Artificial intelligence sepsis prediction algorithm learns to say “I don’t know”
Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely administration of potentially life-saving resuscitation and antimicrobial therapy. We present COMPOSER (COnformal Multidimensional Prediction Of SEpsis Risk), a deep learni...
Saved in:
Published in | NPJ digital medicine Vol. 4; no. 1; p. 134 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.09.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely administration of potentially life-saving resuscitation and antimicrobial therapy. We present COMPOSER (COnformal Multidimensional Prediction Of SEpsis Risk), a deep learning model for the early prediction of sepsis, specifically designed to reduce false alarms by detecting unfamiliar patients/situations arising from erroneous data, missingness, distributional shift and data drifts. COMPOSER flags these unfamiliar cases as
indeterminate
rather than making spurious predictions. Six patient cohorts (515,720 patients) curated from two healthcare systems in the United States across intensive care units (ICU) and emergency departments (ED) were used to train and externally and temporally validate this model. In a sequential prediction setting, COMPOSER achieved a consistently high area under the curve (AUC) (ICU: 0.925–0.953; ED: 0.938–0.945). Out of over 6 million prediction windows roughly 20% and 8% were identified as
indeterminate
amongst non-septic and septic patients, respectively. COMPOSER provided early warning within a clinically actionable timeframe (ICU: 12.2 [3.2 22.8] and ED: 2.1 [0.8 4.5] hours prior to first antibiotics order) across all six cohorts, thus allowing for identification and prioritization of patients at high risk for sepsis. |
---|---|
AbstractList | Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely administration of potentially life-saving resuscitation and antimicrobial therapy. We present COMPOSER (COnformal Multidimensional Prediction Of SEpsis Risk), a deep learning model for the early prediction of sepsis, specifically designed to reduce false alarms by detecting unfamiliar patients/situations arising from erroneous data, missingness, distributional shift and data drifts. COMPOSER flags these unfamiliar cases as indeterminate rather than making spurious predictions. Six patient cohorts (515,720 patients) curated from two healthcare systems in the United States across intensive care units (ICU) and emergency departments (ED) were used to train and externally and temporally validate this model. In a sequential prediction setting, COMPOSER achieved a consistently high area under the curve (AUC) (ICU: 0.925–0.953; ED: 0.938–0.945). Out of over 6 million prediction windows roughly 20% and 8% were identified as indeterminate amongst non-septic and septic patients, respectively. COMPOSER provided early warning within a clinically actionable timeframe (ICU: 12.2 [3.2 22.8] and ED: 2.1 [0.8 4.5] hours prior to first antibiotics order) across all six cohorts, thus allowing for identification and prioritization of patients at high risk for sepsis. Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely administration of potentially life-saving resuscitation and antimicrobial therapy. We present COMPOSER (COnformal Multidimensional Prediction Of SEpsis Risk), a deep learning model for the early prediction of sepsis, specifically designed to reduce false alarms by detecting unfamiliar patients/situations arising from erroneous data, missingness, distributional shift and data drifts. COMPOSER flags these unfamiliar cases as indeterminate rather than making spurious predictions. Six patient cohorts (515,720 patients) curated from two healthcare systems in the United States across intensive care units (ICU) and emergency departments (ED) were used to train and externally and temporally validate this model. In a sequential prediction setting, COMPOSER achieved a consistently high area under the curve (AUC) (ICU: 0.925–0.953; ED: 0.938–0.945). Out of over 6 million prediction windows roughly 20% and 8% were identified as indeterminate amongst non-septic and septic patients, respectively. COMPOSER provided early warning within a clinically actionable timeframe (ICU: 12.2 [3.2 22.8] and ED: 2.1 [0.8 4.5] hours prior to first antibiotics order) across all six cohorts, thus allowing for identification and prioritization of patients at high risk for sepsis. Abstract Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely administration of potentially life-saving resuscitation and antimicrobial therapy. We present COMPOSER (COnformal Multidimensional Prediction Of SEpsis Risk), a deep learning model for the early prediction of sepsis, specifically designed to reduce false alarms by detecting unfamiliar patients/situations arising from erroneous data, missingness, distributional shift and data drifts. COMPOSER flags these unfamiliar cases as indeterminate rather than making spurious predictions. Six patient cohorts (515,720 patients) curated from two healthcare systems in the United States across intensive care units (ICU) and emergency departments (ED) were used to train and externally and temporally validate this model. In a sequential prediction setting, COMPOSER achieved a consistently high area under the curve (AUC) (ICU: 0.925–0.953; ED: 0.938–0.945). Out of over 6 million prediction windows roughly 20% and 8% were identified as indeterminate amongst non-septic and septic patients, respectively. COMPOSER provided early warning within a clinically actionable timeframe (ICU: 12.2 [3.2 22.8] and ED: 2.1 [0.8 4.5] hours prior to first antibiotics order) across all six cohorts, thus allowing for identification and prioritization of patients at high risk for sepsis. Abstract Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely administration of potentially life-saving resuscitation and antimicrobial therapy. We present COMPOSER (COnformal Multidimensional Prediction Of SEpsis Risk), a deep learning model for the early prediction of sepsis, specifically designed to reduce false alarms by detecting unfamiliar patients/situations arising from erroneous data, missingness, distributional shift and data drifts. COMPOSER flags these unfamiliar cases as indeterminate rather than making spurious predictions. Six patient cohorts (515,720 patients) curated from two healthcare systems in the United States across intensive care units (ICU) and emergency departments (ED) were used to train and externally and temporally validate this model. In a sequential prediction setting, COMPOSER achieved a consistently high area under the curve (AUC) (ICU: 0.925–0.953; ED: 0.938–0.945). Out of over 6 million prediction windows roughly 20% and 8% were identified as indeterminate amongst non-septic and septic patients, respectively. COMPOSER provided early warning within a clinically actionable timeframe (ICU: 12.2 [3.2 22.8] and ED: 2.1 [0.8 4.5] hours prior to first antibiotics order) across all six cohorts, thus allowing for identification and prioritization of patients at high risk for sepsis. |
ArticleNumber | 134 |
Author | Malhotra, Atul Nemati, Shamim Wardi, Gabriel Shashikumar, Supreeth P. |
Author_xml | – sequence: 1 givenname: Supreeth P. orcidid: 0000-0002-0348-4261 surname: Shashikumar fullname: Shashikumar, Supreeth P. email: spshashikumar@health.ucsd.edu organization: Division of Biomedical Informatics, University of California San Diego – sequence: 2 givenname: Gabriel surname: Wardi fullname: Wardi, Gabriel organization: Department of Emergency Medicine, University of California San Diego, Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego – sequence: 3 givenname: Atul surname: Malhotra fullname: Malhotra, Atul organization: Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego – sequence: 4 givenname: Shamim orcidid: 0000-0002-0520-4948 surname: Nemati fullname: Nemati, Shamim email: snemati@health.ucsd.edu organization: Division of Biomedical Informatics, University of California San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34504260$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9u1DAQxi1UREvpC3BAlrhwCUz8L84FqaoorFSJC3C1bMdJvWTtxc6CetvXqAQvt0-Cuyml5cDJluc333hmvqfoIMTgEHpew-saqHyTWd0wUQGpKwAOrBKP0BGhrawE5eTg3v0QneS8BAACTLZMPEGHlJUMIuAIfTlNk--99XrEPkxuHP3ggnU4u3X2Ga-T67ydfAxYj0NMfrpc4dHpFDKeIs76Cu-2Pxe4i2G3vZ7w1xB_7La_nqHHvR6zO7k9j9Hn83efzj5UFx_fL85OLyrLGUwVtZb30La0AcqoEFJbynkvmp4ZYjvrnG3AWSd0aUTrmgoHojOEgWFNKxp6jBazbhf1Uq2TX-l0paL2av8Q06B0adCOTgnJiZZGMmIN64hsTcNB95ZxyWtuTNF6O2utN2blSvEwJT0-EH0YCf5SDfG7KpJtU7dF4NWtQIrfNi5PauWzLSPVwcVNVoQXqqxFyIK-_Addxk0KZVQ3FAgBsKfITNkUc06uv_tMDerGBWp2gSouUHsXKFGSXtxv4y7lz84LQGcgl1AYXPpb-z-yvwGMiMGg |
CitedBy_id | crossref_primary_10_1038_s41746_023_00986_6 crossref_primary_10_1038_s41746_022_00731_5 crossref_primary_10_1016_j_ccc_2023_02_003 crossref_primary_10_3349_ymj_2022_63_S108 crossref_primary_10_1016_j_jbi_2023_104550 crossref_primary_10_1016_j_eclinm_2023_102124 crossref_primary_10_3390_antibiotics11060784 crossref_primary_10_1016_j_xops_2023_100394 crossref_primary_10_2139_ssrn_4130480 crossref_primary_10_2196_50369 crossref_primary_10_3389_fimmu_2024_1434688 crossref_primary_10_1080_13102818_2024_2349587 crossref_primary_10_37882_2223_2966_2021_11_39 crossref_primary_10_1097_CCM_0000000000005894 crossref_primary_10_1515_mr_2023_0039 crossref_primary_10_1016_j_preteyeres_2023_101227 crossref_primary_10_1016_j_ebiom_2022_104394 crossref_primary_10_1016_j_jsse_2023_10_003 crossref_primary_10_3390_diagnostics13193091 crossref_primary_10_1056_AIoa2300032 crossref_primary_10_2196_45614 crossref_primary_10_1001_jamaophthalmol_2023_2554 crossref_primary_10_1016_j_artmed_2024_102785 crossref_primary_10_1038_s41746_024_01066_z crossref_primary_10_1016_j_giq_2024_101953 crossref_primary_10_1016_S2589_7500_22_00149_2 crossref_primary_10_1186_s13054_024_04948_6 crossref_primary_10_1038_s41591_022_01961_6 crossref_primary_10_2196_43486 crossref_primary_10_1007_s00063_024_01141_z crossref_primary_10_1161_JAHA_122_028882 |
Cites_doi | 10.1186/s12873-016-0095-0 10.1002/jhm.2259 10.1038/s41746-020-0253-3 10.1001/jama.2016.0288 10.1016/j.dsp.2017.10.011 10.1001/jama.2017.13836 10.1001/jama.2013.6032 10.1371/journal.pone.0174708 10.1097/CCM.0000000000002936 10.1016/j.annemergmed.2014.02.023 10.1126/scitranslmed.aab3719 10.1038/s41591-020-0789-4 10.1038/s41467-020-17431-x 10.2196/15182 10.1016/j.jbi.2014.03.016 10.1136/bmjopen-2017-017833 10.2196/11605 10.1093/jamia/ocv189 10.1088/1361-6579/aa9772 10.1038/s41746-021-00426-3 10.2196/medinform.5909 10.1093/biostatistics/kxn018 10.1038/s41586-020-2649-2 10.1186/s12916-019-1426-2 10.1136/amiajnl-2011-000089 10.1093/jamia/ocw105 10.1001/jama.2016.0287 10.1101/2020.11.02.20224931 10.1136/bmj.k1479 10.2307/2531595 10.1109/EMBC44109.2020.9175947 10.1097/CCM.0000000000004145 10.21037/atm.2020.03.63 10.1093/jamia/ocaa319 10.1109/ICTAI.2007.47 10.1007/s00134-019-05872-y |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41746-021-00504-6 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Nursing & Allied Health Premium Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central Nursing & Allied Health Premium ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2398-6352 |
EndPage | 134 |
ExternalDocumentID | oai_doaj_org_article_6852a8b842cb4d289b750afc458515bb 10_1038_s41746_021_00504_6 34504260 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation) grantid: GBMF9052 funderid: https://doi.org/10.13039/100000936 – fundername: U.S. Department of Health & Human Services | Biomedical Advanced Research and Development Authority (BARDA) grantid: HHSO100201900015C funderid: https://doi.org/10.13039/100012399 – fundername: Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.) grantid: R56LM013517 funderid: https://doi.org/10.13039/100000009 – fundername: Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.) grantid: R56LM013517 – fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation) grantid: GBMF9052 – fundername: NIGMS NIH HHS grantid: R35 GM143121 – fundername: NLM NIH HHS grantid: R56 LM013517 – fundername: U.S. Department of Health & Human Services | Biomedical Advanced Research and Development Authority (BARDA) grantid: HHSO100201900015C – fundername: NIEHS NIH HHS grantid: K01 ES025445 – fundername: ; grantid: HHSO100201900015C – fundername: ; grantid: R56LM013517 – fundername: ; grantid: GBMF9052 |
GroupedDBID | 0R~ 53G 7RV 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR C6C CCPQU EBLON EBS EIHBH FYUFA GROUPED_DOAJ HMCUK HYE M~E NAO NAPCQ NO~ OK1 PGMZT PIMPY RNT RPM SNYQT UKHRP NPM AAYXX CITATION 3V. 7XB 8FK AZQEC DWQXO K9. PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c540t-3cc5f099370343668ac355f67f4b2cdceec70ece6a635aa136e06db240b479673 |
IEDL.DBID | RPM |
ISSN | 2398-6352 |
IngestDate | Tue Oct 22 15:12:02 EDT 2024 Tue Sep 17 21:14:29 EDT 2024 Tue Aug 27 04:32:41 EDT 2024 Thu Oct 10 16:04:51 EDT 2024 Fri Aug 23 03:46:44 EDT 2024 Thu Oct 24 09:42:31 EDT 2024 Fri Oct 11 20:44:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-3cc5f099370343668ac355f67f4b2cdceec70ece6a635aa136e06db240b479673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0520-4948 0000-0002-0348-4261 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429719/ |
PMID | 34504260 |
PQID | 2570660068 |
PQPubID | 5061815 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6852a8b842cb4d289b750afc458515bb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8429719 proquest_miscellaneous_2571923968 proquest_journals_2570660068 crossref_primary_10_1038_s41746_021_00504_6 pubmed_primary_34504260 springer_journals_10_1038_s41746_021_00504_6 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-09 |
PublicationDateYYYYMMDD | 2021-09-09 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | NPJ digital medicine |
PublicationTitleAbbrev | npj Digit. Med |
PublicationTitleAlternate | NPJ Digit Med |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Goddard, Roudsari, Wyatt (CR21) 2012; 19 Montavon, Samek, Müller (CR48) 2018; 73 CR39 CR38 CR36 CR35 Umscheid (CR19) 2015; 10 CR31 Nemati (CR11) 2018; 46 CR30 Giuliano (CR9) 2007; 16 Sendak (CR18) 2020; 8 Sendak, Gao, Brajer, Balu (CR26) 2020; 3 Hyland (CR34) 2020; 26 Lyell, Coiera (CR40) 2017; 24 CR3 Desautels (CR5) 2016; 4 CR49 CR46 CR43 CR42 CR41 Horng (CR7) 2017; 12 Kelly, Karthikesalingam, Suleyman, Corrado, King (CR23) 2019; 17 Moskowitz, McSparron, Stone, Celi (CR44) 2015; 2 Lauritsen (CR15) 2020; 11 CR17 CR16 CR14 CR12 Beaulieu-Jones (CR24) 2021; 4 CR53 Abadi (CR55) 2016; 16 CR52 Shafer, Vovk (CR32) 2008; 9 CR51 Brown (CR8) 2016; 16 Villar (CR4) 2014; 64 Harris (CR54) 2020; 585 Mitka (CR37) 2013; 309 Mao (CR6) 2018; 8 Mandel, Kreda, Mandl, Kohane, Ramoni (CR45) 2016; 23 CR29 Steinberg, Fine, Chappell (CR50) 2009; 10 CR27 Seymour (CR33) 2016; 315 Singer (CR1) 2016; 315 CR25 Rhee (CR2) 2017; 318 Sharafoddini, Dubin, Maslove, Lee (CR28) 2019; 7 CR22 CR20 Henry, Hager, Pronovost, Saria (CR10) 2015; 7 Pivovarov, Albers, Sepulveda, Elhadad (CR47) 2014; 51 Shashikumar, Li, Clifford, Nemati (CR13) 2017; 38 504_CR17 504_CR16 504_CR14 504_CR12 504_CR53 KK Giuliano (504_CR9) 2007; 16 504_CR52 DM Steinberg (504_CR50) 2009; 10 504_CR51 SM Lauritsen (504_CR15) 2020; 11 S Nemati (504_CR11) 2018; 46 R Pivovarov (504_CR47) 2014; 51 M Abadi (504_CR55) 2016; 16 MP Sendak (504_CR26) 2020; 3 504_CR29 504_CR27 K Goddard (504_CR21) 2012; 19 Q Mao (504_CR6) 2018; 8 504_CR25 JC Mandel (504_CR45) 2016; 23 504_CR22 504_CR20 C Rhee (504_CR2) 2017; 318 CJ Kelly (504_CR23) 2019; 17 CW Seymour (504_CR33) 2016; 315 SL Hyland (504_CR34) 2020; 26 CR Harris (504_CR54) 2020; 585 504_CR39 504_CR3 SM Brown (504_CR8) 2016; 16 G Shafer (504_CR32) 2008; 9 504_CR38 504_CR36 D Lyell (504_CR40) 2017; 24 504_CR35 A Moskowitz (504_CR44) 2015; 2 504_CR31 504_CR30 MP Sendak (504_CR18) 2020; 8 T Desautels (504_CR5) 2016; 4 M Singer (504_CR1) 2016; 315 M Mitka (504_CR37) 2013; 309 KE Henry (504_CR10) 2015; 7 G Montavon (504_CR48) 2018; 73 S Horng (504_CR7) 2017; 12 BK Beaulieu-Jones (504_CR24) 2021; 4 CA Umscheid (504_CR19) 2015; 10 SP Shashikumar (504_CR13) 2017; 38 504_CR49 504_CR46 504_CR43 504_CR42 504_CR41 J Villar (504_CR4) 2014; 64 A Sharafoddini (504_CR28) 2019; 7 |
References_xml | – volume: 16 start-page: 122 year: 2007 end-page: 130 ident: CR9 article-title: Physiological monitoring for critically ill patients: testing a predictive model for the early detection of sepsis publication-title: AJCC contributor: fullname: Giuliano – ident: CR22 – volume: 16 year: 2016 ident: CR8 article-title: Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department publication-title: BMC Emerg. Med. doi: 10.1186/s12873-016-0095-0 contributor: fullname: Brown – ident: CR49 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 10 start-page: 26 year: 2015 end-page: 31 ident: CR19 article-title: Development, implementation, and impact of an automated early warning and response system for sepsis publication-title: J. Hospital Med. doi: 10.1002/jhm.2259 contributor: fullname: Umscheid – ident: CR35 – ident: CR29 – volume: 3 start-page: 1 year: 2020 end-page: 4 ident: CR26 article-title: Presenting machine learning model information to clinical end users with model facts labels publication-title: NPJ Digital Med. doi: 10.1038/s41746-020-0253-3 contributor: fullname: Balu – ident: CR25 – ident: CR42 – ident: CR46 – volume: 315 start-page: 762 year: 2016 end-page: 774 ident: CR33 article-title: Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) publication-title: JAMA doi: 10.1001/jama.2016.0288 contributor: fullname: Seymour – volume: 73 start-page: 1 year: 2018 end-page: 15 ident: CR48 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2017.10.011 contributor: fullname: Müller – volume: 318 start-page: 1241 year: 2017 end-page: 1249 ident: CR2 article-title: Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014 publication-title: JAMA doi: 10.1001/jama.2017.13836 contributor: fullname: Rhee – volume: 309 start-page: 2315 year: 2013 end-page: 2316 ident: CR37 article-title: Joint commission warns of alarm fatigue: multitude of alarms from monitoring devices problematic publication-title: Jama doi: 10.1001/jama.2013.6032 contributor: fullname: Mitka – volume: 12 year: 2017 ident: CR7 article-title: Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0174708 contributor: fullname: Horng – volume: 46 start-page: 547 year: 2018 end-page: 553 ident: CR11 article-title: An interpretable machine learning model for accurate prediction of sepsis in the ICU publication-title: Crit. Care Med. doi: 10.1097/CCM.0000000000002936 contributor: fullname: Nemati – volume: 64 start-page: 48 year: 2014 end-page: 54 ident: CR4 article-title: Many emergency department patients with severe sepsis and septic shock do not meet diagnostic criteria within 3h of arrival publication-title: Ann. Emerg. Med. doi: 10.1016/j.annemergmed.2014.02.023 contributor: fullname: Villar – volume: 7 start-page: 299ra122 year: 2015 end-page: 299ra122 ident: CR10 article-title: A targeted real-time early warning score (TREWScore) for septic shock publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aab3719 contributor: fullname: Saria – ident: CR36 – volume: 16 start-page: 265 year: 2016 end-page: 283 ident: CR55 article-title: Tensorflow: a system for large-scale machine learning publication-title: OSDI contributor: fullname: Abadi – volume: 26 start-page: 364 year: 2020 end-page: 373 ident: CR34 article-title: Early prediction of circulatory failure in the intensive care unit using machine learning publication-title: Nat. Med. doi: 10.1038/s41591-020-0789-4 contributor: fullname: Hyland – volume: 2 start-page: 24 year: 2015 ident: CR44 article-title: Preparing a new generation of clinicians for the era of big data publication-title: Harv. Med. Stud. Rev. contributor: fullname: Celi – ident: CR43 – ident: CR14 – ident: CR53 – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: CR15 article-title: Explainable artificial intelligence model to predict acute critical illness from electronic health records publication-title: Nat. Commun. doi: 10.1038/s41467-020-17431-x contributor: fullname: Lauritsen – ident: CR30 – volume: 8 year: 2020 ident: CR18 article-title: Real-world integration of a sepsis deep learning technology into routine clinical care: implementation study publication-title: JMIR Med. Inform. doi: 10.2196/15182 contributor: fullname: Sendak – volume: 51 start-page: 24 year: 2014 end-page: 34 ident: CR47 article-title: Identifying and mitigating biases in EHR laboratory tests publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2014.03.016 contributor: fullname: Elhadad – volume: 8 year: 2018 ident: CR6 article-title: Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU publication-title: BMJ Open doi: 10.1136/bmjopen-2017-017833 contributor: fullname: Mao – ident: CR27 – volume: 7 year: 2019 ident: CR28 article-title: A new insight into missing data in intensive care unit patient profiles: observational study publication-title: JMIR Med. Inform. doi: 10.2196/11605 contributor: fullname: Lee – volume: 23 start-page: 899 year: 2016 end-page: 908 ident: CR45 article-title: SMART on FHIR: a standards-based, interoperable apps platform for electronic health records publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocv189 contributor: fullname: Ramoni – volume: 38 start-page: 2235 year: 2017 end-page: 2248 ident: CR13 article-title: Multiscale network representation of physiological time series for early prediction of sepsis publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aa9772 contributor: fullname: Nemati – volume: 4 start-page: 1 year: 2021 end-page: 6 ident: CR24 article-title: Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians? publication-title: NPJ Digital Med. doi: 10.1038/s41746-021-00426-3 contributor: fullname: Beaulieu-Jones – ident: CR3 – ident: CR38 – volume: 4 year: 2016 ident: CR5 article-title: Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach publication-title: JMIR Med. Inform. doi: 10.2196/medinform.5909 contributor: fullname: Desautels – ident: CR52 – ident: CR17 – ident: CR31 – volume: 10 start-page: 94 year: 2009 end-page: 105 ident: CR50 article-title: Sample size for positive and negative predictive value in diagnostic research using case–control designs publication-title: Biostatistics doi: 10.1093/biostatistics/kxn018 contributor: fullname: Chappell – volume: 9 start-page: 371 year: 2008 end-page: 421 ident: CR32 article-title: A tutorial on conformal prediction publication-title: J. Mach. Learn. Res. contributor: fullname: Vovk – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: CR54 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 contributor: fullname: Harris – volume: 17 year: 2019 ident: CR23 article-title: Key challenges for delivering clinical impact with artificial intelligence publication-title: BMC Med. doi: 10.1186/s12916-019-1426-2 contributor: fullname: King – volume: 19 start-page: 121 year: 2012 end-page: 127 ident: CR21 article-title: Automation bias: a systematic review of frequency, effect mediators, and mitigators publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/amiajnl-2011-000089 contributor: fullname: Wyatt – volume: 24 start-page: 423 year: 2017 end-page: 431 ident: CR40 article-title: Automation bias and verification complexity: a systematic review publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocw105 contributor: fullname: Coiera – ident: CR41 – volume: 315 start-page: 801 year: 2016 end-page: 810 ident: CR1 article-title: The third international consensus definitions for sepsis and septic shock (Sepsis-3) publication-title: JAMA doi: 10.1001/jama.2016.0287 contributor: fullname: Singer – ident: CR20 – ident: 504_CR43 doi: 10.1101/2020.11.02.20224931 – volume: 585 start-page: 357 year: 2020 ident: 504_CR54 publication-title: Nature doi: 10.1038/s41586-020-2649-2 contributor: fullname: CR Harris – volume: 4 start-page: 1 year: 2021 ident: 504_CR24 publication-title: NPJ Digital Med. doi: 10.1038/s41746-021-00426-3 contributor: fullname: BK Beaulieu-Jones – volume: 2 start-page: 24 year: 2015 ident: 504_CR44 publication-title: Harv. Med. Stud. Rev. contributor: fullname: A Moskowitz – volume: 26 start-page: 364 year: 2020 ident: 504_CR34 publication-title: Nat. Med. doi: 10.1038/s41591-020-0789-4 contributor: fullname: SL Hyland – volume: 315 start-page: 801 year: 2016 ident: 504_CR1 publication-title: JAMA doi: 10.1001/jama.2016.0287 contributor: fullname: M Singer – ident: 504_CR27 doi: 10.1136/bmj.k1479 – ident: 504_CR49 doi: 10.2307/2531595 – volume: 17 year: 2019 ident: 504_CR23 publication-title: BMC Med. doi: 10.1186/s12916-019-1426-2 contributor: fullname: CJ Kelly – ident: 504_CR14 – volume: 7 start-page: 299ra122 year: 2015 ident: 504_CR10 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aab3719 contributor: fullname: KE Henry – ident: 504_CR52 – volume: 16 start-page: 122 year: 2007 ident: 504_CR9 publication-title: AJCC contributor: fullname: KK Giuliano – volume: 318 start-page: 1241 year: 2017 ident: 504_CR2 publication-title: JAMA doi: 10.1001/jama.2017.13836 contributor: fullname: C Rhee – volume: 3 start-page: 1 year: 2020 ident: 504_CR26 publication-title: NPJ Digital Med. doi: 10.1038/s41746-020-0253-3 contributor: fullname: MP Sendak – volume: 309 start-page: 2315 year: 2013 ident: 504_CR37 publication-title: Jama doi: 10.1001/jama.2013.6032 contributor: fullname: M Mitka – volume: 64 start-page: 48 year: 2014 ident: 504_CR4 publication-title: Ann. Emerg. Med. doi: 10.1016/j.annemergmed.2014.02.023 contributor: fullname: J Villar – volume: 11 start-page: 1 year: 2020 ident: 504_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17431-x contributor: fullname: SM Lauritsen – volume: 8 year: 2020 ident: 504_CR18 publication-title: JMIR Med. Inform. doi: 10.2196/15182 contributor: fullname: MP Sendak – ident: 504_CR46 doi: 10.1109/EMBC44109.2020.9175947 – ident: 504_CR12 doi: 10.1097/CCM.0000000000004145 – ident: 504_CR30 – ident: 504_CR38 doi: 10.21037/atm.2020.03.63 – volume: 46 start-page: 547 year: 2018 ident: 504_CR11 publication-title: Crit. Care Med. doi: 10.1097/CCM.0000000000002936 contributor: fullname: S Nemati – ident: 504_CR17 – volume: 24 start-page: 423 year: 2017 ident: 504_CR40 publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocw105 contributor: fullname: D Lyell – ident: 504_CR51 – volume: 12 year: 2017 ident: 504_CR7 publication-title: PLoS ONE doi: 10.1371/journal.pone.0174708 contributor: fullname: S Horng – volume: 16 year: 2016 ident: 504_CR8 publication-title: BMC Emerg. Med. doi: 10.1186/s12873-016-0095-0 contributor: fullname: SM Brown – ident: 504_CR41 – ident: 504_CR20 – volume: 315 start-page: 762 year: 2016 ident: 504_CR33 publication-title: JAMA doi: 10.1001/jama.2016.0288 contributor: fullname: CW Seymour – ident: 504_CR35 – ident: 504_CR39 – volume: 10 start-page: 94 year: 2009 ident: 504_CR50 publication-title: Biostatistics doi: 10.1093/biostatistics/kxn018 contributor: fullname: DM Steinberg – volume: 23 start-page: 899 year: 2016 ident: 504_CR45 publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocv189 contributor: fullname: JC Mandel – volume: 16 start-page: 265 year: 2016 ident: 504_CR55 publication-title: OSDI contributor: fullname: M Abadi – volume: 51 start-page: 24 year: 2014 ident: 504_CR47 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2014.03.016 contributor: fullname: R Pivovarov – volume: 38 start-page: 2235 year: 2017 ident: 504_CR13 publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aa9772 contributor: fullname: SP Shashikumar – volume: 73 start-page: 1 year: 2018 ident: 504_CR48 publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2017.10.011 contributor: fullname: G Montavon – ident: 504_CR25 – ident: 504_CR42 doi: 10.1093/jamia/ocaa319 – ident: 504_CR29 – ident: 504_CR3 – ident: 504_CR36 – volume: 7 year: 2019 ident: 504_CR28 publication-title: JMIR Med. Inform. doi: 10.2196/11605 contributor: fullname: A Sharafoddini – volume: 9 start-page: 371 year: 2008 ident: 504_CR32 publication-title: J. Mach. Learn. Res. contributor: fullname: G Shafer – volume: 4 year: 2016 ident: 504_CR5 publication-title: JMIR Med. Inform. doi: 10.2196/medinform.5909 contributor: fullname: T Desautels – ident: 504_CR53 – volume: 10 start-page: 26 year: 2015 ident: 504_CR19 publication-title: J. Hospital Med. doi: 10.1002/jhm.2259 contributor: fullname: CA Umscheid – volume: 19 start-page: 121 year: 2012 ident: 504_CR21 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/amiajnl-2011-000089 contributor: fullname: K Goddard – volume: 8 year: 2018 ident: 504_CR6 publication-title: BMJ Open doi: 10.1136/bmjopen-2017-017833 contributor: fullname: Q Mao – ident: 504_CR31 doi: 10.1109/ICTAI.2007.47 – ident: 504_CR22 – ident: 504_CR16 doi: 10.1007/s00134-019-05872-y |
SSID | ssj0002048946 |
Score | 2.4206588 |
Snippet | Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely administration of potentially... Abstract Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely administration of... Abstract Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely administration of... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 134 |
SubjectTerms | 631/114/1305 631/114/2397 631/114/2413 692/308/575 692/699/255/1318 Antibiotics Artificial intelligence Biomedicine Biotechnology Deep learning Digital technology Health risks Medical diagnosis Medicine Medicine & Public Health Sepsis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5VPVS9IH5KCRRkpN4gqjf-SXIsFVVBak8t6s2yHZsuoslqkx647WtUal9unwSPk112C4gL1_UomnxjZ77ZGc8A7Jcjh9c3bYhNvE85q2RqKulTITV3mTe5jiX_p2fy5IJ_vhSXK6O-sCasbw_cA3cgC5HpwhQ8s4ZXITwwwcdpbznms4Qx8etLy5Vg6ltMr_Gi5HK4JUNZcdDywL2x3jZEz1RQnso1TxQb9v-JZf5eLPkgYxod0fFjeDQwSHLYa_4ENlz9FLZOhxz5M_iCK31fCDJeabhJWjdpxy2ZTFEU7UH096_NdNxdXZM4PKIlXUNa_YPMZ3efSNXU89ltR_Bft_nsfgcujj-eH52kw_SE1AYW1qXMWuEp0g_KOJOy0DZwCy9zz01mw-s4m1NnndSBc2g9YtJRHC7FqeF5KXP2HDbrpnYvgOSj0kl0a8ZrXpWVDkGK1iIrRNgA1o4SeLdAUk36JhkqJrdZoXrcVcBdRdyVTOADgr2UxAbX8YdgdjWYXf3L7AnsLUylhlPXKpzIJyXeekng7XI5nBdMgujaNTdRBkltiTK7vWWXmjAuYsf-BPI1m6-pur5Sj69iT-6gaBkenMD7xe74pdbfoXj5P6B4BdtZ3NZY-7YHm930xr0OTKkzb-Kh-AlIsRHK priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJcKt6kFGQkbhA1Gz-SnBBFrQpSK4Qo6s2yHbtdiSbbTXrgtn8Dqf1z-0vwON4ty-saj6LxzNj-xjOeAXhVjS0-3zTeN3EuZbQWqa6FS7lQzOZOFyqk_B8eiYNj9vGEn8QLty6mVS73xLBR163BO_Id7LYmBL5oeDu9SLFrFEZXYwuN27CRe08hH8HG7t7Rp8-rWxYsS1sxEV_LZLTc6ZjH4Jh3673ojGcsFWsnUijc_ze0-WfS5G-R03Ag7d-DzYgkybtB9ffhlm0ewJ3DGCt_CF9xZKgPQSa_FN4knZ12k45MZ0iKeiHq26mfan92TkITiY70LenUd7KYX30gddss5j96grdvi_n1Izje3_vy_iCNXRRS49FYn1JjuMsQhmSUUSFKZTzGcKJwTOfGT8eaIrPGCuWxh1JjKmyGTaZYpllRiYI-hlHTNvYpkGJcWYHHm3aK1VWtvLOiFM9L7g3BmHECr5eSlNOhWIYMQW5aykHu0stdBrlLkcAuCntFiYWuw4d2dirjupGi5Lkqdclyo1ntvUPtIY5yhmE4k2udwPZSVTKuvk7e2EoCL1fDft1gMEQ1tr0MNAhuK6R5Mmh2xQllPFTuT6BY0_kaq-sjzeQs1Ob2jFb-xwm8WVrHDVv_FsXW_2fxDO7mwWAxu20bRv3s0j73WKjXL6LB_wTxyQrg priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BkRAXxD8pBRmJG0RkY3uSHGFFVZDKiaLeLNux6UolWW3SA7d9jUrwcvskeJzsQqAcuMaTaDJjy994xt8AvKhmjq5v2hCbeJ8KXmNqavSpRC1c7k2hY8n_8Uc8OhEfTuXpSJNDd2Em-Xtevu5EgMxUJhuC3kxmIsXrcIP2YGrTMMf57jyFCGgrgeO9mKtfnew9kaL_Klz5d3nkHznSuPUc3oHbI2ZkbwYn34VrrrkHN4_HrPh9-EwjAxMEW_xGsck6t-wWHVuuSJQ8wPT5l3a16M--stguomN9yzr9jW3W39-zum0268ue0TnbZv3jAZwcvvs0P0rHfgmpDbirT7m10mcEODIuOGKpbUATHgsvTG7D7zhbZM461AFlaD3j6DJqJyUyI4oKC_4Q9pq2cY-BFbPKIW1kxmtRV7UOYYnWMi9lcLm1swRebi2plgMthorpbF6qwe4q2F1FuytM4C0ZeydJlNbxQfC0GleIwlLmujSlyK0RdYgDTQAz2ltBiUtpTAIHW1epcZ11inrwIdI9lwSe74bDCqG0h25cexFlCMZWJPNo8OxOEy5k5OhPoJj4fKLqdKRZnEUW7qBoFT6cwKvt7Pil1r9Nsf9_4k_gVh4nMNW1HcBev7pwTwMK6s2zOP1_AizrAlM priority: 102 providerName: Springer Nature |
Title | Artificial intelligence sepsis prediction algorithm learns to say “I don’t know” |
URI | https://link.springer.com/article/10.1038/s41746-021-00504-6 https://www.ncbi.nlm.nih.gov/pubmed/34504260 https://www.proquest.com/docview/2570660068 https://search.proquest.com/docview/2571923968 https://pubmed.ncbi.nlm.nih.gov/PMC8429719 https://doaj.org/article/6852a8b842cb4d289b750afc458515bb |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9tQ0K8IP4TNioj8QZZ08R2kseu2jQqdZqAob5ZtuNsQWtSNdnD3vo1kODL9ZNwdpOy8ueFp0j2SXH8O8e_853vAN6mA2Ovb2q0TfLcp1HGfZXx3GdcUhPmKpYu5H9yxk8v6HjKpjvAurswLmhfq-KwvJ4dlsWVi62cz3S_ixPrn09GCf5E40Ha34VdVNA7JvpX51mjSUp5e0EmiJJ-TZF221BbNJwDFlDf1i2KKHPZ2bf2I5e2_29c88-Qyd_8pm47OnkED1seSYbr8T6GHVM-gfuT1lP-FL7YnnV2CFLcSbtJajOvi5rMF1bUokLk9WW1KJqrGXElJGrSVKSWt2S1_P6BZFW5Wn5riD17Wy1_PIOLk-PPo1O_raHga-RijR9pzfLAkpAgohHnidTIMHIe51SFGj_H6Dgw2nCJzEPKQcRNYEtM0UDROOVx9Bz2yqo0L4HgjBtuNzeVS5qlmURTRUoWJgzVQOuBB--6mRTzdaoM4VzcUSLWEAiEQDgIBPfgyE72RtKmuXYN1eJStGALnrBQJgrx1opmaBsqJDgy19Q6M5lSHhx0UIl27dXC1uXj3N598eDNphtXjXWFyNJUN07GUtvUyrxYI7sZSacZHsRbmG8NdbsHFdVl5m4V04P3nXb8Gta_p-LVf79oHx6ETq1t2NsB7DWLG_MaSVKjerg0pnEP7g2H409jfB4dn51_xNYRH_XcwUPPLZufWVoYYg |
link.rule.ids | 230,315,730,783,787,867,888,2109,12070,21402,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkYAL4k2ggJG4QdRs4kdyQoCottDtqUV7s2zHbleCZNmkB277N5Dgz-0vweN4tyyva2xF45mx_dkz_gbgeTWy-HzT-LOJcyktap7qmruUcUVt7rRQIeV_csTHJ_T9lE3jhVsX0yrXa2JYqOvW4B35HlZb4xxfNLyaf0mxahRGV2MJjctwBXm4kDtfTMXmjgVJaSvK41uZrCj3OuoROGbd-jN0xjKa8q39KND2_w1r_pky-VvcNGxH-zfhRsSR5PVg-FtwyTa34eokRsrvwEdsGdghyOwX2k3S2Xk368h8gV3RKkR9OvUD7c8-k1BCoiN9Szr1layW3w9I3Tar5bee4N3bavnjLpzsvzt-O05jDYXUeCzWp4UxzGUIQrKCFpyXyniE4bhwVOfGD8cakVljufLIQ6lRwW2GJaZopqmouCjuwU7TNvYBEDGqLMfNTTtF66pW_qiiFMtL5t3AmFECL9aalPOBKkOGEHdRykHv0utdBr1LnsAbVPamJ9Jchw_t4lTGWSN5yXJV6pLmRtPanw21BzjKGYrBTKZ1ArtrU8k49zp54SkJPNs0-1mDoRDV2PY89EFoW2Gf-4NlN5IUlAXe_gTEls23RN1uaWZngZnbC1r5Hyfwcu0dF2L9WxUP_z-Kp3BtfDw5lIcHRx8ewfU8OC_mue3CTr84t489Kur1k-D6PwEsbQxr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BkSouUP5KoICRuEE22cRxkiMtrFpgqx4oqrhYtmO3gW4SbbIHOO1rINGX2yep7STLboFLr_FIsT0z8TeZ8TcAr9KhNNc3hY5NlHJxmBGXZ0S5EWFYBorHzJb8jw_J_jH-cBKdrLT6skX7gueD4nwyKPIzW1tZTYTX14l5R-O9RH9E42HqVZnybsIt7bN-shKof7P5NZykmHTXZPww8WqswbcpuNXhsx_52DXdi0IcWY72tVPJkvf_C3H-XTh5JXtqD6XRXfjaL6etRfk-mDV8IH5eYXq81nq34E4HVdHbVuQe3JDFfdgcd8n4B_DFjLQEFChfYfZEtazqvEbV1IgaxSN2flpO8-ZsgmyXiho1JarZD7SY_z5AWVks5r8aZH7vLeYXD-F49P7z3r7btWlwhYZ7jRsKESnf4Bw_xCEhCRMaxCgSK8wDofdKitiXQhKmwQ1jw5BI33Sxwj7HcUri8BFsFGUhHwPSi5TEnJ9cMZylGdPREGNRkETa0oQYOvC6VxOtWjYOarPoYUJb_VKtX2r1S4kDu0aTS0nDpG0flNNT2u0vJUkUsITrLRYcZzr85BpDMSWwyZdGnDuw09sB7dy7pqb1HyHmeo0DL5fD2jFNtoUVspxZGYOeUyOz3ZrNcia92TkQrxnU2lTXR7RtWPLvzhYceNOb3p9p_X8rnlz7RS9g8-jdiH46OPz4FG4H1n1Mkd0ObDTTmXymIVnDn1vnuwSiWjcD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+sepsis+prediction+algorithm+learns+to+say+%E2%80%9CI+don%E2%80%99t+know%E2%80%9D&rft.jtitle=NPJ+digital+medicine&rft.au=Supreeth+P.+Shashikumar&rft.au=Gabriel+Wardi&rft.au=Atul+Malhotra&rft.au=Shamim+Nemati&rft.date=2021-09-09&rft.pub=Nature+Portfolio&rft.eissn=2398-6352&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41746-021-00504-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6852a8b842cb4d289b750afc458515bb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon |