Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system
Rapid developments of robotics and virtual reality technology are raising the requirements of more advanced human-machine interfaces for achieving efficient parallel control. Exoskeleton as an assistive wearable device, usually requires a huge cost and complex data processing to track the multi-dime...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 2692 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.05.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid developments of robotics and virtual reality technology are raising the requirements of more advanced human-machine interfaces for achieving efficient parallel control. Exoskeleton as an assistive wearable device, usually requires a huge cost and complex data processing to track the multi-dimensional human motions. Alternatively, we propose a triboelectric bi-directional sensor as a universal and cost-effective solution to a customized exoskeleton for monitoring all of the movable joints of the human upper limbs with low power consumption. The corresponding movements, including two DOF rotations of the shoulder, twisting of the wrist, and the bending motions, are detected and utilized for controlling the virtual character and the robotic arm in real-time. Owing to the structural consistency between the exoskeleton and the human body, further kinetic analysis offers additional physical parameters without introducing other types of sensors. This exoskeleton sensory system shows a great potential of being an economic and advanced human-machine interface for supporting the manipulation in both real and virtual worlds, including robotic automation, healthcare, and training applications.
Next-generation flexible and wearable sensors are a promising technology to enhance the functionality of human-machine interfaces. Here, the authors report triboelectric bi-directional sensors integrated into an exoskeleton system for enhanced degrees of freedom in movement. |
---|---|
AbstractList | Rapid developments of robotics and virtual reality technology are raising the requirements of more advanced human-machine interfaces for achieving efficient parallel control. Exoskeleton as an assistive wearable device, usually requires a huge cost and complex data processing to track the multi-dimensional human motions. Alternatively, we propose a triboelectric bi-directional sensor as a universal and cost-effective solution to a customized exoskeleton for monitoring all of the movable joints of the human upper limbs with low power consumption. The corresponding movements, including two DOF rotations of the shoulder, twisting of the wrist, and the bending motions, are detected and utilized for controlling the virtual character and the robotic arm in real-time. Owing to the structural consistency between the exoskeleton and the human body, further kinetic analysis offers additional physical parameters without introducing other types of sensors. This exoskeleton sensory system shows a great potential of being an economic and advanced human-machine interface for supporting the manipulation in both real and virtual worlds, including robotic automation, healthcare, and training applications.
Next-generation flexible and wearable sensors are a promising technology to enhance the functionality of human-machine interfaces. Here, the authors report triboelectric bi-directional sensors integrated into an exoskeleton system for enhanced degrees of freedom in movement. Rapid developments of robotics and virtual reality technology are raising the requirements of more advanced human-machine interfaces for achieving efficient parallel control. Exoskeleton as an assistive wearable device, usually requires a huge cost and complex data processing to track the multi-dimensional human motions. Alternatively, we propose a triboelectric bi-directional sensor as a universal and cost-effective solution to a customized exoskeleton for monitoring all of the movable joints of the human upper limbs with low power consumption. The corresponding movements, including two DOF rotations of the shoulder, twisting of the wrist, and the bending motions, are detected and utilized for controlling the virtual character and the robotic arm in real-time. Owing to the structural consistency between the exoskeleton and the human body, further kinetic analysis offers additional physical parameters without introducing other types of sensors. This exoskeleton sensory system shows a great potential of being an economic and advanced human-machine interface for supporting the manipulation in both real and virtual worlds, including robotic automation, healthcare, and training applications.Next-generation flexible and wearable sensors are a promising technology to enhance the functionality of human-machine interfaces. Here, the authors report triboelectric bi-directional sensors integrated into an exoskeleton system for enhanced degrees of freedom in movement. Rapid developments of robotics and virtual reality technology are raising the requirements of more advanced human-machine interfaces for achieving efficient parallel control. Exoskeleton as an assistive wearable device, usually requires a huge cost and complex data processing to track the multi-dimensional human motions. Alternatively, we propose a triboelectric bi-directional sensor as a universal and cost-effective solution to a customized exoskeleton for monitoring all of the movable joints of the human upper limbs with low power consumption. The corresponding movements, including two DOF rotations of the shoulder, twisting of the wrist, and the bending motions, are detected and utilized for controlling the virtual character and the robotic arm in real-time. Owing to the structural consistency between the exoskeleton and the human body, further kinetic analysis offers additional physical parameters without introducing other types of sensors. This exoskeleton sensory system shows a great potential of being an economic and advanced human-machine interface for supporting the manipulation in both real and virtual worlds, including robotic automation, healthcare, and training applications. Rapid developments of robotics and virtual reality technology are raising the requirements of more advanced human-machine interfaces for achieving efficient parallel control. Exoskeleton as an assistive wearable device, usually requires a huge cost and complex data processing to track the multi-dimensional human motions. Alternatively, we propose a triboelectric bi-directional sensor as a universal and cost-effective solution to a customized exoskeleton for monitoring all of the movable joints of the human upper limbs with low power consumption. The corresponding movements, including two DOF rotations of the shoulder, twisting of the wrist, and the bending motions, are detected and utilized for controlling the virtual character and the robotic arm in real-time. Owing to the structural consistency between the exoskeleton and the human body, further kinetic analysis offers additional physical parameters without introducing other types of sensors. This exoskeleton sensory system shows a great potential of being an economic and advanced human-machine interface for supporting the manipulation in both real and virtual worlds, including robotic automation, healthcare, and training applications.Rapid developments of robotics and virtual reality technology are raising the requirements of more advanced human-machine interfaces for achieving efficient parallel control. Exoskeleton as an assistive wearable device, usually requires a huge cost and complex data processing to track the multi-dimensional human motions. Alternatively, we propose a triboelectric bi-directional sensor as a universal and cost-effective solution to a customized exoskeleton for monitoring all of the movable joints of the human upper limbs with low power consumption. The corresponding movements, including two DOF rotations of the shoulder, twisting of the wrist, and the bending motions, are detected and utilized for controlling the virtual character and the robotic arm in real-time. Owing to the structural consistency between the exoskeleton and the human body, further kinetic analysis offers additional physical parameters without introducing other types of sensors. This exoskeleton sensory system shows a great potential of being an economic and advanced human-machine interface for supporting the manipulation in both real and virtual worlds, including robotic automation, healthcare, and training applications. Next-generation flexible and wearable sensors are a promising technology to enhance the functionality of human-machine interfaces. Here, the authors report triboelectric bi-directional sensors integrated into an exoskeleton system for enhanced degrees of freedom in movement. |
ArticleNumber | 2692 |
Author | Sun, Zhongda Chen, Tao Zhu, Minglu Lee, Chengkuo |
Author_xml | – sequence: 1 givenname: Minglu surname: Zhu fullname: Zhu, Minglu organization: Department of Electrical & Computer Engineering, National University of Singapore, National University of Singapore Suzhou Research Institute (NUSRI), Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech-NUS) Joint Lab on Large-area Flexible Hybrid Electronics, National University of Singapore, Center for Sensors and MEMS, National University of Singapore – sequence: 2 givenname: Zhongda orcidid: 0000-0001-7365-1945 surname: Sun fullname: Sun, Zhongda organization: Department of Electrical & Computer Engineering, National University of Singapore, National University of Singapore Suzhou Research Institute (NUSRI), Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech-NUS) Joint Lab on Large-area Flexible Hybrid Electronics, National University of Singapore, Center for Sensors and MEMS, National University of Singapore – sequence: 3 givenname: Tao orcidid: 0000-0003-3550-2310 surname: Chen fullname: Chen, Tao email: chent@suda.edu.cn organization: Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University – sequence: 4 givenname: Chengkuo orcidid: 0000-0002-8886-3649 surname: Lee fullname: Lee, Chengkuo email: elelc@nus.edu.sg organization: Department of Electrical & Computer Engineering, National University of Singapore, National University of Singapore Suzhou Research Institute (NUSRI), Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech-NUS) Joint Lab on Large-area Flexible Hybrid Electronics, National University of Singapore, Center for Sensors and MEMS, National University of Singapore, NUS Graduate School - Integrative Sciences and Engineering Program (ISEP), National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33976216$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1vFCEYxompsXXtP-DBkHjxMsrXfHAxMY0fTTbxomfCMO9MWRlYganuwf9durvWtodygcDved4XeJ6jEx88IPSSkreU8O5dElQ0bUUYrRgnjFT8CTpjRNCKtoyf3FmfovOUNqQMLmknxDN0yrlsG0abM_RnHX5hE1LG8DukH-AgB49n7e12cTqHiJdk_YR7O9gIJtvgtcM52j4U1pSFwQl8CjFh8FfaGxjwvLhstw7wAFMEwGHEY5mHMB_ZHU67lGF-gZ6O2iU4P84r9P3Tx28XX6r118-XFx_WlakFyZXQrSGiGXRj6qYXY8t700uqO9qbsR_AyFrWrJxpKQnlREpBoNUGpICu6xu-QpcH3yHojdpGO-u4U0Fbtd8IcVI6ZmscKD1qw9uOQikqKNB-KO_MKSOdkRpGKF7vD17bpZ9hMOBz1O6e6f0Tb6_UFK5VRykXjSwGb44GMfxcIGU122TAOe0hLEmxmjWUS1aTgr5-gG7CEssP7KmasYYzUahXdzu6beXfLxeAHQATQ0oRxluEEnWTJnVIkyppUvs0Fe0KdQ9ExmZ9E4ByK-sel_KDNJU6foL4v-1HVH8BG9Dhtw |
CitedBy_id | crossref_primary_10_1016_j_nwnano_2024_100053 crossref_primary_10_1016_j_nanoen_2024_109882 crossref_primary_10_1021_acsami_2c08757 crossref_primary_10_1021_acs_chemrev_3c00305 crossref_primary_10_1007_s12274_023_5660_8 crossref_primary_10_1126_sciadv_abl9874 crossref_primary_10_1002_advs_202205960 crossref_primary_10_1016_j_nanoen_2021_106807 crossref_primary_10_1080_10667857_2023_2214775 crossref_primary_10_1002_adma_202417409 crossref_primary_10_3390_mi13091395 crossref_primary_10_1016_j_cej_2021_134412 crossref_primary_10_1016_j_nanoen_2022_107225 crossref_primary_10_3390_s22145089 crossref_primary_10_1016_j_nanoen_2022_107623 crossref_primary_10_1016_j_xcrp_2022_101191 crossref_primary_10_1016_j_mtphys_2022_100798 crossref_primary_10_1002_adfm_202205275 crossref_primary_10_1088_1361_6463_acff02 crossref_primary_10_1039_D4RA00381K crossref_primary_10_1002_aisy_202200313 crossref_primary_10_1002_adsr_202200011 crossref_primary_10_1021_acs_chemrev_3c00317 crossref_primary_10_1016_j_nanoen_2021_106304 crossref_primary_10_3390_machines12050331 crossref_primary_10_1021_acsnano_1c11587 crossref_primary_10_3390_nano11112975 crossref_primary_10_1088_2631_7990_ad5bc6 crossref_primary_10_1093_nsr_nwad302 crossref_primary_10_1016_j_bspc_2024_106791 crossref_primary_10_1016_j_nanoen_2024_109982 crossref_primary_10_1021_acsanm_2c05360 crossref_primary_10_1016_j_ijmecsci_2024_109412 crossref_primary_10_1002_adma_202207093 crossref_primary_10_1109_JLT_2023_3267468 crossref_primary_10_1016_j_compositesa_2023_107833 crossref_primary_10_1016_j_cej_2023_147947 crossref_primary_10_1002_admt_202301681 crossref_primary_10_1109_JSEN_2023_3287291 crossref_primary_10_1002_adom_202301028 crossref_primary_10_1016_j_cej_2024_159139 crossref_primary_10_1007_s40820_022_00965_8 crossref_primary_10_1038_s41467_022_29197_5 crossref_primary_10_1002_adfm_202301589 crossref_primary_10_3390_biomimetics8070517 crossref_primary_10_1109_JAS_2022_105620 crossref_primary_10_3390_s22010199 crossref_primary_10_1002_admi_202200674 crossref_primary_10_1007_s42235_022_00254_5 crossref_primary_10_1080_09243046_2023_2270379 crossref_primary_10_1002_aenm_202302699 crossref_primary_10_1002_smll_202304591 crossref_primary_10_1016_j_nanoen_2024_110327 crossref_primary_10_34133_research_0154 crossref_primary_10_1021_acsnano_4c08445 crossref_primary_10_1002_adma_202314380 crossref_primary_10_1021_acsami_2c05734 crossref_primary_10_3390_nanoenergyadv4040023 crossref_primary_10_1146_annurev_bioeng_082222_012531 crossref_primary_10_1016_j_mattod_2024_08_013 crossref_primary_10_2139_ssrn_4066281 crossref_primary_10_1039_D2NA00608A crossref_primary_10_1002_aenm_202301254 crossref_primary_10_1016_j_nanoen_2022_107112 crossref_primary_10_1002_advs_202101834 crossref_primary_10_1088_2053_1583_acaded crossref_primary_10_1016_j_nanoen_2024_110277 crossref_primary_10_1002_eom2_12198 crossref_primary_10_1002_advs_202103694 crossref_primary_10_1002_aesr_202400116 crossref_primary_10_1021_acsami_3c10846 crossref_primary_10_1021_acs_jpcb_4c03008 crossref_primary_10_1021_acsnano_2c11366 crossref_primary_10_1002_smll_202205704 crossref_primary_10_1007_s42853_024_00238_9 crossref_primary_10_1038_s41467_022_29083_0 crossref_primary_10_1016_j_cis_2023_102988 crossref_primary_10_1021_acsnano_2c11996 crossref_primary_10_1088_2631_7990_ad878b crossref_primary_10_1016_j_nanoen_2025_110825 crossref_primary_10_1002_advs_202303234 crossref_primary_10_1016_j_apmt_2023_101877 crossref_primary_10_1002_adma_202109355 crossref_primary_10_1016_j_device_2024_100421 crossref_primary_10_1002_adma_202300699 crossref_primary_10_1021_acsnano_1c04464 crossref_primary_10_1016_j_seta_2023_103184 crossref_primary_10_1021_acs_chemrev_3c00356 crossref_primary_10_1002_adma_202314163 crossref_primary_10_1021_acsami_1c13420 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1109_JSEN_2024_3498068 crossref_primary_10_3390_nanoenergyadv1010005 crossref_primary_10_1038_s41467_022_32745_8 crossref_primary_10_1016_j_cej_2023_147075 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_1109_OJCAS_2021_3123272 crossref_primary_10_1002_advs_202105219 crossref_primary_10_1021_acsnano_1c09925 crossref_primary_10_1016_j_nanoen_2024_110257 crossref_primary_10_1088_2058_8585_ac541d crossref_primary_10_1002_admt_202301404 crossref_primary_10_1039_D2EE02557D crossref_primary_10_1007_s10854_022_09640_5 crossref_primary_10_1002_EXP_20230109 crossref_primary_10_1016_j_nanoen_2024_110491 crossref_primary_10_1002_adma_202209117 crossref_primary_10_1109_ACCESS_2025_3538691 crossref_primary_10_1002_adfm_202310254 crossref_primary_10_3390_s22113999 crossref_primary_10_34133_research_0333 crossref_primary_10_1016_j_nanoen_2022_107324 crossref_primary_10_1002_advs_202401109 crossref_primary_10_1021_acsmaterialsau_2c00001 crossref_primary_10_1109_JSEN_2023_3281426 crossref_primary_10_1088_1361_665X_ad11ff crossref_primary_10_1126_sciadv_abq2521 crossref_primary_10_1002_adsr_202200072 crossref_primary_10_1063_5_0225775 crossref_primary_10_1016_j_device_2024_100525 crossref_primary_10_3390_nano14141173 crossref_primary_10_1002_smtd_202300562 crossref_primary_10_1021_acs_nanolett_4c04401 crossref_primary_10_3390_electronics11030383 crossref_primary_10_1016_j_nanoen_2023_108308 crossref_primary_10_1002_adfm_202201846 crossref_primary_10_1002_aenm_202201001 crossref_primary_10_1021_acsnano_1c11321 crossref_primary_10_3390_nano12081366 crossref_primary_10_3390_s22031084 crossref_primary_10_1002_adfm_202314721 crossref_primary_10_3390_nano13243100 crossref_primary_10_1016_j_apergo_2024_104293 crossref_primary_10_1038_s41467_024_50270_8 crossref_primary_10_1016_j_device_2024_100362 crossref_primary_10_1016_j_joule_2022_06_013 crossref_primary_10_3390_mi12060695 crossref_primary_10_3390_nano15050332 |
Cites_doi | 10.1016/j.nanoen.2019.01.091 10.1002/adfm.201900098 10.1038/s41467-017-02685-9 10.1002/admt.201900978 10.1038/s41467-020-19059-3 10.1016/j.jbi.2018.09.002 10.1002/adem.201700016 10.1126/scirobotics.aau9757 10.1016/j.nanoen.2020.105155 10.1126/science.aaa9306 10.1002/aisy.202000117 10.1002/admi.202000015 10.1038/s41528-020-0071-3 10.1038/s41586-020-2892-6 10.1016/j.nanoen.2018.10.044 10.1016/j.nanoen.2020.105414 10.1109/RBME.2016.2552201 10.1126/sciadv.aaz8693 10.1126/scirobotics.aax2198 10.1126/science.aba5504 10.1002/adfm.201403828 10.1063/5.0016485 10.1002/admt.201800626 10.1126/sciadv.1700694 10.1126/sciadv.1700015 10.1002/admt.201800328 10.1016/j.smaim.2020.07.005 10.3390/s110100207 10.1038/s41467-020-18471-z 10.1002/adma.201904664 10.1126/sciadv.abb9083 10.1126/scirobotics.aah3690 10.1126/scirobotics.aat1853 10.34133/2020/8910692 10.1002/adma.201902549 10.1002/advs.202000261 10.1016/j.nanoen.2019.01.002 10.3390/s17061257 10.1109/THMS.2017.2700634 10.3390/s20071965 10.1038/s41586-019-1687-0 10.1126/scirobotics.aar5438 10.1126/scirobotics.aat2516 10.1002/aisy.201900088 10.1038/s41528-020-00092-7 10.1089/soro.2018.0006 10.1038/ncomms6747 10.1002/adma.202002878 10.1002/advs.201901437 10.1126/science.aao0098 10.1126/scirobotics.aat5954 10.1126/scirobotics.aav2949 10.3390/s18020566 10.1002/inf2.12122 10.1016/j.jsv.2005.03.011 10.1126/scirobotics.aau6914 10.3390/mi11010007 10.1016/j.nantod.2020.101016 10.1021/acsnano.0c03728 10.1002/eom2.12058 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-23020-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_afac3781e4a741e1bd14631208c9aefe PMC8113469 33976216 10_1038_s41467_021_23020_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: 1. National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG-GC-2019-002); 2. National Key Research and Development Program of China (Grant No. 2019YFB2004800, Project No. R-2020-S-002) at NUSRI, Suzhou, China; 3. “Intelligent monitoring system based on smart wearable sensors and artificial technology for the treatment of adolescent idiopathic scoliosis”, the “Smart sensors and artificial intelligence (AI) for health” seed grant (R-263-501-017-133) at NUS Institute for Health Innovation & Technology (NUS iHealthtech); 4. Collaborative Research Project under the SIMTech-NUS Joint Laboratory, “SIMTech-NUS Joint Lab on Large-area Flexible Hybrid Electronics”; 5. National Research Funding - Competitive Research Programme (NRF-CRP) (R-719-000-001-281). – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-4a7c046da6c56b4f73bcb91a81bcfbdec95952c56a9901309940e7ace94e88b63 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:49 EDT 2025 Thu Aug 21 14:30:18 EDT 2025 Sun Aug 24 04:07:11 EDT 2025 Wed Aug 13 04:05:08 EDT 2025 Mon Jul 21 05:59:00 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Tue Jul 01 04:17:25 EDT 2025 Fri Feb 21 02:38:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-4a7c046da6c56b4f73bcb91a81bcfbdec95952c56a9901309940e7ace94e88b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7365-1945 0000-0003-3550-2310 0000-0002-8886-3649 |
OpenAccessLink | https://doaj.org/article/afac3781e4a741e1bd14631208c9aefe |
PMID | 33976216 |
PQID | 2525226324 |
PQPubID | 546298 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_afac3781e4a741e1bd14631208c9aefe pubmedcentral_primary_oai_pubmedcentral_nih_gov_8113469 proquest_miscellaneous_2526139250 proquest_journals_2525226324 pubmed_primary_33976216 crossref_primary_10_1038_s41467_021_23020_3 crossref_citationtrail_10_1038_s41467_021_23020_3 springer_journals_10_1038_s41467_021_23020_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-11 |
PublicationDateYYYYMMDD | 2021-05-11 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Dong (CR9) 2021; 79 Shi (CR17) 2020; 2 Wang (CR58) 2020; 32 Kim (CR14) 2018; 360 de Rossi (CR55) 2011; 11 Du (CR37) 2017; 3 Wu (CR35) 2015; 25 Cho (CR16) 2019; 4 He (CR42) 2019; 58 Jing (CR57) 2019; 4 Zhu, Yi, Yang, Lee (CR36) 2021; 36 Gao (CR21) 2017; 29 Guo (CR6) 2018; 3 Proietti, Crocher, Roby-Brami, Jarrasse (CR51) 2016; 9 Liang (CR62) 2019; 1 Wang (CR32) 2020; 6 Yu (CR11) 2019; 575 Ha, Fung, Chen, Hsien (CR63) 2006; 289 Yu, Zhu, Wang, Zhai (CR38) 2019; 29 Wen (CR45) 2020; 7 Xu, Wu (CR61) 2020; 2 He (CR50) 2019; 6 Shi (CR13) 2020; 11 Choi, Seo, Hyung, Shim, Lim (CR54) 2018; 18 Arab Hassani (CR23) 2020; 1 Ding, Kim, Kuindersma, Walsh (CR53) 2018; 3 Boutry (CR7) 2018; 3 Zhang (CR47) 2020; 4 CR40 Booth (CR5) 2018; 3 Kim (CR20) 2014; 5 Wang (CR28) 2020; 32 Zhu (CR19) 2019; 11 Lee (CR29) 2019; 4 Bai (CR33) 2020; 370 Filippeschi (CR56) 2017; 17 Qi (CR18) 2018; 87 Dong, Peng, Wang (CR39) 2020; 32 Laschi, Mazzolai, Cianchetti (CR3) 2016; 1 Shi, He, Lee (CR34) 2019; 57 Dong (CR48) 2020; 14 Huang, Wu (CR60) 2020; 7 Ling (CR49) 2020; 32 Pu (CR43) 2018; 54 Tee (CR25) 2015; 350 Araromi (CR30) 2020; 587 Hua (CR31) 2018; 9 Jin (CR46) 2020; 11 Wen (CR24) 2020; 78 Bergner, Dean-Leon, Cheng (CR10) 2020; 20 Cini, Ortenzi, Corke, Controzzi (CR15) 2019; 4 Polygerinos (CR4) 2017; 19 Zhu, He, Lee (CR22) 2020; 7 Pu (CR41) 2017; 3 Zhu (CR44) 2020; 6 Li (CR26) 2020; 2020 Roach, Lieberman (CR59) 2014; 217 Xie (CR8) 2019; 4 Yu (CR12) 2020; 5 Wang (CR27) 2020; 4 Belpaeme, Kennedy, Ramachandran, Scassellati, Tanaka (CR1) 2018; 3 Kang, Choi, Lee, Cho (CR52) 2019; 6 Niyetkaliyev, Hussain, Ghayesh, Alici (CR2) 2017; 47 T Jin (23020_CR46) 2020; 11 A Yu (23020_CR12) 2020; 5 B Dong (23020_CR9) 2021; 79 M Zhu (23020_CR22) 2020; 7 T He (23020_CR50) 2019; 6 Z Zhang (23020_CR47) 2020; 4 F Cini (23020_CR15) 2019; 4 R Wang (23020_CR28) 2020; 32 Q Jing (23020_CR57) 2019; 4 Y Kim (23020_CR14) 2018; 360 OA Araromi (23020_CR30) 2020; 587 WW Lee (23020_CR29) 2019; 4 M Zhu (23020_CR36) 2021; 36 H Guo (23020_CR6) 2018; 3 Z Wang (23020_CR58) 2020; 32 F Arab Hassani (23020_CR23) 2020; 1 J Zhu (23020_CR19) 2019; 11 B Dong (23020_CR48) 2020; 14 Y Gao (23020_CR21) 2017; 29 Y Wang (23020_CR32) 2020; 6 C Du (23020_CR37) 2017; 3 M Zhu (23020_CR44) 2020; 6 Q Shi (23020_CR34) 2019; 57 Y Ling (23020_CR49) 2020; 32 Y Ding (23020_CR53) 2018; 3 M Xie (23020_CR8) 2019; 4 T Belpaeme (23020_CR1) 2018; 3 S Xu (23020_CR61) 2020; 2 F Wen (23020_CR45) 2020; 7 BC-K Tee (23020_CR25) 2015; 350 H Bai (23020_CR33) 2020; 370 Q Hua (23020_CR31) 2018; 9 CM Boutry (23020_CR7) 2018; 3 Y Li (23020_CR26) 2020; 2020 X Pu (23020_CR43) 2018; 54 A Yu (23020_CR38) 2019; 29 BB Kang (23020_CR52) 2019; 6 P Polygerinos (23020_CR4) 2017; 19 Q Shi (23020_CR13) 2020; 11 X Wang (23020_CR27) 2020; 4 T Proietti (23020_CR51) 2016; 9 H Choi (23020_CR54) 2018; 18 SMM de Rossi (23020_CR55) 2011; 11 J Kim (23020_CR20) 2014; 5 F Wen (23020_CR24) 2020; 78 T Huang (23020_CR60) 2020; 7 A Filippeschi (23020_CR56) 2017; 17 C Laschi (23020_CR3) 2016; 1 AS Niyetkaliyev (23020_CR2) 2017; 47 K-J Cho (23020_CR16) 2019; 4 K Dong (23020_CR39) 2020; 32 T He (23020_CR42) 2019; 58 NT Roach (23020_CR59) 2014; 217 X Yu (23020_CR11) 2019; 575 J Qi (23020_CR18) 2018; 87 X Liang (23020_CR62) 2019; 1 Q Shi (23020_CR17) 2020; 2 Y Wu (23020_CR35) 2015; 25 X Pu (23020_CR41) 2017; 3 23020_CR40 F Bergner (23020_CR10) 2020; 20 JW Booth (23020_CR5) 2018; 3 J-L Ha (23020_CR63) 2006; 289 |
References_xml | – volume: 58 start-page: 641 year: 2019 end-page: 651 ident: CR42 article-title: Self-powered glove-based intuitive interface for diversified control applications in real/cyber space publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.091 – volume: 29 start-page: 1 year: 2019 end-page: 27 ident: CR38 article-title: Progress in triboelectric materials: toward high performance and widespread applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900098 – volume: 9 start-page: 1 year: 2018 end-page: 11 ident: CR31 article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing publication-title: Nat. Commun. doi: 10.1038/s41467-017-02685-9 – volume: 5 start-page: 1900978 year: 2020 ident: CR12 article-title: Large‐scale smart carpet for self‐powered fall detection publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900978 – volume: 11 year: 2020 ident: CR46 article-title: Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications publication-title: Nat. Commun. doi: 10.1038/s41467-020-19059-3 – volume: 87 start-page: 138 year: 2018 end-page: 153 ident: CR18 article-title: Examining sensor-based physical activity recognition and monitoring for healthcare using internet of things: a systematic review publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.09.002 – volume: 19 start-page: 1700016 year: 2017 ident: CR4 article-title: Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201700016 – volume: 4 start-page: eaau9757 year: 2019 ident: CR15 article-title: On the choice of grasp type and location when handing over an object publication-title: Sci. Robot. doi: 10.1126/scirobotics.aau9757 – volume: 78 start-page: 105155 year: 2020 ident: CR24 article-title: Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105155 – volume: 350 start-page: 313 year: 2015 end-page: 316 ident: CR25 article-title: A skin-inspired organic digital mechanoreceptor publication-title: Science doi: 10.1126/science.aaa9306 – volume: 2 start-page: 2000117 year: 2020 ident: CR61 article-title: Ink‐based additive nanomanufacturing of functional materials for human‐integrated smart wearables publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202000117 – volume: 7 start-page: 2000015 year: 2020 ident: CR60 article-title: Inkjet‐printed wearable nanosystems for self‐powered technologies publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000015 – volume: 4 year: 2020 ident: CR27 article-title: Self-cross-linked arrays enabled flexible mechanical sensors for monitoring the body tremor publication-title: npj Flex. Electron. doi: 10.1038/s41528-020-0071-3 – volume: 587 start-page: 219 year: 2020 end-page: 224 ident: CR30 article-title: Ultra-sensitive and resilient compliant strain gauges for soft machines publication-title: Nature doi: 10.1038/s41586-020-2892-6 – volume: 54 start-page: 453 year: 2018 end-page: 460 ident: CR43 article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.044 – volume: 79 start-page: 105414 year: 2021 ident: CR9 article-title: Technology evolution from self-powered sensors to AIoT enabled smart homes publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105414 – volume: 32 start-page: 1 year: 2020 end-page: 11 ident: CR58 article-title: A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare publication-title: Adv. Mater. – volume: 9 start-page: 4 year: 2016 end-page: 14 ident: CR51 article-title: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2016.2552201 – volume: 6 start-page: eaaz8693 year: 2020 ident: CR44 article-title: Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz8693 – volume: 4 start-page: eaax2198 year: 2019 ident: CR29 article-title: A neuro-inspired artificial peripheral nervous system for scalable electronic skins publication-title: Sci. Robot. doi: 10.1126/scirobotics.aax2198 – volume: 370 start-page: 848 year: 2020 end-page: 852 ident: CR33 article-title: Stretchable distributed fiber-optic sensors publication-title: Science doi: 10.1126/science.aba5504 – volume: 25 start-page: 2166 year: 2015 end-page: 2174 ident: CR35 article-title: A self powered angle measurement sensor based on triboelectric nanogenerator publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403828 – volume: 7 start-page: 031305 year: 2020 ident: CR22 article-title: Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems publication-title: Appl. Phys. Rev. doi: 10.1063/5.0016485 – volume: 4 start-page: 1800626 year: 2019 ident: CR8 article-title: Flexible multifunctional sensors for wearable and robotic applications publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800626 – volume: 3 start-page: 1 year: 2017 end-page: 8 ident: CR41 article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator publication-title: Sci. Adv. doi: 10.1126/sciadv.1700694 – volume: 3 start-page: e1700015 year: 2017 ident: CR37 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. doi: 10.1126/sciadv.1700015 – volume: 4 start-page: 1800328 year: 2019 ident: CR57 article-title: Aerosol-jet printed fine-featured triboelectric sensors for motion sensing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800328 – volume: 1 start-page: 92 year: 2020 end-page: 124 ident: CR23 article-title: Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems publication-title: Smart Mater. Med. doi: 10.1016/j.smaim.2020.07.005 – volume: 11 start-page: 207 year: 2011 end-page: 227 ident: CR55 article-title: Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface publication-title: Sensors doi: 10.3390/s110100207 – volume: 217 start-page: 2139 year: 2014 end-page: 2149 ident: CR59 article-title: Upper body contributions to power generation during rapid, overhand throwing in humans publication-title: J. Exp. Biol. – volume: 29 start-page: 1 year: 2017 end-page: 8 ident: CR21 article-title: Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring publication-title: Adv. Mater. – volume: 11 year: 2020 ident: CR13 article-title: Deep learning enabled smart mats as a scalable floor monitoring system publication-title: Nat. Commun. doi: 10.1038/s41467-020-18471-z – volume: 32 start-page: 1904664 year: 2020 ident: CR49 article-title: Disruptive, soft, wearable sensors publication-title: Adv. Mater. doi: 10.1002/adma.201904664 – volume: 6 start-page: eabb9083 year: 2020 ident: CR32 article-title: Hierarchically patterned self-powered sensors for multifunctional tactile sensing publication-title: Sci. Adv. doi: 10.1126/sciadv.abb9083 – volume: 1 start-page: eaah3690 year: 2016 ident: CR3 article-title: Soft robotics: technologies and systems pushing the boundaries of robot abilities publication-title: Sci. Robot. doi: 10.1126/scirobotics.aah3690 – volume: 3 start-page: 1 year: 2018 end-page: 10 ident: CR5 article-title: OmniSkins: robotic skins that turn inanimate objects into multifunctional robots publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat1853 – volume: 2020 start-page: 1 year: 2020 end-page: 11 ident: CR26 article-title: Highly selective biomimetic flexible tactile sensor for neuroprosthetics publication-title: Research doi: 10.34133/2020/8910692 – volume: 32 start-page: 1902549 year: 2020 ident: CR39 article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Adv. Mater. doi: 10.1002/adma.201902549 – volume: 7 start-page: 2000261 year: 2020 ident: CR45 article-title: Machine learning glove using self‐powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications publication-title: Adv. Sci. doi: 10.1002/advs.202000261 – volume: 57 start-page: 851 year: 2019 end-page: 871 ident: CR34 article-title: More than energy harvesting – Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.002 – volume: 17 start-page: 1257 year: 2017 ident: CR56 article-title: Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion publication-title: Sensors doi: 10.3390/s17061257 – volume: 47 start-page: 1134 year: 2017 end-page: 1145 ident: CR2 article-title: Review on design and control aspects of robotic shoulder rehabilitation orthoses publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2017.2700634 – volume: 20 start-page: 1965 year: 2020 ident: CR10 article-title: Design and realization of an efficient large-area event-driven E-skin publication-title: Sensors doi: 10.3390/s20071965 – volume: 575 start-page: 473 year: 2019 end-page: 479 ident: CR11 article-title: Skin-integrated wireless haptic interfaces for virtual and augmented reality publication-title: Nature doi: 10.1038/s41586-019-1687-0 – volume: 3 start-page: 1 year: 2018 end-page: 9 ident: CR53 article-title: Human-in-the-loop optimization of hip assistance with a soft exosuit during walking publication-title: Sci. Robot. doi: 10.1126/scirobotics.aar5438 – volume: 3 start-page: eaat2516 year: 2018 ident: CR6 article-title: A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat2516 – volume: 1 start-page: 1900088 year: 2019 ident: CR62 article-title: Fusion of wearable and contactless sensors for intelligent gesture recognition publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201900088 – ident: CR40 – volume: 4 year: 2020 ident: CR47 article-title: Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications publication-title: npj Flex. Electron. doi: 10.1038/s41528-020-00092-7 – volume: 6 start-page: 214 year: 2019 end-page: 227 ident: CR52 article-title: Exo-glove poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system publication-title: Soft Robot. doi: 10.1089/soro.2018.0006 – volume: 5 start-page: 1 year: 2014 end-page: 11 ident: CR20 article-title: Stretchable silicon nanoribbon electronics for skin prosthesis publication-title: Nat. Commun. doi: 10.1038/ncomms6747 – volume: 32 start-page: 2002878 year: 2020 ident: CR28 article-title: Holistically engineered polymer–polymer and polymer–ion interactions in biocompatible polyvinyl alcohol blends for high‐performance triboelectric devices in self‐powered wearable cardiovascular monitorings publication-title: Adv. Mater. doi: 10.1002/adma.202002878 – volume: 6 start-page: 1901437 year: 2019 ident: CR50 article-title: Self‐sustainable wearable textile nano‐energy nano‐system (NENS) for next‐generation healthcare applications publication-title: Adv. Sci. doi: 10.1002/advs.201901437 – volume: 360 start-page: 998 year: 2018 end-page: 1003 ident: CR14 article-title: A bioinspired flexible organic artificial afferent nerve publication-title: Science doi: 10.1126/science.aao0098 – volume: 3 start-page: eaat5954 year: 2018 ident: CR1 article-title: Social robots for education: a review publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat5954 – volume: 4 start-page: eaav2949 year: 2019 ident: CR16 article-title: Eyes are faster than hands: a soft wearable robot learns user intention from the egocentric view publication-title: Sci. Robot. doi: 10.1126/scirobotics.aav2949 – volume: 18 start-page: 566 year: 2018 ident: CR54 article-title: Compact hip-force sensor for a gait-assistance exoskeleton system publication-title: Sensors doi: 10.3390/s18020566 – volume: 2 start-page: 1131 year: 2020 end-page: 1162 ident: CR17 article-title: Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things publication-title: InfoMat doi: 10.1002/inf2.12122 – volume: 289 start-page: 1019 year: 2006 end-page: 1044 ident: CR63 article-title: Dynamic modeling and identification of a slider-crank mechanism publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.03.011 – volume: 3 start-page: eaau6914 year: 2018 ident: CR7 article-title: A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics publication-title: Sci. Robot. doi: 10.1126/scirobotics.aau6914 – volume: 11 start-page: 7 year: 2019 ident: CR19 article-title: Development trends and perspectives of future sensors and MEMS/NEMS publication-title: Micromachines doi: 10.3390/mi11010007 – volume: 36 start-page: 101016 year: 2021 ident: CR36 article-title: Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems publication-title: Nano Today doi: 10.1016/j.nantod.2020.101016 – volume: 14 start-page: 8915 year: 2020 end-page: 8930 ident: CR48 article-title: Wearable triboelectric–human–machine interface (THMI) using robust nanophotonic readout publication-title: ACS Nano doi: 10.1021/acsnano.0c03728 – volume: 3 start-page: eaau6914 year: 2018 ident: 23020_CR7 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aau6914 – volume: 78 start-page: 105155 year: 2020 ident: 23020_CR24 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105155 – volume: 17 start-page: 1257 year: 2017 ident: 23020_CR56 publication-title: Sensors doi: 10.3390/s17061257 – volume: 18 start-page: 566 year: 2018 ident: 23020_CR54 publication-title: Sensors doi: 10.3390/s18020566 – volume: 289 start-page: 1019 year: 2006 ident: 23020_CR63 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.03.011 – volume: 11 year: 2020 ident: 23020_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19059-3 – volume: 11 year: 2020 ident: 23020_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18471-z – volume: 1 start-page: 1900088 year: 2019 ident: 23020_CR62 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201900088 – volume: 87 start-page: 138 year: 2018 ident: 23020_CR18 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.09.002 – volume: 3 start-page: 1 year: 2018 ident: 23020_CR53 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aar5438 – ident: 23020_CR40 doi: 10.1002/eom2.12058 – volume: 32 start-page: 2002878 year: 2020 ident: 23020_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.202002878 – volume: 54 start-page: 453 year: 2018 ident: 23020_CR43 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.044 – volume: 4 start-page: 1800328 year: 2019 ident: 23020_CR57 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800328 – volume: 20 start-page: 1965 year: 2020 ident: 23020_CR10 publication-title: Sensors doi: 10.3390/s20071965 – volume: 4 start-page: eaav2949 year: 2019 ident: 23020_CR16 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aav2949 – volume: 32 start-page: 1902549 year: 2020 ident: 23020_CR39 publication-title: Adv. Mater. doi: 10.1002/adma.201902549 – volume: 2 start-page: 2000117 year: 2020 ident: 23020_CR61 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202000117 – volume: 1 start-page: 92 year: 2020 ident: 23020_CR23 publication-title: Smart Mater. Med. doi: 10.1016/j.smaim.2020.07.005 – volume: 3 start-page: eaat5954 year: 2018 ident: 23020_CR1 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat5954 – volume: 217 start-page: 2139 year: 2014 ident: 23020_CR59 publication-title: J. Exp. Biol. – volume: 57 start-page: 851 year: 2019 ident: 23020_CR34 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.002 – volume: 11 start-page: 7 year: 2019 ident: 23020_CR19 publication-title: Micromachines doi: 10.3390/mi11010007 – volume: 5 start-page: 1900978 year: 2020 ident: 23020_CR12 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900978 – volume: 36 start-page: 101016 year: 2021 ident: 23020_CR36 publication-title: Nano Today doi: 10.1016/j.nantod.2020.101016 – volume: 4 start-page: eaax2198 year: 2019 ident: 23020_CR29 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aax2198 – volume: 4 start-page: eaau9757 year: 2019 ident: 23020_CR15 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aau9757 – volume: 5 start-page: 1 year: 2014 ident: 23020_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms6747 – volume: 2 start-page: 1131 year: 2020 ident: 23020_CR17 publication-title: InfoMat doi: 10.1002/inf2.12122 – volume: 47 start-page: 1134 year: 2017 ident: 23020_CR2 publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2017.2700634 – volume: 6 start-page: 214 year: 2019 ident: 23020_CR52 publication-title: Soft Robot. doi: 10.1089/soro.2018.0006 – volume: 7 start-page: 2000261 year: 2020 ident: 23020_CR45 publication-title: Adv. Sci. doi: 10.1002/advs.202000261 – volume: 575 start-page: 473 year: 2019 ident: 23020_CR11 publication-title: Nature doi: 10.1038/s41586-019-1687-0 – volume: 3 start-page: eaat2516 year: 2018 ident: 23020_CR6 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat2516 – volume: 4 start-page: 1800626 year: 2019 ident: 23020_CR8 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800626 – volume: 58 start-page: 641 year: 2019 ident: 23020_CR42 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.091 – volume: 1 start-page: eaah3690 year: 2016 ident: 23020_CR3 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aah3690 – volume: 4 year: 2020 ident: 23020_CR47 publication-title: npj Flex. Electron. doi: 10.1038/s41528-020-00092-7 – volume: 6 start-page: 1901437 year: 2019 ident: 23020_CR50 publication-title: Adv. Sci. doi: 10.1002/advs.201901437 – volume: 6 start-page: eaaz8693 year: 2020 ident: 23020_CR44 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz8693 – volume: 14 start-page: 8915 year: 2020 ident: 23020_CR48 publication-title: ACS Nano doi: 10.1021/acsnano.0c03728 – volume: 3 start-page: 1 year: 2018 ident: 23020_CR5 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat1853 – volume: 6 start-page: eabb9083 year: 2020 ident: 23020_CR32 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb9083 – volume: 29 start-page: 1 year: 2019 ident: 23020_CR38 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900098 – volume: 360 start-page: 998 year: 2018 ident: 23020_CR14 publication-title: Science doi: 10.1126/science.aao0098 – volume: 29 start-page: 1 year: 2017 ident: 23020_CR21 publication-title: Adv. Mater. – volume: 9 start-page: 1 year: 2018 ident: 23020_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02685-9 – volume: 9 start-page: 4 year: 2016 ident: 23020_CR51 publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2016.2552201 – volume: 370 start-page: 848 year: 2020 ident: 23020_CR33 publication-title: Science doi: 10.1126/science.aba5504 – volume: 79 start-page: 105414 year: 2021 ident: 23020_CR9 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105414 – volume: 25 start-page: 2166 year: 2015 ident: 23020_CR35 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403828 – volume: 7 start-page: 2000015 year: 2020 ident: 23020_CR60 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000015 – volume: 19 start-page: 1700016 year: 2017 ident: 23020_CR4 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201700016 – volume: 3 start-page: e1700015 year: 2017 ident: 23020_CR37 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700015 – volume: 2020 start-page: 1 year: 2020 ident: 23020_CR26 publication-title: Research doi: 10.34133/2020/8910692 – volume: 32 start-page: 1904664 year: 2020 ident: 23020_CR49 publication-title: Adv. Mater. doi: 10.1002/adma.201904664 – volume: 7 start-page: 031305 year: 2020 ident: 23020_CR22 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0016485 – volume: 587 start-page: 219 year: 2020 ident: 23020_CR30 publication-title: Nature doi: 10.1038/s41586-020-2892-6 – volume: 4 year: 2020 ident: 23020_CR27 publication-title: npj Flex. Electron. doi: 10.1038/s41528-020-0071-3 – volume: 11 start-page: 207 year: 2011 ident: 23020_CR55 publication-title: Sensors doi: 10.3390/s110100207 – volume: 350 start-page: 313 year: 2015 ident: 23020_CR25 publication-title: Science doi: 10.1126/science.aaa9306 – volume: 3 start-page: 1 year: 2017 ident: 23020_CR41 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700694 – volume: 32 start-page: 1 year: 2020 ident: 23020_CR58 publication-title: Adv. Mater. |
SSID | ssj0000391844 |
Score | 2.65489 |
Snippet | Rapid developments of robotics and virtual reality technology are raising the requirements of more advanced human-machine interfaces for achieving efficient... Next-generation flexible and wearable sensors are a promising technology to enhance the functionality of human-machine interfaces. Here, the authors report... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2692 |
SubjectTerms | 639/166/987 639/166/988 Automation Computer applications Computer Simulation Data processing Degrees of freedom Equipment Design - economics Equipment Design - instrumentation Equipment Design - methods Exoskeleton Exoskeleton Device Exoskeletons Humanities and Social Sciences Humans Interfaces Joints - physiology Man-machine interfaces Movement - physiology multidisciplinary Orthotic Devices Physical properties Power consumption Range of Motion, Articular - physiology Robot arms Robotics Robotics - economics Robotics - instrumentation Robotics - methods Science Science (multidisciplinary) Sensors Upper Extremity - physiology Virtual reality Wearable technology Wrist |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6jr2ImdE2oRVYWAE5X2FvkxbldAXDZbQQ_8d8aOk2p59JQodiTHM-P57Jl8Q8hLrmrbKA-lUMKUouG8VDXegfZK4HajgRSK-fipOToW75f1Mh-4DTmtcloT00Ltgo1n5HtVXUWogP7_zdn3MlaNitHVXELjOrkRqctiSpdcyvmMJbKfKyHyvzILrvYGkVaGmJeA2Dv-PLzljxJt_7-w5t8pk3_ETZM7OrxDbmccSfdHwd8l16C_R26OlSUv7pNfH8IPasOwofAzDF_QtyDGo5HrItXrCmsaE95PqFmNPi0dCNJY_SqMhXFWlg64ww3rgUJ_mtIE6JR8SB3gLh1o8NTj1YVvue8FHYmhH5Djw3ef3x6VudJCaRGxbUqhpcWNstONrRsjvOTGmpZpxLTWGwe2rdu6wjYdw2gcUaVYgNQWWgFKmYY_JDt96OExodLw1ilrtHRGOCWNY6Z2aIvgGfNVUxA2zXdnMw15rIbxtUvhcK66UUYdyqhLMup4QV7N75yNJBxX9j6IYpx7RgLt9CCsT7psj5322nKpGOCnCwYMh4mKyqqFsq0GDwXZnZSgy1Y9dJc6WJAXczPaYwyy6B7CeeqDCKlFZFmQR6POzCPhEfxVDOdAbmnT1lC3W_rVaeL8Voxx0bQFeT3p3eWw_j8VT67-iqfkVhVNIZLRsl2ys1mfwzPEWBvzPBnSb1NUJvs priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIiQuiDeBgozEDQJ17CTOASFAVBWinFipN8t2xu2KEsNmK7oH_jtjJ1m0sHDilCi2JWcemW8y4xmAJ0KVrlIec6mkzWUlRK5KukPjlSR3o8IUijn6WB3O5Pvj8ngHpnZHIwH7ra5d7Cc1W5w9v_i2ekUK_3I4Mq5e9DKpe0w2IEAdTwRfgstkmeqoqEcj3E9fZtGQQyPHszPbl27Yp1TGfxv2_DOF8rc4ajJPB9fh2ogr2etBEG7ADnY34crQaXJ1C358CN-ZC_2S4UXoP5OtIczHYu2L1L8rLFhMgD9hdj7YuPSDkMVuWGFolDN3rCePNyx6ht1pShtgUzIia5G8dmTBM0_XNnwZ567YUCj6NswO3n16e5iPnRdyRwhumUtTO3KcW1O5srLS18I623BDGNd526JryqYsaMzEsJoglCn3sTYOG4lK2Urcgd0udHgPWG1F0ypnTd1a2arattyWLekmes59UWXAJ3prN5Ylj90xznQKjwulBx5p4pFOPNIig6frNV-Hohz_nP0msnE9MxbUTg_C4kSP-qmNN07UiiO9uuTIaZskuLzYV64x6DGDvUkI9CSkuiiLCF8Jk2bweD1M-hmDLqbDcJ7mEGJqCGlmcHeQmfVORASDBSca1BvStLHVzZFufppqgCvOhayaDJ5NcvdrW38nxf3_QYoHcLWIChNL2PI92F0uzvEhIbOlfZTU7Sep6DeI priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9UwEB7WFcGL-NvqKhG8afGlSdP0qA-XRdSTC3sLSTrZfaiNvL5F9-D_7iRtnzxdBU8tzRSmyUzzJTP5BuCZ0LVXOmAptXSlVEKUuqY7tEFLWm4ozKGY9x_U0bF8e1Kf7EE1n4XJSfuZ0jL_pufssJeDzC6dEgoINKdTv1fgaqJuT1a9VMvtvkpiPNdSTudjFkJf8urOHJSp-i_Dl3-mSf4WK81T0OFNuDFhR_Zq1PYW7GF_G66N1SQv7sCPd_Eb83HYMPweh080nxCuY4nfItfoimuWktxPmVuN81jeBGSp4lUci-GsPBtoVRvXA8P-LKcGsDnhkHVIK3NkMbBA1y5-mWQv2EgGfReOD998XB6VU3WF0hNK25TSNp4Wx51VvlZOhkY471puCcf64Dr0bd3WFbXZFDoThCTlAhvrsZWotVPiHuz3sccHwBon2k57Z5vOyU43ruOu7sj_MHAeKlUAn_vb-Il6PFXA-GxyCFxoM46RoTEyeYyMKOD59p2vI_HGP6Vfp2HcSibS7Pwgrk_NZETGButFoznSp0uOnNQk4-TVQvvWYsACDmYjMJMnD6aqqwRRCXcW8HTbTD6YAiu2x3ieZQgVtYQmC7g_2sxWE5EAX8WpD5oda9pRdbelX51lnm_NuZCqLeDFbHe_1Pp7Vzz8P_FHcL1KrpEIafkB7G_W5_iYcNbGPcmO9ROS3ySz priority: 102 providerName: Springer Nature |
Title | Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system |
URI | https://link.springer.com/article/10.1038/s41467-021-23020-3 https://www.ncbi.nlm.nih.gov/pubmed/33976216 https://www.proquest.com/docview/2525226324 https://www.proquest.com/docview/2526139250 https://pubmed.ncbi.nlm.nih.gov/PMC8113469 https://doaj.org/article/afac3781e4a741e1bd14631208c9aefe |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4k2grIzEDaLWseM4x-2qS7WiFQIq7c2ynQldATHabAU98N8Z29mly_PCJYlsR7Lm4fkmM5kh5BlXpZOqhVwoYXMhOc9ViU9gWiXQ3ZAQQzHHJ_LoVMzm5fxSq6-QE5bKAyfC7ZnWOF4pBsKg8QNmG9Rtzop95WoDLYTTF23eJWcqnsG8RtdFDH_J7HO114t4JoSMBETd4bfhLUsUC_b_DmX-miz5U8Q0GqLpLXJzQJB0nHZ-m1yB7g65nnpKXtwl3175L9T5fkXhq-8_oFVBdEdDlYvYqcsvaUh1f0_tIlmz-CmQhr5XPrXEWTjao2_rlz2F7iwmCNB12iFtAP1zoL6lLd4b_2lYe0FTSeh75HR6-G5ylA89FnKHWG2VI1UdusiNka6UVrQVt87WzCCada1twNVlXRY4Z0IAjSOeFPtQGQe1AKWs5PfJTuc7eEhoZXndKGdN1VjRqAo5ZcsGtRBaxtpCZoSt6a3dUIA89MH4qGMgnCudeKSRRzrySPOMPN-88zmV3_jr6oPAxs3KUDo7DqBA6UGg9L8EKiO7ayHQgz73uiiLAFQRfWbk6WYaNTGEV0wH_jyuQWxUI6bMyIMkM5ud8AD7CoY0qLakaWur2zPd4ixW-1aMcSHrjLxYy92Pbf2ZFI_-BykekxtFUJhQrJbtkp3V8hyeIAZb2RG5Ws0rvKrpyxG5Nh7P3s7wfnB48voNjk7kZBQVEq_HQn0HutY29A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4i6jp3EOSDEq9rSbU-ttDdjO5PtChq3m63KHvhL_EbGTrLV8uitp43W3pXjmfF89oznI-Qll6nNZAWxkMLEIuM8lik-ga6kwO1GBiEUs7efDQ_Fl3E6XiO_-rswPq2yXxPDQl0668_It5I08VAB_f-7k9PYs0b56GpPodGqxS4sznHL1rzd-YTyfZUk258PPg7jjlUgtohO5rHQucVNYakzm2ZGVDk31hRMI36zlSnBFmmRJtimfciII4ISA8i1hUKAlCbj-L_XyHV0vANvUfk4X57p-GrrUojubs6Ay61GhJXI50Eg1veXlVf8X6AJ-Be2_TtF8484bXB_23fI7Q630vetot0la1DfIzdaJsvFffJz5M6pdc2cwg_XfENfhpiS-toagR_MzahPsJ9QM219aDiApJ5ty7VEPFNLG9xRu1lDoT4KaQm0T3akJUxmANRVtMLP0h13fRe0LUT9gBxeiQwekvXa1fCI0NzwopTW6Lw0opS5KZlJS7R9qBirkiwirJ9vZbuy555947sK4XcuVSsjhTJSQUaKR-T18jcnbdGPS3t_8GJc9vQFu8MXbjZRnf0rXWnLc8kAX10wYDhMNAyWDKQtNFQQkc1eCVS3ijTqQucj8mLZjPbvgzq6BncW-iAiKxDJRmSj1ZnlSLgHmwnDOchXtGllqKst9fQo1BiXjHGRFRF50-vdxbD-PxWPL3-L5-Tm8GBvpEY7-7tPyK3Em4UvhMs2yfp8dgZPEd_NzbNgVJR8vWor_g1BMWRy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkCBYwEJ4h2HTuxc0AIKKuWlooDlfZmbMferqBxu9mq7IE_xq9j7CRbLY_eekoUO5HjeX32jGcQek5FbgrhbMoE0ykrKE1FDndWOcFguVHY6Ir5tF9sH7CP43y8hn71Z2FCWGWvE6OirrwJe-SDLM8CVAD7P3BdWMTnrdGb45M0VJAKnta-nEbLIrt2cQbLt-b1zhbQ-kWWjT58eb-ddhUGUgNIZZ4yxQ0sECtVmLzQzHGqjS6JAixnnK6sKfMyz6BNBfcRBTTFhpYrY0tmhdAFhe9eQVc5zUmQMT7my_2dkHldMNad0xlSMWhY1EohJgJwfzi4vGILY8mAf-Hcv8M1__DZRlM4uoVudhgWv22Z7jZas_UddK2tarm4i37u-TNsfDPH9odvvoFdA3yJQ56NWCvMz3AItp9gPW3tadyMxKHylm-L8kwNbmB17WcNtvVhDFHAfeAjruxkZi32Dju4Vv6o67vAbVLqe-jgUmhwH63XvrYPEOaalpUwWvFKs0pwXRGdV6AHrCPEZUWCSD_f0nQp0EMlju8yuuKpkC2NJNBIRhpJmqCXy3eO2wQgF_Z-F8i47BmSd8cHfjaRnS6QyilDuSAWfp0RS2CYICQkGwpTKutsgjZ7JpCdRmnkOf8n6NmyGXRBcPCo2vrT2AfQWQmoNkEbLc8sR0ID8MwIzAFf4aaVoa621NPDmG9cEEJZUSboVc9358P6_1Q8vPgvnqLrIL9yb2d_9xG6kQWpCDlxySZan89O7WOAenP9JMoURl8vW4h_A8TUaKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+cost+exoskeleton+manipulator+using+bidirectional+triboelectric+sensors+enhanced+multiple+degree+of+freedom+sensory+system&rft.jtitle=Nature+communications&rft.au=Minglu+Zhu&rft.au=Zhongda+Sun&rft.au=Tao+Chen&rft.au=Chengkuo+Lee&rft.date=2021-05-11&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1038%2Fs41467-021-23020-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_afac3781e4a741e1bd14631208c9aefe |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |