Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide
External fields are introduced to catalytic processes to improve catalytic activities. The light field effect plays an important role in electrocatalytic processes, but is not fully understood. Here we report a series of photo-coupled electrocatalysts for CO 2 reduction by mimicking the structure of...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 3844 - 10 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.08.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | External fields are introduced to catalytic processes to improve catalytic activities. The light field effect plays an important role in electrocatalytic processes, but is not fully understood. Here we report a series of photo-coupled electrocatalysts for CO
2
reduction by mimicking the structure of chlorophyll. The porphyrin-Au catalyst exhibits a high turnover frequency of 37,069 h
−1
at −1.1 V and CO Faradaic efficiency (FE) of 94.2% at −0.9 V. Under visible light, the electrocatalyst reaches similar turnover frequency and FE with potential reduced by ~ 130 mV. Interestingly, the light-induced positive shifts of 20, 100, and 130 mV for porphyrin-Co, porphyrin-Cu, and porphyrin-Au electrocatalysts are consistent with their energy gaps of 0, 1.5, and 1.7 eV, respectively, suggesting the porphyrin not only serves as a ligand but also as a photoswitch to regulate electron transfer pathway to the metal center.
The light field effect can improve performance in electrocatalytic processes, but is not fully understood. Here the authors design a photo-coupled electrocatalyst using a porphyrin ligand as a photosensitizer and a coordinated metal as a catalytically active site for carbon dioxide reduction. |
---|---|
AbstractList | External fields are introduced to catalytic processes to improve catalytic activities. The light field effect plays an important role in electrocatalytic processes, but is not fully understood. Here we report a series of photo-coupled electrocatalysts for CO2 reduction by mimicking the structure of chlorophyll. The porphyrin-Au catalyst exhibits a high turnover frequency of 37,069 h−1 at −1.1 V and CO Faradaic efficiency (FE) of 94.2% at −0.9 V. Under visible light, the electrocatalyst reaches similar turnover frequency and FE with potential reduced by ~ 130 mV. Interestingly, the light-induced positive shifts of 20, 100, and 130 mV for porphyrin-Co, porphyrin-Cu, and porphyrin-Au electrocatalysts are consistent with their energy gaps of 0, 1.5, and 1.7 eV, respectively, suggesting the porphyrin not only serves as a ligand but also as a photoswitch to regulate electron transfer pathway to the metal center. External fields are introduced to catalytic processes to improve catalytic activities. The light field effect plays an important role in electrocatalytic processes, but is not fully understood. Here we report a series of photo-coupled electrocatalysts for CO 2 reduction by mimicking the structure of chlorophyll. The porphyrin-Au catalyst exhibits a high turnover frequency of 37,069 h −1 at −1.1 V and CO Faradaic efficiency (FE) of 94.2% at −0.9 V. Under visible light, the electrocatalyst reaches similar turnover frequency and FE with potential reduced by ~ 130 mV. Interestingly, the light-induced positive shifts of 20, 100, and 130 mV for porphyrin-Co, porphyrin-Cu, and porphyrin-Au electrocatalysts are consistent with their energy gaps of 0, 1.5, and 1.7 eV, respectively, suggesting the porphyrin not only serves as a ligand but also as a photoswitch to regulate electron transfer pathway to the metal center. The light field effect can improve performance in electrocatalytic processes, but is not fully understood. Here the authors design a photo-coupled electrocatalyst using a porphyrin ligand as a photosensitizer and a coordinated metal as a catalytically active site for carbon dioxide reduction. External fields are introduced to catalytic processes to improve catalytic activities. The light field effect plays an important role in electrocatalytic processes, but is not fully understood. Here we report a series of photo-coupled electrocatalysts for CO2 reduction by mimicking the structure of chlorophyll. The porphyrin-Au catalyst exhibits a high turnover frequency of 37,069 h-1 at -1.1 V and CO Faradaic efficiency (FE) of 94.2% at -0.9 V. Under visible light, the electrocatalyst reaches similar turnover frequency and FE with potential reduced by ~ 130 mV. Interestingly, the light-induced positive shifts of 20, 100, and 130 mV for porphyrin-Co, porphyrin-Cu, and porphyrin-Au electrocatalysts are consistent with their energy gaps of 0, 1.5, and 1.7 eV, respectively, suggesting the porphyrin not only serves as a ligand but also as a photoswitch to regulate electron transfer pathway to the metal center.External fields are introduced to catalytic processes to improve catalytic activities. The light field effect plays an important role in electrocatalytic processes, but is not fully understood. Here we report a series of photo-coupled electrocatalysts for CO2 reduction by mimicking the structure of chlorophyll. The porphyrin-Au catalyst exhibits a high turnover frequency of 37,069 h-1 at -1.1 V and CO Faradaic efficiency (FE) of 94.2% at -0.9 V. Under visible light, the electrocatalyst reaches similar turnover frequency and FE with potential reduced by ~ 130 mV. Interestingly, the light-induced positive shifts of 20, 100, and 130 mV for porphyrin-Co, porphyrin-Cu, and porphyrin-Au electrocatalysts are consistent with their energy gaps of 0, 1.5, and 1.7 eV, respectively, suggesting the porphyrin not only serves as a ligand but also as a photoswitch to regulate electron transfer pathway to the metal center. External fields are introduced to catalytic processes to improve catalytic activities. The light field effect plays an important role in electrocatalytic processes, but is not fully understood. Here we report a series of photo-coupled electrocatalysts for CO reduction by mimicking the structure of chlorophyll. The porphyrin-Au catalyst exhibits a high turnover frequency of 37,069 h at -1.1 V and CO Faradaic efficiency (FE) of 94.2% at -0.9 V. Under visible light, the electrocatalyst reaches similar turnover frequency and FE with potential reduced by ~ 130 mV. Interestingly, the light-induced positive shifts of 20, 100, and 130 mV for porphyrin-Co, porphyrin-Cu, and porphyrin-Au electrocatalysts are consistent with their energy gaps of 0, 1.5, and 1.7 eV, respectively, suggesting the porphyrin not only serves as a ligand but also as a photoswitch to regulate electron transfer pathway to the metal center. The light field effect can improve performance in electrocatalytic processes, but is not fully understood. Here the authors design a photo-coupled electrocatalyst using a porphyrin ligand as a photosensitizer and a coordinated metal as a catalytically active site for carbon dioxide reduction. External fields are introduced to catalytic processes to improve catalytic activities. The light field effect plays an important role in electrocatalytic processes, but is not fully understood. Here we report a series of photo-coupled electrocatalysts for CO 2 reduction by mimicking the structure of chlorophyll. The porphyrin-Au catalyst exhibits a high turnover frequency of 37,069 h −1 at −1.1 V and CO Faradaic efficiency (FE) of 94.2% at −0.9 V. Under visible light, the electrocatalyst reaches similar turnover frequency and FE with potential reduced by ~ 130 mV. Interestingly, the light-induced positive shifts of 20, 100, and 130 mV for porphyrin-Co, porphyrin-Cu, and porphyrin-Au electrocatalysts are consistent with their energy gaps of 0, 1.5, and 1.7 eV, respectively, suggesting the porphyrin not only serves as a ligand but also as a photoswitch to regulate electron transfer pathway to the metal center. |
ArticleNumber | 3844 |
Author | Liu, Xiaozhi Zuo, Shouwei Gu, Lin Yang, Deren Wang, Dong He, Ting Yu, Hongde Yang, Haozhou Wang, Xun Li, Haoyi Ni, Bing |
Author_xml | – sequence: 1 givenname: Deren orcidid: 0000-0002-2133-8612 surname: Yang fullname: Yang, Deren organization: Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University – sequence: 2 givenname: Hongde surname: Yu fullname: Yu, Hongde organization: Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University – sequence: 3 givenname: Ting orcidid: 0000-0001-8308-8738 surname: He fullname: He, Ting organization: Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University – sequence: 4 givenname: Shouwei orcidid: 0000-0001-8936-4668 surname: Zuo fullname: Zuo, Shouwei organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 5 givenname: Xiaozhi orcidid: 0000-0001-8647-8694 surname: Liu fullname: Liu, Xiaozhi organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 6 givenname: Haozhou surname: Yang fullname: Yang, Haozhou organization: Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University – sequence: 7 givenname: Bing orcidid: 0000-0001-9657-6933 surname: Ni fullname: Ni, Bing organization: Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University – sequence: 8 givenname: Haoyi orcidid: 0000-0002-0723-8068 surname: Li fullname: Li, Haoyi organization: Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University – sequence: 9 givenname: Lin surname: Gu fullname: Gu, Lin organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 10 givenname: Dong orcidid: 0000-0002-0594-0515 surname: Wang fullname: Wang, Dong organization: Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University – sequence: 11 givenname: Xun orcidid: 0000-0002-8066-4450 surname: Wang fullname: Wang, Xun email: wangxun@mail.tsinghua.edu.cn organization: Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31451689$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9uVCEUxm9Mja21L-DC3MSNm6v8uxfuxsQ0Vps0caNuCXAPM0wYGIGZOm_gY5eZaWvbRVkAge_7cTjnvG6OQgzQNG8x-ogRFZ8yw2zgHcJjh7HAvCMvmhOCGO4wJ_Towf64Oct5geqgIxaMvWqOKWY9HsR40vz77bLTHjrvZvPS5WtXzBymFjyYkmJoS1IhW0ht3NQpuzDz0K5iWs23yYVuCUX5VpW4bA2EUiU2pnZeYX7b5j3FbeAOl2Ba14OKjbY1Kum6m1z86yZ407y0ymc4u11Pm18XX3-ef--ufny7PP9y1ZmeodIxYhS1YIcBkB4413q0whjMUc8npXsqYKCWEdC9IHwasTFEKzOKnhtkB0NPm8sDd4pqIVfJLVXayqic3B_ENJMqFWc8SNHDxDjpCR0HpuggkNCaoX6kxlJOVWV9PrBWa72EaZeApPwj6OOb4OZyFjdy4BgRwSrgwy0gxT9ryEUuXTbgvQoQ11kSIjBGQoyiSt8_kS7iOoWaqp0KMY4J2wHfPYzoPpS7glcBOQhMijknsPcSjOSuseShsWRtLLlvLEmqSTwxGVfUro71V84_b6UHa67vhBmk_2E_47oB-LzlGA |
CitedBy_id | crossref_primary_10_1002_ange_202316649 crossref_primary_10_1002_anie_202422869 crossref_primary_10_1021_acsami_1c18626 crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1016_j_mattod_2023_02_013 crossref_primary_10_20517_cs_2024_34 crossref_primary_10_1002_advs_202203941 crossref_primary_10_1002_ange_202414908 crossref_primary_10_1002_ange_202414506 crossref_primary_10_1002_smll_202301319 crossref_primary_10_1021_acs_accounts_0c00268 crossref_primary_10_1002_smtd_202000991 crossref_primary_10_1002_ange_202006899 crossref_primary_10_1039_D1SC04755H crossref_primary_10_1007_s11426_024_2041_9 crossref_primary_10_1016_j_comptc_2025_115076 crossref_primary_10_1039_D1EN00930C crossref_primary_10_1002_asia_202201161 crossref_primary_10_1016_j_mcat_2023_113470 crossref_primary_10_1002_anie_202100707 crossref_primary_10_1142_S1088424621500085 crossref_primary_10_1016_j_jelechem_2020_114962 crossref_primary_10_1016_j_apcatb_2025_125260 crossref_primary_10_1039_D0TA04595K crossref_primary_10_1007_s12274_023_5750_7 crossref_primary_10_1016_j_jhazmat_2024_135342 crossref_primary_10_1016_j_fuel_2022_124122 crossref_primary_10_1088_2515_7639_ac1ab7 crossref_primary_10_1016_j_seppur_2023_126254 crossref_primary_10_1002_adfm_202419328 crossref_primary_10_1002_ange_202317572 crossref_primary_10_1016_j_cej_2021_134125 crossref_primary_10_1088_1361_6528_ac9b61 crossref_primary_10_1038_s41467_024_54325_8 crossref_primary_10_1007_s12274_023_5929_y crossref_primary_10_1016_j_bios_2023_115690 crossref_primary_10_1002_med_21851 crossref_primary_10_1002_adma_202404791 crossref_primary_10_1002_anie_202303086 crossref_primary_10_1007_s40820_021_00738_9 crossref_primary_10_1016_j_cej_2023_147427 crossref_primary_10_1016_j_mtcomm_2020_101322 crossref_primary_10_1002_anie_202012699 crossref_primary_10_1016_j_isci_2023_108434 crossref_primary_10_1021_acs_chemrev_3c00840 crossref_primary_10_1016_j_ccr_2025_216498 crossref_primary_10_1007_s40843_022_2189_x crossref_primary_10_1039_D1NR03119H crossref_primary_10_1002_anie_202317572 crossref_primary_10_1016_j_mcat_2024_114064 crossref_primary_10_1002_anie_202217995 crossref_primary_10_1002_aenm_202001142 crossref_primary_10_1021_acs_chemrev_9b00818 crossref_primary_10_1002_smll_202102957 crossref_primary_10_1039_D2CS00183G crossref_primary_10_3390_ijms23158143 crossref_primary_10_1002_ange_202303086 crossref_primary_10_1002_ange_202422869 crossref_primary_10_1002_anie_202316649 crossref_primary_10_1016_j_cclet_2023_109381 crossref_primary_10_1002_ange_202012699 crossref_primary_10_1016_j_matre_2023_100192 crossref_primary_10_1016_j_cej_2022_137277 crossref_primary_10_1016_j_mattod_2022_02_005 crossref_primary_10_1039_D1TA05445G crossref_primary_10_1021_acs_langmuir_2c01054 crossref_primary_10_1002_aenm_202102556 crossref_primary_10_1016_j_chempr_2021_08_020 crossref_primary_10_1039_D3RA03462C crossref_primary_10_1063_5_0031374 crossref_primary_10_1021_acs_chemmater_4c01137 crossref_primary_10_1021_acs_energyfuels_3c00311 crossref_primary_10_1016_j_jcou_2022_101904 crossref_primary_10_1039_D2NR05099D crossref_primary_10_1039_D4TB01293C crossref_primary_10_1002_smll_202001847 crossref_primary_10_1002_EXP_20240014 crossref_primary_10_1021_jacs_2c10233 crossref_primary_10_1039_D2TA04164B crossref_primary_10_1002_cssc_202000375 crossref_primary_10_1021_acsenergylett_9b02625 crossref_primary_10_1021_acsenergylett_9b02585 crossref_primary_10_3389_fchem_2022_895198 crossref_primary_10_1002_adma_202105204 crossref_primary_10_1039_C9CP05147C crossref_primary_10_1002_aenm_202201093 crossref_primary_10_1002_adma_202101886 crossref_primary_10_1016_j_electacta_2021_138766 crossref_primary_10_1016_j_jcis_2024_08_069 crossref_primary_10_1002_smsc_202100015 crossref_primary_10_2139_ssrn_4115165 crossref_primary_10_1002_adma_202107293 crossref_primary_10_1002_adma_202109074 crossref_primary_10_1002_anie_202104790 crossref_primary_10_1016_j_jssc_2020_121563 crossref_primary_10_1021_jacs_1c05580 crossref_primary_10_1016_j_mattod_2021_11_022 crossref_primary_10_1002_ange_202104790 crossref_primary_10_1002_ange_202217995 crossref_primary_10_1007_s40242_023_3123_0 crossref_primary_10_1021_acscatal_4c00795 crossref_primary_10_1016_j_cej_2025_159809 crossref_primary_10_1016_j_mcat_2023_113161 crossref_primary_10_1039_D0QM00314J crossref_primary_10_1360_SSC_2022_0017 crossref_primary_10_1002_anie_202011722 crossref_primary_10_1039_D1NJ01565F crossref_primary_10_1002_ange_202100707 crossref_primary_10_1039_D0TA08649E crossref_primary_10_1002_anie_202006899 crossref_primary_10_1039_D1SC00997D crossref_primary_10_1002_anie_202414506 crossref_primary_10_1016_j_cej_2022_138158 crossref_primary_10_3390_catal14070468 crossref_primary_10_1002_anie_202414908 crossref_primary_10_1007_s12274_021_3984_9 crossref_primary_10_1007_s12274_023_5991_5 crossref_primary_10_1002_ange_202302859 crossref_primary_10_1016_j_nanoen_2024_110409 crossref_primary_10_1016_j_tet_2023_133684 crossref_primary_10_1021_acs_nanolett_2c05096 crossref_primary_10_1002_ange_202011722 crossref_primary_10_1002_anie_202212162 crossref_primary_10_1021_aps_4c00012 crossref_primary_10_1002_ejoc_202201319 crossref_primary_10_1016_j_checat_2023_100795 crossref_primary_10_3390_su13126962 crossref_primary_10_1002_cssc_201902272 crossref_primary_10_1002_adfm_202411661 crossref_primary_10_1002_ange_202212162 crossref_primary_10_1002_anie_202302859 crossref_primary_10_1016_j_apmt_2021_101245 crossref_primary_10_1016_j_jcou_2022_102152 crossref_primary_10_1088_1361_6528_abb26e crossref_primary_10_1016_j_inoche_2024_112687 crossref_primary_10_1016_j_scitotenv_2023_167475 crossref_primary_10_1016_j_apcatb_2022_122315 crossref_primary_10_1002_smm2_1102 crossref_primary_10_1021_jacs_3c06113 crossref_primary_10_3390_ma15217473 |
Cites_doi | 10.1038/s41929-017-0009-x 10.1007/s00214-018-2270-8 10.1021/ja409445p 10.1021/jacs.8b00814 10.1002/anie.201310461 10.1021/acssuschemeng.8b03945 10.1002/adma.201704720 10.1002/anie.201207199 10.1021/ja00066a039 10.1002/adma.201504766 10.1038/s41929-017-0018-9 10.1016/j.apcatb.2016.12.039 10.1021/nl8013549 10.1021/ar9001679 10.1002/anie.201612214 10.1039/C3CS60443H 10.1038/s41467-018-05659-7 10.1002/anie.201803873 10.1039/C3CS60323G 10.1021/ja406844r 10.1039/C9TA01188A 10.1039/c1cs15008a 10.1039/C2CS35257E 10.1038/s41929-018-0200-8 10.1039/C8TA08677J 10.1002/anie.201800817 10.1021/ja500328k 10.1016/j.jcat.2017.01.013 10.1038/s41560-017-0078-8 10.1002/adma.201800743 10.1016/j.apcatb.2016.06.074 10.5194/essd-7-47-2015 10.1021/ja960307r 10.1002/anie.201202320 10.1021/acs.chemrev.5b00362 10.1021/ja505791r 10.1021/ja5044787 10.1021/jacs.7b02736 10.6084/m9.figshare.8845793.v1 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-11817-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_85ed472523964a36808bb40593cf373a PMC6710284 31451689 10_1038_s41467_019_11817_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21431003 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21431003 – fundername: ; grantid: 21431003 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-42ca3fef66e0b677bb9f8cc17057dab538e63f42eb5827d91cc2bac9857c0f6c3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:39 EDT 2025 Thu Aug 21 14:14:11 EDT 2025 Mon Jul 21 10:18:31 EDT 2025 Wed Aug 13 04:49:04 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Tue Jul 01 04:08:42 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Fri Feb 21 02:38:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-42ca3fef66e0b677bb9f8cc17057dab538e63f42eb5827d91cc2bac9857c0f6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0594-0515 0000-0001-8308-8738 0000-0002-8066-4450 0000-0001-9657-6933 0000-0002-2133-8612 0000-0002-0723-8068 0000-0001-8936-4668 0000-0001-8647-8694 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-11817-2 |
PMID | 31451689 |
PQID | 2280471244 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_85ed472523964a36808bb40593cf373a pubmedcentral_primary_oai_pubmedcentral_nih_gov_6710284 proquest_miscellaneous_2281108898 proquest_journals_2280471244 pubmed_primary_31451689 crossref_primary_10_1038_s41467_019_11817_2 crossref_citationtrail_10_1038_s41467_019_11817_2 springer_journals_10_1038_s41467_019_11817_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-26 |
PublicationDateYYYYMMDD | 2019-08-26 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Kuhl (CR22) 2014; 136 Yu, Low, Xiao, Zhou, Jaroniec (CR4) 2014; 136 Neyts, Ostrikov, Sunkara, Bogaerts (CR15) 2015; 115 De Luna (CR14) 2018; 1 He (CR24) 2018; 57 Smith (CR32) 2018; 57 Li, Diau (CR39) 2013; 42 Liu, Yang, Ganz (CR36) 2018; 6 Yan (CR5) 2018; 9 Jiang (CR13) 2018; 1 Morris, Meyer, Fujita (CR30) 2009; 42 Liu, Yang, Ganz (CR37) 2019; 7 Xu, Yang, Ganz (CR35) 2018; 137 Wesselbaum, Vom Stein, Klankermayer, Leitner (CR3) 2012; 51 Reske, Mistry, Behafarid, Roldan Cuenya, Strasser (CR9) 2014; 136 Gale, Sessler, Král, Lynch (CR20) 1996; 118 Yang, Wang (CR25) 2018; 30 Liu, Yang, Ganz (CR38) 2019; 7 Xu (CR18) 2017; 205 Johnson (CR19) 1993; 115 Habisreutinger, Schmidt-Mende, Stolarczyk (CR6) 2013; 52 Huo, Tsung, Huang, Zhang, Yang (CR27) 2008; 8 Tanaka, Osuka (CR21) 2015; 44 Zhang, Zhao, Gong (CR8) 2017; 56 Hori, Murata, Takahashi (CR10) 1989; 85 Wang (CR17) 2017; 349 Pan (CR23) 2018; 140 Le Quér (CR1) 2015; 7 Yang (CR33) 2018; 3 Qiao, Liu, Hong, Zhang (CR7) 2014; 43 Zhao (CR31) 2017; 139 Chen (CR28) 2018; 30 Zheng (CR12) 2018; 2 Zhao (CR29) 2017; 200 CR41 Zhu, Liu, Qiao (CR11) 2016; 28 CR40 Jang (CR16) 2014; 53 Jiang (CR26) 2013; 135 Zhu (CR34) 2013; 135 Wang, Wang, Ma, Gong (CR2) 2011; 40 HL Jiang (11817_CR26) 2013; 135 Z Chen (11817_CR28) 2018; 30 L Wang (11817_CR17) 2017; 349 PA Gale (11817_CR20) 1996; 118 J Liu (11817_CR37) 2019; 7 Y Xu (11817_CR18) 2017; 205 T He (11817_CR24) 2018; 57 R Reske (11817_CR9) 2014; 136 L Xu (11817_CR35) 2018; 137 W Wang (11817_CR2) 2011; 40 HB Yang (11817_CR33) 2018; 3 SN Habisreutinger (11817_CR6) 2013; 52 Y Hori (11817_CR10) 1989; 85 LL Li (11817_CR39) 2013; 42 C Le Quér (11817_CR1) 2015; 7 S Wesselbaum (11817_CR3) 2012; 51 L Zhang (11817_CR8) 2017; 56 DD Zhu (11817_CR11) 2016; 28 K Jiang (11817_CR13) 2018; 1 AJ Morris (11817_CR30) 2009; 42 J Liu (11817_CR36) 2018; 6 Z Huo (11817_CR27) 2008; 8 C Zhao (11817_CR31) 2017; 139 P De Luna (11817_CR14) 2018; 1 KP Kuhl (11817_CR22) 2014; 136 EC Neyts (11817_CR15) 2015; 115 PT Smith (11817_CR32) 2018; 57 W Zhu (11817_CR34) 2013; 135 ZH Yan (11817_CR5) 2018; 9 G Zhao (11817_CR29) 2017; 200 JW Jang (11817_CR16) 2014; 53 H Yang (11817_CR25) 2018; 30 J Liu (11817_CR38) 2019; 7 DG Johnson (11817_CR19) 1993; 115 T Tanaka (11817_CR21) 2015; 44 J Qiao (11817_CR7) 2014; 43 11817_CR40 J Yu (11817_CR4) 2014; 136 X Zheng (11817_CR12) 2018; 2 11817_CR41 Y Pan (11817_CR23) 2018; 140 |
References_xml | – volume: 1 start-page: 111 year: 2018 end-page: 119 ident: CR13 article-title: Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO reduction publication-title: Nat. Catal. doi: 10.1038/s41929-017-0009-x – volume: 137 year: 2018 ident: CR35 article-title: Mn–graphene single-atom catalyst evaluated for CO oxidation by computational screening publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-018-2270-8 – volume: 135 start-page: 16833 year: 2013 end-page: 16836 ident: CR34 article-title: Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO to CO publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409445p – volume: 140 start-page: 4218 year: 2018 end-page: 4221 ident: CR23 article-title: Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO reduction with nearly 100% CO selectivity and remarkable stability publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00814 – volume: 53 start-page: 5852 year: 2014 end-page: 5857 ident: CR16 article-title: Aqueous-solution route to zinc telluride films for application to CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201310461 – volume: 6 start-page: 15494 year: 2018 end-page: 15502 ident: CR36 article-title: Efficient and selective electroreduction of CO by single-atom catalyst two-dimensional TM–Pc monolayers publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03945 – volume: 85 start-page: 2309 year: 1989 ident: CR10 article-title: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution publication-title: J. Chem. Soc. – volume: 30 start-page: 1704720 year: 2018 ident: CR28 article-title: Single-site Au(I) catalyst for silane oxidation with water publication-title: Adv. Mater. doi: 10.1002/adma.201704720 – volume: 52 start-page: 7372 year: 2013 end-page: 7408 ident: CR6 article-title: Photocatalytic reduction of CO on TiO and other semiconductors publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201207199 – volume: 115 start-page: 5692 year: 1993 end-page: 5701 ident: CR19 article-title: Photochemical electron transfer in chlorophyll-porphyrin-quinone triads: the role of the porphyrin-bridging molecule publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00066a039 – volume: 28 start-page: 3423 year: 2016 end-page: 3452 ident: CR11 article-title: Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide publication-title: Adv. Mater. doi: 10.1002/adma.201504766 – volume: 1 start-page: 103 year: 2018 end-page: 110 ident: CR14 article-title: Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction publication-title: Nat. Catal. doi: 10.1038/s41929-017-0018-9 – volume: 205 start-page: 254 year: 2017 end-page: 261 ident: CR18 article-title: Photoelectrocatalytic reduction of CO to methanol over the multi-functionalized TiO photocathodes publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.12.039 – volume: 8 start-page: 2041 year: 2008 end-page: 2044 ident: CR27 article-title: Sub-two nanometer single crystal Au nanowires publication-title: Nano lett. doi: 10.1021/nl8013549 – volume: 42 start-page: 1983 year: 2009 end-page: 1994 ident: CR30 article-title: Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels publication-title: Acc. Chem. Res. doi: 10.1021/ar9001679 – volume: 56 start-page: 11326 year: 2017 end-page: 11353 ident: CR8 article-title: Nanostructured materials for heterogeneous electrocatalytic CO reduction and their related reaction mechanisms publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612214 – ident: CR40 – volume: 44 start-page: 943 year: 2015 end-page: 969 ident: CR21 article-title: Conjugated porphyrin arrays: synthesis, properties and applications for functional materials publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60443H – volume: 9 year: 2018 ident: CR5 article-title: Photo-generated dinuclear {Eu(II)}2 active sites for selective CO reduction in a photosensitizing metal-organic framework publication-title: Nat. Commun. doi: 10.1038/s41467-018-05659-7 – volume: 57 start-page: 9684 year: 2018 end-page: 9688 ident: CR32 article-title: Iron porphyrins embedded into a supramolecular porous organic cage for electrochemical CO reduction in water publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803873 – volume: 43 start-page: 631 year: 2014 end-page: 675 ident: CR7 article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60323G – volume: 135 start-page: 13934 year: 2013 end-page: 13938 ident: CR26 article-title: An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406844r – volume: 7 start-page: 11944 year: 2019 end-page: 11952 ident: CR38 article-title: Electrocatalytic reduction of CO by two-dimensional transition metal porphyrin sheets publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01188A – volume: 40 start-page: 3703 year: 2011 end-page: 3727 ident: CR2 article-title: Recent advances in catalytic hydrogenation of carbon dioxide publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a – volume: 42 start-page: 291 year: 2013 end-page: 304 ident: CR39 article-title: Porphyrin-sensitized solar cells publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35257E – volume: 2 start-page: 55 year: 2018 end-page: 61 ident: CR12 article-title: Theory-guided Sn/Cu alloying for efficient CO electroreduction at low overpotentials publication-title: Nat. Catal. doi: 10.1038/s41929-018-0200-8 – volume: 7 start-page: 3805 year: 2019 end-page: 3814 ident: CR37 article-title: Electrochemical reduction of CO by single atom catalyst TM–TCNQ monolayers publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08677J – volume: 57 start-page: 3493 year: 2018 end-page: 3498 ident: CR24 article-title: Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800817 – volume: 136 start-page: 6978 year: 2014 end-page: 6986 ident: CR9 article-title: Particle size effects in the catalytic electroreduction of CO on Cu nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500328k – volume: 349 start-page: 1 year: 2017 end-page: 7 ident: CR17 article-title: Ni-foam-supported and amine-functionalized TiO photocathode improved photoelectrocatalytic reduction of CO to methanol publication-title: J. Catal. doi: 10.1016/j.jcat.2017.01.013 – volume: 3 start-page: 140 year: 2018 end-page: 147 ident: CR33 article-title: Atomically dispersed Ni(I) as the active site for electrochemical CO reduction publication-title: Nat. Energy doi: 10.1038/s41560-017-0078-8 – volume: 30 start-page: 1800743 year: 2018 ident: CR25 article-title: Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications publication-title: Adv. Mater. doi: 10.1002/adma.201800743 – volume: 200 start-page: 141 year: 2017 end-page: 149 ident: CR29 article-title: Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO reduction under visible light publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.06.074 – volume: 7 start-page: 47 year: 2015 end-page: 85 ident: CR1 article-title: Global carbon budget 2014 publication-title: Earth Syst. Sci. Data. doi: 10.5194/essd-7-47-2015 – volume: 118 start-page: 5140 year: 1996 end-page: 5141 ident: CR20 article-title: Calix[4]pyrroles: old yet new anion-binding agents publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960307r – ident: CR41 – volume: 51 start-page: 7499 year: 2012 end-page: 7502 ident: CR3 article-title: Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201202320 – volume: 115 start-page: 13408 year: 2015 end-page: 13446 ident: CR15 article-title: Plasma catalysis: synergistic effects at the nanoscale publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00362 – volume: 136 start-page: 14107 year: 2014 end-page: 14113 ident: CR22 article-title: Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505791r – volume: 136 start-page: 8839 year: 2014 end-page: 8842 ident: CR4 article-title: Enhanced photocatalytic CO reduction activity of anatase TiO by coexposed {001} and {101} facets publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5044787 – volume: 139 start-page: 8078 year: 2017 end-page: 8081 ident: CR31 article-title: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02736 – volume: 1 start-page: 103 year: 2018 ident: 11817_CR14 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0018-9 – volume: 40 start-page: 3703 year: 2011 ident: 11817_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a – volume: 30 start-page: 1800743 year: 2018 ident: 11817_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201800743 – volume: 8 start-page: 2041 year: 2008 ident: 11817_CR27 publication-title: Nano lett. doi: 10.1021/nl8013549 – volume: 115 start-page: 13408 year: 2015 ident: 11817_CR15 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00362 – volume: 9 year: 2018 ident: 11817_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05659-7 – volume: 136 start-page: 8839 year: 2014 ident: 11817_CR4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5044787 – volume: 118 start-page: 5140 year: 1996 ident: 11817_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960307r – volume: 57 start-page: 3493 year: 2018 ident: 11817_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800817 – volume: 42 start-page: 291 year: 2013 ident: 11817_CR39 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35257E – volume: 135 start-page: 13934 year: 2013 ident: 11817_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406844r – ident: 11817_CR40 – ident: 11817_CR41 doi: 10.6084/m9.figshare.8845793.v1 – volume: 85 start-page: 2309 year: 1989 ident: 11817_CR10 publication-title: J. Chem. Soc. – volume: 140 start-page: 4218 year: 2018 ident: 11817_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00814 – volume: 7 start-page: 3805 year: 2019 ident: 11817_CR37 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08677J – volume: 205 start-page: 254 year: 2017 ident: 11817_CR18 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.12.039 – volume: 139 start-page: 8078 year: 2017 ident: 11817_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02736 – volume: 56 start-page: 11326 year: 2017 ident: 11817_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612214 – volume: 136 start-page: 14107 year: 2014 ident: 11817_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505791r – volume: 137 year: 2018 ident: 11817_CR35 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-018-2270-8 – volume: 43 start-page: 631 year: 2014 ident: 11817_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60323G – volume: 2 start-page: 55 year: 2018 ident: 11817_CR12 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0200-8 – volume: 53 start-page: 5852 year: 2014 ident: 11817_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201310461 – volume: 52 start-page: 7372 year: 2013 ident: 11817_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201207199 – volume: 57 start-page: 9684 year: 2018 ident: 11817_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803873 – volume: 44 start-page: 943 year: 2015 ident: 11817_CR21 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60443H – volume: 135 start-page: 16833 year: 2013 ident: 11817_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409445p – volume: 3 start-page: 140 year: 2018 ident: 11817_CR33 publication-title: Nat. Energy doi: 10.1038/s41560-017-0078-8 – volume: 6 start-page: 15494 year: 2018 ident: 11817_CR36 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03945 – volume: 28 start-page: 3423 year: 2016 ident: 11817_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201504766 – volume: 1 start-page: 111 year: 2018 ident: 11817_CR13 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0009-x – volume: 7 start-page: 11944 year: 2019 ident: 11817_CR38 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01188A – volume: 115 start-page: 5692 year: 1993 ident: 11817_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00066a039 – volume: 51 start-page: 7499 year: 2012 ident: 11817_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201202320 – volume: 30 start-page: 1704720 year: 2018 ident: 11817_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201704720 – volume: 200 start-page: 141 year: 2017 ident: 11817_CR29 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.06.074 – volume: 349 start-page: 1 year: 2017 ident: 11817_CR17 publication-title: J. Catal. doi: 10.1016/j.jcat.2017.01.013 – volume: 42 start-page: 1983 year: 2009 ident: 11817_CR30 publication-title: Acc. Chem. Res. doi: 10.1021/ar9001679 – volume: 136 start-page: 6978 year: 2014 ident: 11817_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500328k – volume: 7 start-page: 47 year: 2015 ident: 11817_CR1 publication-title: Earth Syst. Sci. Data. doi: 10.5194/essd-7-47-2015 |
SSID | ssj0000391844 |
Score | 2.6116629 |
Snippet | External fields are introduced to catalytic processes to improve catalytic activities. The light field effect plays an important role in electrocatalytic... The light field effect can improve performance in electrocatalytic processes, but is not fully understood. Here the authors design a photo-coupled... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3844 |
SubjectTerms | 147/137 147/143 147/28 639/301 639/638 639/925 Carbon dioxide Catalysis Catalysts Chlorophyll Copper Efficiency Electrocatalysts Electron transfer Energy Energy gap Gold Humanities and Social Sciences Ligands Light Light effects Microscopy Mimicry multidisciplinary Nanoparticles Oxidation Physics Science Science (multidisciplinary) Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMtMhI3MBqYid2fKRVqwoJThT1ZvkpIqXZancr6D_oz2bGSZYuzwu3KHGcycx4_Pn1DSGvI_eOJ69ZE0JgNa8S07KumCyF59ZWtko43_Hhozw9q9-fN-e3Un3hnrCRHnhU3EHbxFArDuMlqMMKzBThXI2J6HwSSmRoBH3ercFUjsFCw9Clnk7JlKI9WNU5JgCiYXjWUjG-1RNlwv7focxfN0v-tGKaO6KTB-T-hCDpu1HyXXInDg_J3TGn5PUjcvO5Ay_vI-szRcjqa4d2CXTOd0PXGarGJcXNmxSnCvpIAYWDvuGD7CICHKcwFL-gKAsUAVhLkdW4v6arXAsEyLm6JTK_om3pIlFvlw6uQrf41oX4mJydHH86OmVTugXmAbatwVDeihSTlLF0UinndGq9R74dFayDyBilSDWPrmm5CrrynjvrddsoXybpxROyMyyG-IzQoJFkStoGwFqdwFhcewtoQ7dcpNLKglSz6o2fuMgxJUZv8pq4aM1oLgPmMtlchhfkzeady5GJ46-lD9Gim5LIop1vgG-ZybfMv3yrIHuzP5ipaa8M8gdBjw6wqCCvNo-hUeJKix3i4iqXweMV8L8FeTq6z0YSkXMjt7ogasuxtkTdfjJ0XzLxt8xwEL77dnbBH2L9WRXP_4cqXpB7HNtOCXFV7pGd9fIq7gMcW7uXueV9BwnYMQU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIkLYidQkJG4gdXEThznhADxqJDgRFFvkVeIlCYleRX0H_CzmXGW6rH0FiVO4mQWfx6PvyHkuefW8GArVjjnWM6zwCqZZ0ymwnKtM50FjHd8_CQPj_IPx8XxHHAb57TKxSdGR-16izHyA6RtAUcKo9Gr0-8Mq0bh6upcQuMquZbBSIMpXWrzfo2xIPu5yvN5r0wq1MGYR88AuIbhjsuS8Z3xKNL2_wtr_p0y-ce6aRyONrfIzRlH0teT4G-TK767Q65PlSXP4ShmdtrxLvn1pQGtbz1rI2XI-KNBOTm61L-h2whd_UAxmZNi6KD1FFA5_H94NTvxAM8pTM1PKPYKmgDMpchy3J7TMT4FHObyuAGZYFHWtA_U6sHAkWv6n43z98jR5t3nt4dsLr_ALMC4LQjOahF8kNKnRpalMVVQ1iL_Tum0AU_ppQg596ZQvHRVZi032laqKG0apBX3yV7Xd_4hoa5C0impCwBveQBExyurAX1UiouQapmQbBFCbWduciyR0dZxjVyoehJcDYKro-BqnpAX6z2nEzPHpa3foGzXlsiqHU_0w9d6NtJaFd7lJYe5OeirFliVxJgcix7aIEqhE7K_aEY9m_pYXyhmQp6tl8FIceVFd74_i21wuwV8b0IeTIq09kTEWsmqSki5o2I7Xd290jXfIhG4jPAQ3vtyUcaLbv3_Vzy6_Csekxsc7SMFDyr3yd52OPNPAHhtzdNoXb8Bo9ksyg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEG9CCzISN7BIbMdJjguiqlaCCxT1ZtmODZHSpMpuBf0H_dnMOA-0UJC4RckkmXge_uLHN4S89NxZHlzF8rqumeRZYJWSGVOpcNyYzGQBxzs-fFQnp3J9lp_tET7vhYmL9iOlZUzT8-qwNxsZQxoACcOtkgWDtHuAVO3g2wer1frTehlZQc7zUspph0wqyhtu3umFIln_TQjzz4WSv82Wxk7o-C65M6FHuhr1vUf2fHef3BrrSV49INdfGvDw1rM20oNsvjdok5rOtW7oNsJUP1BcuElxmKD1FBA4tDW8kJ17gOIUfsPPKeoCIgBpKTIat1d0E58CyXF-3ICsr2hX2gfqzGDhqG76H03tH5LT4_ef352wqdQCcwDZtmAkZ0TwQSmfWlUU1lahdA65doraWMiKXokgubd5yYu6ypzj1riqzAuXBuXEI7Lf9Z1_QmhdIcGUMjkANRkAvfHKGUAaVclFSI1KSDY3vXYTDzmWw2h1nA8XpR7NpcFcOppL84S8Wu65GFk4_in9Fi26SCKDdjzRD1_15FG6zH0tCw7_4eCbRmAFEmslFjh0QRTCJORo9gc9hfVGI3cQ9OYAiRLyYrkMAYmzLKbz_WWUwa0V8L0JeTy6z6KJiHWRyyohxY5j7ai6e6VrvkXSbxWhILz39eyCv9T6e1M8_T_xQ3KbY5SkkD3VEdnfDpf-GYCurX0-RdlPq60pBA priority: 102 providerName: Springer Nature |
Title | Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide |
URI | https://link.springer.com/article/10.1038/s41467-019-11817-2 https://www.ncbi.nlm.nih.gov/pubmed/31451689 https://www.proquest.com/docview/2280471244 https://www.proquest.com/docview/2281108898 https://pubmed.ncbi.nlm.nih.gov/PMC6710284 https://doaj.org/article/85ed472523964a36808bb40593cf373a |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGJiReEOMa2Coj8QaBxE7s5AGhrlqZKm1CQFHfItuxIVLWQtqJ9R_wsznHSYoKBYmXpkocxzk3f7bj7xDyzDKjmTN5mJZlGSYsdmEukjgUETdMqVjFDuc7zi_E2TSZzNLZHunTHXUCXO4c2mE-qWlTv7z-tn4DDv-63TKevVom3t0BrIS4jVKGEJIPoGeSmNHgvIP7PjLzHAY0uNDMImgPFODdPprd1Wz1VZ7SfxcO_fNzyt_WVH1XNb5DbncYkw5bozgke3Z-l9xss06u75Efnyrwg9qGtScRWX6vUHMl7TPi0JUHs7ah-HknxcmE2lIQEWgEHhheWpAVhcH6JcW2QBEAvhR5j-s1XfpaIIT21TXIDYvapwtHjWo0_CurxXVV2vtkOj79ODoLu4QMoQFgtwJVGsWddULYSAsptc5dZgwy8shSaYidVnCXMKvTjMkyj41hWpk8S6WJnDD8AdmfL-b2EaFljjRUQqUA5xIHGI_lRgEeyTPGXaREQOJe9IXp2MoxaUZd-FVznhWtugpQV-HVVbCAPN_c87Xl6vhn6RPU6KYk8mz7E4vmc9G5bZGltkwkg9E6WLDimKdE6wTTIBrHJVcBOertoehtt0CGIejzATgF5OnmMrgtrsWouV1c-TK4AQPeNyAPW_PZtIT77MlZHhC5ZVhbTd2-Mq--eGpw4QEjPPdFb4K_mvV3UTz-L8E9IbcYOkkEIVYckf1Vc2WPAZmt9IDckDMJv9n47YAcDIeTDxM4npxevHsPZ0diNPBzHgPvlj8BbOI5bg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYidQwEhwAquJnTjJASG2YUqXU4t6M7ZjQ6TppEymKvMP-DX8Rt5zkqmGpbfeoonHeclb_Hl53yPkmePWcG9LllVVxVKeeFbKNGEyFpZrnejE43rH7p4cH6SfDrPDNfJryIXBY5VDTAyBumosrpFvIm0LBFIYjV4ff2dYNQp3V4cSGp1ZbLvFKUzZ2ldb70G_zzkffdh_N2Z9VQFmAZ3MQR6rhXdeShcbmefGlL6wFmll8kobCABOCp9yZ7KC51WZWMuNtmWR5Tb20gro9xK5nAoYyTEzffRxuaaDbOtFmva5ObEoNts0RCLAUQwzPHPGV8a_UCbgX9j27yOaf-zThuFvdINc73ErfdMZ2k2y5qa3yJWukuUCrsJJUtveJj8_1-BlE8cmgaKkPa3RLio61Nuh8wCV3Yzi4VGKSxUTR2EWAPqGR7MjB9MBqufNEUWpoAnAaoqsypMFbUMvEKCH7mbIPIu2RRtPrZ4ZuKrq5kdduTvk4EIUc5esT5upu09oVSLJldQZgMXUA4LkpdWAdsqCCx9rGZFkUIKyPRc6luSYqLAnLwrVKU6B4lRQnOIRebH8z3HHBHJu67eo22VLZPEOPzSzr6oPCqrIXJXmPOMC_EMLrIJiTIpFFq0XudAR2RgsQ_WhpVVnjhCRp8vbEBRwp0dPXXMS2mB6B7xvRO51hrSURITazEUZkXzFxFZEXb0zrb8F4nEZ4Cg89-VgjGdi_f9TPDj_LZ6Qq-P93R21s7W3_ZBc4-grMURvuUHW57MT9whA39w8Dp5GyZeLdu3fyGJrDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDuBAUaCJ7Ca2ImTPCDE2KqNQTUhhvaW2Y4NlbJmNJ1G_wG_iV_HOU7SqVz2treocZ2TnIs_28ffIeS55UZzZ3KWlGXJYh45lss4YjIUhisVqcjhesfHsdw5iN8fJodr5Fd_FgbTKvuY6AN1WRtcIx8ibQsEUhiNhq5Li9jfGr05-c6wghTutPblNFoT2bOLM5i-Na93t0DXLzgfbX9-t8O6CgPMAFKZg2xGCWedlDbUMk21zl1mDFLMpKXSEAysFC7mVicZT8s8MoZrZfIsSU3opBHQ7xWynuKsaEDWN7fH-5-WKzzIvZ7FcXdSJxTZsIl9XAJUxfC8Z8r4ymjoiwb8C-n-nbD5x66tHwxHN8mNDsXSt63Z3SJrdnqbXG3rWi7gyueVmuYO-fllAj5XWVZ5wpLmbIJWUtK--g6de-BsZxRTSSkuXFSWwpwAtA-PZscWJgdUzetjilJBEwDZFDmWqwVtfC8QrvvuZshDi5ZGa0eNmmm4Kif1j0lp75KDS1HNPTKY1lP7gNAyR8orqRKAjrEDPMlzowD75BkXLlQyIFGvhMJ0zOhYoKMq_A69yIpWcQUorvCKK3hAXi7_c9LyglzYehN1u2yJnN7-h3r2tehCRJEltoxTnnAB3qIE1kTROsaSi8aJVKiAbPSWUXSBpinO3SIgz5a3IUTgvo-a2vrUt8HDHvC-AbnfGtJSEuErNWd5QNIVE1sRdfXOdPLN05BLD07hua96YzwX6_-f4uHFb_GUXAO3Lj7sjvcekescXSWEUC43yGA-O7WPAQHO9ZPO1Sg5umzv_g21CnCe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible-light-switched+electron+transfer+over+single+porphyrin-metal+atom+center+for+highly+selective+electroreduction+of+carbon+dioxide&rft.jtitle=Nature+communications&rft.au=Yang%2C+Deren&rft.au=Yu%2C+Hongde&rft.au=He%2C+Ting&rft.au=Zuo%2C+Shouwei&rft.date=2019-08-26&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-11817-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_019_11817_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |