Chemical fixation creates nanoscale clusters on the cell surface by aggregating membrane proteins
Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to s...
Saved in:
Published in | Communications biology Vol. 5; no. 1; pp. 487 - 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.05.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale.
Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins. |
---|---|
AbstractList | Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale. Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale. Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins. Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale.Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale. Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale.Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins. Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins. |
ArticleNumber | 487 |
Author | Oshima, Masanobu Ichikawa, Takehiko Miyata, Kazuki Miyazawa, Keisuke Wang, Dong Fukuma, Takeshi |
Author_xml | – sequence: 1 givenname: Takehiko orcidid: 0000-0002-2438-5502 surname: Ichikawa fullname: Ichikawa, Takehiko email: tichikawa@staff.kanazawa-u.ac.jp organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University – sequence: 2 givenname: Dong surname: Wang fullname: Wang, Dong organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Division of Genetics, Cancer Research Institute, Kanazawa University – sequence: 3 givenname: Keisuke surname: Miyazawa fullname: Miyazawa, Keisuke organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Faculty of Frontier Engineering, Kanazawa University – sequence: 4 givenname: Kazuki orcidid: 0000-0002-1641-2160 surname: Miyata fullname: Miyata, Kazuki organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Faculty of Frontier Engineering, Kanazawa University – sequence: 5 givenname: Masanobu orcidid: 0000-0002-3304-0004 surname: Oshima fullname: Oshima, Masanobu email: oshimam@staff.kanazawa-u.ac.jp organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Division of Genetics, Cancer Research Institute, Kanazawa University – sequence: 6 givenname: Takeshi orcidid: 0000-0001-8971-6002 surname: Fukuma fullname: Fukuma, Takeshi email: fukuma@staff.kanazawa-u.ac.jp organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Faculty of Frontier Engineering, Kanazawa University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35595960$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUtVARLaU_wAJFYsMm4Fdie4OERjwqVWIDa-vGucl4lNiDnSD697gzpbRddOXHPefc6-PzkpyEGJCQ14y-Z1ToD1lySkVNOa-pkELV_Bk548KYWrSSn9zbn5KLnHeUUmaMaYV8QU5F05jGtPSMwGaLs3cwVYP_A4uPoXIJYcFcBQgxlwpWblrzgilXpbpsyxmnqcprGsBh1V1XMI4Jx8IOYzXj3CUIWO1TXNCH_Io8H2DKeHG7npOfXz7_2Hyrr75_vdx8uqpdI-lSC605aHSibxCpERqUcdD2UnUK5MAaA9BRio3qB9o5yoaeqb53DaNKgmjEObk86vYRdnaf_Azp2kbw9nAR02ghLd5NaLsBuCwe8IZpKWjXsVYbUMo50yhdbD0nH49a-7WbsXcYlgTTA9GHleC3doy_rWGcGymKwLtbgRR_rZgXO_t8Y1txJq7Z8rZVSmslTYG-fQTdxTWFYtUBRQ3VShfUm_sT3Y3y7ycLgB8BLsWcEw53EEbtTWLsMTG2JMYeEmN5IelHJOeXQwrKq_z0NFUcqbn0CSOm_2M_wfoLVQzVQQ |
CitedBy_id | crossref_primary_10_1007_s00232_024_00305_4 crossref_primary_10_1038_s41598_024_55136_z crossref_primary_10_1073_pnas_2317703121 crossref_primary_10_1007_s00723_023_01624_w crossref_primary_10_1021_acs_nanolett_4c04487 crossref_primary_10_1126_sciadv_adn0110 crossref_primary_10_5483_BMBRep_2024_0180 crossref_primary_10_1038_s41586_024_08071_y crossref_primary_10_1038_s41467_023_43666_5 crossref_primary_10_1021_acs_analchem_4c04283 crossref_primary_10_1073_pnas_2308088120 crossref_primary_10_1523_ENEURO_0104_23_2023 crossref_primary_10_1093_bbb_zbae176 crossref_primary_10_3233_JND_230210 crossref_primary_10_3390_plasma6030040 crossref_primary_10_1016_j_bpj_2024_02_001 crossref_primary_10_1038_s42003_024_06313_3 crossref_primary_10_1039_D3CS00287J crossref_primary_10_1021_acsnano_4c14578 |
Cites_doi | 10.1016/j.msec.2013.04.009 10.1007/s003390051204 10.1002/wnan.104 10.1371/journal.pone.0219006 10.1016/j.ultramic.2003.12.010 10.1016/j.yexcr.2017.06.022 10.1016/S0002-9610(05)80349-6 10.1093/oxfordjournals.jmicro.a023830 10.1021/ac503172b 10.1016/j.micron.2007.06.011 10.1046/j.1365-2818.2003.01238.x 10.1186/s40580-017-0099-9 10.1146/annurev.biophys.28.1.319 10.1111/j.1365-2818.2005.01497.x 10.1177/39.2.1987266 10.3389/fimmu.2019.01753 10.1016/j.jmb.2012.05.018 10.1126/science.2928794 10.1007/978-1-4939-7172-5_5 10.1002/sca.20269 10.1126/science.260.5113.1451 10.1039/C9SM02444A 10.1016/j.ymeth.2016.09.016 10.1016/S0006-3495(98)77559-9 10.1179/his.2001.24.3.173 10.1007/BF01003203 10.1016/0020-7225(65)90019-4 10.1063/1.1999856 10.1038/nmeth.f.314 10.1101/pdb.top080473 10.1063/1.2437196 10.1017/S0033583510000041 10.1088/1468-6996/11/3/033003 10.1007/s12575-009-9008-x 10.1242/bio.019943 10.1128/mBio.01363-14 10.1038/s41598-019-48400-0 10.1186/s42649-020-00028-5 10.1073/pnas.2010209117 10.1038/nnano.2017.45 10.1076/ceyr.25.1.61.9963 10.2142/biophysico.14.0_127 10.1083/jcb.17.1.19 10.1007/s11434-013-5906-z 10.1017/S1551929500057060 10.1038/nmeth.1855 10.1016/B978-0-12-411619-1.00016-1 10.1515/crll.1882.92.156 10.1016/0003-9861(68)90554-7 10.1016/j.bbamcr.2008.12.018 10.1002/1438-5171(200006)1:2<105::AID-SIMO105>3.0.CO;2-3 10.3389/fimmu.2019.00675 10.1177/26.5.96177 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s42003-022-03437-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2399-3642 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_bfa243552518430bb1689a77cc957800 PMC9122943 35595960 10_1038_s42003_022_03437_2 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 88I AAJSJ ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ HYE M2P M7P M~E NAO O9- OK1 PGMZT PIMPY RNT RPM SNYQT AASML AAYXX CITATION PHGZM PHGZT NPM 3V. 7XB 8FE 8FH 8FK AARCD LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-3882a8ec3d5ee0938a79ca6d47b7a4f159aab00e57df0bc01fd17ddc51074a353 |
IEDL.DBID | BENPR |
ISSN | 2399-3642 |
IngestDate | Wed Aug 27 01:32:19 EDT 2025 Thu Aug 21 18:21:35 EDT 2025 Tue Aug 05 10:14:49 EDT 2025 Wed Aug 13 10:56:57 EDT 2025 Thu Apr 03 07:03:27 EDT 2025 Tue Jul 01 03:01:39 EDT 2025 Thu Apr 24 22:55:38 EDT 2025 Fri Feb 21 02:39:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-3882a8ec3d5ee0938a79ca6d47b7a4f159aab00e57df0bc01fd17ddc51074a353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8971-6002 0000-0002-2438-5502 0000-0002-1641-2160 0000-0002-3304-0004 |
OpenAccessLink | https://www.proquest.com/docview/2667090878?pq-origsite=%requestingapplication% |
PMID | 35595960 |
PQID | 2667090878 |
PQPubID | 4669726 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bfa243552518430bb1689a77cc957800 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9122943 proquest_miscellaneous_2667788749 proquest_journals_2667090878 pubmed_primary_35595960 crossref_primary_10_1038_s42003_022_03437_2 crossref_citationtrail_10_1038_s42003_022_03437_2 springer_journals_10_1038_s42003_022_03437_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-20 |
PublicationDateYYYYMMDD | 2022-05-20 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Communications biology |
PublicationTitleAbbrev | Commun Biol |
PublicationTitleAlternate | Commun Biol |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Matsuno (CR6) 2000; 15 Yamane (CR44) 2000; 49 Drake (CR26) 1989; 243 Zhou (CR17) 2019; 14 Dufrene (CR30) 2017; 12 White, Wimley (CR38) 1999; 28 Mason, O’Leary (CR19) 1991; 39 Tinevez (CR54) 2017; 115 Le Grimellec, Giocondi, Pujol, Lesniewska (CR25) 2000; 1 Murk (CR16) 2003; 212 Habeeb, Hiramoto (CR7) 1968; 126 Li (CR13) 2017; 358 Hertz (CR46) 1882; 29 Hopwood (CR2) 1985; 17 Allison, Mortensen, Sullivan, Doktycz (CR34) 2010; 2 de Pablo, Carrion-Vazquez (CR35) 2014; 2014 Kuzmin, Pliss, Prasad (CR15) 2014; 86 Eltoum, Fredenburgh, Myers, Grizzle (CR5) 2001; 24 Ohnesorge, Binnig (CR27) 1993; 260 Tanaka (CR11) 2010; 7 Stanly (CR10) 2016; 5 Dufrene (CR37) 2014; 5 Mellor (CR49) 2010; 1803 Liu, Zhang, Li, Chen (CR21) 2012; 34 Shibata, Watanabe, Uchihashi, Ando, Yasuda (CR33) 2017; 14 Ramos-Vara (CR3) 2017; 1641 Fukuma, Kobayashi, Matsushige, Yamada (CR28) 2005; 87 Kim, Jun (CR51) 2019; 10 Moloney, McDonnell, O’Shea (CR36) 2004; 100 Li (CR32) 2013; 58 Kim, Kim, Okajima, Cho (CR20) 2017; 4 Molin, Nygren, Dolonius (CR8) 1978; 26 Gat, Simon, Campillo, Bernheim-Groswasser, Sykes (CR50) 2020; 16 Cho, Morris, Lumeng (CR53) 2014; 537 Yamashita (CR31) 2012; 422 Braet, Rotsch, Wisse, Radmacher (CR18) 1998; 66 Kuznetsova, Starodubtseva, Yegorenkov, Chizhik, Zhdanov (CR47) 2007; 38 Kiernan (CR4) 2000; 1 Shah, Kumaraswamy, Kulkarni (CR12) 1993; 166 Erickson (CR40) 2009; 11 Sabatini, Bensch, Barrnett (CR1) 1963; 17 Vinothkumar, Henderson (CR39) 2010; 43 Schnell, Dijk, Sjollema, Giepmans (CR23) 2012; 9 Hutter (CR42) 2005; 219 Pinto (CR52) 2019; 9 Sneddon (CR45) 1965; 3 Pereira (CR14) 2019; 10 Nie, McIntyre (CR41) 2007; 78 Fukuma (CR29) 2010; 11 Kim (CR9) 2020; 50 Sinniah, Paauw, Ubels (CR24) 2002; 25 Codan, Martinelli, Mestroni, Sbaizero (CR43) 2013; 33 Shafraz, Xie, Yamada, Sivasankar (CR48) 2020; 117 Le Grimellec (CR22) 1998; 75 BY Liu (3437_CR21) 2012; 34 HY Nie (3437_CR41) 2007; 78 Y Yamane (3437_CR44) 2000; 49 O Shafraz (3437_CR48) 2020; 117 HR Kim (3437_CR51) 2019; 10 SH White (3437_CR38) 1999; 28 KR Vinothkumar (3437_CR39) 2010; 43 M Shibata (3437_CR33) 2017; 14 D Hopwood (3437_CR2) 1985; 17 U Schnell (3437_CR23) 2012; 9 KA Tanaka (3437_CR11) 2010; 7 A Matsuno (3437_CR6) 2000; 15 JA Kiernan (3437_CR4) 2000; 1 YF Dufrene (3437_CR30) 2017; 12 K Sinniah (3437_CR24) 2002; 25 I Eltoum (3437_CR5) 2001; 24 Y Li (3437_CR13) 2017; 358 JT Mason (3437_CR19) 1991; 39 S Gat (3437_CR50) 2020; 16 TG Kuznetsova (3437_CR47) 2007; 38 H Hertz (3437_CR46) 1882; 29 M Li (3437_CR32) 2013; 58 HP Erickson (3437_CR40) 2009; 11 SO Kim (3437_CR20) 2017; 4 B Codan (3437_CR43) 2013; 33 CS Pinto (3437_CR52) 2019; 9 PM Pereira (3437_CR14) 2019; 10 B Drake (3437_CR26) 1989; 243 PJ de Pablo (3437_CR35) 2014; 2014 C Le Grimellec (3437_CR25) 2000; 1 JY Tinevez (3437_CR54) 2017; 115 T Fukuma (3437_CR28) 2005; 87 DP Allison (3437_CR34) 2010; 2 JL Murk (3437_CR16) 2003; 212 JA Ramos-Vara (3437_CR3) 2017; 1641 H Yamashita (3437_CR31) 2012; 422 DD Sabatini (3437_CR1) 1963; 17 X Zhou (3437_CR17) 2019; 14 KW Cho (3437_CR53) 2014; 537 SO Molin (3437_CR8) 1978; 26 JP Shah (3437_CR12) 1993; 166 H Mellor (3437_CR49) 2010; 1803 AN Kuzmin (3437_CR15) 2014; 86 IN Sneddon (3437_CR45) 1965; 3 TA Stanly (3437_CR10) 2016; 5 M Moloney (3437_CR36) 2004; 100 YF Dufrene (3437_CR37) 2014; 5 AJ Habeeb (3437_CR7) 1968; 126 C Le Grimellec (3437_CR22) 1998; 75 F Ohnesorge (3437_CR27) 1993; 260 T Fukuma (3437_CR29) 2010; 11 JL Hutter (3437_CR42) 2005; 219 KW Kim (3437_CR9) 2020; 50 F Braet (3437_CR18) 1998; 66 |
References_xml | – volume: 33 start-page: 3303 year: 2013 end-page: 3308 ident: CR43 article-title: Atomic force microscopy of 3T3 and SW-13 cell lines: an investigation of cell elasticity changes due to fixation publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl. doi: 10.1016/j.msec.2013.04.009 – volume: 66 start-page: S575 year: 1998 end-page: S578 ident: CR18 article-title: Comparison of fixed and living liver endothelial cells by atomic force microscopy publication-title: Appl. Phys. A-Mater. Sci. Process. doi: 10.1007/s003390051204 – volume: 2 start-page: 618 year: 2010 end-page: 634 ident: CR34 article-title: Atomic force microscopy of biological samples publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol doi: 10.1002/wnan.104 – volume: 14 start-page: e0219006 year: 2019 ident: CR17 article-title: Preservation of cellular nano-architecture by the process of chemical fixation for nanopathology publication-title: PLoS One doi: 10.1371/journal.pone.0219006 – volume: 100 start-page: 153 year: 2004 end-page: 161 ident: CR36 article-title: Atomic force microscopy of BHK-21 cells: an investigation of cell fixation techniques publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2003.12.010 – volume: 358 start-page: 253 year: 2017 end-page: 259 ident: CR13 article-title: The effects of chemical fixation on the cellular nanostructure publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2017.06.022 – volume: 166 start-page: 431 year: 1993 end-page: 434 ident: CR12 article-title: Comparative evaluation of fixation methods after mandibulotomy for oropharyngeal tumors publication-title: Am. J. Surg. doi: 10.1016/S0002-9610(05)80349-6 – volume: 49 start-page: 463 year: 2000 end-page: 471 ident: CR44 article-title: Quantitative analyses of topography and elasticity of living and fixed astrocytes publication-title: J. Electron. Microsc. doi: 10.1093/oxfordjournals.jmicro.a023830 – volume: 86 start-page: 10909 year: 2014 end-page: 10916 ident: CR15 article-title: Changes in biomolecular profile in a single nucleolus during cell fixation publication-title: Anal. Chem. doi: 10.1021/ac503172b – volume: 38 start-page: 824 year: 2007 end-page: 833 ident: CR47 article-title: Atomic force microscopy probing of cell elasticity publication-title: Micron doi: 10.1016/j.micron.2007.06.011 – volume: 212 start-page: 81 year: 2003 end-page: 90 ident: CR16 article-title: Influence of aldehyde fixation on the morphology of endosomes and lysosomes: quantitative analysis and electron tomography publication-title: J. Microsc. doi: 10.1046/j.1365-2818.2003.01238.x – volume: 4 start-page: 5 year: 2017 ident: CR20 article-title: Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy publication-title: Nano Converg. doi: 10.1186/s40580-017-0099-9 – volume: 28 start-page: 319 year: 1999 end-page: 365 ident: CR38 article-title: Membrane protein folding and stability: physical principles publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.28.1.319 – volume: 219 start-page: 61 year: 2005 end-page: 68 ident: CR42 article-title: Atomic force microscopy investigation of the dependence of cellular elastic moduli on glutaraldehyde fixation publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2005.01497.x – volume: 39 start-page: 225 year: 1991 end-page: 229 ident: CR19 article-title: Effects of formaldehyde fixation on protein secondary structure: a calorimetric and infrared spectroscopic investigation publication-title: J. Histochem. Cytochem. doi: 10.1177/39.2.1987266 – volume: 15 start-page: 261 year: 2000 end-page: 268 ident: CR6 article-title: Electron microscopic observation of intracellular expression of mRNA and its protein product: technical review on ultrastructural in situ hybridization and its combination with immunohistochemistry publication-title: Histol. Histopathol. – volume: 10 start-page: 1753 year: 2019 ident: CR51 article-title: T cell microvilli: sensors or senders? publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01753 – volume: 422 start-page: 300 year: 2012 end-page: 309 ident: CR31 article-title: Single-molecule imaging on living bacterial cell surface by high-speed AFM publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2012.05.018 – volume: 243 start-page: 1586 year: 1989 end-page: 1589 ident: CR26 article-title: Imaging crystals, polymers, and processes in water with the atomic force microscope publication-title: Science doi: 10.1126/science.2928794 – volume: 1641 start-page: 115 year: 2017 end-page: 128 ident: CR3 article-title: Principles and methods of immunohistochemistry publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7172-5_5 – volume: 34 start-page: 6 year: 2012 end-page: 11 ident: CR21 article-title: Effect of glutaraldehyde fixation on bacterial cells observed by atomic force microscopy publication-title: Scanning doi: 10.1002/sca.20269 – volume: 260 start-page: 1451 year: 1993 end-page: 1456 ident: CR27 article-title: True atomic resolution by atomic force microscopy through repulsive and attractive forces publication-title: Science doi: 10.1126/science.260.5113.1451 – volume: 16 start-page: 7222 year: 2020 end-page: 7230 ident: CR50 article-title: Finger-like membrane protrusions are favored by heterogeneities in the actin network publication-title: Soft Matter doi: 10.1039/C9SM02444A – volume: 115 start-page: 80 year: 2017 end-page: 90 ident: CR54 article-title: TrackMate: an open and extensible platform for single-particle tracking publication-title: Methods doi: 10.1016/j.ymeth.2016.09.016 – volume: 75 start-page: 695 year: 1998 end-page: 703 ident: CR22 article-title: Imaging of the surface of living cells by low-force contact-mode atomic force microscopy publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77559-9 – volume: 24 start-page: 173 year: 2001 end-page: 190 ident: CR5 article-title: Introduction to the theory and practice of fixation of tissues publication-title: J. Histotechnol. doi: 10.1179/his.2001.24.3.173 – volume: 17 start-page: 389 year: 1985 end-page: 442 ident: CR2 article-title: Cell and tissue fixation, 1972-1982 publication-title: Histochem. J. doi: 10.1007/BF01003203 – volume: 3 start-page: 47 year: 1965 end-page: 57 ident: CR45 article-title: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(65)90019-4 – volume: 87 start-page: 034101 year: 2005 ident: CR28 article-title: True atomic resolution in liquid by frequency-modulation atomic force microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.1999856 – volume: 7 start-page: 865 year: 2010 end-page: 866 ident: CR11 article-title: Membrane molecules mobile even after chemical fixation publication-title: Nat. Methods doi: 10.1038/nmeth.f.314 – volume: 2014 start-page: 167 year: 2014 end-page: 177 ident: CR35 article-title: Imaging biological samples with atomic force microscopy publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.top080473 – volume: 78 start-page: 023701 year: 2007 ident: CR41 article-title: Unstable amplitude and noisy image induced by tip contamination in dynamic force mode atomic force microscopy publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2437196 – volume: 43 start-page: 65 year: 2010 end-page: 158 ident: CR39 article-title: Structures of membrane proteins publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583510000041 – volume: 11 start-page: 033003 year: 2010 ident: CR29 article-title: Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/11/3/033003 – volume: 11 start-page: 32 year: 2009 end-page: 51 ident: CR40 article-title: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy publication-title: Biol. Proceed. Online doi: 10.1007/s12575-009-9008-x – volume: 5 start-page: 1343 year: 2016 end-page: 1350 ident: CR10 article-title: Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters publication-title: Biol. Open doi: 10.1242/bio.019943 – volume: 5 start-page: e01363 year: 2014 end-page: 01314 ident: CR37 article-title: Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface publication-title: mBio. doi: 10.1128/mBio.01363-14 – volume: 9 year: 2019 ident: CR52 article-title: Microridges are apical epithelial projections formed of F-actin networks that organize the glycan layer publication-title: Sci. Rep. doi: 10.1038/s41598-019-48400-0 – volume: 50 start-page: 10 year: 2020 ident: CR9 article-title: Methanol fixation for scanning electron microscopy of plants publication-title: Appl. Microsc. doi: 10.1186/s42649-020-00028-5 – volume: 117 start-page: 31157 year: 2020 end-page: 31165 ident: CR48 article-title: Mapping transmembrane binding partners for E-cadherin ectodomains publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2010209117 – volume: 12 start-page: 295 year: 2017 end-page: 307 ident: CR30 article-title: Imaging modes of atomic force microscopy for application in molecular and cell biology publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.45 – volume: 25 start-page: 61 year: 2002 end-page: 68 ident: CR24 article-title: Investigating live and fixed epithelial and fibroblast cells by atomic force microscopy publication-title: Curr. Eye Res. doi: 10.1076/ceyr.25.1.61.9963 – volume: 14 start-page: 127 year: 2017 end-page: 135 ident: CR33 article-title: High-speed atomic force microscopy imaging of live mammalian cells publication-title: Biophys. Physicobiol. doi: 10.2142/biophysico.14.0_127 – volume: 17 start-page: 19 year: 1963 end-page: 58 ident: CR1 article-title: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation publication-title: J. Cell Biol. doi: 10.1083/jcb.17.1.19 – volume: 58 start-page: 3177 year: 2013 end-page: 3182 ident: CR32 article-title: Progress of AFM single-cell and single-molecule morphology imaging publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-013-5906-z – volume: 1 start-page: 8 year: 2000 end-page: 12 ident: CR4 article-title: Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do publication-title: Microsc. Today doi: 10.1017/S1551929500057060 – volume: 9 start-page: 152 year: 2012 end-page: 158 ident: CR23 article-title: Immunolabeling artifacts and the need for live-cell imaging publication-title: Nat. Methods doi: 10.1038/nmeth.1855 – volume: 537 start-page: 297 year: 2014 end-page: 314 ident: CR53 article-title: Flow cytometry analyses of adipose tissue macrophages publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-411619-1.00016-1 – volume: 29 start-page: 156 year: 1882 end-page: 171 ident: CR46 article-title: Study on the contact of elastic bodies publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1882.92.156 – volume: 126 start-page: 16 year: 1968 end-page: 26 ident: CR7 article-title: Reaction of proteins with glutaraldehyde publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90554-7 – volume: 1803 start-page: 191 year: 2010 end-page: 200 ident: CR49 article-title: The role of formins in filopodia formation publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.12.018 – volume: 1 start-page: 105 year: 2000 end-page: 107 ident: CR25 article-title: Tapping mode atomic force microscopy allows the in situ imaging of fragile membrane structures and of intact cells surface at high resolution publication-title: Single Mol. doi: 10.1002/1438-5171(200006)1:2<105::AID-SIMO105>3.0.CO;2-3 – volume: 10 start-page: 675 year: 2019 ident: CR14 article-title: Fix your membrane receptor imaging: actin cytoskeleton and cd4 membrane organization disruption by chemical fixation publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00675 – volume: 26 start-page: 412 year: 1978 end-page: 414 ident: CR8 article-title: A new method for the study of glutaraldehyde-induced crosslinking properties in proteins with special reference to the reaction with amino groups publication-title: J. Histochem. Cytochem. doi: 10.1177/26.5.96177 – volume: 43 start-page: 65 year: 2010 ident: 3437_CR39 publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583510000041 – volume: 50 start-page: 10 year: 2020 ident: 3437_CR9 publication-title: Appl. Microsc. doi: 10.1186/s42649-020-00028-5 – volume: 10 start-page: 1753 year: 2019 ident: 3437_CR51 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01753 – volume: 260 start-page: 1451 year: 1993 ident: 3437_CR27 publication-title: Science doi: 10.1126/science.260.5113.1451 – volume: 33 start-page: 3303 year: 2013 ident: 3437_CR43 publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl. doi: 10.1016/j.msec.2013.04.009 – volume: 10 start-page: 675 year: 2019 ident: 3437_CR14 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00675 – volume: 537 start-page: 297 year: 2014 ident: 3437_CR53 publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-411619-1.00016-1 – volume: 358 start-page: 253 year: 2017 ident: 3437_CR13 publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2017.06.022 – volume: 3 start-page: 47 year: 1965 ident: 3437_CR45 publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(65)90019-4 – volume: 1641 start-page: 115 year: 2017 ident: 3437_CR3 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7172-5_5 – volume: 26 start-page: 412 year: 1978 ident: 3437_CR8 publication-title: J. Histochem. Cytochem. doi: 10.1177/26.5.96177 – volume: 12 start-page: 295 year: 2017 ident: 3437_CR30 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.45 – volume: 11 start-page: 32 year: 2009 ident: 3437_CR40 publication-title: Biol. Proceed. Online doi: 10.1007/s12575-009-9008-x – volume: 14 start-page: 127 year: 2017 ident: 3437_CR33 publication-title: Biophys. Physicobiol. doi: 10.2142/biophysico.14.0_127 – volume: 78 start-page: 023701 year: 2007 ident: 3437_CR41 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2437196 – volume: 243 start-page: 1586 year: 1989 ident: 3437_CR26 publication-title: Science doi: 10.1126/science.2928794 – volume: 117 start-page: 31157 year: 2020 ident: 3437_CR48 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2010209117 – volume: 17 start-page: 19 year: 1963 ident: 3437_CR1 publication-title: J. Cell Biol. doi: 10.1083/jcb.17.1.19 – volume: 24 start-page: 173 year: 2001 ident: 3437_CR5 publication-title: J. Histotechnol. doi: 10.1179/his.2001.24.3.173 – volume: 5 start-page: 1343 year: 2016 ident: 3437_CR10 publication-title: Biol. Open doi: 10.1242/bio.019943 – volume: 11 start-page: 033003 year: 2010 ident: 3437_CR29 publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/11/3/033003 – volume: 14 start-page: e0219006 year: 2019 ident: 3437_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0219006 – volume: 2 start-page: 618 year: 2010 ident: 3437_CR34 publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol doi: 10.1002/wnan.104 – volume: 15 start-page: 261 year: 2000 ident: 3437_CR6 publication-title: Histol. Histopathol. – volume: 4 start-page: 5 year: 2017 ident: 3437_CR20 publication-title: Nano Converg. doi: 10.1186/s40580-017-0099-9 – volume: 87 start-page: 034101 year: 2005 ident: 3437_CR28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1999856 – volume: 75 start-page: 695 year: 1998 ident: 3437_CR22 publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77559-9 – volume: 166 start-page: 431 year: 1993 ident: 3437_CR12 publication-title: Am. J. Surg. doi: 10.1016/S0002-9610(05)80349-6 – volume: 422 start-page: 300 year: 2012 ident: 3437_CR31 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2012.05.018 – volume: 100 start-page: 153 year: 2004 ident: 3437_CR36 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2003.12.010 – volume: 58 start-page: 3177 year: 2013 ident: 3437_CR32 publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-013-5906-z – volume: 9 start-page: 152 year: 2012 ident: 3437_CR23 publication-title: Nat. Methods doi: 10.1038/nmeth.1855 – volume: 219 start-page: 61 year: 2005 ident: 3437_CR42 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2005.01497.x – volume: 38 start-page: 824 year: 2007 ident: 3437_CR47 publication-title: Micron doi: 10.1016/j.micron.2007.06.011 – volume: 39 start-page: 225 year: 1991 ident: 3437_CR19 publication-title: J. Histochem. Cytochem. doi: 10.1177/39.2.1987266 – volume: 1803 start-page: 191 year: 2010 ident: 3437_CR49 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.12.018 – volume: 7 start-page: 865 year: 2010 ident: 3437_CR11 publication-title: Nat. Methods doi: 10.1038/nmeth.f.314 – volume: 28 start-page: 319 year: 1999 ident: 3437_CR38 publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.28.1.319 – volume: 16 start-page: 7222 year: 2020 ident: 3437_CR50 publication-title: Soft Matter doi: 10.1039/C9SM02444A – volume: 1 start-page: 105 year: 2000 ident: 3437_CR25 publication-title: Single Mol. doi: 10.1002/1438-5171(200006)1:2<105::AID-SIMO105>3.0.CO;2-3 – volume: 49 start-page: 463 year: 2000 ident: 3437_CR44 publication-title: J. Electron. Microsc. doi: 10.1093/oxfordjournals.jmicro.a023830 – volume: 126 start-page: 16 year: 1968 ident: 3437_CR7 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90554-7 – volume: 212 start-page: 81 year: 2003 ident: 3437_CR16 publication-title: J. Microsc. doi: 10.1046/j.1365-2818.2003.01238.x – volume: 66 start-page: S575 year: 1998 ident: 3437_CR18 publication-title: Appl. Phys. A-Mater. Sci. Process. doi: 10.1007/s003390051204 – volume: 2014 start-page: 167 year: 2014 ident: 3437_CR35 publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.top080473 – volume: 86 start-page: 10909 year: 2014 ident: 3437_CR15 publication-title: Anal. Chem. doi: 10.1021/ac503172b – volume: 9 year: 2019 ident: 3437_CR52 publication-title: Sci. Rep. doi: 10.1038/s41598-019-48400-0 – volume: 115 start-page: 80 year: 2017 ident: 3437_CR54 publication-title: Methods doi: 10.1016/j.ymeth.2016.09.016 – volume: 25 start-page: 61 year: 2002 ident: 3437_CR24 publication-title: Curr. Eye Res. doi: 10.1076/ceyr.25.1.61.9963 – volume: 5 start-page: e01363 year: 2014 ident: 3437_CR37 publication-title: mBio. doi: 10.1128/mBio.01363-14 – volume: 17 start-page: 389 year: 1985 ident: 3437_CR2 publication-title: Histochem. J. doi: 10.1007/BF01003203 – volume: 1 start-page: 8 year: 2000 ident: 3437_CR4 publication-title: Microsc. Today doi: 10.1017/S1551929500057060 – volume: 29 start-page: 156 year: 1882 ident: 3437_CR46 publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1882.92.156 – volume: 34 start-page: 6 year: 2012 ident: 3437_CR21 publication-title: Scanning doi: 10.1002/sca.20269 |
SSID | ssj0001999634 |
Score | 2.3082056 |
Snippet | Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate... Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins. |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 487 |
SubjectTerms | 14/19 14/3 631/1647/245 631/57/2271 631/57/2282 Atomic force microscopy Biology Biomedical and Life Sciences Cell surface Fixatives Life Sciences Membrane proteins Microscopy Proteins Silicon nitride |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VSEhcKh59hJdcqTca4cT2Oj4CAqFK7alI3Cy_QlcCLyK7Evx7xk52y1JaLlxjR3Hm4fnGHn8G-FoFyZ1QrJRt2mYcCVFam04BC1b7ynHbVumA84-fo_ML_v1SXD656ivVhPX0wL3gDm1ragzpAuNwwxm1tho1ykjpnEJjozlbx5j3JJnKqysJxzM-nJKhrDnseC7DSsXrlHEmy3opEmXC_pdQ5t_Fks92THMgOluH9wOCJEf9yDfgXYibsNrfKfmwBWZOAUDa8X0WO8nAMHQkmjjpsCUQdz1LBAkdwVZEgCQt35NudtcaF4h9IOYK0_DEvRGvyE24wYw6BpIpHcax-wAXZ6e_Ts7L4R6F0iEem5YMUbRpgmNehEAVa4xUzow8l1Ya3iKgMQa9LwjpW2odrVpfSe-dSMWahgn2EVbiJIbPQJSwzHpFma8tt5hbWpGOs0phcXLAXKWAai5T7QaS8XTXxbXOm92s0b0eNOpBZz3ouoCDxTu3PcXGf3sfJ1UteiZ67PwAjUYPRqNfM5oCdueK1oPPdhqhiqSKNhL_4suiGb0t6QDFPJn1fVL9JVcFfOrtYjES_J4SmBAWIJcsZmmoyy1x_DszequqrhVnBXyb29afYf1bFNtvIYodWKuzUwicMHdhZXo3C3uIs6Z2P7vUI2OrIE4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5CSqGXkr7dpEWF3lpT2ZIs65gsDaHQnhrITejl7UKiDetdaP59RrK9YZu00KslYXlmNP5GmvkE8LEKkjuhWCm7dMzYCFFam6qABat95bjtqlTg_P1Hc3bOv12Iiz2op1qYnLSfKS2zm56yw770PGdRpdxzyjiTJbrdR4m6PVn1rJnd7askBM_4WB9DWfvA0J1_UKbqfwhf3k-T_OOsNP-CTg_g6YgdyfEw22ewF-JzeDzcJnnzAsxU_E-6xe8scJIhYehJNHHZY0sg7nKTqBF6gq2I_UjauCf9ZtUZF4i9IWaOAXhi3YhzchWuMJaOgWQyh0XsX8L56defs7NyvEGhdIjE1iVD_Gza4JgXIVDFWiOVM43n0krDO4QyxuC6C0L6jlpHq85X0nsnUpqmYYK9gv24jOENECUss15R5mvLLUaVVqRCViksugWMUgqoJplqN9KLp1suLnU-5matHvSgUQ8660HXBXzajrkeyDX-2fskqWrbMxFj5wfL1VyPhqJtZ2pEgAJhW8sZtbZqWmWkdE6hb6K0gKNJ0Xpcrb1GkCKpoq3Er_iwbcZ1lnSAYl5uhj4p85KrAl4PdrGdCb5PCQwFC5A7FrMz1d2WuPiVubxVVdeKswI-T7Z1N62_i-Lt_3U_hCd1Nn-BTvEI9terTXiHWGpt3-fFcwuX8Rbb priority: 102 providerName: Springer Nature |
Title | Chemical fixation creates nanoscale clusters on the cell surface by aggregating membrane proteins |
URI | https://link.springer.com/article/10.1038/s42003-022-03437-2 https://www.ncbi.nlm.nih.gov/pubmed/35595960 https://www.proquest.com/docview/2667090878 https://www.proquest.com/docview/2667788749 https://pubmed.ncbi.nlm.nih.gov/PMC9122943 https://doaj.org/article/bfa243552518430bb1689a77cc957800 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WhsFexr7nrQsa7G0zlS3Jsp5GGlpKYGVsK_TNSLKcBlq7ixNo__ueZDsh--hrpBBF96HfnU6_A_iUOMmtUCyWlb9mzISIjfGvgAVLy8RyUyX-gfO3s-z0nM8uxEWfcGv7ssrBJwZHXTbW58gP8SCRVNFc5l9vfse-a5S_Xe1baOzBCF1wjsHX6Oj47PuPbZbF43nG-9cylOWHLQ_lWL6InTLOZJzunEiBuP9faPPvosk_bk7DgXTyDJ72SJJMOtE_h0eufgGPu96Sdy9BD1QApFrchu0nASC6ltS6blocccRerT1RQktwFJEg8Wl80q6XlbaOmDui5xiOew6Oek6u3TVG1rUjgdphUbev4Pzk-Nf0NO77KcQWcdkqZoimde4sK4VzVLFcS2V1VnJppOYVAhut0QqdkGVFjaVJVSayLK3wRZuaCfYa9uumdm-BKGGYKRVlZWq4wRjTCP-sVQqDTgJjlgiSYU8L25ON-54XV0W49GZ50cmhQDkUQQ5FGsHnzXduOqqNB2cfeVFtZnqa7PBBs5wXvdUVptIp4kGBIC7njBqTZLnSUlqr0FNRGsHBIOiit9222GpaBB83w2h1Xga4zc26m-PrMLmK4E2nF5uV4O8pgYFhBHJHY3aWujtSLy4Ds7dK0lRxFsGXQbe2y_r_Vrx7-F-8hydpUHeBLvEA9lfLtfuASGplxjCaTGY_Z-PebMawN82m45CXuAe1hB4R |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aOiF4QdwXGGAkeIJoSWzX8QNCDDZ1bKsQ2qS9GdtxSqUtHU0r6J_iN3LsJK3KZW97jV3V8Tk-_r6cG8DL1AlmuaSxKL2bsc95bIzPAuY0K1LLTJn6BOfjYX9wyj6d8bMN-NXlwviwys4mBkNdTKz_Rr6DF4lIZJKL_N3l99h3jfLe1a6FRqMWh27xAylb_fbgI8r3VZbt7518GMRtV4HYIjqZxRQxpc6dpQV3Dvl8roW0ul8wYYRmJV7vWqMuOi6KMjE2ScsiFUVhuQ9d1KFLBJr8TUaRyvRgc3dv-PnL6quO5w-Utdk5Cc13ahbCv3zQfEIZFXG2dgOGRgH_Qrd_B2n-4akNF-D-HbjdIlfyvlG1u7Dhqntwo-llubgPuis9QMrxzyBuEgCpq0mlq0mNI47Y87kvzFATHEXkSbzbgNTzaamtI2ZB9Ajpv6_5UY3IhbtAJl85EkpJjKv6AZxey04_hF41qdwWEMkNNYVMaJEZZpDTGu7TaAU3aJSQI0WQdnuqbFvc3PfYOFfByU5z1chBoRxUkIPKIni9_M1lU9rjytm7XlTLmb4sd3gwmY5Ue8qVKXWG-JMjaMwZTYxJ-7nUQlgr0TImSQTbnaBVaytqtdLsCF4sh_GUexngNk_mzRwf98lkBI8avViuBP9PciSiEYg1jVlb6vpINf4WKonLNMskoxG86XRrtaz_b8Xjq9_iOdwcnBwfqaOD4eETuJUF1edojrehN5vO3VNEcTPzrD06BL5e92n9DXgoWFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIhAXVN6BFozEDSKc2I7jI2y7Kq-KA5V6s_zKslKbRZtdif57xk6y1UJB4hqPFccz43xjz3wGeFUEyZ1QLJdNPGashMitjVXAgpW-cNw2RSxw_nJSHZ_yj2fibAeqsRYmJe0nSsu0TI_ZYW87nrKoYu45ZZzJHONB39yAm4i3aQy6JtXkam8lonjGhxoZyuprum_9hxJd_3UY889Uyd_OS9NvaLoHdwf8SN71I74HO6G9D7f6GyUvH4AZCQBIM_-ZJp0kWBg60pp20WFLIO58HekROoKtiP9I3Lwn3XrZGBeIvSRmhkF4ZN5oZ-QiXGA83QaSCB3mbfcQTqdH3ybH-XCLQu4Qja1yhhja1MExL0KgitVGKmcqz6WVhjcIZ4xB3wtC-oZaR4vGF9J7J2KqpmGCPYLddtGGJ0CUsMx6RZkvLbcYWVoRi1mlsLg0YKSSQTHOqXYDxXi86eJcp6NuVuteDxr1oJMedJnB602fHz3Bxj-l30dVbSQjOXZ6sFjO9GAs2jamRBQoELrVnFFri6pWRkrnFK5PlGawPypaDx7baQQqkipaS_yKl5tm9LWoA5zmxbqXidmXXGXwuLeLzUjwfUpgOJiB3LKYraFut7Tz74nPWxVlqTjL4M1oW1fD-vtUPP0_8Rdw--vhVH_-cPLpGdwpkycIXCP3YXe1XIcDhFYr-zz50S_ZoBrT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+fixation+creates+nanoscale+clusters+on+the+cell+surface+by+aggregating+membrane+proteins&rft.jtitle=Communications+biology&rft.au=Ichikawa%2C+Takehiko&rft.au=Wang%2C+Dong&rft.au=Miyazawa%2C+Keisuke&rft.au=Miyata%2C+Kazuki&rft.date=2022-05-20&rft.issn=2399-3642&rft.eissn=2399-3642&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-022-03437-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42003_022_03437_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon |