The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics
Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c)...
Saved in:
Published in | Scientific data Vol. 9; no. 1; pp. 453 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.07.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the “University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics” (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with
de novo
glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.
Measurement(s)
Magnetic Resonance Imaging
Technology Type(s)
Magnetic Resonance Imaging of the Brain with and without Contrast
Sample Characteristic - Organism
Homo sapiens
Sample Characteristic - Environment
brain
Sample Characteristic - Location
United States of America |
---|---|
AbstractList | Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments. Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the “University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics” (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments. Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments. Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the “University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics” (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments. Measurement(s) Magnetic Resonance Imaging Technology Type(s) Magnetic Resonance Imaging of the Brain with and without Contrast Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment brain Sample Characteristic - Location United States of America Measurement(s) Magnetic Resonance Imaging Technology Type(s) Magnetic Resonance Imaging of the Brain with and without Contrast Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment brain Sample Characteristic - Location United States of America Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the “University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics” (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.Measurement(s)Magnetic Resonance ImagingTechnology Type(s)Magnetic Resonance Imaging of the Brain with and without ContrastSample Characteristic - OrganismHomo sapiensSample Characteristic - EnvironmentbrainSample Characteristic - LocationUnited States of America |
ArticleNumber | 453 |
Author | Parker, William Bergman, Mark Shukla, Gaurav Baid, Ujjwal Lustig, Robert A. Santamaría, Natali Flores Bagley, Stephen J. Rathore, Saima Akbari, Hamed Bilello, Michel Brem, Steven Watt, Christopher D. O’Rourke, Donald M. Binder, Zev A. Desai, Arati S. Verma, Ragini Kazerooni, Anahita Fathi Sotiras, Aristeidis Bakas, Spyridon Mamourian, Elizabeth Ha, Sung Min Doshi, Jimit Sako, Chiharu Morrissette, Jennifer Nasrallah, MacLean P. Davatzikos, Christos Melhem, Elias R. Mourelatos, Zissimos Pati, Sarthak Wolf, Ronald L. Mohan, Suyash Rudie, Jeffrey D. |
Author_xml | – sequence: 1 givenname: Spyridon orcidid: 0000-0001-8734-6482 surname: Bakas fullname: Bakas, Spyridon organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania – sequence: 2 givenname: Chiharu orcidid: 0000-0003-3243-3954 surname: Sako fullname: Sako, Chiharu organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 3 givenname: Hamed orcidid: 0000-0001-9786-3707 surname: Akbari fullname: Akbari, Hamed organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 4 givenname: Michel orcidid: 0000-0001-6313-5437 surname: Bilello fullname: Bilello, Michel organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 5 givenname: Aristeidis orcidid: 0000-0003-0795-8820 surname: Sotiras fullname: Sotiras, Aristeidis organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Radiology and Institute for Informatics, Washington University, School of Medicine – sequence: 6 givenname: Gaurav orcidid: 0000-0001-7605-9365 surname: Shukla fullname: Shukla, Gaurav organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Radiation Oncology, Christiana Care Health System – sequence: 7 givenname: Jeffrey D. orcidid: 0000-0001-8609-8421 surname: Rudie fullname: Rudie, Jeffrey D. organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Radiology & Biomedical Imaging, University of California, San Francisco – sequence: 8 givenname: Natali Flores orcidid: 0000-0003-1024-2428 surname: Santamaría fullname: Santamaría, Natali Flores organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 9 givenname: Anahita Fathi orcidid: 0000-0001-7131-2261 surname: Kazerooni fullname: Kazerooni, Anahita Fathi organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 10 givenname: Sarthak orcidid: 0000-0003-2243-8487 surname: Pati fullname: Pati, Sarthak organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 11 givenname: Saima orcidid: 0000-0002-9818-2978 surname: Rathore fullname: Rathore, Saima organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 12 givenname: Elizabeth orcidid: 0000-0001-8581-4887 surname: Mamourian fullname: Mamourian, Elizabeth organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 13 givenname: Sung Min orcidid: 0000-0002-3526-9101 surname: Ha fullname: Ha, Sung Min organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Radiology and Institute for Informatics, Washington University, School of Medicine – sequence: 14 givenname: William orcidid: 0000-0001-8017-0525 surname: Parker fullname: Parker, William organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 15 givenname: Jimit orcidid: 0000-0002-2875-5814 surname: Doshi fullname: Doshi, Jimit organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 16 givenname: Ujjwal orcidid: 0000-0001-5246-2088 surname: Baid fullname: Baid, Ujjwal organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania – sequence: 17 givenname: Mark orcidid: 0000-0003-1220-6906 surname: Bergman fullname: Bergman, Mark organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania – sequence: 18 givenname: Zev A. orcidid: 0000-0003-1158-231X surname: Binder fullname: Binder, Zev A. organization: Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania – sequence: 19 givenname: Ragini orcidid: 0000-0002-7479-1007 surname: Verma fullname: Verma, Ragini organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 20 givenname: Robert A. orcidid: 0000-0003-0633-3802 surname: Lustig fullname: Lustig, Robert A. organization: Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania – sequence: 21 givenname: Arati S. orcidid: 0000-0002-4849-4703 surname: Desai fullname: Desai, Arati S. organization: Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania – sequence: 22 givenname: Stephen J. orcidid: 0000-0002-7117-0539 surname: Bagley fullname: Bagley, Stephen J. organization: Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania – sequence: 23 givenname: Zissimos orcidid: 0000-0002-9852-1845 surname: Mourelatos fullname: Mourelatos, Zissimos organization: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania – sequence: 24 givenname: Jennifer orcidid: 0000-0001-9460-7177 surname: Morrissette fullname: Morrissette, Jennifer organization: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania – sequence: 25 givenname: Christopher D. surname: Watt fullname: Watt, Christopher D. organization: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania – sequence: 26 givenname: Steven orcidid: 0000-0002-5803-8920 surname: Brem fullname: Brem, Steven organization: Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania – sequence: 27 givenname: Ronald L. orcidid: 0000-0003-1887-3697 surname: Wolf fullname: Wolf, Ronald L. organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania – sequence: 28 givenname: Elias R. surname: Melhem fullname: Melhem, Elias R. organization: Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine – sequence: 29 givenname: MacLean P. orcidid: 0000-0003-4861-0898 surname: Nasrallah fullname: Nasrallah, MacLean P. organization: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania – sequence: 30 givenname: Suyash orcidid: 0000-0002-4025-115X surname: Mohan fullname: Mohan, Suyash organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 31 givenname: Donald M. orcidid: 0000-0002-8479-7314 surname: O’Rourke fullname: O’Rourke, Donald M. organization: Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania – sequence: 32 givenname: Christos orcidid: 0000-0002-1025-8561 surname: Davatzikos fullname: Davatzikos, Christos email: christos.davatzikos@pennmedicine.upenn.edu organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35906241$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ul1rFDEUHaRiP-wf8EECglTY0ZtkvuKDUIvWhRZFus8hk7mzmyWT1GR2Yf-92d1W2z4UAknuPedwuPccZwfOO8yyNxQ-UuDNp1jQUtQ5MJYDLSvI6xfZEYOS5UVR8YMH78PsNMYlAFBeQFnDq-yQlwIqVtCjbLhZIJk5s8YQzbghvie_0Lm4sWvljCJza3xrVRz9oMjZbNvLL79efyDaL3wYPxPVJaDGjlz_nk6ItsYZreyEzNH5weg4Ie9JUJ3ZfV5nL3tlI57e3SfZ7Pu3m4sf-dXPy-nF-VWuywLGvOBFV9UNpkMFUNa3DJuKY4tQ9ly3PaVcAO9VpxBa3rKKAjCNVYut4Aj8JJvudTuvlvI2mEGFjfTKyF3Bh7lUYTTaoiy7sk2jRK6aqqBCCKpQ9B1qqFO51Unry17rdtUO2Gl0Y1D2kejjjjMLOfdrKThvgJdJ4OxOIPg_K4yjHEzUaK1y6FdRskpUTdolZQn67gl06VfBpVHtULzmVNQJ9faho39W7reaAM0eoIOPMWAvtRnVaPzWoLGSgtxmSO4zJFOG5C5DcqvNnlDv1Z8l8T0pJrCbY_hv-xnWXy0T19E |
CitedBy_id | crossref_primary_10_1038_s41598_025_88458_7 crossref_primary_10_1038_s41598_024_70367_w crossref_primary_10_1016_j_bspc_2024_107220 crossref_primary_10_1002_mrm_30226 crossref_primary_10_1007_s00530_023_01210_x crossref_primary_10_1016_j_bspc_2023_105122 crossref_primary_10_1038_s41597_023_02675_1 crossref_primary_10_3390_jimaging11010008 crossref_primary_10_3389_fonc_2024_1488616 crossref_primary_10_1002_jmri_29572 crossref_primary_10_1088_2057_1976_ad6573 crossref_primary_10_1162_imag_a_00446 crossref_primary_10_1093_noajnl_vdae122 crossref_primary_10_1186_s43046_024_00217_3 crossref_primary_10_1002_mrm_30053 crossref_primary_10_1016_j_neuroimage_2025_121016 crossref_primary_10_1007_s00234_024_03503_y crossref_primary_10_3390_tomography10090105 crossref_primary_10_1016_j_compbiomed_2024_108799 crossref_primary_10_1016_j_nicl_2024_103668 crossref_primary_10_1007_s11831_024_10188_2 crossref_primary_10_1093_noajnl_vdae159 crossref_primary_10_7759_cureus_51963 crossref_primary_10_1186_s13244_023_01556_w crossref_primary_10_1093_noajnl_vdae197 crossref_primary_10_25305_unj_310442 crossref_primary_10_1200_CCI_23_00266 crossref_primary_10_3340_jkns_2024_0100 crossref_primary_10_1007_s00234_024_03329_8 crossref_primary_10_1093_noajnl_vdae180 crossref_primary_10_1038_s43856_024_00489_9 crossref_primary_10_1148_ryai_230489 crossref_primary_10_3390_cancers16213614 crossref_primary_10_1016_j_bspc_2024_106599 crossref_primary_10_1007_s00062_023_01277_z crossref_primary_10_1016_j_mri_2024_05_012 crossref_primary_10_1016_S1470_2045_24_00315_2 crossref_primary_10_1038_s41597_022_01881_7 crossref_primary_10_1093_neuonc_noad202 crossref_primary_10_3390_jimaging8120321 crossref_primary_10_1016_j_vesic_2024_100059 crossref_primary_10_1109_TIM_2025_3545983 crossref_primary_10_1177_00368504231223353 crossref_primary_10_1016_j_compbiomed_2024_109140 crossref_primary_10_1016_j_procs_2024_06_287 crossref_primary_10_1038_s41598_024_55072_y crossref_primary_10_1038_s41698_024_00789_2 crossref_primary_10_1186_s13244_024_01848_9 crossref_primary_10_3390_cancers16152740 crossref_primary_10_1117_1_JMI_11_5_054001 crossref_primary_10_1002_jemt_24822 crossref_primary_10_3389_fonc_2025_1433444 crossref_primary_10_1002_jmri_29101 crossref_primary_10_1038_s44303_024_00020_8 crossref_primary_10_1109_ACCESS_2024_3431885 crossref_primary_10_1038_s43856_025_00767_0 crossref_primary_10_3390_biomedicines10123029 |
Cites_doi | 10.1093/neuonc/not049 10.3171/2014.9.FOCUS14521 10.1016/j.jneumeth.2016.03.001 10.7937/TCIA.709X-DN49 10.1038/srep37241 10.1002/hbm.20312 10.3389/fnins.2013.00031 10.1200/JCO.2018.36.15_suppl.2051 10.1038/s41598-018-22739-2 10.1002/cncr.32790 10.3174/ajnr.A3253 10.1038/s41598-017-18310-0 10.1016/j.neuroimage.2020.117081 10.1158/1078-0432.CCR-16-1871 10.1007/s00401-018-1826-y 10.1093/neuonc/nox168.616 10.3174/ajnr.A0484 10.1093/neuonc/noaa045 10.1148/radiol.14132458 10.1117/1.JMI.5.1.011018 10.1146/annurev-bioeng-062117-121105 10.1016/j.ejrad.2009.01.050 10.1038/onc.2012.280 10.1177/2374289519848353 10.1093/neuonc/nov127 10.1148/radiol.13120118 10.1200/CCI.19.00121 10.1148/radiol.14131731 10.1016/S0146-664X(75)80008-6 10.1038/s41551-019-0414-3 10.1007/s10278-013-9622-7 10.1016/j.media.2016.10.004 10.1001/jama.2017.18718 10.1016/j.cell.2013.09.034 10.1093/neuonc/noy148.766 10.1093/neuonc/nov119 10.1158/1078-0432.CCR-15-2529 10.1109/83.725367 10.1002/jmri.26907 10.1111/febs.12393 10.1016/j.ccell.2018.06.006 10.1093/neuonc/nos335 10.1109/TPAMI.2002.1017623 10.1007/s00401-020-02127-9 10.1117/1.JMI.5.2.021219 10.1073/pnas.1219747110 10.3389/fncom.2019.00081 10.1016/0167-8655(90)90112-F 10.1109/TMI.2010.2046908 10.1007/s00401-016-1545-1 10.1016/j.ccr.2011.11.005 10.1148/radiol.14131691 10.1007/s00401-018-1808-0 10.1016/j.neurad.2014.02.006 10.1227/NEU.0000000000001202 10.1007/s00401-019-01987-0 10.1109/42.668698 10.1093/neuonc/noy033 10.1371/journal.pone.0198548 10.1016/j.neuroimage.2006.01.015 10.1016/j.bspc.2019.101648 10.1007/s00401-018-1913-0 10.1093/neuonc/noaa160 10.1016/j.mri.2019.04.012 10.1016/j.tranon.2015.03.002 10.1126/science.aaf2666 10.1007/s12021-018-9385-x 10.1109/TMI.2004.828354 10.1038/sdata.2016.18 10.3389/fninf.2014.00013 10.1126/science.1254257 10.1016/0167-8655(91)80014-2 10.1016/j.neuroimage.2004.07.068 10.1093/noajnl/vdaa128 10.1371/journal.pone.0025451 10.1109/21.44046 10.1126/scitranslmed.aaa7582 10.1038/ng.3590 10.1148/radiol.2492071659 10.1148/radiol.2020191145 10.3174/ajnr.A4374 10.1016/j.jacr.2015.04.019 10.1117/1.JMI.7.3.031505 10.1002/jmri.24756 10.1158/1538-7445.AM2019-1392 10.1109/TMI.2014.2377694 10.1109/TSMC.1973.4309314 10.1136/jitc-2020-001752 10.1111/bpa.12832 10.1007/978-3-319-75238-9_12 10.1007/978-3-030-46643-5_38 10.1093/neuonc/now212.441 10.1093/neuonc/now212.214 10.1148/radiol.12120871 10.1007/978-3-030-72087-2_11 10.1093/neuonc/now212.523 10.1007/978-3-030-11723-8_24 10.1093/neuonc/now212.532 10.1007/978-3-319-12289-2_1 10.1111/bpa.12866 10.1038/srep08423 10.1007/978-3-030-72084-1_36 10.1002/hbm.20906 10.1093/neuonc/now212.183 10.1142/S0218001413570024 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41597-022-01560-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2052-4463 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_5d5b415e3a86419991ae9fdec07415bc PMC9338035 35906241 10_1038_s41597_022_01560_7 |
Genre | Dataset Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) – fundername: U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS) grantid: UL1TR001878 funderid: https://doi.org/10.13039/100006108 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: U01CA242871; U24CA189523; U01CA242871 funderid: https://doi.org/10.13039/100000054 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: R01NS042645 funderid: https://doi.org/10.13039/100000065 – fundername: NCI NIH HHS grantid: U01 CA242871 – fundername: U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS) grantid: UL1TR001878 – fundername: NINDS NIH HHS grantid: R01 NS042645 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: R01NS042645 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: U24CA189523 – fundername: NCI NIH HHS grantid: R01 CA269948 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: U01CA242871 – fundername: NIH HHS grantid: S10 OD023495 – fundername: ; – fundername: ; grantid: U01CA242871; U24CA189523; U01CA242871 – fundername: ; grantid: R01NS042645 – fundername: ; grantid: UL1TR001878 |
GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-434d678e78e19012fb2e863ebe05f3cbf113903fadae0b3b261002ce6beb93e03 |
IEDL.DBID | M48 |
ISSN | 2052-4463 |
IngestDate | Wed Aug 27 01:31:52 EDT 2025 Thu Aug 21 18:33:55 EDT 2025 Tue Aug 05 08:40:41 EDT 2025 Wed Aug 13 07:16:37 EDT 2025 Thu Jan 02 22:53:09 EST 2025 Tue Jul 01 00:38:55 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Fri Feb 21 02:37:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-434d678e78e19012fb2e863ebe05f3cbf113903fadae0b3b261002ce6beb93e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0002-2875-5814 0000-0003-0795-8820 0000-0002-3526-9101 0000-0003-3243-3954 0000-0001-8734-6482 0000-0001-7131-2261 0000-0002-8479-7314 0000-0002-7117-0539 0000-0002-4849-4703 0000-0001-8017-0525 0000-0002-9852-1845 0000-0002-7479-1007 0000-0001-9460-7177 0000-0003-2243-8487 0000-0001-7605-9365 0000-0003-4861-0898 0000-0003-0633-3802 0000-0003-1024-2428 0000-0001-9786-3707 0000-0001-6313-5437 0000-0003-1220-6906 0000-0003-1158-231X 0000-0001-5246-2088 0000-0001-8581-4887 0000-0003-1887-3697 0000-0001-8609-8421 0000-0002-1025-8561 0000-0002-5803-8920 0000-0002-4025-115X 0000-0002-9818-2978 |
OpenAccessLink | https://www.proquest.com/docview/2696373197?pq-origsite=%requestingapplication% |
PMID | 35906241 |
PQID | 2696373197 |
PQPubID | 2041912 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5d5b415e3a86419991ae9fdec07415bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_9338035 proquest_miscellaneous_2696859712 proquest_journals_2696373197 pubmed_primary_35906241 crossref_citationtrail_10_1038_s41597_022_01560_7 crossref_primary_10_1038_s41597_022_01560_7 springer_journals_10_1038_s41597_022_01560_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-29 |
PublicationDateYYYYMMDD | 2022-07-29 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific data |
PublicationTitleAbbrev | Sci Data |
PublicationTitleAlternate | Sci Data |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rutman, Kuo (CR72) 2009; 70 Fathi Kazerooni, Bakas, Saligheh Rad, Davatzikos (CR101) 2020; 52 Aum (CR4) 2014; 37 Prasanna, Tiwari, Madabhushi (CR36) 2016; 6 Sottoriva (CR3) 2013; 110 CR33 CR30 Prah (CR27) 2015; 36 Gerstner (CR20) 2016; 22 Li, Morgan, Ashburner, Smith, Rorden (CR125) 2016; 264 Ellison (CR45) 2019; 137 Beig (CR88) 2018; 8 Mazurowski (CR73) 2015; 12 Rathore (CR96) 2018; 5 Fathi Kazerooni (CR109) 2020; 4 Puchalski (CR23) 2018; 360 Bakas (CR86) 2018; 20 Chu, Sehgal, Greenleaf (CR114) 1990; 11 Rathore (CR100) 2019; 13 CR49 Akbari (CR39) 2020; 126 CR47 CR41 Gan, Cvrljevic, Johns (CR10) 2013; 280 Davatzikos (CR35) 2018; 5 Menze (CR17) 2015; 34 Boxerman (CR25) 2013; 15 Nasrallah (CR32) 2019; 6 Ellingson (CR79) 2013; 34 Brennan (CR2) 2013; 155 Cha (CR67) 2007; 28 Gevaert (CR75) 2014; 273 CR59 Wang (CR7) 2016; 48 CR56 McCormick, Liu, Ibanez, Jomier, Marion (CR124) 2014; 8 Velazquez (CR94) 2015; 5 CR50 Akbari (CR11) 2014; 273 Wilkinson (CR123) 2016; 3 Rathore (CR81) 2019; 79 Lemée, Clavreul, Menei (CR6) 2015; 17 Bakas (CR37) 2021 Paulson, Schmainda (CR66) 2008; 249 Del Vecchio (CR9) 2013; 32 Brat (CR46) 2020; 139 CR63 CR62 CR60 Bakas (CR14) 2017; 23 Patel (CR5) 2014; 344 Kamnitsas (CR61) 2017; 36 Bakas (CR16) 2017; 4 Soares, Marques, Alves, Sousa (CR65) 2013; 7 Yushkevich (CR120) 2006; 31 CR78 Mang, Bakas, Subramanian, Davatzikos, Biros (CR70) 2020; 22 Bakas (CR85) 2015; 17 Warfield, Zou, Wells (CR64) 2004; 23 CR111 CR112 CR71 Tustison (CR55) 2010; 29 CR110 Louis (CR43) 2018; 135 Gutman (CR89) 2013; 267 Bonekamp (CR92) 2015; 42 Zwanenburg (CR34) 2020; 295 CR117 Snuderl (CR8) 2011; 20 Rathore (CR83) 2018; 36 Yushkevich (CR121) 2019; 17 Jain (CR76) 2014; 272 Amadasun, King (CR118) 1989; 19 Bischoff-Grethe (CR57) 2007; 28 Akbari (CR68) 2018; 20 Galloway (CR113) 1975; 4 Binder (CR87) 2018; 34 Dasarathy, Holder (CR115) 1991; 12 Jafari-Khouzani (CR28) 2015; 8 Ojala, Pietikainen, Maenpaa (CR119) 2002; 24 Sled, Zijdenbos, Evans (CR54) 1998; 17 CR84 CR122 Yushkevich (CR52) 2016; 12 Brat (CR44) 2018; 136 Tang (CR116) 1998; 7 CR80 Mazurowski, Desjardins, Malof (CR90) 2013; 15 Nicolasjilwan (CR93) 2015; 42 Ratai (CR21) 2018; 13 Clark (CR31) 2013; 26 Stupp (CR1) 2017; 318 Zinn (CR74) 2011; 6 Pei (CR105) 2020; 55 CR19 Louis (CR42) 2018; 135 CR18 Bakas (CR106) 2020; 22 CR15 CR13 CR12 Macyszyn (CR97) 2015; 18 Bakas (CR69) 2020; 7 CR98 Davatzikos (CR102) 2019; 64 Akbari (CR95) 2016; 78 Thakur (CR58) 2020; 220 Ellison (CR48) 2020; 30 Itakura (CR77) 2015; 7 Rathore (CR99) 2018; 8 Bakas, Feldman (CR38) 2019; 3 Rathore (CR82) 2018; 20 Joshi, Davis, Jomier, Gerig (CR53) 2004; 23 CR29 Rohlfing, Zahr, Sullivan, Pfefferbaum (CR51) 2010; 5 CR26 CR24 CR22 Rathore (CR108) 2020; 2 CR103 Bakas (CR91) 2017; 19 Davatzikos (CR104) 2020; 22 Louis (CR40) 2016; 131 CR107 1560_CR98 S Bakas (1560_CR38) 2019; 3 J Soares (1560_CR65) 2013; 7 R Jain (1560_CR76) 2014; 272 ER Velazquez (1560_CR94) 2015; 5 A Fathi Kazerooni (1560_CR101) 2020; 52 1560_CR19 S Bakas (1560_CR91) 2017; 19 1560_CR122 J Wang (1560_CR7) 2016; 48 1560_CR13 A Chu (1560_CR114) 1990; 11 1560_CR12 1560_CR18 S Rathore (1560_CR81) 2019; 79 1560_CR15 DN Louis (1560_CR40) 2016; 131 S Joshi (1560_CR53) 2004; 23 SK Warfield (1560_CR64) 2004; 23 B Ellingson (1560_CR79) 2013; 34 S Rathore (1560_CR96) 2018; 5 JG Sled (1560_CR54) 1998; 17 H Itakura (1560_CR77) 2015; 7 H Akbari (1560_CR68) 2018; 20 DJ Brat (1560_CR44) 2018; 136 1560_CR24 1560_CR22 H Akbari (1560_CR39) 2020; 126 ZA Binder (1560_CR87) 2018; 34 1560_CR29 A Bischoff-Grethe (1560_CR57) 2007; 28 1560_CR26 S Bakas (1560_CR85) 2015; 17 CW Brennan (1560_CR2) 2013; 155 AM Rutman (1560_CR72) 2009; 70 L Pei (1560_CR105) 2020; 55 RB Puchalski (1560_CR23) 2018; 360 1560_CR30 M Galloway (1560_CR113) 1975; 4 S Rathore (1560_CR82) 2018; 20 ER Gerstner (1560_CR20) 2016; 22 S Thakur (1560_CR58) 2020; 220 PA Yushkevich (1560_CR52) 2016; 12 1560_CR103 AP Patel (1560_CR5) 2014; 344 T Ojala (1560_CR119) 2002; 24 A Fathi Kazerooni (1560_CR109) 2020; 4 HK Gan (1560_CR10) 2013; 280 K Jafari-Khouzani (1560_CR28) 2015; 8 P Prasanna (1560_CR36) 2016; 6 1560_CR33 1560_CR107 S Rathore (1560_CR83) 2018; 36 M Snuderl (1560_CR8) 2011; 20 ES Paulson (1560_CR66) 2008; 249 1560_CR41 S Rathore (1560_CR108) 2020; 2 D Bonekamp (1560_CR92) 2015; 42 A Sottoriva (1560_CR3) 2013; 110 S Cha (1560_CR67) 2007; 28 1560_CR117 DJ Brat (1560_CR46) 2020; 139 1560_CR112 1560_CR110 1560_CR111 1560_CR47 PA Yushkevich (1560_CR121) 2019; 17 1560_CR49 1560_CR50 NJ Tustison (1560_CR55) 2010; 29 A Mang (1560_CR70) 2020; 22 C Del Vecchio (1560_CR9) 2013; 32 S Bakas (1560_CR37) 2021 DW Ellison (1560_CR45) 2019; 137 PO Zinn (1560_CR74) 2011; 6 E-M Ratai (1560_CR21) 2018; 13 X Tang (1560_CR116) 1998; 7 1560_CR56 DA Gutman (1560_CR89) 2013; 267 C Davatzikos (1560_CR102) 2019; 64 1560_CR59 M Amadasun (1560_CR118) 1989; 19 1560_CR60 T Rohlfing (1560_CR51) 2010; 5 1560_CR63 1560_CR62 M Prah (1560_CR27) 2015; 36 K Kamnitsas (1560_CR61) 2017; 36 DW Ellison (1560_CR48) 2020; 30 H Akbari (1560_CR11) 2014; 273 C Davatzikos (1560_CR104) 2020; 22 S Bakas (1560_CR69) 2020; 7 MD Wilkinson (1560_CR123) 2016; 3 BV Dasarathy (1560_CR115) 1991; 12 DJ Aum (1560_CR4) 2014; 37 A Zwanenburg (1560_CR34) 2020; 295 JL Boxerman (1560_CR25) 2013; 15 1560_CR71 S Bakas (1560_CR86) 2018; 20 M Nicolasjilwan (1560_CR93) 2015; 42 O Gevaert (1560_CR75) 2014; 273 DN Louis (1560_CR42) 2018; 135 L Macyszyn (1560_CR97) 2015; 18 MM McCormick (1560_CR124) 2014; 8 BH Menze (1560_CR17) 2015; 34 MA Mazurowski (1560_CR90) 2013; 15 MA Mazurowski (1560_CR73) 2015; 12 N Beig (1560_CR88) 2018; 8 S Bakas (1560_CR14) 2017; 23 S Bakas (1560_CR16) 2017; 4 K Clark (1560_CR31) 2013; 26 J-M Lemée (1560_CR6) 2015; 17 1560_CR78 S Rathore (1560_CR100) 2019; 13 1560_CR80 H Akbari (1560_CR95) 2016; 78 1560_CR84 MP Nasrallah (1560_CR32) 2019; 6 X Li (1560_CR125) 2016; 264 PA Yushkevich (1560_CR120) 2006; 31 S Rathore (1560_CR99) 2018; 8 S Bakas (1560_CR106) 2020; 22 C Davatzikos (1560_CR35) 2018; 5 R Stupp (1560_CR1) 2017; 318 DN Louis (1560_CR43) 2018; 135 |
References_xml | – volume: 15 start-page: 945 year: 2013 end-page: 954, 07 ident: CR25 article-title: Early post-bevacizumab progression on contrast-enhanced MRI as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 Central Reader Study publication-title: Neuro-Oncology doi: 10.1093/neuonc/not049 – ident: CR22 – volume: 37 start-page: E11 issue: no. 6 year: 2014 ident: CR4 article-title: Molecular and cellular heterogeneity: the hallmark of glioblastoma publication-title: Neurosurgical focus doi: 10.3171/2014.9.FOCUS14521 – volume: 264 start-page: 47 year: 2016 end-page: 56 ident: CR125 article-title: The first step for neuroimaging data analysis: Dicom to nifti conversion publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2016.03.001 – year: 2021 ident: CR37 publication-title: The Cancer Imaging Archive doi: 10.7937/TCIA.709X-DN49 – volume: 6 year: 2016 ident: CR36 article-title: Co-occurrence of local anisotropic gradient orientations (collage): a new radiomics descriptor publication-title: Scientific reports doi: 10.1038/srep37241 – volume: 30 start-page: 863 issue: no. 5 year: 2020 end-page: 866 ident: CR48 article-title: cimpact-now update 7: Advancing the molecular classification of ependymal tumors publication-title: Brain Pathology – ident: CR80 – volume: 28 start-page: 892 issue: no. 9 year: 2007 end-page: 903 ident: CR57 article-title: A technique for the deidentification of structural brain mr images publication-title: Human brain mapping doi: 10.1002/hbm.20312 – volume: 5 start-page: 1 issue: no. 1 year: 2015 end-page: 10 ident: CR94 article-title: Fully automatic gbm segmentation in the tcga-gbm dataset: Prognosis and correlation with vasari features publication-title: Scientific reports – volume: 12 start-page: P126 issue: no. 7 year: 2016 end-page: P127 ident: CR52 article-title: Fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 tesla and 7 tesla t2-weighted mri publication-title: Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association – ident: CR71 – ident: CR19 – volume: 7 start-page: 31 year: 2013 ident: CR65 article-title: A hitchhiker’s guide to diffusion tensor imaging publication-title: Frontiers in neuroscience doi: 10.3389/fnins.2013.00031 – volume: 36 start-page: 2051 year: 2018 end-page: 2051 ident: CR83 article-title: Non-invasive determination of the o6-methylguanine-dna-methyltransferase (mgmt) promoter methylation status in glioblastoma (gbm) using magnetic resonance imaging (mri) publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2018.36.15_suppl.2051 – volume: 8 start-page: 1 issue: no. 1 year: 2018 end-page: 12 ident: CR99 article-title: Radiomic mri signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond idh1 publication-title: Scientific reports doi: 10.1038/s41598-018-22739-2 – volume: 126 start-page: 2625 issue: no. 11 year: 2020 end-page: 2636 ident: CR39 article-title: Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma publication-title: Cancer doi: 10.1002/cncr.32790 – volume: 34 start-page: 533 issue: no. 3 year: 2013 end-page: 540 ident: CR79 article-title: Probabilistic radiographic atlas of glioblastoma phenotypes publication-title: American Journal of neuroradiology doi: 10.3174/ajnr.A3253 – ident: CR60 – ident: CR112 – volume: 8 start-page: 1 issue: no. 1 year: 2018 end-page: 11 ident: CR88 article-title: Radiogenomic analysis of hypoxia pathway is predictive of overall survival in glioblastoma publication-title: Scientific reports doi: 10.1038/s41598-017-18310-0 – volume: 220 start-page: 117081 year: 2020 ident: CR58 article-title: Brain extraction on mri scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117081 – volume: 23 start-page: 4724 issue: no. 16 year: 2017 end-page: 4734 ident: CR14 article-title: In vivo detection of egfrviii in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the φ-index publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-16-1871 – volume: 135 start-page: 639 issue: no. 4 year: 2018 end-page: 642 ident: CR43 article-title: cimpact-now update 2: diagnostic clarifications for diffuse midline glioma, h3 k27m-mutant and diffuse astrocytoma/anaplastic astrocytoma, idh-mutant publication-title: Acta neuropathologica doi: 10.1007/s00401-018-1826-y – ident: CR18 – ident: CR47 – volume: 19 start-page: vi151 issue: no. Suppl 6 year: 2017 ident: CR91 article-title: Accurate and generalizable pre-operative prognostic stratification of glioblastoma patients using integrative quantitative radiomic analysis of conventional MRI publication-title: Neuro-oncology doi: 10.1093/neuonc/nox168.616 – ident: CR30 – volume: 28 start-page: 1078 issue: no. 6 year: 2007 end-page: 1084 ident: CR67 article-title: Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion mr imaging publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A0484 – ident: CR117 – ident: CR33 – volume: 22 start-page: 886 issue: no. 6 year: 2020 end-page: 888 ident: CR104 article-title: AI-based prognostic imaging biomarkers for precision neuro-oncology: the ReSPOND consortium publication-title: Neuro-oncology doi: 10.1093/neuonc/noaa045 – volume: 5 start-page: 798 year: 2010 end-page: 819 ident: CR51 article-title: The sri24 multichannel atlas of normal adult human brain structure publication-title: Human brain mapping, 31 – ident: CR63 – volume: 273 start-page: 502 issue: no. 2 year: 2014 end-page: 510 ident: CR11 article-title: Rourke, and C. Davatzikos, Pattern analysis of dynamic susceptibility contrast-enhanced mr imaging demonstrates peritumoral tissue heterogeneity publication-title: Radiology doi: 10.1148/radiol.14132458 – volume: 5 start-page: 011018 issue: no. 1 year: 2018 ident: CR35 article-title: Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome publication-title: Journal of medical imaging doi: 10.1117/1.JMI.5.1.011018 – ident: CR103 – volume: 22 start-page: 309 year: 2020 end-page: 341 ident: CR70 article-title: Integrated biophysical modeling and image analysis: Application to neuro-oncology publication-title: Annual Review of Biomedical Engineering doi: 10.1146/annurev-bioeng-062117-121105 – volume: 70 start-page: 232 issue: no. 2 year: 2009 end-page: 241 ident: CR72 article-title: Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging publication-title: European journal of radiology doi: 10.1016/j.ejrad.2009.01.050 – volume: 32 start-page: 2670 issue: no. 21 year: 2013 end-page: 2681 ident: CR9 article-title: Egfrviii gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms publication-title: Oncogene doi: 10.1038/onc.2012.280 – volume: 6 start-page: 2374289519848353 year: 2019 ident: CR32 article-title: Molecular neuropathology in practice: clinical profiling and integrative analysis of molecular alterations in glioblastoma publication-title: Academic pathology doi: 10.1177/2374289519848353 – volume: 18 start-page: 417 issue: no. 3 year: 2015 end-page: 425 ident: CR97 article-title: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques publication-title: Neuro-oncology doi: 10.1093/neuonc/nov127 – volume: 267 start-page: 560 issue: no. 2 year: 2013 end-page: 569 ident: CR89 article-title: Mr imaging predictors of molecular profile and survival: multi-institutional study of the tcga glioblastoma data set publication-title: Radiology doi: 10.1148/radiol.13120118 – volume: 4 start-page: 234 year: 2020 end-page: 244 ident: CR109 article-title: Cancer imaging phenomics via captk: multi-institutional prediction of progression-free survival and pattern of recurrence in glioblastoma publication-title: JCO clinical cancer informatics doi: 10.1200/CCI.19.00121 – volume: 273 start-page: 168 issue: no. 1 year: 2014 end-page: 174 ident: CR75 article-title: Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features publication-title: Radiology doi: 10.1148/radiol.14131731 – ident: CR13 – volume: 4 start-page: 172 year: 1975 end-page: 179 ident: CR113 article-title: Texture analysis using gray level run lengths publication-title: Comput. Graphics Image Process doi: 10.1016/S0146-664X(75)80008-6 – volume: 3 start-page: 425 issue: no. 6 year: 2019 end-page: 426 ident: CR38 article-title: Computational staining of unlabelled tissue publication-title: Nature biomedical engineering doi: 10.1038/s41551-019-0414-3 – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: CR31 article-title: The cancer imaging archive (tcia): Maintaining and operating a public information repository publication-title: Journal of Digital Imaging doi: 10.1007/s10278-013-9622-7 – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: CR61 article-title: Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation publication-title: Medical image analysis doi: 10.1016/j.media.2016.10.004 – volume: 318 start-page: 2306 year: 2017 end-page: 2316, 12 ident: CR1 article-title: Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial publication-title: JAMA doi: 10.1001/jama.2017.18718 – volume: 155 start-page: 462 issue: no. 2 year: 2013 end-page: 477 ident: CR2 article-title: The somatic genomic landscape of glioblastoma publication-title: Cell doi: 10.1016/j.cell.2013.09.034 – ident: CR41 – volume: 20 start-page: vi184 issue: no. suppl_6 year: 2018 end-page: vi185 ident: CR86 article-title: Nimg-40. non-invasive in vivo signature of idh1 mutational status in high grade glioma, from clinically-acquired multi-parametric magnetic resonance imaging, using multivariate machine learning publication-title: Neuro-oncology doi: 10.1093/neuonc/noy148.766 – ident: CR24 – volume: 17 start-page: 1322 issue: no. 10 year: 2015 end-page: 1332 ident: CR6 article-title: Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone publication-title: Neuro-oncology doi: 10.1093/neuonc/nov119 – volume: 22 start-page: 5079 issue: no. 20 year: 2016 end-page: 5086 ident: CR20 article-title: Acrin 6684: Assessment of tumor hypoxia in newly diagnosed glioblastoma using 18f-fmiso pet and mri publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-15-2529 – ident: CR49 – volume: 7 start-page: 1602 issue: no. 11 year: 1998 end-page: 1609 ident: CR116 article-title: Texture information in run-length matrices publication-title: IEEE transactions on image processing doi: 10.1109/83.725367 – volume: 52 start-page: 54 issue: no. 1 year: 2020 end-page: 69 ident: CR101 article-title: Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.26907 – ident: CR12 – volume: 280 start-page: 5350 issue: no. 21 year: 2013 end-page: 5370 ident: CR10 article-title: The epidermal growth factor receptor variant iii (egfrviii): where wild things are altered, The publication-title: FEBS journal doi: 10.1111/febs.12393 – volume: 34 start-page: 163 issue: no. 1 year: 2018 end-page: 177 ident: CR87 article-title: Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development publication-title: Cancer cell doi: 10.1016/j.ccell.2018.06.006 – ident: CR111 – ident: CR29 – volume: 15 start-page: 1389 issue: no. 10 year: 2013 end-page: 1394 ident: CR90 article-title: Imaging descriptors improve the predictive power of survival models for glioblastoma patients publication-title: Neuro-oncology doi: 10.1093/neuonc/nos335 – ident: CR84 – volume: 24 start-page: 971 issue: no. 7 year: 2002 end-page: 987 ident: CR119 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2002.1017623 – volume: 139 start-page: 603 issue: no. 3 year: 2020 end-page: 608 ident: CR46 article-title: cimpact-now update 5: recommended grading criteria and terminologies for idh-mutant astrocytomas publication-title: Acta neuropathologica doi: 10.1007/s00401-020-02127-9 – volume: 5 start-page: 021219 issue: no. 2 year: 2018 ident: CR96 article-title: Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning publication-title: Journal of Medical Imaging doi: 10.1117/1.JMI.5.2.021219 – volume: 110 start-page: 4009 issue: no. 10 year: 2013 end-page: 4014 ident: CR3 article-title: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1219747110 – volume: 13 start-page: 81 year: 2019 ident: CR100 article-title: Multivariate analysis of preoperative magnetic resonance imaging reveals transcriptomic classification of de novo glioblastoma patients publication-title: Frontiers in computational neuroscience doi: 10.3389/fncom.2019.00081 – ident: CR15 – volume: 11 start-page: 415 issue: no. 6 year: 1990 end-page: 419 ident: CR114 article-title: Use of gray value distribution of run lengths for texture analysis publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(90)90112-F – ident: CR50 – volume: 20 start-page: vi186 issue: no. Suppl 6 year: 2018 ident: CR82 article-title: Rourke, and C. Davatzikos, Multivariate pattern analysis of de novo glioblastoma patients offers in vivo evaluation of o6-methylguanine-dna-methyltransferase (mgmt) promoter methylation status, compensating for insufficient specimen and assay failures publication-title: Neuro-oncology – volume: 29 start-page: 1310 issue: no. 6 year: 2010 end-page: 1320 ident: CR55 article-title: N4itk: improved n3 bias correction publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2010.2046908 – volume: 131 start-page: 803 issue: no. 6 year: 2016 end-page: 820 ident: CR40 article-title: The 2016 world health organization classification of tumors of the central nervous system: a summary publication-title: Acta neuropathologica doi: 10.1007/s00401-016-1545-1 – volume: 20 start-page: 810 issue: no. 6 year: 2011 end-page: 817 ident: CR8 article-title: Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma publication-title: Cancer cell doi: 10.1016/j.ccr.2011.11.005 – ident: CR78 – volume: 272 start-page: 484 issue: no. 2 year: 2014 end-page: 493 ident: CR76 article-title: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor publication-title: Radiology doi: 10.1148/radiol.14131691 – ident: CR26 – volume: 135 start-page: 481 issue: no. 3 year: 2018 end-page: 484 ident: CR42 article-title: cimpact-now update 1: not otherwise specified (nos) and not elsewhere classified (nec) publication-title: Acta neuropathologica doi: 10.1007/s00401-018-1808-0 – volume: 42 start-page: 212 issue: no. 4 year: 2015 end-page: 221 ident: CR93 article-title: Addition of mr imaging features and genetic biomarkers strengthens glioblastoma survival prediction in tcga patients publication-title: Journal of Neuroradiology doi: 10.1016/j.neurad.2014.02.006 – ident: CR122 – volume: 78 start-page: 572 issue: no. 4 year: 2016 end-page: 580 ident: CR95 article-title: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma publication-title: Neurosurgery doi: 10.1227/NEU.0000000000001202 – volume: 137 start-page: 683 issue: no. 4 year: 2019 end-page: 687 ident: CR45 article-title: cimpact-now update 4: diffuse gliomas characterized by myb, mybl1, or fgfr1 alterations or braf v600e mutation publication-title: Acta neuropathologica doi: 10.1007/s00401-019-01987-0 – volume: 17 start-page: 87 issue: no. 1 year: 1998 end-page: 97 ident: CR54 article-title: A nonparametric method for automatic correction of intensity nonuniformity in mri data publication-title: IEEE transactions on medical imaging doi: 10.1109/42.668698 – volume: 20 start-page: 1068 issue: no. 8 year: 2018 end-page: 1079 ident: CR68 article-title: Rourke, and C. Davatzikos, In vivo evaluation of egfrviii mutation in primary glioblastoma patients via complex multiparametric mri signature publication-title: Neuro-oncology doi: 10.1093/neuonc/noy033 – volume: 13 start-page: 1 year: 2018 end-page: 14, 06 ident: CR21 article-title: Acrin 6684: Multicenter, phase ii assessment of tumor hypoxia in newly diagnosed glioblastoma using magnetic resonance spectroscopy publication-title: PLOS ONE doi: 10.1371/journal.pone.0198548 – volume: 31 start-page: 1116 issue: no. 3 year: 2006 end-page: 1128 ident: CR120 article-title: User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 55 start-page: 101648 year: 2020 ident: CR105 article-title: Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion publication-title: Biomedical signal processing and control doi: 10.1016/j.bspc.2019.101648 – volume: 4 start-page: 170117 year: 2017 ident: CR16 article-title: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features, Nature Scientific publication-title: Data – volume: 136 start-page: 805 issue: no. 5 year: 2018 end-page: 810 ident: CR44 article-title: cimpact-now update 3: recommended diagnostic criteria for “diffuse astrocytic glioma, idh-wildtype, with molecular features of glioblastoma, who grade iv” publication-title: Acta neuropathologica doi: 10.1007/s00401-018-1913-0 – volume: 22 start-page: 1545 issue: no. 10 year: 2020 end-page: 1546 ident: CR106 article-title: iglass: imaging integration into the glioma longitudinal analysis consortium publication-title: Neuro-oncology doi: 10.1093/neuonc/noaa160 – volume: 64 start-page: 49 year: 2019 end-page: 61 ident: CR102 article-title: Precision diagnostics based on machine learning-derived imaging signatures publication-title: Magnetic resonance imaging doi: 10.1016/j.mri.2019.04.012 – volume: 8 start-page: 137 issue: no. 3 year: 2015 end-page: 146 ident: CR28 article-title: Repeatability of cerebral perfusion using dynamic susceptibility contrast mri in glioblastoma patients publication-title: Translational Oncology doi: 10.1016/j.tranon.2015.03.002 – volume: 360 start-page: 660 issue: no. 6389 year: 2018 end-page: 663 ident: CR23 article-title: An anatomic transcriptional atlas of human glioblastoma publication-title: Science doi: 10.1126/science.aaf2666 – volume: 17 start-page: 83 issue: no. 1 year: 2019 end-page: 102 ident: CR121 article-title: User-guided segmentation of multi-modality medical imaging datasets with itk-snap publication-title: Neuroinformatics doi: 10.1007/s12021-018-9385-x – ident: CR56 – volume: 23 start-page: 903 issue: no. 7 year: 2004 end-page: 921 ident: CR64 article-title: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2004.828354 – volume: 3 start-page: 1 issue: no. 1 year: 2016 end-page: 9 ident: CR123 article-title: The fair guiding principles for scientific data management and stewardship publication-title: Scientific data doi: 10.1038/sdata.2016.18 – ident: CR98 – volume: 8 start-page: 13 year: 2014 ident: CR124 article-title: Itk: enabling reproducible research and open science publication-title: Frontiers in neuroinformatics doi: 10.3389/fninf.2014.00013 – volume: 344 start-page: 1396 issue: no. 6190 year: 2014 end-page: 1401 ident: CR5 article-title: Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science doi: 10.1126/science.1254257 – volume: 12 start-page: 497 issue: no. 8 year: 1991 end-page: 502 ident: CR115 article-title: Image characterizations based on joint gray level–run length distributions publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(91)80014-2 – volume: 23 start-page: S151 year: 2004 end-page: S160 ident: CR53 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.068 – volume: 2 start-page: iv22 issue: no. Supplement_4 year: 2020 end-page: iv34 ident: CR108 article-title: Multi-institutional noninvasive in vivo characterization of idh, 1p/19q, and egfrviii in glioma using neuro-cancer imaging phenomics toolkit (neuro-captk) publication-title: Neuro-oncology advances doi: 10.1093/noajnl/vdaa128 – volume: 6 start-page: e25451 issue: no. 10 year: 2011 ident: CR74 article-title: Radiogenomic mapping of edema/cellular invasion mri-phenotypes in glioblastoma multiforme publication-title: PloS one doi: 10.1371/journal.pone.0025451 – volume: 19 start-page: 1264 issue: no. 5 year: 1989 end-page: 1274 ident: CR118 article-title: Textural features corresponding to textural properties publication-title: IEEE Transactions on systems, man, and Cybernetics doi: 10.1109/21.44046 – volume: 7 start-page: 303ra138 issue: no. 303 year: 2015 end-page: 303ra138 ident: CR77 article-title: Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities publication-title: Science translational medicine doi: 10.1126/scitranslmed.aaa7582 – volume: 48 start-page: 768 issue: no. 7 year: 2016 end-page: 776 ident: CR7 article-title: Clonal evolution of glioblastoma under therapy publication-title: Nature genetics doi: 10.1038/ng.3590 – volume: 249 start-page: 601 issue: no. 2 year: 2008 end-page: 613 ident: CR66 article-title: Comparison of dynamic susceptibility-weighted contrast-enhanced mr methods: Recommendations for measuring relative cerebral blood volume in brain tumors publication-title: Radiology doi: 10.1148/radiol.2492071659 – volume: 295 start-page: 328 issue: no. 2 year: 2020 end-page: 338 ident: CR34 article-title: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping publication-title: Radiology doi: 10.1148/radiol.2020191145 – volume: 36 start-page: 1654 issue: no. 9 year: 2015 end-page: 1661 ident: CR27 article-title: Repeatability of standardized and normalized relative cbv in patients with newly diagnosed glioblastoma publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A4374 – volume: 12 start-page: 862 issue: no. 8 year: 2015 end-page: 866 ident: CR73 article-title: Radiogenomics: what it is and why it is important publication-title: Journal of the American College of Radiology doi: 10.1016/j.jacr.2015.04.019 – volume: 17 start-page: v154 issue: no. suppl_5 year: 2015 end-page: v154 ident: CR85 article-title: Identification of imaging signatures of the epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma publication-title: Neuro-oncology – volume: 7 start-page: 031505 issue: no. 3 year: 2020 ident: CR69 article-title: Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (mri): advanced radiomic features may compensate for lack of advanced mri modalities publication-title: Journal of Medical Imaging doi: 10.1117/1.JMI.7.3.031505 – ident: CR110 – volume: 42 start-page: 87 issue: no. 1 year: 2015 end-page: 96 ident: CR92 article-title: Association of overall survival in patients with newly diagnosed glioblastoma with contrast-enhanced perfusion mri: Comparison of intraindividually matched t1-and t2*-based bolus techniques publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.24756 – volume: 79 start-page: 1392 year: 2019 end-page: 1392 ident: CR81 article-title: Machine learning radiomic biomarkers non-invasively assess genetic characteristics of glioma patients publication-title: Cancer Research doi: 10.1158/1538-7445.AM2019-1392 – ident: CR59 – volume: 34 start-page: 1993 issue: no. 10 year: 2015 end-page: 2024 ident: CR17 article-title: Leemput, The multimodal brain tumor image segmentation benchmark (brats) publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2014.2377694 – ident: CR107 – ident: CR62 – volume: 272 start-page: 484 issue: no. 2 year: 2014 ident: 1560_CR76 publication-title: Radiology doi: 10.1148/radiol.14131691 – ident: 1560_CR22 – ident: 1560_CR111 doi: 10.1109/TSMC.1973.4309314 – volume: 20 start-page: 810 issue: no. 6 year: 2011 ident: 1560_CR8 publication-title: Cancer cell doi: 10.1016/j.ccr.2011.11.005 – volume: 70 start-page: 232 issue: no. 2 year: 2009 ident: 1560_CR72 publication-title: European journal of radiology doi: 10.1016/j.ejrad.2009.01.050 – volume: 6 start-page: 237428951984835 year: 2019 ident: 1560_CR32 publication-title: Academic pathology doi: 10.1177/2374289519848353 – volume: 267 start-page: 560 issue: no. 2 year: 2013 ident: 1560_CR89 publication-title: Radiology doi: 10.1148/radiol.13120118 – volume: 137 start-page: 683 issue: no. 4 year: 2019 ident: 1560_CR45 publication-title: Acta neuropathologica doi: 10.1007/s00401-019-01987-0 – volume: 19 start-page: 1264 issue: no. 5 year: 1989 ident: 1560_CR118 publication-title: IEEE Transactions on systems, man, and Cybernetics doi: 10.1109/21.44046 – volume: 3 start-page: 425 issue: no. 6 year: 2019 ident: 1560_CR38 publication-title: Nature biomedical engineering doi: 10.1038/s41551-019-0414-3 – ident: 1560_CR103 doi: 10.1136/jitc-2020-001752 – volume: 8 start-page: 137 issue: no. 3 year: 2015 ident: 1560_CR28 publication-title: Translational Oncology doi: 10.1016/j.tranon.2015.03.002 – volume: 36 start-page: 1654 issue: no. 9 year: 2015 ident: 1560_CR27 publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A4374 – volume: 7 start-page: 1602 issue: no. 11 year: 1998 ident: 1560_CR116 publication-title: IEEE transactions on image processing doi: 10.1109/83.725367 – volume: 22 start-page: 1545 issue: no. 10 year: 2020 ident: 1560_CR106 publication-title: Neuro-oncology doi: 10.1093/neuonc/noaa160 – volume: 29 start-page: 1310 issue: no. 6 year: 2010 ident: 1560_CR55 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2010.2046908 – volume: 48 start-page: 768 issue: no. 7 year: 2016 ident: 1560_CR7 publication-title: Nature genetics doi: 10.1038/ng.3590 – volume: 36 start-page: 2051 year: 2018 ident: 1560_CR83 publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2018.36.15_suppl.2051 – volume: 20 start-page: vi186 issue: no. Suppl 6 year: 2018 ident: 1560_CR82 publication-title: Neuro-oncology – volume: 31 start-page: 1116 issue: no. 3 year: 2006 ident: 1560_CR120 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 136 start-page: 805 issue: no. 5 year: 2018 ident: 1560_CR44 publication-title: Acta neuropathologica doi: 10.1007/s00401-018-1913-0 – volume: 17 start-page: 83 issue: no. 1 year: 2019 ident: 1560_CR121 publication-title: Neuroinformatics doi: 10.1007/s12021-018-9385-x – ident: 1560_CR47 doi: 10.1111/bpa.12832 – volume: 360 start-page: 660 issue: no. 6389 year: 2018 ident: 1560_CR23 publication-title: Science doi: 10.1126/science.aaf2666 – volume: 32 start-page: 2670 issue: no. 21 year: 2013 ident: 1560_CR9 publication-title: Oncogene doi: 10.1038/onc.2012.280 – volume: 26 start-page: 1045 year: 2013 ident: 1560_CR31 publication-title: Journal of Digital Imaging doi: 10.1007/s10278-013-9622-7 – volume: 55 start-page: 101648 year: 2020 ident: 1560_CR105 publication-title: Biomedical signal processing and control doi: 10.1016/j.bspc.2019.101648 – ident: 1560_CR59 doi: 10.1007/978-3-319-75238-9_12 – volume: 295 start-page: 328 issue: no. 2 year: 2020 ident: 1560_CR34 publication-title: Radiology doi: 10.1148/radiol.2020191145 – ident: 1560_CR60 doi: 10.1007/978-3-030-46643-5_38 – ident: 1560_CR122 – ident: 1560_CR24 – volume: 79 start-page: 1392 year: 2019 ident: 1560_CR81 publication-title: Cancer Research doi: 10.1158/1538-7445.AM2019-1392 – volume: 131 start-page: 803 issue: no. 6 year: 2016 ident: 1560_CR40 publication-title: Acta neuropathologica doi: 10.1007/s00401-016-1545-1 – volume: 36 start-page: 61 year: 2017 ident: 1560_CR61 publication-title: Medical image analysis doi: 10.1016/j.media.2016.10.004 – volume: 23 start-page: 4724 issue: no. 16 year: 2017 ident: 1560_CR14 publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-16-1871 – volume: 7 start-page: 303ra138 issue: no. 303 year: 2015 ident: 1560_CR77 publication-title: Science translational medicine doi: 10.1126/scitranslmed.aaa7582 – volume: 264 start-page: 47 year: 2016 ident: 1560_CR125 publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2016.03.001 – ident: 1560_CR30 – volume: 34 start-page: 533 issue: no. 3 year: 2013 ident: 1560_CR79 publication-title: American Journal of neuroradiology doi: 10.3174/ajnr.A3253 – ident: 1560_CR84 doi: 10.1093/neuonc/now212.441 – ident: 1560_CR117 – volume: 7 start-page: 31 year: 2013 ident: 1560_CR65 publication-title: Frontiers in neuroscience doi: 10.3389/fnins.2013.00031 – ident: 1560_CR19 – volume: 5 start-page: 021219 issue: no. 2 year: 2018 ident: 1560_CR96 publication-title: Journal of Medical Imaging doi: 10.1117/1.JMI.5.2.021219 – volume: 24 start-page: 971 issue: no. 7 year: 2002 ident: 1560_CR119 publication-title: IEEE Transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2002.1017623 – ident: 1560_CR13 doi: 10.1093/neuonc/now212.214 – volume: 13 start-page: 1 year: 2018 ident: 1560_CR21 publication-title: PLOS ONE doi: 10.1371/journal.pone.0198548 – volume: 8 start-page: 1 issue: no. 1 year: 2018 ident: 1560_CR88 publication-title: Scientific reports doi: 10.1038/s41598-017-18310-0 – volume: 249 start-page: 601 issue: no. 2 year: 2008 ident: 1560_CR66 publication-title: Radiology doi: 10.1148/radiol.2492071659 – ident: 1560_CR33 – ident: 1560_CR71 doi: 10.1148/radiol.12120871 – volume: 318 start-page: 2306 year: 2017 ident: 1560_CR1 publication-title: JAMA doi: 10.1001/jama.2017.18718 – volume: 280 start-page: 5350 issue: no. 21 year: 2013 ident: 1560_CR10 publication-title: FEBS journal doi: 10.1111/febs.12393 – volume: 15 start-page: 945 year: 2013 ident: 1560_CR25 publication-title: Neuro-Oncology doi: 10.1093/neuonc/not049 – ident: 1560_CR50 – ident: 1560_CR63 doi: 10.1007/978-3-030-72087-2_11 – volume: 22 start-page: 309 year: 2020 ident: 1560_CR70 publication-title: Annual Review of Biomedical Engineering doi: 10.1146/annurev-bioeng-062117-121105 – volume: 20 start-page: 1068 issue: no. 8 year: 2018 ident: 1560_CR68 publication-title: Neuro-oncology doi: 10.1093/neuonc/noy033 – volume: 126 start-page: 2625 issue: no. 11 year: 2020 ident: 1560_CR39 publication-title: Cancer doi: 10.1002/cncr.32790 – volume: 22 start-page: 886 issue: no. 6 year: 2020 ident: 1560_CR104 publication-title: Neuro-oncology doi: 10.1093/neuonc/noaa045 – volume: 4 start-page: 234 year: 2020 ident: 1560_CR109 publication-title: JCO clinical cancer informatics doi: 10.1200/CCI.19.00121 – volume: 344 start-page: 1396 issue: no. 6190 year: 2014 ident: 1560_CR5 publication-title: Science doi: 10.1126/science.1254257 – volume: 17 start-page: v154 issue: no. suppl_5 year: 2015 ident: 1560_CR85 publication-title: Neuro-oncology – ident: 1560_CR80 doi: 10.1093/neuonc/now212.523 – ident: 1560_CR49 – ident: 1560_CR26 – volume: 15 start-page: 1389 issue: no. 10 year: 2013 ident: 1560_CR90 publication-title: Neuro-oncology doi: 10.1093/neuonc/nos335 – ident: 1560_CR78 doi: 10.1007/978-3-030-11723-8_24 – ident: 1560_CR41 – volume: 11 start-page: 415 issue: no. 6 year: 1990 ident: 1560_CR114 publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(90)90112-F – volume: 28 start-page: 892 issue: no. 9 year: 2007 ident: 1560_CR57 publication-title: Human brain mapping doi: 10.1002/hbm.20312 – ident: 1560_CR29 – volume: 3 start-page: 1 issue: no. 1 year: 2016 ident: 1560_CR123 publication-title: Scientific data doi: 10.1038/sdata.2016.18 – volume: 135 start-page: 639 issue: no. 4 year: 2018 ident: 1560_CR43 publication-title: Acta neuropathologica doi: 10.1007/s00401-018-1826-y – volume: 64 start-page: 49 year: 2019 ident: 1560_CR102 publication-title: Magnetic resonance imaging doi: 10.1016/j.mri.2019.04.012 – ident: 1560_CR98 doi: 10.1093/neuonc/now212.532 – volume: 139 start-page: 603 issue: no. 3 year: 2020 ident: 1560_CR46 publication-title: Acta neuropathologica doi: 10.1007/s00401-020-02127-9 – volume: 17 start-page: 87 issue: no. 1 year: 1998 ident: 1560_CR54 publication-title: IEEE transactions on medical imaging doi: 10.1109/42.668698 – volume: 34 start-page: 163 issue: no. 1 year: 2018 ident: 1560_CR87 publication-title: Cancer cell doi: 10.1016/j.ccell.2018.06.006 – volume: 17 start-page: 1322 issue: no. 10 year: 2015 ident: 1560_CR6 publication-title: Neuro-oncology doi: 10.1093/neuonc/nov119 – volume: 78 start-page: 572 issue: no. 4 year: 2016 ident: 1560_CR95 publication-title: Neurosurgery doi: 10.1227/NEU.0000000000001202 – volume: 135 start-page: 481 issue: no. 3 year: 2018 ident: 1560_CR42 publication-title: Acta neuropathologica doi: 10.1007/s00401-018-1808-0 – volume: 20 start-page: vi184 issue: no. suppl_6 year: 2018 ident: 1560_CR86 publication-title: Neuro-oncology doi: 10.1093/neuonc/noy148.766 – volume: 34 start-page: 1993 issue: no. 10 year: 2015 ident: 1560_CR17 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2014.2377694 – volume: 22 start-page: 5079 issue: no. 20 year: 2016 ident: 1560_CR20 publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-15-2529 – volume: 220 start-page: 117081 year: 2020 ident: 1560_CR58 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117081 – ident: 1560_CR56 doi: 10.1007/978-3-319-12289-2_1 – volume: 7 start-page: 031505 issue: no. 3 year: 2020 ident: 1560_CR69 publication-title: Journal of Medical Imaging doi: 10.1117/1.JMI.7.3.031505 – volume: 30 start-page: 863 issue: no. 5 year: 2020 ident: 1560_CR48 publication-title: Brain Pathology doi: 10.1111/bpa.12866 – volume: 12 start-page: P126 issue: no. 7 year: 2016 ident: 1560_CR52 publication-title: Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association – volume: 5 start-page: 1 issue: no. 1 year: 2015 ident: 1560_CR94 publication-title: Scientific reports doi: 10.1038/srep08423 – volume: 5 start-page: 011018 issue: no. 1 year: 2018 ident: 1560_CR35 publication-title: Journal of medical imaging doi: 10.1117/1.JMI.5.1.011018 – volume: 28 start-page: 1078 issue: no. 6 year: 2007 ident: 1560_CR67 publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A0484 – volume: 42 start-page: 87 issue: no. 1 year: 2015 ident: 1560_CR92 publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.24756 – volume: 37 start-page: E11 issue: no. 6 year: 2014 ident: 1560_CR4 publication-title: Neurosurgical focus doi: 10.3171/2014.9.FOCUS14521 – ident: 1560_CR62 doi: 10.1007/978-3-030-72084-1_36 – volume: 13 start-page: 81 year: 2019 ident: 1560_CR100 publication-title: Frontiers in computational neuroscience doi: 10.3389/fncom.2019.00081 – volume: 8 start-page: 1 issue: no. 1 year: 2018 ident: 1560_CR99 publication-title: Scientific reports doi: 10.1038/s41598-018-22739-2 – ident: 1560_CR18 – volume: 42 start-page: 212 issue: no. 4 year: 2015 ident: 1560_CR93 publication-title: Journal of Neuroradiology doi: 10.1016/j.neurad.2014.02.006 – volume: 4 start-page: 170117 year: 2017 ident: 1560_CR16 publication-title: Data – volume: 18 start-page: 417 issue: no. 3 year: 2015 ident: 1560_CR97 publication-title: Neuro-oncology doi: 10.1093/neuonc/nov127 – volume: 5 start-page: 798 year: 2010 ident: 1560_CR51 publication-title: Human brain mapping, 31 doi: 10.1002/hbm.20906 – volume: 12 start-page: 497 issue: no. 8 year: 1991 ident: 1560_CR115 publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(91)80014-2 – ident: 1560_CR107 – volume: 4 start-page: 172 year: 1975 ident: 1560_CR113 publication-title: Comput. Graphics Image Process doi: 10.1016/S0146-664X(75)80008-6 – volume: 155 start-page: 462 issue: no. 2 year: 2013 ident: 1560_CR2 publication-title: Cell doi: 10.1016/j.cell.2013.09.034 – volume: 23 start-page: 903 issue: no. 7 year: 2004 ident: 1560_CR64 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2004.828354 – ident: 1560_CR15 – volume: 12 start-page: 862 issue: no. 8 year: 2015 ident: 1560_CR73 publication-title: Journal of the American College of Radiology doi: 10.1016/j.jacr.2015.04.019 – volume: 52 start-page: 54 issue: no. 1 year: 2020 ident: 1560_CR101 publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.26907 – volume: 273 start-page: 502 issue: no. 2 year: 2014 ident: 1560_CR11 publication-title: Radiology doi: 10.1148/radiol.14132458 – volume: 8 start-page: 13 year: 2014 ident: 1560_CR124 publication-title: Frontiers in neuroinformatics doi: 10.3389/fninf.2014.00013 – volume: 6 year: 2016 ident: 1560_CR36 publication-title: Scientific reports doi: 10.1038/srep37241 – volume: 273 start-page: 168 issue: no. 1 year: 2014 ident: 1560_CR75 publication-title: Radiology doi: 10.1148/radiol.14131731 – volume: 19 start-page: vi151 issue: no. Suppl 6 year: 2017 ident: 1560_CR91 publication-title: Neuro-oncology doi: 10.1093/neuonc/nox168.616 – volume: 23 start-page: S151 year: 2004 ident: 1560_CR53 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.068 – volume: 2 start-page: iv22 issue: no. Supplement_ year: 2020 ident: 1560_CR108 publication-title: Neuro-oncology advances doi: 10.1093/noajnl/vdaa128 – volume: 110 start-page: 4009 issue: no. 10 year: 2013 ident: 1560_CR3 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1219747110 – ident: 1560_CR110 – ident: 1560_CR12 doi: 10.1093/neuonc/now212.183 – ident: 1560_CR112 doi: 10.1142/S0218001413570024 – volume: 6 start-page: e25451 issue: no. 10 year: 2011 ident: 1560_CR74 publication-title: PloS one doi: 10.1371/journal.pone.0025451 – year: 2021 ident: 1560_CR37 doi: 10.7937/TCIA.709X-DN49 |
SSID | ssj0001340570 |
Score | 2.5565524 |
Snippet | Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly... Measurement(s) Magnetic Resonance Imaging Technology Type(s) Magnetic Resonance Imaging of the Brain with and without Contrast Sample Characteristic - Organism... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 453 |
SubjectTerms | 631/1647/245/1628 631/67/1922 692/308/53 692/308/575 706/648/697 Adult Brain cancer Brain Neoplasms - diagnostic imaging Brain Neoplasms - genetics Brain Neoplasms - physiopathology Brain tumors Data Descriptor Datasets Demography Genomics Glioblastoma Glioblastoma - diagnostic imaging Glioblastoma - genetics Glioblastoma - physiopathology Humanities and Social Sciences Humans Magnetic Resonance Imaging multidisciplinary Neuroimaging Prognosis Radiomics Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlxQKYWmBeRKPYC6FomdZ29QlUKlraqKlbhZtmOXqEtSbcKBf98ZJ1nYltIL0h5Wa0c78rw-x-NvCHln08RxgBHMZK5kcRGWLFdpwiKRli6OuHWet2D6NT2bxV8uk8t7rb6wJqynB-4X7igpEw1JxgqVpzHemY-ULVxpjc-F2mD0hZx3bzPl364IBCLhcEsmFPlRC7OReJRjJQKkeZatZCJP2P8Qyvy7WPKPE1OfiE6fk40BQdLjXvJN8szWL8jm4KMtPRiIpA-3yE-wAXpXeUEbR79BXG1v5wCfK0V_zKtGA3rummtFD2Y4xj6fTA8pds1ddB_oWCBAp9_PJ3S8RDmhSOx6XZl2QheqrPzXl2R2-uni4xkbmiswAyCtY7GIS0hUFj6ICbjT3OapAJ2GiRNGuwiwYSicKpUNtdCw04LgaWyqrS6EDcU2Waub2r4i1AkEKkgN5ixsF7nG6IvN_hwAKm6ygETjQkszMI9jA4y59CfgIpe9ciQoR3rlSHjm_fKZXz3vxqOzT1B_y5nIme1_AEuSgyXJ_1lSQHZH7cvBkVvJU4hQGcQp-I-3y2FwQTxXUbVtbvo5OUgU8YDs9MaylEQkSAQdRwHJVsxoRdTVkbq68jTfhRB5KJKATEaDuxPr30vx-imW4g1Z595TMsaLXbLWLW7sHoCvTu97P_sNE9knyw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggWl6hpTISQq1Yq4mdJxdEq5aCtAghVtqbFTt2ibSblE166L9nxnF2tTwq5ZLYlpzM67M9-YaQNyZNLAcYwXRmKxYXYcXyMk1YJNLKxhE31vEWTL-ml7P4yzyZ-w23zqdVjj7ROeqq1bhHfsJTUJUMFCb7cP2LYdUoPF31JTTukwdIXYZanc2zzR6LQDgS-n9lQpGfdBCvkH6UYz4CBHuWbcUjR9v_L6z5d8rkH-emLhxdPCaPPI6kHwfB75J7ptkju95SO3rk6aSPn5AlaALd5F_Q1tJv4F272wWA6LqkV4u6VYCh-3ZZ0qMZtrFPp9NjirVzV_17OqYJ0On3zxM6_ko5oUjvuqx1N6Fv6aqsanfzlMwuzn-cXTJfZIFpAGs9i0VcQcAycCE24FZxk6cCZBsmVmhlI8CIobBlVZpQCQUrLnCi2qTKqEKYUDwjO03bmBeEWoGABSnCrIFlI1fohbHonwVgxXUWkGj81FJ7BnIshLGQ7iRc5HIQjwTxSCceCWPercdcD_wbd_Y-RQmueyJ3tnvQrq6kN0WZVImCkUaUeRojC0NUmsJWRjt0pXRADkb5S2_QndyoX0Ber5vBFPF8pWxMezP0yWFGEQ_I80Fd1jMRCRJCx1FAsi1F2prqdktT_3R034UQeSiSgExGldtM6_-f4uXdb7FPHnJnBRnjxQHZ6Vc35hXAq14dOhv6DcdxH4c priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKe-GCKM9Ai4yEUCvWIrHz5LZFlLLSIgSs1JtlJ3aJtJugTXrg33fGcXa1UJCQcklsK6PM63M8_kzIK5MmlgOMYGVmKxYXYcVylSYsEmll44gb63gL5p_Ti0U8u0wu9wgf98K4on1HaenC9Fgd9raDRIO8oRwLCSBLs-wOOUCqdrDtg-l09m22_bMiEISEfodMKPJbBu9kIUfWfxvC_LNQ8rfVUpeEzu-Tex490ukg7yHZM80Dcuj9s6MnnkT69CFZgf7ptuqCtpZ-gZja_VoCdK4VvVrWrQbk3LcrRU8W2MY-ns1PKZ6Yu-7f0bE4gM6_fprQcQPlhCKp66ouuwl9Tdeqqt3NI7I4__D9_QXzRyuwEiBaz2IRV5CmDFyICLjV3OSpAI2GiRWlthEgw1BYVSkTaqFhngWhszSpNroQJhSPyX7TNuYpoVYgTEFiMGtgssg1xl486s8CnOJlFpBo_NSy9LzjePzFUrr1b5HLQT0S1COdeiSMebMZ83Ng3fhn7zPU4KYnMma7B-36SnoLkkmVaBhphMrTGLkXImUKW5nSYSpdBuRo1L_0btxJnkJ8yiBKwTtebprBAXFVRTWmvR765CBRxAPyZDCXjSQiQRroOApItmNIO6LutjT1D0fyXQiRhyIJyGQ0ua1Yf_8Uz_6v-3NylzuvyBgvjsh-v742xwCyev3Ce9UNSe8ejg priority: 102 providerName: Springer Nature |
Title | The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics |
URI | https://link.springer.com/article/10.1038/s41597-022-01560-7 https://www.ncbi.nlm.nih.gov/pubmed/35906241 https://www.proquest.com/docview/2696373197 https://www.proquest.com/docview/2696859712 https://pubmed.ncbi.nlm.nih.gov/PMC9338035 https://doaj.org/article/5d5b415e3a86419991ae9fdec07415bc |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD70AqMvY93VXRc0GKNlcWdLvg7GSEK7LpBSugXyJixb6gyJ3dkprP9-R7Kdki0dBEIsiRx0bp8s6TsA72TgK4owwk5Dldle7GR2lAS-7bIgU55LpTK8BZOL4HzqjWf-bAu6ckftBNYbl3a6ntS0mp_8_nX3BR3-c3NlPPpYYxLSnKJUHzLADG6H27CLmSnUFQ0mLdw371yYhidOe3dm89A9eMR8Td7ruWupyjD6b4Kh_56m_GtL1WSqsyfwuIWYZNDYxD5syeIp7LdOXJOjlmn6-Bks0EjI_dEMUipyiYG3vpsjvs4Tcj3PS4HwelkuEnI01W321-HkmOiyutXyE-lOEJDJ1bc-6W5Z9olmfl3kad0n70mVZLn58RymZ6c_Rud2W3_BThHHLW2PeRnmMokfDRuoElRGAUO1O75iqVAuwkeHqSRLpCOYwMUYxtdUBkKKmEmHvYCdoizkKyCKaSyj2cOUxBUlFTpA63qACjEXTUML3G6qedqSk-saGXNuNslZxBtNcdQUN5riOObDasxNQ83x395DrcFVT02rbR6U1TVvvZT7mS9wpGRJFHiaoMFNZKwymRrgJVILDjv9885UOQ0wiIUYyvA_3q6a0Uv11ktSyPK26ROhRC614GVjLitJOnOzIFwzpDVR11uK_KdhAo8ZixzmW9DvTO5erIen4uBBEV7DHjW-ENo0PoSdZXUr3yDoWooebIezsAe7g8H4-xi_h6cXl1f4dBSMeuZFRs_42h80NyhG |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a4wFeEOO2wAAjAdpErSV2bkVCiAGjY-uE0Cr1zcSJPSq1zWg6of0pfiPnOEmrctnbpL60tivH5_Y5Pv4OwHMTR1YgjOB5Ygsedv2Cp1kc8UDGhQ0DYazjLegfx71B-HkYDdfgV3sXhtIqW5_oHHVR5vSOfFfEqCoJKkzy9uwHp6pRdLraltCo1eLQXPzELVv15uADyveFEPsfT973eFNVgOeITuY8lGGBHtrgh4KhsFqYNJb4MH5kZa5tgKDIlzYrMuNrqXGLgV4jN7E2uiuNL_F_r8F1DLw-bfaSYbJ8pyMJ_vjN3RxfprsVxkeiOxWU_4Dggicr8c-VCfgXtv07RfOPc1oX_vZvw60Gt7J3taJtwJqZ3oGNxjNUbLuhr965CxPUPLbM92ClZV_Qm1cXYwTto4ydjkelRsw-LycZ2x5QG_-0199hVKt3Nn_N2rQE1v960GHt1c0OIzrZySivOuwlm2XFyH25B4MrWf77sD4tp2YTmJUEkIiSzBrcpgpNXp-KDFoEciJPPAjapVZ5w3hOhTfGyp28y1TV4lEoHuXEo3DMq8WYs5rv49LeeyTBRU_i6nY_lLNT1Zi-iopI40gjszQOifUhyEzXFiZ3aE7nHmy18leNA6nUUt09eLZoRtOn85xsasrzuk-KMwqEBw9qdVnMREZEQB0GHiQrirQy1dWW6ei7oxfvSpn6MvKg06rcclr_X4qHlz_FU7jRO-kfqaOD48NHcFM4i0i46G7B-nx2bh4jtJvrJ86eGHy7agP-DTZ1XKw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELZGJyG-IMZrYICRAG2iVhM7r0gIUbayMlpVE5X2zcSJPSq1zWg6of01fh13TtKqvOzbpHxJbEdO7nz32D4_R8hLHQaGA4xgWWRy5iduzuI0DJgnwtz4HtfG8hYMhuHR2P98GpxukV_NWRgMq2xsojXUeZHhGnmHh6AqEShM1DF1WMTooPf-_AfDDFK409qk06hU5Fhf_oTpW_mufwCyfsV57_DrxyNWZxhgGSCVJfOFn4O11nChY-RGcR2HAj7MDYzIlPEAILnCpHmqXSUUTDfAgmQ6VFolQrsC3nuDbEc4K2qR7e7hcHSyXuERCIbc-qSOK-JOCd4SyU85RkMA1GDRhje0SQP-hXT_Dtj8Y9fWOsPeHXK7RrH0Q6V2O2RLz--SndpOlHSvJrPev0dmoId0Hf1BC0NHYNvLyylA-ElKz6aTQgGCXxazlO6NsYx96g72KWbuXSzf0iZIgQ5O-m3aHORsUySXnU2ysk1f00WaT-zNfTK-FgE8IK15MdePCDUC4RISlBkNk1au0AdgykEDsI5nkUO85lfLrOY_xzQcU2n34UUsK_FIEI-04pHQ5s2qzXnF_nFl7S5KcFUTmbvtg2JxJmtDIIM8UNBSizQOfeSA8FKdmFxnFtupzCG7jfxlbU5KuVZ-h7xYFYMhwN2ddK6Li6pODD3yuEMeVuqy6okIkI7a9xwSbSjSRlc3S-aT75ZsPBEidkXgkHajcutu_f9XPL76K56TmzB45Zf-8PgJucXtgIgYT3ZJa7m40E8B5y3Vs3pAUfLtusfwb6uwYkc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+University+of+Pennsylvania+glioblastoma+%28UPenn-GBM%29+cohort%3A+advanced+MRI%2C+clinical%2C+genomics%2C+%26+radiomics&rft.jtitle=Scientific+data&rft.au=Bakas%2C+Spyridon&rft.au=Sako%2C+Chiharu&rft.au=Akbari%2C+Hamed&rft.au=Bilello%2C+Michel&rft.date=2022-07-29&rft.eissn=2052-4463&rft.volume=9&rft.issue=1&rft.spage=453&rft_id=info:doi/10.1038%2Fs41597-022-01560-7&rft_id=info%3Apmid%2F35906241&rft.externalDocID=35906241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |