Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting
Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β -ketoamine COFs by systematically en...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 593 - 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.02.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of
β
-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H
2
and O
2
evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.
Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine COF by systematically engineering N-sites, architecture, and morphology for improved water splitting activity. |
---|---|
AbstractList | Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H
and O
evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers. Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β -ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H 2 and O 2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers. Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine COF by systematically engineering N-sites, architecture, and morphology for improved water splitting activity. Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H2 and O2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine COF by systematically engineering N-sites, architecture, and morphology for improved water splitting activity. Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H2 and O2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H2 and O2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers. Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β -ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H 2 and O 2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers. Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine COF by systematically engineering N-sites, architecture, and morphology for improved water splitting activity. |
ArticleNumber | 593 |
Author | Lan, Ya-Qian Lu, Meng Yang, Yan Yang, Zhao-Di Zhang, Rui Liu, Yu-Han Zhang, Hong-Yu Chu, Xiaoyu Zhang, Feng-Ming |
Author_xml | – sequence: 1 givenname: Yan surname: Yang fullname: Yang, Yan organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology – sequence: 2 givenname: Xiaoyu surname: Chu fullname: Chu, Xiaoyu organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology – sequence: 3 givenname: Hong-Yu surname: Zhang fullname: Zhang, Hong-Yu organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology – sequence: 4 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology – sequence: 5 givenname: Yu-Han surname: Liu fullname: Liu, Yu-Han organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology – sequence: 6 givenname: Feng-Ming orcidid: 0000-0002-2738-306X surname: Zhang fullname: Zhang, Feng-Ming email: zhangfm80@163.com organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology – sequence: 7 givenname: Meng orcidid: 0000-0003-4502-7517 surname: Lu fullname: Lu, Meng organization: School of Chemistry, South China Normal University – sequence: 8 givenname: Zhao-Di surname: Yang fullname: Yang, Zhao-Di email: yangzhaodi@163.com organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology – sequence: 9 givenname: Ya-Qian orcidid: 0000-0002-2140-7980 surname: Lan fullname: Lan, Ya-Qian email: yqlan@m.scnu.edu.cn organization: School of Chemistry, South China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36737616$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1O3DAUhaOKqlDKC3RRReqmm7T-i-NsKlWItkhI3bC3bpybwUNip7ZngNfiQfpM9RBogQXZ2LLP-XR8c94We847LIr3lHymhKsvUVAhm4owXnHJuaquXxUHjAha0YbxvUf7_eIoxjXJH2-pEuJNsc9lwxtJ5UGhT9zKOsRg3ar8c1tdYvIw5ZPS-C2M6FLpwwqcNeUQYMIrHy5jOfhQzhc-eQMJxpuUb_0WA4xjeQUJQxnn0aaUme-K1wOMEY_u18Pi_PvJ-fHP6uzXj9Pjb2eVqQVJlWBGtbRnfc8AsMemHQZCKRENsr5TUvSDQl6LvAUlOzTYtaCwp5K2Xdvyw-J0wfYe1noOdoJwoz1YfXeQn6Ah5JgjaqJEV2cslwMReSJQm5oMEjite8koZtbXhTVvugl7k2eQX_YE-vTG2Qu98lvdqlYxSTLg0z0g-N8bjElPNhocR3DoN1GzpuGU8rpusvTjM-nab4LLk9qpGG0Fa-qs-vA40b8oD78xC9QiMMHHGHDQxiZI1u8C2lFTonel0UtpdC6NviuNvs5W9sz6QH_RxBdTnHfFwfA_9guuv84A13Y |
CitedBy_id | crossref_primary_10_1002_ange_202416771 crossref_primary_10_1016_j_gee_2023_12_006 crossref_primary_10_1016_j_cej_2024_151825 crossref_primary_10_1002_ange_202314988 crossref_primary_10_1007_s40843_023_2834_1 crossref_primary_10_1002_smll_202400344 crossref_primary_10_1016_j_pmatsci_2024_101386 crossref_primary_10_1002_aenm_202402395 crossref_primary_10_1016_j_apsusc_2024_161988 crossref_primary_10_1039_D4YA00082J crossref_primary_10_1002_smll_202407307 crossref_primary_10_1016_j_colsurfa_2024_135437 crossref_primary_10_1002_cctc_202301179 crossref_primary_10_1016_j_cej_2024_149347 crossref_primary_10_1002_adfm_202310195 crossref_primary_10_1038_s41467_024_49168_2 crossref_primary_10_1039_D4SC06633B crossref_primary_10_1002_aenm_202302797 crossref_primary_10_1002_anie_202410097 crossref_primary_10_1016_S1872_2067_24_60006_9 crossref_primary_10_1039_D4SC07028C crossref_primary_10_1002_adma_202306758 crossref_primary_10_1021_acscatal_3c02950 crossref_primary_10_1002_adma_202412005 crossref_primary_10_1039_D3TA04472F crossref_primary_10_3866_PKU_WHXB202407013 crossref_primary_10_1002_smll_202401168 crossref_primary_10_1039_D3NA00442B crossref_primary_10_1021_acs_jpcc_3c00652 crossref_primary_10_1002_adma_202303649 crossref_primary_10_1039_D5EE00494B crossref_primary_10_1002_adma_202304170 crossref_primary_10_1021_acs_accounts_4c00491 crossref_primary_10_1002_ange_202412977 crossref_primary_10_1016_j_ijhydene_2024_03_044 crossref_primary_10_1021_acsanm_4c01127 crossref_primary_10_1002_anie_202413096 crossref_primary_10_1016_j_apcatb_2024_123863 crossref_primary_10_1039_D4TA04384G crossref_primary_10_1021_acs_jpclett_3c01850 crossref_primary_10_1002_anie_202303086 crossref_primary_10_1039_D4NR00289J crossref_primary_10_1002_adma_202305313 crossref_primary_10_1007_s11426_024_2436_4 crossref_primary_10_1002_cssc_202401903 crossref_primary_10_1039_D4TA08403A crossref_primary_10_1002_ange_202408697 crossref_primary_10_1016_S1872_2067_24_60075_6 crossref_primary_10_1016_j_apcatb_2024_123899 crossref_primary_10_1016_j_cej_2024_154487 crossref_primary_10_1002_chem_202403627 crossref_primary_10_1021_jacs_4c06013 crossref_primary_10_1002_cjoc_202401245 crossref_primary_10_1002_adma_202305397 crossref_primary_10_1021_acsami_3c17662 crossref_primary_10_1016_j_apcatb_2024_124587 crossref_primary_10_1021_acsami_3c14311 crossref_primary_10_1002_ange_202413096 crossref_primary_10_1007_s40843_023_2714_x crossref_primary_10_1039_D4QI01480D crossref_primary_10_1002_ange_202303086 crossref_primary_10_1002_anie_202314988 crossref_primary_10_1002_anie_202408697 crossref_primary_10_1021_acs_jpclett_4c00980 crossref_primary_10_1016_j_jmst_2024_12_047 crossref_primary_10_1016_S1872_2067_23_64457_2 crossref_primary_10_1002_inc2_12028 crossref_primary_10_1016_j_jcis_2025_01_059 crossref_primary_10_1039_D4TA01683A crossref_primary_10_1021_acs_jpcc_4c04474 crossref_primary_10_1016_j_jmst_2025_02_009 crossref_primary_10_26599_NR_2025_94907273 crossref_primary_10_1007_s12274_023_6258_x crossref_primary_10_1021_acs_jpclett_4c01162 crossref_primary_10_1016_j_enchem_2023_100116 crossref_primary_10_1039_D4NR00391H crossref_primary_10_1021_acscatal_3c03857 crossref_primary_10_1002_advs_202304697 crossref_primary_10_1002_ange_202410097 crossref_primary_10_1021_acscatal_4c05827 crossref_primary_10_1016_j_cej_2024_150812 crossref_primary_10_1039_D4YA00361F crossref_primary_10_1002_adfm_202316546 crossref_primary_10_1002_smll_202500674 crossref_primary_10_1038_s41467_024_44725_1 crossref_primary_10_1039_D3SC03681B crossref_primary_10_1016_j_apcatb_2025_125292 crossref_primary_10_1002_ange_202315596 crossref_primary_10_1002_anie_202422940 crossref_primary_10_1021_acsenergylett_4c02847 crossref_primary_10_1016_j_ijhydene_2024_02_300 crossref_primary_10_1021_acs_jpclett_3c01956 crossref_primary_10_1039_D4TA06849A crossref_primary_10_1016_j_jcis_2023_10_147 crossref_primary_10_1039_D3DT03894G crossref_primary_10_1055_a_2291_8578 crossref_primary_10_1016_j_ijhydene_2024_12_274 crossref_primary_10_1039_D3EY00047H crossref_primary_10_1016_j_apcatb_2024_123837 crossref_primary_10_1007_s40843_024_2844_8 crossref_primary_10_1021_acsami_3c16319 crossref_primary_10_1016_j_micromeso_2025_113506 crossref_primary_10_1016_j_jcis_2024_03_070 crossref_primary_10_1039_D4NR03204G crossref_primary_10_1002_anie_202416039 crossref_primary_10_1002_adma_202411118 crossref_primary_10_1021_acsami_4c20472 crossref_primary_10_1002_adfm_202401562 crossref_primary_10_1016_j_cej_2024_151479 crossref_primary_10_1016_j_cej_2024_159188 crossref_primary_10_1002_anie_202421861 crossref_primary_10_1039_D4SC00241E crossref_primary_10_1021_acsmaterialslett_4c00026 crossref_primary_10_1016_j_pmatsci_2024_101335 crossref_primary_10_1002_ange_202307459 crossref_primary_10_1039_D3TA05435G crossref_primary_10_1021_acs_inorgchem_4c04309 crossref_primary_10_1039_D4RA03259D crossref_primary_10_1002_adma_202412653 crossref_primary_10_1038_s41467_025_56314_x crossref_primary_10_3390_catal14090557 crossref_primary_10_1002_adfm_202400946 crossref_primary_10_1002_anie_202403093 crossref_primary_10_1002_ange_202421861 crossref_primary_10_1039_D4TC05149A crossref_primary_10_1021_jacs_3c03938 crossref_primary_10_1039_D3TC03118G crossref_primary_10_1038_s41467_024_50951_4 crossref_primary_10_1016_j_jcis_2024_06_077 crossref_primary_10_1016_j_colsurfa_2024_134245 crossref_primary_10_1021_acsmaterialslett_4c00414 crossref_primary_10_1016_j_cjsc_2024_100375 crossref_primary_10_1021_acsmaterialslett_4c00418 crossref_primary_10_1007_s11426_024_2446_7 crossref_primary_10_1021_acscatal_4c04444 crossref_primary_10_1016_j_apcatb_2024_123698 crossref_primary_10_1002_aenm_202303346 crossref_primary_10_1002_anie_202416771 crossref_primary_10_1002_adfm_202402676 crossref_primary_10_1016_j_ccr_2024_215997 crossref_primary_10_1002_adma_202413118 crossref_primary_10_1002_ange_202422940 crossref_primary_10_1002_anie_202307459 crossref_primary_10_1039_D4NJ01190B crossref_primary_10_1016_j_partic_2023_12_008 crossref_primary_10_1016_j_seppur_2024_129809 crossref_primary_10_1016_j_jcis_2024_03_102 crossref_primary_10_1002_anie_202412977 crossref_primary_10_1002_ange_202403093 crossref_primary_10_1016_j_surfin_2024_104967 crossref_primary_10_1038_s41467_025_57662_4 crossref_primary_10_1016_j_cej_2024_151332 crossref_primary_10_1002_anie_202315596 crossref_primary_10_1002_advs_202413697 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1002_adma_202416100 crossref_primary_10_1016_j_ijhydene_2025_03_045 crossref_primary_10_1039_D4CY00402G crossref_primary_10_1002_sstr_202300279 crossref_primary_10_1016_j_apcatb_2024_124496 crossref_primary_10_1002_ange_202416039 crossref_primary_10_1016_j_apcatb_2023_123023 crossref_primary_10_1016_j_apcatb_2025_125246 |
Cites_doi | 10.1002/ange.201710557 10.1038/s41557-018-0141-5 10.1038/natrevmats.2016.68 10.1039/C7SC01747B 10.1038/s41467-022-30035-x 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.59.1758 10.1038/s41929-020-00522-9 10.1038/s41467-020-19214-w 10.1021/jacs.0c00054 10.1021/acscatal.0c01242 10.1021/jacs.0c05596 10.1038/s41560-021-00795-9 10.1103/PhysRevLett.77.3865 10.1021/ja308278w 10.1038/s41467-021-21527-3 10.1002/anie.202104219 10.1021/acssuschemeng.1c04994 10.1038/s41467-022-28146-6 10.1038/s41586-020-2278-9 10.1126/science.aaa3145 10.1038/s41929-020-0476-3 10.1021/jacs.0c00564 10.1021/jacs.6b11878 10.1126/science.aal1585 10.1002/ange.202105190 10.1002/advs.202001543 10.1016/j.joule.2017.12.009 10.1002/anie.201410961 10.1002/adma.202004747 10.1002/aenm.201700025 10.1002/ange.201912344 10.1038/s41557-020-00635-5 10.1021/acsenergylett.9b01691 10.1002/ange.202011614 10.1002/cssc.200800156 10.1002/ange.201914424 10.1039/C8CS00542G 10.1038/ncomms9508 10.1002/anie.202109851 10.1021/jacs.0c12958 10.1039/D1TA04493A 10.1016/0927-0256(96)00008-0 10.1021/ja506386e 10.1021/jacs.6b04325 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-36338-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_084b57e236f04391a5c50f6a315d621e PMC9898260 36737616 10_1038_s41467_023_36338_x |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-42c891d2dd2aaede79ff011047e2db864df8e354b86a86beceb9a8ed1619b993 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:28:36 EDT 2025 Thu Aug 21 18:38:06 EDT 2025 Fri Jul 11 15:40:08 EDT 2025 Wed Aug 13 08:10:34 EDT 2025 Mon Jul 21 05:58:43 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Jul 01 00:58:39 EDT 2025 Fri Feb 21 02:39:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-42c891d2dd2aaede79ff011047e2db864df8e354b86a86beceb9a8ed1619b993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2140-7980 0000-0003-4502-7517 0000-0002-2738-306X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-36338-x |
PMID | 36737616 |
PQID | 2772194275 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_084b57e236f04391a5c50f6a315d621e pubmedcentral_primary_oai_pubmedcentral_nih_gov_9898260 proquest_miscellaneous_2773113557 proquest_journals_2772194275 pubmed_primary_36737616 crossref_citationtrail_10_1038_s41467_023_36338_x crossref_primary_10_1038_s41467_023_36338_x springer_journals_10_1038_s41467_023_36338_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-03 |
PublicationDateYYYYMMDD | 2023-02-03 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Vyas (CR16) 2015; 6 Wang (CR21) 2020; 142 Pan (CR5) 2015; 54 Zhang (CR40) 2021; 9 Zhai (CR17) 2020; 11 Goto (CR3) 2018; 2 Yang (CR29) 2021; 9 Ming (CR33) 2019; 131 Che (CR34) 2017; 139 Takata (CR1) 2020; 581 Yang (CR19) 2019; 4 Kong (CR27) 2021; 133 Kasap (CR35) 2016; 138 Huang, Wang, Jiang (CR8) 2016; 1 Zhang (CR23) 2020; 32 Zhang (CR13) 2020; 132 Xu (CR25) 2021; 60 Li (CR32) 2022; 13 Sun (CR26) 2020; 132 Rieth, Qin, Martindale, Nocera (CR37) 2021; 143 Li (CR12) 2020; 10 Kresse, Joubert (CR44) 1999; 59 Kandambeth (CR22) 2012; 134 Zhao (CR24) 2021; 6 Wang, Zhang, Luo, Sun, Xu (CR38) 2021; 60 Perdew, Burke, Ernzerhof (CR45) 1996; 77 Chen (CR10) 2021; 12 Diercks, Yaghi (CR11) 2017; 355 Zhang, Lan, Wang (CR14) 2017; 8 Liu (CR28) 2015; 347 Qi (CR31) 2022; 13 Blöchl (CR43) 1994; 50 Hu (CR36) 2021; 13 Martin, Reardon, Moniz, Tang (CR7) 2014; 136 Wan, Wang, Xu, Wu, Yang (CR18) 2020; 142 Wang, Zheng, Chen, Xiong, Xu (CR39) 2018; 130 Chu (CR41) 2020; 7 Wang (CR9) 2018; 10 She (CR30) 2017; 7 Peng (CR20) 2020; 142 Lin (CR15) 2020; 3 Xiao (CR4) 2020; 3 Hisatomi, Maeda, Lu, Domen (CR6) 2009; 2 Kresse, Furthmüller (CR42) 1996; 6 Wang, Li, Domen (CR2) 2019; 48 N Huang (36338_CR8) 2016; 1 CS Diercks (36338_CR11) 2017; 355 J Zhang (36338_CR23) 2020; 32 Y Goto (36338_CR3) 2018; 2 PE Blöchl (36338_CR43) 1994; 50 Y Kong (36338_CR27) 2021; 133 H Hu (36338_CR36) 2021; 13 S Li (36338_CR12) 2020; 10 M Xu (36338_CR25) 2021; 60 Y Peng (36338_CR20) 2020; 142 YQ Xiao (36338_CR4) 2020; 3 DJ Martin (36338_CR7) 2014; 136 C Pan (36338_CR5) 2015; 54 K Sun (36338_CR26) 2020; 132 Y Qi (36338_CR31) 2022; 13 C Wang (36338_CR38) 2021; 60 VS Vyas (36338_CR16) 2015; 6 S Zhang (36338_CR13) 2020; 132 G Kresse (36338_CR44) 1999; 59 L Lin (36338_CR15) 2020; 3 H Wang (36338_CR21) 2020; 142 J Ming (36338_CR33) 2019; 131 H Kasap (36338_CR35) 2016; 138 P Zhai (36338_CR17) 2020; 11 C Yang (36338_CR19) 2019; 4 Z Wang (36338_CR2) 2019; 48 Y Yang (36338_CR29) 2021; 9 S Kandambeth (36338_CR22) 2012; 134 D Zhao (36338_CR24) 2021; 6 G Kresse (36338_CR42) 1996; 6 JP Perdew (36338_CR45) 1996; 77 Y Wan (36338_CR18) 2020; 142 C Li (36338_CR32) 2022; 13 W Che (36338_CR34) 2017; 139 T Hisatomi (36338_CR6) 2009; 2 G Zhang (36338_CR14) 2017; 8 H-Y Zhang (36338_CR40) 2021; 9 J Liu (36338_CR28) 2015; 347 T Takata (36338_CR1) 2020; 581 X She (36338_CR30) 2017; 7 AJ Rieth (36338_CR37) 2021; 143 L Wang (36338_CR39) 2018; 130 X Chu (36338_CR41) 2020; 7 XY Wang (36338_CR9) 2018; 10 R Chen (36338_CR10) 2021; 12 |
References_xml | – volume: 130 start-page: 3512 year: 2018 end-page: 3516 ident: CR39 article-title: Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201710557 – volume: 10 start-page: 1180 year: 2018 end-page: 1189 ident: CR9 article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water publication-title: Nat. Chem. doi: 10.1038/s41557-018-0141-5 – volume: 1 start-page: 16068 year: 2016 ident: CR8 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 8 start-page: 5261 year: 2017 end-page: 5274 ident: CR14 article-title: Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting publication-title: Chem. Sci. doi: 10.1039/C7SC01747B – volume: 13 year: 2022 ident: CR32 article-title: Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-022-30035-x – volume: 50 start-page: 17953 year: 1994 ident: CR43 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 59 start-page: 1758 year: 1999 ident: CR44 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 3 start-page: 932 year: 2020 end-page: 940 ident: CR4 article-title: Band structure engineering and defect control of Ta N for efficient photoelectrochemical water oxidation publication-title: Nat. Catal. doi: 10.1038/s41929-020-00522-9 – volume: 11 year: 2020 ident: CR17 article-title: Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting publication-title: Nat. Commun. doi: 10.1038/s41467-020-19214-w – volume: 142 start-page: 4862 year: 2020 end-page: 4871 ident: CR21 article-title: Integrating suitable linkage of covalent organic frameworks into covalently bridged inorganic/organic hybrids toward efficient photocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00054 – volume: 10 start-page: 8717 year: 2020 end-page: 8726 ident: CR12 article-title: Fully conjugated donor–acceptor covalent organic frameworks for photocatalytic oxidative amine coupling and thioamide cyclization publication-title: ACS Catal. doi: 10.1021/acscatal.0c01242 – volume: 142 start-page: 13162 year: 2020 end-page: 13169 ident: CR20 article-title: Intramolecular hydrogen bonding-based topology regulation of two-dimensional covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05596 – volume: 6 start-page: 388 year: 2021 end-page: 397 ident: CR24 article-title: Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting publication-title: Nat. Energy doi: 10.1038/s41560-021-00795-9 – volume: 77 start-page: 3865 year: 1996 ident: CR45 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 134 start-page: 19524 year: 2012 end-page: 19527 ident: CR22 article-title: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (Acid/Base) stability via a combined reversible and irreversible route publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308278w – volume: 12 year: 2021 ident: CR10 article-title: Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-021-21527-3 – volume: 60 start-page: 16372 year: 2021 end-page: 16376 ident: CR25 article-title: Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104219 – volume: 9 start-page: 13376 year: 2021 end-page: 13384 ident: CR29 article-title: Decoration of active sites in covalent-organic framework: an effective strategy of building efficient photocatalysis for CO reduction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c04994 – volume: 13 year: 2022 ident: CR31 article-title: Unraveling of cocatalysts photodeposited selectively on facets of BiVO to boost solar water splitting publication-title: Nat. Commun. doi: 10.1038/s41467-022-28146-6 – volume: 581 start-page: 411 year: 2020 end-page: 414 ident: CR1 article-title: Photocatalytic water splitting with a quantum efficiency of almost unity publication-title: Nature doi: 10.1038/s41586-020-2278-9 – volume: 347 start-page: 970 year: 2015 end-page: 974 ident: CR28 article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway publication-title: Science doi: 10.1126/science.aaa3145 – volume: 3 start-page: 649 year: 2020 end-page: 655 ident: CR15 article-title: Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting publication-title: Nat. Catal. doi: 10.1038/s41929-020-0476-3 – volume: 142 start-page: 4508 year: 2020 end-page: 4516 ident: CR18 article-title: A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00564 – volume: 139 start-page: 3021 year: 2017 end-page: 3026 ident: CR34 article-title: Fast Photoelectron transfer in (Cring)-C N plane heterostructural nanosheets for overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11878 – volume: 355 start-page: 1585 year: 2017 ident: CR11 article-title: The atom, the molecule, and the covalent organic framework publication-title: Science doi: 10.1126/science.aal1585 – volume: 133 start-page: 17779 year: 2021 end-page: 17787 ident: CR27 article-title: Tight covalent organic framework membranes for efficient anion transport via molecular precursor engineering publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202105190 – volume: 7 start-page: 2001543 year: 2020 ident: CR41 article-title: Ultrathin phosphate-modulated Co phthalocyanine/g-C N heterojunction photocatalysts with single Co–N (II) sites for efficient O activation publication-title: Adv. Sci. doi: 10.1002/advs.202001543 – volume: 2 start-page: 509 year: 2018 end-page: 520 ident: CR3 article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation publication-title: Joule doi: 10.1016/j.joule.2017.12.009 – volume: 54 start-page: 2955 year: 2015 end-page: 2959 ident: CR5 article-title: A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201410961 – volume: 32 start-page: 2004747 year: 2020 ident: CR23 article-title: Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.202004747 – volume: 7 start-page: 1700025 year: 2017 ident: CR30 article-title: High efficiency photocatalytic water splitting using 2D α-Fe O /g-C N Z-scheme catalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700025 – volume: 131 start-page: 18458 year: 2019 end-page: 18462 ident: CR33 article-title: Hot π-electron tunneling of metal-insulator-COF nanostructures for efficient hydrogen production publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201912344 – volume: 13 start-page: 358 year: 2021 end-page: 366 ident: CR36 article-title: Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting publication-title: Nat. Chem. doi: 10.1038/s41557-020-00635-5 – volume: 4 start-page: 2251 year: 2019 end-page: 2258 ident: CR19 article-title: Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01691 – volume: 132 start-page: 22937 year: 2020 end-page: 22943 ident: CR26 article-title: Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202011614 – volume: 2 start-page: 336 year: 2009 end-page: 343 ident: CR6 article-title: The effects of starting materials in the synthesis of (Ga -xZn )(N - O ) solid solution on its photocatalytic activity for overall water splitting under visible light publication-title: ChemSusChem doi: 10.1002/cssc.200800156 – volume: 132 start-page: 6063 year: 2020 end-page: 6070 ident: CR13 article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201914424 – volume: 48 start-page: 2109 year: 2019 end-page: 2125 ident: CR2 article-title: Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00542G – volume: 6 start-page: 1 year: 2015 end-page: 9 ident: CR16 article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation publication-title: Nat. Commun. doi: 10.1038/ncomms9508 – volume: 60 start-page: 25381 year: 2021 end-page: 25390 ident: CR38 article-title: Ultrathin crystalline covalent-triazine-framework nanosheets with electron donor groups for synergistically enhanced photocatalytic water splitting publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202109851 – volume: 143 start-page: 4646 year: 2021 end-page: 4652 ident: CR37 article-title: Long-lived triplet excited state in a heterogeneous modified carbon Nitride photocatalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12958 – volume: 9 start-page: 16743 year: 2021 end-page: 16750 ident: CR40 article-title: A new strategy for constructing covalently connected MOF@COF core-shell heterostructures for enhanced photocatalytic hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04493A – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR42 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 136 start-page: 12568 year: 2014 end-page: 12571 ident: CR7 article-title: Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506386e – volume: 138 start-page: 9183 year: 2016 end-page: 9192 ident: CR35 article-title: Solar-driven reduction of aqueous protons coupled to selective alcohol oxidation with a carbon nitride-molecular Ni catalyst system publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04325 – volume: 13 year: 2022 ident: 36338_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30035-x – volume: 131 start-page: 18458 year: 2019 ident: 36338_CR33 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201912344 – volume: 3 start-page: 932 year: 2020 ident: 36338_CR4 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00522-9 – volume: 59 start-page: 1758 year: 1999 ident: 36338_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 48 start-page: 2109 year: 2019 ident: 36338_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00542G – volume: 136 start-page: 12568 year: 2014 ident: 36338_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506386e – volume: 6 start-page: 15 year: 1996 ident: 36338_CR42 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 12 year: 2021 ident: 36338_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21527-3 – volume: 9 start-page: 16743 year: 2021 ident: 36338_CR40 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04493A – volume: 355 start-page: 1585 year: 2017 ident: 36338_CR11 publication-title: Science doi: 10.1126/science.aal1585 – volume: 13 start-page: 358 year: 2021 ident: 36338_CR36 publication-title: Nat. Chem. doi: 10.1038/s41557-020-00635-5 – volume: 60 start-page: 16372 year: 2021 ident: 36338_CR25 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104219 – volume: 132 start-page: 22937 year: 2020 ident: 36338_CR26 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202011614 – volume: 130 start-page: 3512 year: 2018 ident: 36338_CR39 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201710557 – volume: 50 start-page: 17953 year: 1994 ident: 36338_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 1 start-page: 16068 year: 2016 ident: 36338_CR8 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 134 start-page: 19524 year: 2012 ident: 36338_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308278w – volume: 4 start-page: 2251 year: 2019 ident: 36338_CR19 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01691 – volume: 142 start-page: 13162 year: 2020 ident: 36338_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05596 – volume: 11 year: 2020 ident: 36338_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19214-w – volume: 142 start-page: 4862 year: 2020 ident: 36338_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00054 – volume: 6 start-page: 388 year: 2021 ident: 36338_CR24 publication-title: Nat. Energy doi: 10.1038/s41560-021-00795-9 – volume: 347 start-page: 970 year: 2015 ident: 36338_CR28 publication-title: Science doi: 10.1126/science.aaa3145 – volume: 32 start-page: 2004747 year: 2020 ident: 36338_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.202004747 – volume: 77 start-page: 3865 year: 1996 ident: 36338_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 3 start-page: 649 year: 2020 ident: 36338_CR15 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0476-3 – volume: 9 start-page: 13376 year: 2021 ident: 36338_CR29 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c04994 – volume: 132 start-page: 6063 year: 2020 ident: 36338_CR13 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201914424 – volume: 8 start-page: 5261 year: 2017 ident: 36338_CR14 publication-title: Chem. Sci. doi: 10.1039/C7SC01747B – volume: 7 start-page: 1700025 year: 2017 ident: 36338_CR30 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700025 – volume: 138 start-page: 9183 year: 2016 ident: 36338_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04325 – volume: 2 start-page: 336 year: 2009 ident: 36338_CR6 publication-title: ChemSusChem doi: 10.1002/cssc.200800156 – volume: 143 start-page: 4646 year: 2021 ident: 36338_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12958 – volume: 581 start-page: 411 year: 2020 ident: 36338_CR1 publication-title: Nature doi: 10.1038/s41586-020-2278-9 – volume: 2 start-page: 509 year: 2018 ident: 36338_CR3 publication-title: Joule doi: 10.1016/j.joule.2017.12.009 – volume: 10 start-page: 1180 year: 2018 ident: 36338_CR9 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0141-5 – volume: 139 start-page: 3021 year: 2017 ident: 36338_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11878 – volume: 10 start-page: 8717 year: 2020 ident: 36338_CR12 publication-title: ACS Catal. doi: 10.1021/acscatal.0c01242 – volume: 6 start-page: 1 year: 2015 ident: 36338_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms9508 – volume: 54 start-page: 2955 year: 2015 ident: 36338_CR5 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201410961 – volume: 7 start-page: 2001543 year: 2020 ident: 36338_CR41 publication-title: Adv. Sci. doi: 10.1002/advs.202001543 – volume: 60 start-page: 25381 year: 2021 ident: 36338_CR38 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202109851 – volume: 13 year: 2022 ident: 36338_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28146-6 – volume: 142 start-page: 4508 year: 2020 ident: 36338_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00564 – volume: 133 start-page: 17779 year: 2021 ident: 36338_CR27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202105190 |
SSID | ssj0000391844 |
Score | 2.692771 |
Snippet | Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting... Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 593 |
SubjectTerms | 639/638/77/890 639/638/911 Catalysts Covalence Electron transfer Evolution Humanities and Social Sciences Hydrogen Hydrogen evolution Morphology multidisciplinary Nanoparticles Photocatalysis Photocatalysts Platinum Science Science (multidisciplinary) Splitting Water splitting |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SKPgi1uvWWiL4pqEn9-RRS0sR9KlC30KySah43C09W2z_Vn-Iv8lJds_xHK8vvi3ZbBjmkvlmM5lB6GVSMdPAy-WYaIlokyXB60Sk0jGB9WnGy0Xh9x_UyUfx7kyerbX6KjlhY3ngkXEHMyOC1IlxlcstTuplK2dZeU5lVIymsvuCz1sLpuoeDDONENMtmRk3BwtR9wRwUYQriMvI9YYnqgX7f4cyf02W_OnEtDqi4_vo3oQg8ZuR8h10J3UP0PbYU_LmIXJrFQbxt1vyOQ29_wIjuO1Bq2B5PHZyanFeJmYtMEBXfHHeD339nXMDS-OS2-nnc_wV0OglXgBYrSnSj9Dp8dHp4QmZuiiQFtDYQARrjaWRxci8TzFpm3Nx-gKYGoNRImaTuBTw6I0CkaZgvUkRoKANgF4eo62u79JThFOyggYIgLIIQthouKIqRJm91yZy1iC6ZKhrpwrjpdHF3NWTbm7cKAQHQnBVCO66Qa9W31yM9TX-OvttkdNqZqmNXQeAcW7SGPcvjWnQ3lLKbjLYhWMQZVArmJYNerF6DaZWzk98l_qrOodTCgBNN-jJqBQrSnjp9wPsaJDeUJcNUjffdJ_Oaznv0sETmNqg10vF-kHWn1mx-z9Y8QzdZcUiShY630Nbw-VVeg4gawj71Z6-A2QuJHU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwEB5BERIXRFkDLTISN7D6vMRxTggQjwoJTkXqzbJjR0W8Jo8mFe3f4of0N3XsLOWx9BbZjmXP4vlsj2cAXgbla-ZEfBzjSyqrUFJni0BzVfiA2ldwER8Kf_6i9r_KT4f54Xjg1o1uldOamBZq31bxjHyPIwzEDTcv8jfrHzRmjYq3q2MKjZtwi6GliS5devlxPmOJ0c-1lONbmYXQe51MKwMaKioU7s7o2YY9SmH7_4U1_3aZ_OPeNJmj5T24O-JI8nZg_DbcCM19uD1kljx_AOa3OIPk4hf9HvrWHmMJqVqULeyeDPmcKlJP7lkdQQBL1kdt36ZDnXPsmkQPT7takZ-ISU9Ih5A1OUo_hIPlh4P3-3TMpUArxGQ9lbzSJfPce25t8KEo6zqaflkE7p1W0tc6iFzip9UKGRtcaXXwCAhLhxjmEWw1bROeAAmhlMzhNqiWTsrSa6GYcj6vrS20FzwDNhHUVGOc8ZjuYmXSfbfQZmCCQSaYxARzlsGr-Z_1EGXj2tbvIp_mljFCdipAwplR4cxCS5fj5ISq4-tfZvMqX9TKCpZ7xVnIYGfishnVtjNXQpbBi7kaFS7eotgmtKepjWAMYVqRweNBKOaRiJj1B8mRQbEhLhtD3axpvh2loN4xjycSNYPXk2BdDev_pHh6_SyewR0eZT16mYsd2OpPTsMugqjePU-acgmYrB0b priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IN4ECjISN7BYP-I4xwVRVSvBhSL1ZtmxrSKWpOqmgv6t_pD-JsbOAxYKErfIcSJnHvFne-YbgBdB-cicSMkxvqayCTV1tgq0VJUP6H0VFylR-P0HdfhJro7L4x3gUy5MDtrPlJb5Nz1Fh73eyOzSOMNQoXBZRRE37iWqdrTtveVy9XE176wkznMt5ZghsxD6moe3ZqFM1n8dwvwzUPK309I8CR3chlsjeiTLYbx3YCe0d-HGUE_y4h6YX9gFydUl_RL6zn7FFtJ0aFH4ejJUcWpInIKyNgRhKzk96foub-Vc4KtJiuu06zX5hkj0jGwQqObw6PtwdPDu6O0hHSso0AaRWE8lb3TNPPeeWxt8qOoY04Qvq8C900r6qIMoJV5arVCdwdVWB48wsHaIXB7Abtu14RGQEGrJHC5-onRS1l4LxZTzZbS20l7wAtgkUNOM7OKpyMXa5FNuoc2gBINKMFkJ5nsBL-dnTgdujX_2fpP0NPdMvNi5AQVnRjsxCy1diR8nVEw5v8yWTbmIygpWesVZKGB_0rIZnXVjOK4wWC15VRbwfL6NbpbOTmwbuvPcRzCG4Kwq4OFgFPNIRKr1g-IooNoyl62hbt9pP59kKu9UvROFWsCrybB-Duvvonj8f92fwE2ebD_Fmot92O3PzsNThFK9ezb6zg-gwhzG priority: 102 providerName: Springer Nature |
Title | Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting |
URI | https://link.springer.com/article/10.1038/s41467-023-36338-x https://www.ncbi.nlm.nih.gov/pubmed/36737616 https://www.proquest.com/docview/2772194275 https://www.proquest.com/docview/2773113557 https://pubmed.ncbi.nlm.nih.gov/PMC9898260 https://doaj.org/article/084b57e236f04391a5c50f6a315d621e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4am5B4QdwJjMpIvEGgvsR2HhDqqpWp0iYEm9Q3y4kdDVGa0XZi_Vv8EH4Tx05SKBQkXpLIcSznXOLvxOcC8MxLV9GCh-AYl6ei9HlaWOXTTCrnUfsU4yFQ-PhEHp2J8SSb7EBX7qgl4GKraRfqSZ3Npy-vvqzeoMK_bkLG9auFiOqOq0_KJZpcKWLKPVyZVKhocNzC_fhl5jkaNGGjmfUFTbEDb-Notg-zsVbFlP7bcOif7pS_7anGpWp0C262GJMMGqG4DTt-dgeuN1UnV3fB_JKDkHz_ln7yy9p-xhZS1ih3ODxpaj2VpOpctxYEwS25OK-Xdfzhs8KhSfD-tNMp-Yp4dU4WCGejE_U9OB0dng6P0rbOQloiXlumgpU6p445x6z1zqu8qgIsEMozV2gpXKU9zwReWi2R6b7IrfYOwWJeIL65D7uzeuYfAvE-F7RAE6kShRC501xSWbisslZpx1kCtCOoKdsc5KEUxtTEvXCuTcMEg0wwkQnmKoHn62cumgwc_-x9EPi07hmyZ8cGJJxpldH0tSgyfDkuqxAZTG1WZv1KWk4zJxn1Cex3XDadRBqGdgjNBVNZAk_Xt1EZww6Lnfn6MvbhlCKEUwk8aIRiPRMeKgIhORJQG-KyMdXNO7OP5zHhd6jxiURN4EUnWD-n9XdSPPovwj2GGyyIfnBI5_uwu5xf-ieIt5ZFD66picKjHr3twd5gMP4wxvPB4cm799g6lMNe_JPRi8r2A9qnLTA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH6qihBcEDspBYwEJ4g6sR3HOSDENkzpchqk3iw7dlTENBmaVO38KC78EH4Tz04yZVh6622UeCL7rZ_ttwA8c8KWiWE-OcbmMS9cHhuduTgVmXWofRllPlF4b19MPvNPB-nBGnwfcmF8WOVgE4OhtnXhz8i3KMJA3HDTLH09_xb7rlH-dnVoodGJxY5bnOKWrXm1_R75-5zS8Yfpu0ncdxWIC0QnbcxpIfPEUmup1s66LC9L7wR55qg1UnBbSsdSjj-1FLhEZ3ItnUVolJvc115Ci3-FM3TkPjF9_HF5pOOLrUvO-9ScEZNbDQ-GCP1izARuBuOzFfcXugT8C9r-HaH5xzVt8H7jm3Cjh63kTSdnt2DNVbfhatfIcnEH1G9lDcnPH_FX19b6CJ-QokZRxs-Trn1UQcohGqwhiJfJ_LBu63CGtMBPEx9QqmczcooQ-Jg0iJBDXPZdmF4Gke_BelVX7gEQ53KeGNx1ldxwnlvJRCKMTUutM2kZjSAZCKqKvqy5764xU-F6nUnVMUEhE1RggjqL4MXyP_OuqMeFo996Pi1H-oLc4QESTvX6rUaSmxQXx0Tpk40TnRbpqBSaJakVNHERbA5cVr2VaNS5TEfwdPka9dtf2ujK1SdhDEsSRIVZBPc7oVjOhPkmQ0iOCLIVcVmZ6uqb6sthqCHu24YiUSN4OQjW-bT-T4qNi1fxBK5Npnu7and7f-chXKde7n2AO9uE9fb4xD1C_Naax0FrCKhL1tJfBhBbAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH6qpgJxQewEChgJThDNxHYc54AQpR21FEYVKlJvlhM7KmJIhiZVO3-LG3-C38Szs5Rh6a23UeKJ7Lf5e_ZbAJ5ZYYooYy45xqQhz20aZjqxYSwSY1H7EspcovCHmdj5xN8dxodr8KPPhXFhlb1N9IbaVLk7Ix9ThIHocNMkHhddWMT-1vT14lvoOki5m9a-nUYrInt2eYruW_1qdwt5_ZzS6fbB252w6zAQ5ohUmpDTXKaRocZQra2xSVoUbkPkiaUmk4KbQloWc_yppcDl2izV0hqESWmWujpMaP3XE-cUjWB9c3u2_3E44HGl1yXnXaLOhMlxzb1Zwl0yZAJdw_BsZTP0PQP-BXT_jtf849LW74XTG3C9A7HkTSt1N2HNlrfgStvWcnkb1G9FDsnP7-EX21T6Kz4heYWCjZ8nbTOpnBR9bFhNED2TxVHVVP5EaYmfJi68VM_n5BQB8TGpES_7KO07cHAZZL4Lo7Iq7X0g1qY8ytAHK3jGeWokE5HITFxonUjDaABRT1CVd0XOXa-NufKX7UyqlgkKmaA8E9RZAC-G_yzaEh8Xjt50fBpGuvLc_gESTnXariaSZzEujonCpR5HOs7jSSE0i2IjaGQD2Oi5rDqbUatzCQ_g6fAatd1d4ejSVid-DIsixIhJAPdaoRhmwlzLISRHAMmKuKxMdfVN-fnIVxR3TUSRqAG87AXrfFr_J8WDi1fxBK6ihqr3u7O9h3CNOrF30e5sA0bN8Yl9hGCuyR53akNAXbKi_gLIwGCT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+%CE%B2-ketoamine+covalent+organic+frameworks+for+photocatalytic+overall+water+splitting&rft.jtitle=Nature+communications&rft.au=Yang%2C+Yan&rft.au=Chu%2C+Xiaoyu&rft.au=Zhang%2C+Hong-Yu&rft.au=Zhang%2C+Rui&rft.date=2023-02-03&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-36338-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_36338_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |