10_1021_acsphotonics_4c01060
crossref_primary_10_1364_OME_546407
crossref_primary_10_1038_s41467_024_51813_9
crossref_primary_10_1038_s41596_024_01102_y
crossref_primary_10_1002_admi_202201793
crossref_primary_10_1002_smll_202308534
crossref_primary_10_1016_j_jphotochemrev_2022_100554
crossref_primary_10_1088_1742_6596_2653_1_012077
crossref_primary_10_1088_2040_8986_ad5d02
crossref_primary_10_1126_sciadv_adr4519
crossref_primary_10_1063_5_0101907
crossref_primary_10_3390_photonics11111015
crossref_primary_10_1016_j_optlastec_2023_109212
crossref_primary_10_1002_apxr_202300065
crossref_primary_10_1021_acsnano_3c00536
crossref_primary_10_1017_S0033583522000087
crossref_primary_10_1042_BST20231232
crossref_primary_10_1364_OPTCON_551874
crossref_primary_10_1016_j_rinp_2024_107709
crossref_primary_10_1002_adma_202210342
crossref_primary_10_1016_j_optlaseng_2024_108782
crossref_primary_10_1103_PhysRevResearch_6_013166
crossref_primary_10_1002_anbr_202400130
crossref_primary_10_1021_acsami_2c05410
crossref_primary_10_1016_j_bpj_2023_07_008
crossref_primary_10_1021_acs_jpcb_3c00778
crossref_primary_10_1038_s41378_024_00757_7
crossref_primary_10_1038_s41556_025_01632_x
crossref_primary_10_1038_s41377_024_01610_2
crossref_primary_10_1039_D3NR04125E
crossref_primary_10_1152_physrev_00014_2023
crossref_primary_10_1016_j_molliq_2023_123566
crossref_primary_10_1364_OE_510133
crossref_primary_10_25122_jml_2024_0316
crossref_primary_10_1364_JOSAB_473922
crossref_primary_10_1016_j_cis_2023_102855
crossref_primary_10_1002_smll_202305805
crossref_primary_10_1017_S0033583524000167
crossref_primary_10_1016_j_ijpharm_2024_125029
crossref_primary_10_1063_5_0148096
crossref_primary_10_1016_j_bpj_2023_03_031
crossref_primary_10_1063_5_0068031
crossref_primary_10_1038_s41467_021_27709_3
crossref_primary_10_1039_D3NR05553A
crossref_primary_10_1016_j_celrep_2024_114110
crossref_primary_10_1109_TMI_2024_3494050
crossref_primary_10_1021_acsphotonics_3c01739
crossref_primary_10_1117_1_OE_64_3_035103
ContentType Journal Article
Copyright Copyright Nature Publishing Group Dec 2021
Copyright_xml – notice: Copyright Nature Publishing Group Dec 2021
DBID NPM
8FE
8FG
8FH
ABJCF
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1038/s43586-021-00021-6
DatabaseName PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList PubMed
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2662-8449
ExternalDocumentID 34849486
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM032543
– fundername: NHGRI NIH HHS
  grantid: DP2 HG010510
– fundername: NIGMS NIH HHS
  grantid: R01 GM120353
– fundername: NIGMS NIH HHS
  grantid: R01 GM136894
GroupedDBID 0R~
AAEEF
AARCD
AAWYQ
AAYZH
ABJNI
AFFVI
AFSHS
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
NPM
ODYON
SNYQT
SOJ
8FE
8FG
8FH
ABJCF
AFANA
AFKRA
ATHPR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c540t-4b06434e1a953b5325af076c0735d44d20d7c852966989ce3f598156807e72973
IEDL.DBID BENPR
IngestDate Sat Aug 23 13:06:58 EDT 2025
Wed Feb 19 02:10:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-4b06434e1a953b5325af076c0735d44d20d7c852966989ce3f598156807e72973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9167-0234
0000-0003-4238-7066
0000-0002-2970-0073
OpenAccessLink https://www.nature.com/articles/s43586-021-00021-6.pdf
PMID 34849486
PQID 3225862979
PQPubID 7343579
ParticipantIDs proquest_journals_3225862979
pubmed_primary_34849486
PublicationCentury 2000
PublicationDate 2021-03-25
PublicationDateYYYYMMDD 2021-03-25
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Nature Reviews Methods Primers
PublicationTitleAlternate Nat Rev Methods Primers
PublicationYear 2021
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0002513064
Score 2.6339293
SecondaryResourceType review_article
Snippet Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 25
SubjectTerms Atoms & subatomic particles
Biophysics
Design of experiments
Electric fields
Folding
Force measurement
Lasers
Light
Microscopy
Molecular motors
Nucleic acids
Propagation
Protein folding
Proteins
Ribonucleic acid
RNA
Torque
Title Optical tweezers in single-molecule biophysics
URI https://www.ncbi.nlm.nih.gov/pubmed/34849486
https://www.proquest.com/docview/3225862979
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELVou7AgEF-FUmVgNbVjO7YnBKilQmqpEJW6RXHsSJUgbUlZ-PX4EhcmWCx58OCvu-fnu3sIXWeWWO-VLTbEaMwtY0A0WcwMMzLhNJa12MRkmozn_GkhFoFwq0JY5c4m1obarnLgyAdw8Dz61lLfrjcYVKPgdzVIaLRQx5tgpdqocz-czl5-WBbvvQFih2wZwtSg8vhAQdwthYRq3yZ_Y8vax4wO0UEAh9Fds5tHaM-Vx-jmeV3zzREEVH15tBYtywhe-G8Ovzfiti4yy1XDUVQnaD4avj6McVA5wLlHS1vMDaAC7mimBTOCxSIriExyf_eE5dzGxMpcwfcoaD3mjhVCQ4kXRaSToDx1itrlqnTnKFKU5tRpVihNeE6pkbpIPGYjolCFSLIu6u1mmoajWqW_C9tFZ83s03VT6SJlXEH5mOTi_4GXaD-uF5ThWPRQe_vx6a68r96aPmqp0WM_bIvvTWeTb_Reksk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZKGWBBIF6FAhlgNI1jO7EHhBBQWvpgaaVuIY4dqRKkhRQh-FH8Rnx5wARbl2yJdLmz7_Pnu_sQOo20q21W1li5SmKmKQWiSWOqqAp8RrwgF5sYDP3OmN1P-KSGvqpeGCirrPbEfKPWsxg48hYEnkXfMpCX8xcMqlFwu1pJaBRh0TMf7_bIll10b6x_zzyvfTu67uBSVQDHFp0sMFOQhZkhkeRUcerxKLGH-djGOteMac_VQSzgOhK0FWNDEy5hpIpwAxOA0pP97gpaZdRmcuhMb9_9cDoWKwCgL3tzXCpamUUjAqp8CbRv26f_N5LNM1p7E22UUNS5KmJnC9VMuo3OH-Y5u-1A-danxYbONHWAT3gy-LmQ0jWOms4KRiTbQeOlWL-L6uksNfvIEYTExEiaCOmymBAVyMS3CNHliUi4HzVQs7I0LBdGFv66sYH2CuvDeTFXI6RMwLAa_-D_F0_QWmc06If97rB3iNa9_OdS7PEmqi9e38yRRQkLdZy7xkGPy46Fb4FSyPU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+tweezers+in+single-molecule+biophysics&rft.jtitle=Nature+Reviews+Methods+Primers&rft.au=Bustamante%2C+Carlos+J&rft.au=Chemla%2C+Yann+R&rft.au=Liu%2C+Shixin&rft.au=Wang%2C+Michelle+D&rft.date=2021-03-25&rft.pub=Nature+Publishing+Group&rft.eissn=2662-8449&rft.volume=1&rft.issue=1&rft.spage=25&rft_id=info:doi/10.1038%2Fs43586-021-00021-6