Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting

Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β -ketoamine COFs by systematically en...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 593 - 10
Main Authors Yang, Yan, Chu, Xiaoyu, Zhang, Hong-Yu, Zhang, Rui, Liu, Yu-Han, Zhang, Feng-Ming, Lu, Meng, Yang, Zhao-Di, Lan, Ya-Qian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.02.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β -ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H 2 and O 2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers. Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine COF by systematically engineering N-sites, architecture, and morphology for improved water splitting activity.
AbstractList Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H and O evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.
Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β -ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H 2 and O 2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers. Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine COF by systematically engineering N-sites, architecture, and morphology for improved water splitting activity.
Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H2 and O2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine COF by systematically engineering N-sites, architecture, and morphology for improved water splitting activity.
Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H2 and O2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H2 and O2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.
Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β -ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H 2 and O 2 evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.
Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine COF by systematically engineering N-sites, architecture, and morphology for improved water splitting activity.
ArticleNumber 593
Author Lan, Ya-Qian
Lu, Meng
Yang, Yan
Yang, Zhao-Di
Zhang, Rui
Liu, Yu-Han
Zhang, Hong-Yu
Chu, Xiaoyu
Zhang, Feng-Ming
Author_xml – sequence: 1
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology
– sequence: 2
  givenname: Xiaoyu
  surname: Chu
  fullname: Chu, Xiaoyu
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology
– sequence: 3
  givenname: Hong-Yu
  surname: Zhang
  fullname: Zhang, Hong-Yu
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology
– sequence: 4
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology
– sequence: 5
  givenname: Yu-Han
  surname: Liu
  fullname: Liu, Yu-Han
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology
– sequence: 6
  givenname: Feng-Ming
  orcidid: 0000-0002-2738-306X
  surname: Zhang
  fullname: Zhang, Feng-Ming
  email: zhangfm80@163.com
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology
– sequence: 7
  givenname: Meng
  orcidid: 0000-0003-4502-7517
  surname: Lu
  fullname: Lu, Meng
  organization: School of Chemistry, South China Normal University
– sequence: 8
  givenname: Zhao-Di
  surname: Yang
  fullname: Yang, Zhao-Di
  email: yangzhaodi@163.com
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology
– sequence: 9
  givenname: Ya-Qian
  orcidid: 0000-0002-2140-7980
  surname: Lan
  fullname: Lan, Ya-Qian
  email: yqlan@m.scnu.edu.cn
  organization: School of Chemistry, South China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36737616$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1O3DAUhaOKqlDKC3RRReqmm7T-i-NsKlWItkhI3bC3bpybwUNip7ZngNfiQfpM9RBogQXZ2LLP-XR8c94We847LIr3lHymhKsvUVAhm4owXnHJuaquXxUHjAha0YbxvUf7_eIoxjXJH2-pEuJNsc9lwxtJ5UGhT9zKOsRg3ar8c1tdYvIw5ZPS-C2M6FLpwwqcNeUQYMIrHy5jOfhQzhc-eQMJxpuUb_0WA4xjeQUJQxnn0aaUme-K1wOMEY_u18Pi_PvJ-fHP6uzXj9Pjb2eVqQVJlWBGtbRnfc8AsMemHQZCKRENsr5TUvSDQl6LvAUlOzTYtaCwp5K2Xdvyw-J0wfYe1noOdoJwoz1YfXeQn6Ah5JgjaqJEV2cslwMReSJQm5oMEjite8koZtbXhTVvugl7k2eQX_YE-vTG2Qu98lvdqlYxSTLg0z0g-N8bjElPNhocR3DoN1GzpuGU8rpusvTjM-nab4LLk9qpGG0Fa-qs-vA40b8oD78xC9QiMMHHGHDQxiZI1u8C2lFTonel0UtpdC6NviuNvs5W9sz6QH_RxBdTnHfFwfA_9guuv84A13Y
CitedBy_id crossref_primary_10_1002_ange_202416771
crossref_primary_10_1016_j_gee_2023_12_006
crossref_primary_10_1016_j_cej_2024_151825
crossref_primary_10_1002_ange_202314988
crossref_primary_10_1007_s40843_023_2834_1
crossref_primary_10_1002_smll_202400344
crossref_primary_10_1016_j_pmatsci_2024_101386
crossref_primary_10_1002_aenm_202402395
crossref_primary_10_1016_j_apsusc_2024_161988
crossref_primary_10_1039_D4YA00082J
crossref_primary_10_1002_smll_202407307
crossref_primary_10_1016_j_colsurfa_2024_135437
crossref_primary_10_1002_cctc_202301179
crossref_primary_10_1016_j_cej_2024_149347
crossref_primary_10_1002_adfm_202310195
crossref_primary_10_1038_s41467_024_49168_2
crossref_primary_10_1039_D4SC06633B
crossref_primary_10_1002_aenm_202302797
crossref_primary_10_1002_anie_202410097
crossref_primary_10_1016_S1872_2067_24_60006_9
crossref_primary_10_1039_D4SC07028C
crossref_primary_10_1002_adma_202306758
crossref_primary_10_1021_acscatal_3c02950
crossref_primary_10_1002_adma_202412005
crossref_primary_10_1039_D3TA04472F
crossref_primary_10_3866_PKU_WHXB202407013
crossref_primary_10_1002_smll_202401168
crossref_primary_10_1039_D3NA00442B
crossref_primary_10_1021_acs_jpcc_3c00652
crossref_primary_10_1002_adma_202303649
crossref_primary_10_1039_D5EE00494B
crossref_primary_10_1002_adma_202304170
crossref_primary_10_1021_acs_accounts_4c00491
crossref_primary_10_1002_ange_202412977
crossref_primary_10_1016_j_ijhydene_2024_03_044
crossref_primary_10_1021_acsanm_4c01127
crossref_primary_10_1002_anie_202413096
crossref_primary_10_1016_j_apcatb_2024_123863
crossref_primary_10_1039_D4TA04384G
crossref_primary_10_1021_acs_jpclett_3c01850
crossref_primary_10_1002_anie_202303086
crossref_primary_10_1039_D4NR00289J
crossref_primary_10_1002_adma_202305313
crossref_primary_10_1007_s11426_024_2436_4
crossref_primary_10_1002_cssc_202401903
crossref_primary_10_1039_D4TA08403A
crossref_primary_10_1002_ange_202408697
crossref_primary_10_1016_S1872_2067_24_60075_6
crossref_primary_10_1016_j_apcatb_2024_123899
crossref_primary_10_1016_j_cej_2024_154487
crossref_primary_10_1002_chem_202403627
crossref_primary_10_1021_jacs_4c06013
crossref_primary_10_1002_cjoc_202401245
crossref_primary_10_1002_adma_202305397
crossref_primary_10_1021_acsami_3c17662
crossref_primary_10_1016_j_apcatb_2024_124587
crossref_primary_10_1021_acsami_3c14311
crossref_primary_10_1002_ange_202413096
crossref_primary_10_1007_s40843_023_2714_x
crossref_primary_10_1039_D4QI01480D
crossref_primary_10_1002_ange_202303086
crossref_primary_10_1002_anie_202314988
crossref_primary_10_1002_anie_202408697
crossref_primary_10_1021_acs_jpclett_4c00980
crossref_primary_10_1016_j_jmst_2024_12_047
crossref_primary_10_1016_S1872_2067_23_64457_2
crossref_primary_10_1002_inc2_12028
crossref_primary_10_1016_j_jcis_2025_01_059
crossref_primary_10_1039_D4TA01683A
crossref_primary_10_1021_acs_jpcc_4c04474
crossref_primary_10_1016_j_jmst_2025_02_009
crossref_primary_10_26599_NR_2025_94907273
crossref_primary_10_1007_s12274_023_6258_x
crossref_primary_10_1021_acs_jpclett_4c01162
crossref_primary_10_1016_j_enchem_2023_100116
crossref_primary_10_1039_D4NR00391H
crossref_primary_10_1021_acscatal_3c03857
crossref_primary_10_1002_advs_202304697
crossref_primary_10_1002_ange_202410097
crossref_primary_10_1021_acscatal_4c05827
crossref_primary_10_1016_j_cej_2024_150812
crossref_primary_10_1039_D4YA00361F
crossref_primary_10_1002_adfm_202316546
crossref_primary_10_1002_smll_202500674
crossref_primary_10_1038_s41467_024_44725_1
crossref_primary_10_1039_D3SC03681B
crossref_primary_10_1016_j_apcatb_2025_125292
crossref_primary_10_1002_ange_202315596
crossref_primary_10_1002_anie_202422940
crossref_primary_10_1021_acsenergylett_4c02847
crossref_primary_10_1016_j_ijhydene_2024_02_300
crossref_primary_10_1021_acs_jpclett_3c01956
crossref_primary_10_1039_D4TA06849A
crossref_primary_10_1016_j_jcis_2023_10_147
crossref_primary_10_1039_D3DT03894G
crossref_primary_10_1055_a_2291_8578
crossref_primary_10_1016_j_ijhydene_2024_12_274
crossref_primary_10_1039_D3EY00047H
crossref_primary_10_1016_j_apcatb_2024_123837
crossref_primary_10_1007_s40843_024_2844_8
crossref_primary_10_1021_acsami_3c16319
crossref_primary_10_1016_j_micromeso_2025_113506
crossref_primary_10_1016_j_jcis_2024_03_070
crossref_primary_10_1039_D4NR03204G
crossref_primary_10_1002_anie_202416039
crossref_primary_10_1002_adma_202411118
crossref_primary_10_1021_acsami_4c20472
crossref_primary_10_1002_adfm_202401562
crossref_primary_10_1016_j_cej_2024_151479
crossref_primary_10_1016_j_cej_2024_159188
crossref_primary_10_1002_anie_202421861
crossref_primary_10_1039_D4SC00241E
crossref_primary_10_1021_acsmaterialslett_4c00026
crossref_primary_10_1016_j_pmatsci_2024_101335
crossref_primary_10_1002_ange_202307459
crossref_primary_10_1039_D3TA05435G
crossref_primary_10_1021_acs_inorgchem_4c04309
crossref_primary_10_1039_D4RA03259D
crossref_primary_10_1002_adma_202412653
crossref_primary_10_1038_s41467_025_56314_x
crossref_primary_10_3390_catal14090557
crossref_primary_10_1002_adfm_202400946
crossref_primary_10_1002_anie_202403093
crossref_primary_10_1002_ange_202421861
crossref_primary_10_1039_D4TC05149A
crossref_primary_10_1021_jacs_3c03938
crossref_primary_10_1039_D3TC03118G
crossref_primary_10_1038_s41467_024_50951_4
crossref_primary_10_1016_j_jcis_2024_06_077
crossref_primary_10_1016_j_colsurfa_2024_134245
crossref_primary_10_1021_acsmaterialslett_4c00414
crossref_primary_10_1016_j_cjsc_2024_100375
crossref_primary_10_1021_acsmaterialslett_4c00418
crossref_primary_10_1007_s11426_024_2446_7
crossref_primary_10_1021_acscatal_4c04444
crossref_primary_10_1016_j_apcatb_2024_123698
crossref_primary_10_1002_aenm_202303346
crossref_primary_10_1002_anie_202416771
crossref_primary_10_1002_adfm_202402676
crossref_primary_10_1016_j_ccr_2024_215997
crossref_primary_10_1002_adma_202413118
crossref_primary_10_1002_ange_202422940
crossref_primary_10_1002_anie_202307459
crossref_primary_10_1039_D4NJ01190B
crossref_primary_10_1016_j_partic_2023_12_008
crossref_primary_10_1016_j_seppur_2024_129809
crossref_primary_10_1016_j_jcis_2024_03_102
crossref_primary_10_1002_anie_202412977
crossref_primary_10_1002_ange_202403093
crossref_primary_10_1016_j_surfin_2024_104967
crossref_primary_10_1038_s41467_025_57662_4
crossref_primary_10_1016_j_cej_2024_151332
crossref_primary_10_1002_anie_202315596
crossref_primary_10_1002_advs_202413697
crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1002_adma_202416100
crossref_primary_10_1016_j_ijhydene_2025_03_045
crossref_primary_10_1039_D4CY00402G
crossref_primary_10_1002_sstr_202300279
crossref_primary_10_1016_j_apcatb_2024_124496
crossref_primary_10_1002_ange_202416039
crossref_primary_10_1016_j_apcatb_2023_123023
crossref_primary_10_1016_j_apcatb_2025_125246
Cites_doi 10.1002/ange.201710557
10.1038/s41557-018-0141-5
10.1038/natrevmats.2016.68
10.1039/C7SC01747B
10.1038/s41467-022-30035-x
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.59.1758
10.1038/s41929-020-00522-9
10.1038/s41467-020-19214-w
10.1021/jacs.0c00054
10.1021/acscatal.0c01242
10.1021/jacs.0c05596
10.1038/s41560-021-00795-9
10.1103/PhysRevLett.77.3865
10.1021/ja308278w
10.1038/s41467-021-21527-3
10.1002/anie.202104219
10.1021/acssuschemeng.1c04994
10.1038/s41467-022-28146-6
10.1038/s41586-020-2278-9
10.1126/science.aaa3145
10.1038/s41929-020-0476-3
10.1021/jacs.0c00564
10.1021/jacs.6b11878
10.1126/science.aal1585
10.1002/ange.202105190
10.1002/advs.202001543
10.1016/j.joule.2017.12.009
10.1002/anie.201410961
10.1002/adma.202004747
10.1002/aenm.201700025
10.1002/ange.201912344
10.1038/s41557-020-00635-5
10.1021/acsenergylett.9b01691
10.1002/ange.202011614
10.1002/cssc.200800156
10.1002/ange.201914424
10.1039/C8CS00542G
10.1038/ncomms9508
10.1002/anie.202109851
10.1021/jacs.0c12958
10.1039/D1TA04493A
10.1016/0927-0256(96)00008-0
10.1021/ja506386e
10.1021/jacs.6b04325
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-36338-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_084b57e236f04391a5c50f6a315d621e
PMC9898260
36737616
10_1038_s41467_023_36338_x
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-42c891d2dd2aaede79ff011047e2db864df8e354b86a86beceb9a8ed1619b993
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:36 EDT 2025
Thu Aug 21 18:38:06 EDT 2025
Fri Jul 11 15:40:08 EDT 2025
Wed Aug 13 08:10:34 EDT 2025
Mon Jul 21 05:58:43 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Jul 01 00:58:39 EDT 2025
Fri Feb 21 02:39:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-42c891d2dd2aaede79ff011047e2db864df8e354b86a86beceb9a8ed1619b993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2140-7980
0000-0003-4502-7517
0000-0002-2738-306X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-36338-x
PMID 36737616
PQID 2772194275
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_084b57e236f04391a5c50f6a315d621e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9898260
proquest_miscellaneous_2773113557
proquest_journals_2772194275
pubmed_primary_36737616
crossref_citationtrail_10_1038_s41467_023_36338_x
crossref_primary_10_1038_s41467_023_36338_x
springer_journals_10_1038_s41467_023_36338_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-03
PublicationDateYYYYMMDD 2023-02-03
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Vyas (CR16) 2015; 6
Wang (CR21) 2020; 142
Pan (CR5) 2015; 54
Zhang (CR40) 2021; 9
Zhai (CR17) 2020; 11
Goto (CR3) 2018; 2
Yang (CR29) 2021; 9
Ming (CR33) 2019; 131
Che (CR34) 2017; 139
Takata (CR1) 2020; 581
Yang (CR19) 2019; 4
Kong (CR27) 2021; 133
Kasap (CR35) 2016; 138
Huang, Wang, Jiang (CR8) 2016; 1
Zhang (CR23) 2020; 32
Zhang (CR13) 2020; 132
Xu (CR25) 2021; 60
Li (CR32) 2022; 13
Sun (CR26) 2020; 132
Rieth, Qin, Martindale, Nocera (CR37) 2021; 143
Li (CR12) 2020; 10
Kresse, Joubert (CR44) 1999; 59
Kandambeth (CR22) 2012; 134
Zhao (CR24) 2021; 6
Wang, Zhang, Luo, Sun, Xu (CR38) 2021; 60
Perdew, Burke, Ernzerhof (CR45) 1996; 77
Chen (CR10) 2021; 12
Diercks, Yaghi (CR11) 2017; 355
Zhang, Lan, Wang (CR14) 2017; 8
Liu (CR28) 2015; 347
Qi (CR31) 2022; 13
Blöchl (CR43) 1994; 50
Hu (CR36) 2021; 13
Martin, Reardon, Moniz, Tang (CR7) 2014; 136
Wan, Wang, Xu, Wu, Yang (CR18) 2020; 142
Wang, Zheng, Chen, Xiong, Xu (CR39) 2018; 130
Chu (CR41) 2020; 7
Wang (CR9) 2018; 10
She (CR30) 2017; 7
Peng (CR20) 2020; 142
Lin (CR15) 2020; 3
Xiao (CR4) 2020; 3
Hisatomi, Maeda, Lu, Domen (CR6) 2009; 2
Kresse, Furthmüller (CR42) 1996; 6
Wang, Li, Domen (CR2) 2019; 48
N Huang (36338_CR8) 2016; 1
CS Diercks (36338_CR11) 2017; 355
J Zhang (36338_CR23) 2020; 32
Y Goto (36338_CR3) 2018; 2
PE Blöchl (36338_CR43) 1994; 50
Y Kong (36338_CR27) 2021; 133
H Hu (36338_CR36) 2021; 13
S Li (36338_CR12) 2020; 10
M Xu (36338_CR25) 2021; 60
Y Peng (36338_CR20) 2020; 142
YQ Xiao (36338_CR4) 2020; 3
DJ Martin (36338_CR7) 2014; 136
C Pan (36338_CR5) 2015; 54
K Sun (36338_CR26) 2020; 132
Y Qi (36338_CR31) 2022; 13
C Wang (36338_CR38) 2021; 60
VS Vyas (36338_CR16) 2015; 6
S Zhang (36338_CR13) 2020; 132
G Kresse (36338_CR44) 1999; 59
L Lin (36338_CR15) 2020; 3
H Wang (36338_CR21) 2020; 142
J Ming (36338_CR33) 2019; 131
H Kasap (36338_CR35) 2016; 138
P Zhai (36338_CR17) 2020; 11
C Yang (36338_CR19) 2019; 4
Z Wang (36338_CR2) 2019; 48
Y Yang (36338_CR29) 2021; 9
S Kandambeth (36338_CR22) 2012; 134
D Zhao (36338_CR24) 2021; 6
G Kresse (36338_CR42) 1996; 6
JP Perdew (36338_CR45) 1996; 77
Y Wan (36338_CR18) 2020; 142
C Li (36338_CR32) 2022; 13
W Che (36338_CR34) 2017; 139
T Hisatomi (36338_CR6) 2009; 2
G Zhang (36338_CR14) 2017; 8
H-Y Zhang (36338_CR40) 2021; 9
J Liu (36338_CR28) 2015; 347
T Takata (36338_CR1) 2020; 581
X She (36338_CR30) 2017; 7
AJ Rieth (36338_CR37) 2021; 143
L Wang (36338_CR39) 2018; 130
X Chu (36338_CR41) 2020; 7
XY Wang (36338_CR9) 2018; 10
R Chen (36338_CR10) 2021; 12
References_xml – volume: 130
  start-page: 3512
  year: 2018
  end-page: 3516
  ident: CR39
  article-title: Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201710557
– volume: 10
  start-page: 1180
  year: 2018
  end-page: 1189
  ident: CR9
  article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0141-5
– volume: 1
  start-page: 16068
  year: 2016
  ident: CR8
  article-title: Covalent organic frameworks: a materials platform for structural and functional designs
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 8
  start-page: 5261
  year: 2017
  end-page: 5274
  ident: CR14
  article-title: Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01747B
– volume: 13
  year: 2022
  ident: CR32
  article-title: Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30035-x
– volume: 50
  start-page: 17953
  year: 1994
  ident: CR43
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 59
  start-page: 1758
  year: 1999
  ident: CR44
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 3
  start-page: 932
  year: 2020
  end-page: 940
  ident: CR4
  article-title: Band structure engineering and defect control of Ta N for efficient photoelectrochemical water oxidation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00522-9
– volume: 11
  year: 2020
  ident: CR17
  article-title: Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19214-w
– volume: 142
  start-page: 4862
  year: 2020
  end-page: 4871
  ident: CR21
  article-title: Integrating suitable linkage of covalent organic frameworks into covalently bridged inorganic/organic hybrids toward efficient photocatalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00054
– volume: 10
  start-page: 8717
  year: 2020
  end-page: 8726
  ident: CR12
  article-title: Fully conjugated donor–acceptor covalent organic frameworks for photocatalytic oxidative amine coupling and thioamide cyclization
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01242
– volume: 142
  start-page: 13162
  year: 2020
  end-page: 13169
  ident: CR20
  article-title: Intramolecular hydrogen bonding-based topology regulation of two-dimensional covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05596
– volume: 6
  start-page: 388
  year: 2021
  end-page: 397
  ident: CR24
  article-title: Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00795-9
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR45
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 134
  start-page: 19524
  year: 2012
  end-page: 19527
  ident: CR22
  article-title: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (Acid/Base) stability via a combined reversible and irreversible route
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308278w
– volume: 12
  year: 2021
  ident: CR10
  article-title: Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21527-3
– volume: 60
  start-page: 16372
  year: 2021
  end-page: 16376
  ident: CR25
  article-title: Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104219
– volume: 9
  start-page: 13376
  year: 2021
  end-page: 13384
  ident: CR29
  article-title: Decoration of active sites in covalent-organic framework: an effective strategy of building efficient photocatalysis for CO reduction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c04994
– volume: 13
  year: 2022
  ident: CR31
  article-title: Unraveling of cocatalysts photodeposited selectively on facets of BiVO to boost solar water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28146-6
– volume: 581
  start-page: 411
  year: 2020
  end-page: 414
  ident: CR1
  article-title: Photocatalytic water splitting with a quantum efficiency of almost unity
  publication-title: Nature
  doi: 10.1038/s41586-020-2278-9
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  ident: CR28
  article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 3
  start-page: 649
  year: 2020
  end-page: 655
  ident: CR15
  article-title: Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0476-3
– volume: 142
  start-page: 4508
  year: 2020
  end-page: 4516
  ident: CR18
  article-title: A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00564
– volume: 139
  start-page: 3021
  year: 2017
  end-page: 3026
  ident: CR34
  article-title: Fast Photoelectron transfer in (Cring)-C N plane heterostructural nanosheets for overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11878
– volume: 355
  start-page: 1585
  year: 2017
  ident: CR11
  article-title: The atom, the molecule, and the covalent organic framework
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 133
  start-page: 17779
  year: 2021
  end-page: 17787
  ident: CR27
  article-title: Tight covalent organic framework membranes for efficient anion transport via molecular precursor engineering
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202105190
– volume: 7
  start-page: 2001543
  year: 2020
  ident: CR41
  article-title: Ultrathin phosphate-modulated Co phthalocyanine/g-C N heterojunction photocatalysts with single Co–N (II) sites for efficient O activation
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001543
– volume: 2
  start-page: 509
  year: 2018
  end-page: 520
  ident: CR3
  article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation
  publication-title: Joule
  doi: 10.1016/j.joule.2017.12.009
– volume: 54
  start-page: 2955
  year: 2015
  end-page: 2959
  ident: CR5
  article-title: A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201410961
– volume: 32
  start-page: 2004747
  year: 2020
  ident: CR23
  article-title: Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004747
– volume: 7
  start-page: 1700025
  year: 2017
  ident: CR30
  article-title: High efficiency photocatalytic water splitting using 2D α-Fe O /g-C N Z-scheme catalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700025
– volume: 131
  start-page: 18458
  year: 2019
  end-page: 18462
  ident: CR33
  article-title: Hot π-electron tunneling of metal-insulator-COF nanostructures for efficient hydrogen production
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201912344
– volume: 13
  start-page: 358
  year: 2021
  end-page: 366
  ident: CR36
  article-title: Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00635-5
– volume: 4
  start-page: 2251
  year: 2019
  end-page: 2258
  ident: CR19
  article-title: Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01691
– volume: 132
  start-page: 22937
  year: 2020
  end-page: 22943
  ident: CR26
  article-title: Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202011614
– volume: 2
  start-page: 336
  year: 2009
  end-page: 343
  ident: CR6
  article-title: The effects of starting materials in the synthesis of (Ga -xZn )(N - O ) solid solution on its photocatalytic activity for overall water splitting under visible light
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200800156
– volume: 132
  start-page: 6063
  year: 2020
  end-page: 6070
  ident: CR13
  article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201914424
– volume: 48
  start-page: 2109
  year: 2019
  end-page: 2125
  ident: CR2
  article-title: Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00542G
– volume: 6
  start-page: 1
  year: 2015
  end-page: 9
  ident: CR16
  article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9508
– volume: 60
  start-page: 25381
  year: 2021
  end-page: 25390
  ident: CR38
  article-title: Ultrathin crystalline covalent-triazine-framework nanosheets with electron donor groups for synergistically enhanced photocatalytic water splitting
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202109851
– volume: 143
  start-page: 4646
  year: 2021
  end-page: 4652
  ident: CR37
  article-title: Long-lived triplet excited state in a heterogeneous modified carbon Nitride photocatalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12958
– volume: 9
  start-page: 16743
  year: 2021
  end-page: 16750
  ident: CR40
  article-title: A new strategy for constructing covalently connected MOF@COF core-shell heterostructures for enhanced photocatalytic hydrogen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA04493A
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR42
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 136
  start-page: 12568
  year: 2014
  end-page: 12571
  ident: CR7
  article-title: Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506386e
– volume: 138
  start-page: 9183
  year: 2016
  end-page: 9192
  ident: CR35
  article-title: Solar-driven reduction of aqueous protons coupled to selective alcohol oxidation with a carbon nitride-molecular Ni catalyst system
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04325
– volume: 13
  year: 2022
  ident: 36338_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30035-x
– volume: 131
  start-page: 18458
  year: 2019
  ident: 36338_CR33
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201912344
– volume: 3
  start-page: 932
  year: 2020
  ident: 36338_CR4
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00522-9
– volume: 59
  start-page: 1758
  year: 1999
  ident: 36338_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 48
  start-page: 2109
  year: 2019
  ident: 36338_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00542G
– volume: 136
  start-page: 12568
  year: 2014
  ident: 36338_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506386e
– volume: 6
  start-page: 15
  year: 1996
  ident: 36338_CR42
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 12
  year: 2021
  ident: 36338_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21527-3
– volume: 9
  start-page: 16743
  year: 2021
  ident: 36338_CR40
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA04493A
– volume: 355
  start-page: 1585
  year: 2017
  ident: 36338_CR11
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 13
  start-page: 358
  year: 2021
  ident: 36338_CR36
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00635-5
– volume: 60
  start-page: 16372
  year: 2021
  ident: 36338_CR25
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104219
– volume: 132
  start-page: 22937
  year: 2020
  ident: 36338_CR26
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202011614
– volume: 130
  start-page: 3512
  year: 2018
  ident: 36338_CR39
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201710557
– volume: 50
  start-page: 17953
  year: 1994
  ident: 36338_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 1
  start-page: 16068
  year: 2016
  ident: 36338_CR8
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 134
  start-page: 19524
  year: 2012
  ident: 36338_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308278w
– volume: 4
  start-page: 2251
  year: 2019
  ident: 36338_CR19
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01691
– volume: 142
  start-page: 13162
  year: 2020
  ident: 36338_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05596
– volume: 11
  year: 2020
  ident: 36338_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19214-w
– volume: 142
  start-page: 4862
  year: 2020
  ident: 36338_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00054
– volume: 6
  start-page: 388
  year: 2021
  ident: 36338_CR24
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00795-9
– volume: 347
  start-page: 970
  year: 2015
  ident: 36338_CR28
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 32
  start-page: 2004747
  year: 2020
  ident: 36338_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004747
– volume: 77
  start-page: 3865
  year: 1996
  ident: 36338_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 3
  start-page: 649
  year: 2020
  ident: 36338_CR15
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0476-3
– volume: 9
  start-page: 13376
  year: 2021
  ident: 36338_CR29
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c04994
– volume: 132
  start-page: 6063
  year: 2020
  ident: 36338_CR13
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201914424
– volume: 8
  start-page: 5261
  year: 2017
  ident: 36338_CR14
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01747B
– volume: 7
  start-page: 1700025
  year: 2017
  ident: 36338_CR30
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700025
– volume: 138
  start-page: 9183
  year: 2016
  ident: 36338_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04325
– volume: 2
  start-page: 336
  year: 2009
  ident: 36338_CR6
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200800156
– volume: 143
  start-page: 4646
  year: 2021
  ident: 36338_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12958
– volume: 581
  start-page: 411
  year: 2020
  ident: 36338_CR1
  publication-title: Nature
  doi: 10.1038/s41586-020-2278-9
– volume: 2
  start-page: 509
  year: 2018
  ident: 36338_CR3
  publication-title: Joule
  doi: 10.1016/j.joule.2017.12.009
– volume: 10
  start-page: 1180
  year: 2018
  ident: 36338_CR9
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0141-5
– volume: 139
  start-page: 3021
  year: 2017
  ident: 36338_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11878
– volume: 10
  start-page: 8717
  year: 2020
  ident: 36338_CR12
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01242
– volume: 6
  start-page: 1
  year: 2015
  ident: 36338_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9508
– volume: 54
  start-page: 2955
  year: 2015
  ident: 36338_CR5
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201410961
– volume: 7
  start-page: 2001543
  year: 2020
  ident: 36338_CR41
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001543
– volume: 60
  start-page: 25381
  year: 2021
  ident: 36338_CR38
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202109851
– volume: 13
  year: 2022
  ident: 36338_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28146-6
– volume: 142
  start-page: 4508
  year: 2020
  ident: 36338_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00564
– volume: 133
  start-page: 17779
  year: 2021
  ident: 36338_CR27
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202105190
SSID ssj0000391844
Score 2.692771
Snippet Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting...
Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution. Here, the authors report a β-ketoamine...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 593
SubjectTerms 639/638/77/890
639/638/911
Catalysts
Covalence
Electron transfer
Evolution
Humanities and Social Sciences
Hydrogen
Hydrogen evolution
Morphology
multidisciplinary
Nanoparticles
Photocatalysis
Photocatalysts
Platinum
Science
Science (multidisciplinary)
Splitting
Water splitting
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SKPgi1uvWWiL4pqEn9-RRS0sR9KlC30KySah43C09W2z_Vn-Iv8lJds_xHK8vvi3ZbBjmkvlmM5lB6GVSMdPAy-WYaIlokyXB60Sk0jGB9WnGy0Xh9x_UyUfx7kyerbX6KjlhY3ngkXEHMyOC1IlxlcstTuplK2dZeU5lVIymsvuCz1sLpuoeDDONENMtmRk3BwtR9wRwUYQriMvI9YYnqgX7f4cyf02W_OnEtDqi4_vo3oQg8ZuR8h10J3UP0PbYU_LmIXJrFQbxt1vyOQ29_wIjuO1Bq2B5PHZyanFeJmYtMEBXfHHeD339nXMDS-OS2-nnc_wV0OglXgBYrSnSj9Dp8dHp4QmZuiiQFtDYQARrjaWRxci8TzFpm3Nx-gKYGoNRImaTuBTw6I0CkaZgvUkRoKANgF4eo62u79JThFOyggYIgLIIQthouKIqRJm91yZy1iC6ZKhrpwrjpdHF3NWTbm7cKAQHQnBVCO66Qa9W31yM9TX-OvttkdNqZqmNXQeAcW7SGPcvjWnQ3lLKbjLYhWMQZVArmJYNerF6DaZWzk98l_qrOodTCgBNN-jJqBQrSnjp9wPsaJDeUJcNUjffdJ_Oaznv0sETmNqg10vF-kHWn1mx-z9Y8QzdZcUiShY630Nbw-VVeg4gawj71Z6-A2QuJHU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwEB5BERIXRFkDLTISN7D6vMRxTggQjwoJTkXqzbJjR0W8Jo8mFe3f4of0N3XsLOWx9BbZjmXP4vlsj2cAXgbla-ZEfBzjSyqrUFJni0BzVfiA2ldwER8Kf_6i9r_KT4f54Xjg1o1uldOamBZq31bxjHyPIwzEDTcv8jfrHzRmjYq3q2MKjZtwi6GliS5devlxPmOJ0c-1lONbmYXQe51MKwMaKioU7s7o2YY9SmH7_4U1_3aZ_OPeNJmj5T24O-JI8nZg_DbcCM19uD1kljx_AOa3OIPk4hf9HvrWHmMJqVqULeyeDPmcKlJP7lkdQQBL1kdt36ZDnXPsmkQPT7takZ-ISU9Ih5A1OUo_hIPlh4P3-3TMpUArxGQ9lbzSJfPce25t8KEo6zqaflkE7p1W0tc6iFzip9UKGRtcaXXwCAhLhxjmEWw1bROeAAmhlMzhNqiWTsrSa6GYcj6vrS20FzwDNhHUVGOc8ZjuYmXSfbfQZmCCQSaYxARzlsGr-Z_1EGXj2tbvIp_mljFCdipAwplR4cxCS5fj5ISq4-tfZvMqX9TKCpZ7xVnIYGfishnVtjNXQpbBi7kaFS7eotgmtKepjWAMYVqRweNBKOaRiJj1B8mRQbEhLhtD3axpvh2loN4xjycSNYPXk2BdDev_pHh6_SyewR0eZT16mYsd2OpPTsMugqjePU-acgmYrB0b
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IN4ECjISN7BYP-I4xwVRVSvBhSL1ZtmxrSKWpOqmgv6t_pD-JsbOAxYKErfIcSJnHvFne-YbgBdB-cicSMkxvqayCTV1tgq0VJUP6H0VFylR-P0HdfhJro7L4x3gUy5MDtrPlJb5Nz1Fh73eyOzSOMNQoXBZRRE37iWqdrTtveVy9XE176wkznMt5ZghsxD6moe3ZqFM1n8dwvwzUPK309I8CR3chlsjeiTLYbx3YCe0d-HGUE_y4h6YX9gFydUl_RL6zn7FFtJ0aFH4ejJUcWpInIKyNgRhKzk96foub-Vc4KtJiuu06zX5hkj0jGwQqObw6PtwdPDu6O0hHSso0AaRWE8lb3TNPPeeWxt8qOoY04Qvq8C900r6qIMoJV5arVCdwdVWB48wsHaIXB7Abtu14RGQEGrJHC5-onRS1l4LxZTzZbS20l7wAtgkUNOM7OKpyMXa5FNuoc2gBINKMFkJ5nsBL-dnTgdujX_2fpP0NPdMvNi5AQVnRjsxCy1diR8nVEw5v8yWTbmIygpWesVZKGB_0rIZnXVjOK4wWC15VRbwfL6NbpbOTmwbuvPcRzCG4Kwq4OFgFPNIRKr1g-IooNoyl62hbt9pP59kKu9UvROFWsCrybB-Duvvonj8f92fwE2ebD_Fmot92O3PzsNThFK9ezb6zg-gwhzG
  priority: 102
  providerName: Springer Nature
Title Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting
URI https://link.springer.com/article/10.1038/s41467-023-36338-x
https://www.ncbi.nlm.nih.gov/pubmed/36737616
https://www.proquest.com/docview/2772194275
https://www.proquest.com/docview/2773113557
https://pubmed.ncbi.nlm.nih.gov/PMC9898260
https://doaj.org/article/084b57e236f04391a5c50f6a315d621e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4am5B4QdwJjMpIvEGgvsR2HhDqqpWp0iYEm9Q3y4kdDVGa0XZi_Vv8EH4Tx05SKBQkXpLIcSznXOLvxOcC8MxLV9GCh-AYl6ei9HlaWOXTTCrnUfsU4yFQ-PhEHp2J8SSb7EBX7qgl4GKraRfqSZ3Npy-vvqzeoMK_bkLG9auFiOqOq0_KJZpcKWLKPVyZVKhocNzC_fhl5jkaNGGjmfUFTbEDb-Notg-zsVbFlP7bcOif7pS_7anGpWp0C262GJMMGqG4DTt-dgeuN1UnV3fB_JKDkHz_ln7yy9p-xhZS1ih3ODxpaj2VpOpctxYEwS25OK-Xdfzhs8KhSfD-tNMp-Yp4dU4WCGejE_U9OB0dng6P0rbOQloiXlumgpU6p445x6z1zqu8qgIsEMozV2gpXKU9zwReWi2R6b7IrfYOwWJeIL65D7uzeuYfAvE-F7RAE6kShRC501xSWbisslZpx1kCtCOoKdsc5KEUxtTEvXCuTcMEg0wwkQnmKoHn62cumgwc_-x9EPi07hmyZ8cGJJxpldH0tSgyfDkuqxAZTG1WZv1KWk4zJxn1Cex3XDadRBqGdgjNBVNZAk_Xt1EZww6Lnfn6MvbhlCKEUwk8aIRiPRMeKgIhORJQG-KyMdXNO7OP5zHhd6jxiURN4EUnWD-n9XdSPPovwj2GGyyIfnBI5_uwu5xf-ieIt5ZFD66picKjHr3twd5gMP4wxvPB4cm799g6lMNe_JPRi8r2A9qnLTA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH6qihBcEDspBYwEJ4g6sR3HOSDENkzpchqk3iw7dlTENBmaVO38KC78EH4Tz04yZVh6622UeCL7rZ_ttwA8c8KWiWE-OcbmMS9cHhuduTgVmXWofRllPlF4b19MPvNPB-nBGnwfcmF8WOVgE4OhtnXhz8i3KMJA3HDTLH09_xb7rlH-dnVoodGJxY5bnOKWrXm1_R75-5zS8Yfpu0ncdxWIC0QnbcxpIfPEUmup1s66LC9L7wR55qg1UnBbSsdSjj-1FLhEZ3ItnUVolJvc115Ci3-FM3TkPjF9_HF5pOOLrUvO-9ScEZNbDQ-GCP1izARuBuOzFfcXugT8C9r-HaH5xzVt8H7jm3Cjh63kTSdnt2DNVbfhatfIcnEH1G9lDcnPH_FX19b6CJ-QokZRxs-Trn1UQcohGqwhiJfJ_LBu63CGtMBPEx9QqmczcooQ-Jg0iJBDXPZdmF4Gke_BelVX7gEQ53KeGNx1ldxwnlvJRCKMTUutM2kZjSAZCKqKvqy5764xU-F6nUnVMUEhE1RggjqL4MXyP_OuqMeFo996Pi1H-oLc4QESTvX6rUaSmxQXx0Tpk40TnRbpqBSaJakVNHERbA5cVr2VaNS5TEfwdPka9dtf2ujK1SdhDEsSRIVZBPc7oVjOhPkmQ0iOCLIVcVmZ6uqb6sthqCHu24YiUSN4OQjW-bT-T4qNi1fxBK5Npnu7and7f-chXKde7n2AO9uE9fb4xD1C_Naax0FrCKhL1tJfBhBbAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH6qpgJxQewEChgJThDNxHYc54AQpR21FEYVKlJvlhM7KmJIhiZVO3-LG3-C38Szs5Rh6a23UeKJ7Lf5e_ZbAJ5ZYYooYy45xqQhz20aZjqxYSwSY1H7EspcovCHmdj5xN8dxodr8KPPhXFhlb1N9IbaVLk7Ix9ThIHocNMkHhddWMT-1vT14lvoOki5m9a-nUYrInt2eYruW_1qdwt5_ZzS6fbB252w6zAQ5ohUmpDTXKaRocZQra2xSVoUbkPkiaUmk4KbQloWc_yppcDl2izV0hqESWmWujpMaP3XE-cUjWB9c3u2_3E44HGl1yXnXaLOhMlxzb1Zwl0yZAJdw_BsZTP0PQP-BXT_jtf849LW74XTG3C9A7HkTSt1N2HNlrfgStvWcnkb1G9FDsnP7-EX21T6Kz4heYWCjZ8nbTOpnBR9bFhNED2TxVHVVP5EaYmfJi68VM_n5BQB8TGpES_7KO07cHAZZL4Lo7Iq7X0g1qY8ytAHK3jGeWokE5HITFxonUjDaABRT1CVd0XOXa-NufKX7UyqlgkKmaA8E9RZAC-G_yzaEh8Xjt50fBpGuvLc_gESTnXariaSZzEujonCpR5HOs7jSSE0i2IjaGQD2Oi5rDqbUatzCQ_g6fAatd1d4ejSVid-DIsixIhJAPdaoRhmwlzLISRHAMmKuKxMdfVN-fnIVxR3TUSRqAG87AXrfFr_J8WDi1fxBK6ihqr3u7O9h3CNOrF30e5sA0bN8Yl9hGCuyR53akNAXbKi_gLIwGCT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+%CE%B2-ketoamine+covalent+organic+frameworks+for+photocatalytic+overall+water+splitting&rft.jtitle=Nature+communications&rft.au=Yang%2C+Yan&rft.au=Chu%2C+Xiaoyu&rft.au=Zhang%2C+Hong-Yu&rft.au=Zhang%2C+Rui&rft.date=2023-02-03&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-36338-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_36338_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon