Chemical fixation creates nanoscale clusters on the cell surface by aggregating membrane proteins

Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to s...

Full description

Saved in:
Bibliographic Details
Published inCommunications biology Vol. 5; no. 1; pp. 487 - 9
Main Authors Ichikawa, Takehiko, Wang, Dong, Miyazawa, Keisuke, Miyata, Kazuki, Oshima, Masanobu, Fukuma, Takeshi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.05.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale. Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins.
AbstractList Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale.
Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale. Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins.
Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale.Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale.
Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale.Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins.
Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins.
ArticleNumber 487
Author Oshima, Masanobu
Ichikawa, Takehiko
Miyata, Kazuki
Miyazawa, Keisuke
Wang, Dong
Fukuma, Takeshi
Author_xml – sequence: 1
  givenname: Takehiko
  orcidid: 0000-0002-2438-5502
  surname: Ichikawa
  fullname: Ichikawa, Takehiko
  email: tichikawa@staff.kanazawa-u.ac.jp
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
– sequence: 2
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Division of Genetics, Cancer Research Institute, Kanazawa University
– sequence: 3
  givenname: Keisuke
  surname: Miyazawa
  fullname: Miyazawa, Keisuke
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Faculty of Frontier Engineering, Kanazawa University
– sequence: 4
  givenname: Kazuki
  orcidid: 0000-0002-1641-2160
  surname: Miyata
  fullname: Miyata, Kazuki
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Faculty of Frontier Engineering, Kanazawa University
– sequence: 5
  givenname: Masanobu
  orcidid: 0000-0002-3304-0004
  surname: Oshima
  fullname: Oshima, Masanobu
  email: oshimam@staff.kanazawa-u.ac.jp
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Division of Genetics, Cancer Research Institute, Kanazawa University
– sequence: 6
  givenname: Takeshi
  orcidid: 0000-0001-8971-6002
  surname: Fukuma
  fullname: Fukuma, Takeshi
  email: fukuma@staff.kanazawa-u.ac.jp
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Faculty of Frontier Engineering, Kanazawa University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35595960$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVARLaU_wAJFYsMm4Fdie4OERjwqVWIDa-vGucl4lNiDnSD697gzpbRddOXHPefc6-PzkpyEGJCQ14y-Z1ToD1lySkVNOa-pkELV_Bk548KYWrSSn9zbn5KLnHeUUmaMaYV8QU5F05jGtPSMwGaLs3cwVYP_A4uPoXIJYcFcBQgxlwpWblrzgilXpbpsyxmnqcprGsBh1V1XMI4Jx8IOYzXj3CUIWO1TXNCH_Io8H2DKeHG7npOfXz7_2Hyrr75_vdx8uqpdI-lSC605aHSibxCpERqUcdD2UnUK5MAaA9BRio3qB9o5yoaeqb53DaNKgmjEObk86vYRdnaf_Azp2kbw9nAR02ghLd5NaLsBuCwe8IZpKWjXsVYbUMo50yhdbD0nH49a-7WbsXcYlgTTA9GHleC3doy_rWGcGymKwLtbgRR_rZgXO_t8Y1txJq7Z8rZVSmslTYG-fQTdxTWFYtUBRQ3VShfUm_sT3Y3y7ycLgB8BLsWcEw53EEbtTWLsMTG2JMYeEmN5IelHJOeXQwrKq_z0NFUcqbn0CSOm_2M_wfoLVQzVQQ
CitedBy_id crossref_primary_10_1007_s00232_024_00305_4
crossref_primary_10_1038_s41598_024_55136_z
crossref_primary_10_1073_pnas_2317703121
crossref_primary_10_1007_s00723_023_01624_w
crossref_primary_10_1021_acs_nanolett_4c04487
crossref_primary_10_1126_sciadv_adn0110
crossref_primary_10_5483_BMBRep_2024_0180
crossref_primary_10_1038_s41586_024_08071_y
crossref_primary_10_1038_s41467_023_43666_5
crossref_primary_10_1021_acs_analchem_4c04283
crossref_primary_10_1073_pnas_2308088120
crossref_primary_10_1523_ENEURO_0104_23_2023
crossref_primary_10_1093_bbb_zbae176
crossref_primary_10_3233_JND_230210
crossref_primary_10_3390_plasma6030040
crossref_primary_10_1016_j_bpj_2024_02_001
crossref_primary_10_1038_s42003_024_06313_3
crossref_primary_10_1039_D3CS00287J
crossref_primary_10_1021_acsnano_4c14578
Cites_doi 10.1016/j.msec.2013.04.009
10.1007/s003390051204
10.1002/wnan.104
10.1371/journal.pone.0219006
10.1016/j.ultramic.2003.12.010
10.1016/j.yexcr.2017.06.022
10.1016/S0002-9610(05)80349-6
10.1093/oxfordjournals.jmicro.a023830
10.1021/ac503172b
10.1016/j.micron.2007.06.011
10.1046/j.1365-2818.2003.01238.x
10.1186/s40580-017-0099-9
10.1146/annurev.biophys.28.1.319
10.1111/j.1365-2818.2005.01497.x
10.1177/39.2.1987266
10.3389/fimmu.2019.01753
10.1016/j.jmb.2012.05.018
10.1126/science.2928794
10.1007/978-1-4939-7172-5_5
10.1002/sca.20269
10.1126/science.260.5113.1451
10.1039/C9SM02444A
10.1016/j.ymeth.2016.09.016
10.1016/S0006-3495(98)77559-9
10.1179/his.2001.24.3.173
10.1007/BF01003203
10.1016/0020-7225(65)90019-4
10.1063/1.1999856
10.1038/nmeth.f.314
10.1101/pdb.top080473
10.1063/1.2437196
10.1017/S0033583510000041
10.1088/1468-6996/11/3/033003
10.1007/s12575-009-9008-x
10.1242/bio.019943
10.1128/mBio.01363-14
10.1038/s41598-019-48400-0
10.1186/s42649-020-00028-5
10.1073/pnas.2010209117
10.1038/nnano.2017.45
10.1076/ceyr.25.1.61.9963
10.2142/biophysico.14.0_127
10.1083/jcb.17.1.19
10.1007/s11434-013-5906-z
10.1017/S1551929500057060
10.1038/nmeth.1855
10.1016/B978-0-12-411619-1.00016-1
10.1515/crll.1882.92.156
10.1016/0003-9861(68)90554-7
10.1016/j.bbamcr.2008.12.018
10.1002/1438-5171(200006)1:2<105::AID-SIMO105>3.0.CO;2-3
10.3389/fimmu.2019.00675
10.1177/26.5.96177
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s42003-022-03437-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2399-3642
EndPage 9
ExternalDocumentID oai_doaj_org_article_bfa243552518430bb1689a77cc957800
PMC9122943
35595960
10_1038_s42003_022_03437_2
Genre Journal Article
GroupedDBID 0R~
53G
88I
AAJSJ
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
M2P
M7P
M~E
NAO
O9-
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
3V.
7XB
8FE
8FH
8FK
AARCD
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-3882a8ec3d5ee0938a79ca6d47b7a4f159aab00e57df0bc01fd17ddc51074a353
IEDL.DBID BENPR
ISSN 2399-3642
IngestDate Wed Aug 27 01:32:19 EDT 2025
Thu Aug 21 18:21:35 EDT 2025
Tue Aug 05 10:14:49 EDT 2025
Wed Aug 13 10:56:57 EDT 2025
Thu Apr 03 07:03:27 EDT 2025
Tue Jul 01 03:01:39 EDT 2025
Thu Apr 24 22:55:38 EDT 2025
Fri Feb 21 02:39:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-3882a8ec3d5ee0938a79ca6d47b7a4f159aab00e57df0bc01fd17ddc51074a353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8971-6002
0000-0002-2438-5502
0000-0002-1641-2160
0000-0002-3304-0004
OpenAccessLink https://www.proquest.com/docview/2667090878?pq-origsite=%requestingapplication%
PMID 35595960
PQID 2667090878
PQPubID 4669726
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_bfa243552518430bb1689a77cc957800
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9122943
proquest_miscellaneous_2667788749
proquest_journals_2667090878
pubmed_primary_35595960
crossref_primary_10_1038_s42003_022_03437_2
crossref_citationtrail_10_1038_s42003_022_03437_2
springer_journals_10_1038_s42003_022_03437_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-20
PublicationDateYYYYMMDD 2022-05-20
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications biology
PublicationTitleAbbrev Commun Biol
PublicationTitleAlternate Commun Biol
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Matsuno (CR6) 2000; 15
Yamane (CR44) 2000; 49
Drake (CR26) 1989; 243
Zhou (CR17) 2019; 14
Dufrene (CR30) 2017; 12
White, Wimley (CR38) 1999; 28
Mason, O’Leary (CR19) 1991; 39
Tinevez (CR54) 2017; 115
Le Grimellec, Giocondi, Pujol, Lesniewska (CR25) 2000; 1
Murk (CR16) 2003; 212
Habeeb, Hiramoto (CR7) 1968; 126
Li (CR13) 2017; 358
Hertz (CR46) 1882; 29
Hopwood (CR2) 1985; 17
Allison, Mortensen, Sullivan, Doktycz (CR34) 2010; 2
de Pablo, Carrion-Vazquez (CR35) 2014; 2014
Kuzmin, Pliss, Prasad (CR15) 2014; 86
Eltoum, Fredenburgh, Myers, Grizzle (CR5) 2001; 24
Ohnesorge, Binnig (CR27) 1993; 260
Tanaka (CR11) 2010; 7
Stanly (CR10) 2016; 5
Dufrene (CR37) 2014; 5
Mellor (CR49) 2010; 1803
Liu, Zhang, Li, Chen (CR21) 2012; 34
Shibata, Watanabe, Uchihashi, Ando, Yasuda (CR33) 2017; 14
Ramos-Vara (CR3) 2017; 1641
Fukuma, Kobayashi, Matsushige, Yamada (CR28) 2005; 87
Kim, Jun (CR51) 2019; 10
Moloney, McDonnell, O’Shea (CR36) 2004; 100
Li (CR32) 2013; 58
Kim, Kim, Okajima, Cho (CR20) 2017; 4
Molin, Nygren, Dolonius (CR8) 1978; 26
Gat, Simon, Campillo, Bernheim-Groswasser, Sykes (CR50) 2020; 16
Cho, Morris, Lumeng (CR53) 2014; 537
Yamashita (CR31) 2012; 422
Braet, Rotsch, Wisse, Radmacher (CR18) 1998; 66
Kuznetsova, Starodubtseva, Yegorenkov, Chizhik, Zhdanov (CR47) 2007; 38
Kiernan (CR4) 2000; 1
Shah, Kumaraswamy, Kulkarni (CR12) 1993; 166
Erickson (CR40) 2009; 11
Sabatini, Bensch, Barrnett (CR1) 1963; 17
Vinothkumar, Henderson (CR39) 2010; 43
Schnell, Dijk, Sjollema, Giepmans (CR23) 2012; 9
Hutter (CR42) 2005; 219
Pinto (CR52) 2019; 9
Sneddon (CR45) 1965; 3
Pereira (CR14) 2019; 10
Nie, McIntyre (CR41) 2007; 78
Fukuma (CR29) 2010; 11
Kim (CR9) 2020; 50
Sinniah, Paauw, Ubels (CR24) 2002; 25
Codan, Martinelli, Mestroni, Sbaizero (CR43) 2013; 33
Shafraz, Xie, Yamada, Sivasankar (CR48) 2020; 117
Le Grimellec (CR22) 1998; 75
BY Liu (3437_CR21) 2012; 34
HY Nie (3437_CR41) 2007; 78
Y Yamane (3437_CR44) 2000; 49
O Shafraz (3437_CR48) 2020; 117
HR Kim (3437_CR51) 2019; 10
SH White (3437_CR38) 1999; 28
KR Vinothkumar (3437_CR39) 2010; 43
M Shibata (3437_CR33) 2017; 14
D Hopwood (3437_CR2) 1985; 17
U Schnell (3437_CR23) 2012; 9
KA Tanaka (3437_CR11) 2010; 7
A Matsuno (3437_CR6) 2000; 15
JA Kiernan (3437_CR4) 2000; 1
YF Dufrene (3437_CR30) 2017; 12
K Sinniah (3437_CR24) 2002; 25
I Eltoum (3437_CR5) 2001; 24
Y Li (3437_CR13) 2017; 358
JT Mason (3437_CR19) 1991; 39
S Gat (3437_CR50) 2020; 16
TG Kuznetsova (3437_CR47) 2007; 38
H Hertz (3437_CR46) 1882; 29
M Li (3437_CR32) 2013; 58
HP Erickson (3437_CR40) 2009; 11
SO Kim (3437_CR20) 2017; 4
B Codan (3437_CR43) 2013; 33
CS Pinto (3437_CR52) 2019; 9
PM Pereira (3437_CR14) 2019; 10
B Drake (3437_CR26) 1989; 243
PJ de Pablo (3437_CR35) 2014; 2014
C Le Grimellec (3437_CR25) 2000; 1
JY Tinevez (3437_CR54) 2017; 115
T Fukuma (3437_CR28) 2005; 87
DP Allison (3437_CR34) 2010; 2
JL Murk (3437_CR16) 2003; 212
JA Ramos-Vara (3437_CR3) 2017; 1641
H Yamashita (3437_CR31) 2012; 422
DD Sabatini (3437_CR1) 1963; 17
X Zhou (3437_CR17) 2019; 14
KW Cho (3437_CR53) 2014; 537
SO Molin (3437_CR8) 1978; 26
JP Shah (3437_CR12) 1993; 166
H Mellor (3437_CR49) 2010; 1803
AN Kuzmin (3437_CR15) 2014; 86
IN Sneddon (3437_CR45) 1965; 3
TA Stanly (3437_CR10) 2016; 5
M Moloney (3437_CR36) 2004; 100
YF Dufrene (3437_CR37) 2014; 5
AJ Habeeb (3437_CR7) 1968; 126
C Le Grimellec (3437_CR22) 1998; 75
F Ohnesorge (3437_CR27) 1993; 260
T Fukuma (3437_CR29) 2010; 11
JL Hutter (3437_CR42) 2005; 219
KW Kim (3437_CR9) 2020; 50
F Braet (3437_CR18) 1998; 66
References_xml – volume: 33
  start-page: 3303
  year: 2013
  end-page: 3308
  ident: CR43
  article-title: Atomic force microscopy of 3T3 and SW-13 cell lines: an investigation of cell elasticity changes due to fixation
  publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl.
  doi: 10.1016/j.msec.2013.04.009
– volume: 66
  start-page: S575
  year: 1998
  end-page: S578
  ident: CR18
  article-title: Comparison of fixed and living liver endothelial cells by atomic force microscopy
  publication-title: Appl. Phys. A-Mater. Sci. Process.
  doi: 10.1007/s003390051204
– volume: 2
  start-page: 618
  year: 2010
  end-page: 634
  ident: CR34
  article-title: Atomic force microscopy of biological samples
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol
  doi: 10.1002/wnan.104
– volume: 14
  start-page: e0219006
  year: 2019
  ident: CR17
  article-title: Preservation of cellular nano-architecture by the process of chemical fixation for nanopathology
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0219006
– volume: 100
  start-page: 153
  year: 2004
  end-page: 161
  ident: CR36
  article-title: Atomic force microscopy of BHK-21 cells: an investigation of cell fixation techniques
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2003.12.010
– volume: 358
  start-page: 253
  year: 2017
  end-page: 259
  ident: CR13
  article-title: The effects of chemical fixation on the cellular nanostructure
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2017.06.022
– volume: 166
  start-page: 431
  year: 1993
  end-page: 434
  ident: CR12
  article-title: Comparative evaluation of fixation methods after mandibulotomy for oropharyngeal tumors
  publication-title: Am. J. Surg.
  doi: 10.1016/S0002-9610(05)80349-6
– volume: 49
  start-page: 463
  year: 2000
  end-page: 471
  ident: CR44
  article-title: Quantitative analyses of topography and elasticity of living and fixed astrocytes
  publication-title: J. Electron. Microsc.
  doi: 10.1093/oxfordjournals.jmicro.a023830
– volume: 86
  start-page: 10909
  year: 2014
  end-page: 10916
  ident: CR15
  article-title: Changes in biomolecular profile in a single nucleolus during cell fixation
  publication-title: Anal. Chem.
  doi: 10.1021/ac503172b
– volume: 38
  start-page: 824
  year: 2007
  end-page: 833
  ident: CR47
  article-title: Atomic force microscopy probing of cell elasticity
  publication-title: Micron
  doi: 10.1016/j.micron.2007.06.011
– volume: 212
  start-page: 81
  year: 2003
  end-page: 90
  ident: CR16
  article-title: Influence of aldehyde fixation on the morphology of endosomes and lysosomes: quantitative analysis and electron tomography
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.2003.01238.x
– volume: 4
  start-page: 5
  year: 2017
  ident: CR20
  article-title: Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy
  publication-title: Nano Converg.
  doi: 10.1186/s40580-017-0099-9
– volume: 28
  start-page: 319
  year: 1999
  end-page: 365
  ident: CR38
  article-title: Membrane protein folding and stability: physical principles
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.28.1.319
– volume: 219
  start-page: 61
  year: 2005
  end-page: 68
  ident: CR42
  article-title: Atomic force microscopy investigation of the dependence of cellular elastic moduli on glutaraldehyde fixation
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2005.01497.x
– volume: 39
  start-page: 225
  year: 1991
  end-page: 229
  ident: CR19
  article-title: Effects of formaldehyde fixation on protein secondary structure: a calorimetric and infrared spectroscopic investigation
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/39.2.1987266
– volume: 15
  start-page: 261
  year: 2000
  end-page: 268
  ident: CR6
  article-title: Electron microscopic observation of intracellular expression of mRNA and its protein product: technical review on ultrastructural in situ hybridization and its combination with immunohistochemistry
  publication-title: Histol. Histopathol.
– volume: 10
  start-page: 1753
  year: 2019
  ident: CR51
  article-title: T cell microvilli: sensors or senders?
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01753
– volume: 422
  start-page: 300
  year: 2012
  end-page: 309
  ident: CR31
  article-title: Single-molecule imaging on living bacterial cell surface by high-speed AFM
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.05.018
– volume: 243
  start-page: 1586
  year: 1989
  end-page: 1589
  ident: CR26
  article-title: Imaging crystals, polymers, and processes in water with the atomic force microscope
  publication-title: Science
  doi: 10.1126/science.2928794
– volume: 1641
  start-page: 115
  year: 2017
  end-page: 128
  ident: CR3
  article-title: Principles and methods of immunohistochemistry
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7172-5_5
– volume: 34
  start-page: 6
  year: 2012
  end-page: 11
  ident: CR21
  article-title: Effect of glutaraldehyde fixation on bacterial cells observed by atomic force microscopy
  publication-title: Scanning
  doi: 10.1002/sca.20269
– volume: 260
  start-page: 1451
  year: 1993
  end-page: 1456
  ident: CR27
  article-title: True atomic resolution by atomic force microscopy through repulsive and attractive forces
  publication-title: Science
  doi: 10.1126/science.260.5113.1451
– volume: 16
  start-page: 7222
  year: 2020
  end-page: 7230
  ident: CR50
  article-title: Finger-like membrane protrusions are favored by heterogeneities in the actin network
  publication-title: Soft Matter
  doi: 10.1039/C9SM02444A
– volume: 115
  start-page: 80
  year: 2017
  end-page: 90
  ident: CR54
  article-title: TrackMate: an open and extensible platform for single-particle tracking
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.016
– volume: 75
  start-page: 695
  year: 1998
  end-page: 703
  ident: CR22
  article-title: Imaging of the surface of living cells by low-force contact-mode atomic force microscopy
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77559-9
– volume: 24
  start-page: 173
  year: 2001
  end-page: 190
  ident: CR5
  article-title: Introduction to the theory and practice of fixation of tissues
  publication-title: J. Histotechnol.
  doi: 10.1179/his.2001.24.3.173
– volume: 17
  start-page: 389
  year: 1985
  end-page: 442
  ident: CR2
  article-title: Cell and tissue fixation, 1972-1982
  publication-title: Histochem. J.
  doi: 10.1007/BF01003203
– volume: 3
  start-page: 47
  year: 1965
  end-page: 57
  ident: CR45
  article-title: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(65)90019-4
– volume: 87
  start-page: 034101
  year: 2005
  ident: CR28
  article-title: True atomic resolution in liquid by frequency-modulation atomic force microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1999856
– volume: 7
  start-page: 865
  year: 2010
  end-page: 866
  ident: CR11
  article-title: Membrane molecules mobile even after chemical fixation
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.314
– volume: 2014
  start-page: 167
  year: 2014
  end-page: 177
  ident: CR35
  article-title: Imaging biological samples with atomic force microscopy
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.top080473
– volume: 78
  start-page: 023701
  year: 2007
  ident: CR41
  article-title: Unstable amplitude and noisy image induced by tip contamination in dynamic force mode atomic force microscopy
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2437196
– volume: 43
  start-page: 65
  year: 2010
  end-page: 158
  ident: CR39
  article-title: Structures of membrane proteins
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583510000041
– volume: 11
  start-page: 033003
  year: 2010
  ident: CR29
  article-title: Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/11/3/033003
– volume: 11
  start-page: 32
  year: 2009
  end-page: 51
  ident: CR40
  article-title: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy
  publication-title: Biol. Proceed. Online
  doi: 10.1007/s12575-009-9008-x
– volume: 5
  start-page: 1343
  year: 2016
  end-page: 1350
  ident: CR10
  article-title: Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters
  publication-title: Biol. Open
  doi: 10.1242/bio.019943
– volume: 5
  start-page: e01363
  year: 2014
  end-page: 01314
  ident: CR37
  article-title: Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface
  publication-title: mBio.
  doi: 10.1128/mBio.01363-14
– volume: 9
  year: 2019
  ident: CR52
  article-title: Microridges are apical epithelial projections formed of F-actin networks that organize the glycan layer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48400-0
– volume: 50
  start-page: 10
  year: 2020
  ident: CR9
  article-title: Methanol fixation for scanning electron microscopy of plants
  publication-title: Appl. Microsc.
  doi: 10.1186/s42649-020-00028-5
– volume: 117
  start-page: 31157
  year: 2020
  end-page: 31165
  ident: CR48
  article-title: Mapping transmembrane binding partners for E-cadherin ectodomains
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2010209117
– volume: 12
  start-page: 295
  year: 2017
  end-page: 307
  ident: CR30
  article-title: Imaging modes of atomic force microscopy for application in molecular and cell biology
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.45
– volume: 25
  start-page: 61
  year: 2002
  end-page: 68
  ident: CR24
  article-title: Investigating live and fixed epithelial and fibroblast cells by atomic force microscopy
  publication-title: Curr. Eye Res.
  doi: 10.1076/ceyr.25.1.61.9963
– volume: 14
  start-page: 127
  year: 2017
  end-page: 135
  ident: CR33
  article-title: High-speed atomic force microscopy imaging of live mammalian cells
  publication-title: Biophys. Physicobiol.
  doi: 10.2142/biophysico.14.0_127
– volume: 17
  start-page: 19
  year: 1963
  end-page: 58
  ident: CR1
  article-title: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.17.1.19
– volume: 58
  start-page: 3177
  year: 2013
  end-page: 3182
  ident: CR32
  article-title: Progress of AFM single-cell and single-molecule morphology imaging
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-013-5906-z
– volume: 1
  start-page: 8
  year: 2000
  end-page: 12
  ident: CR4
  article-title: Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do
  publication-title: Microsc. Today
  doi: 10.1017/S1551929500057060
– volume: 9
  start-page: 152
  year: 2012
  end-page: 158
  ident: CR23
  article-title: Immunolabeling artifacts and the need for live-cell imaging
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1855
– volume: 537
  start-page: 297
  year: 2014
  end-page: 314
  ident: CR53
  article-title: Flow cytometry analyses of adipose tissue macrophages
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-411619-1.00016-1
– volume: 29
  start-page: 156
  year: 1882
  end-page: 171
  ident: CR46
  article-title: Study on the contact of elastic bodies
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1882.92.156
– volume: 126
  start-page: 16
  year: 1968
  end-page: 26
  ident: CR7
  article-title: Reaction of proteins with glutaraldehyde
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(68)90554-7
– volume: 1803
  start-page: 191
  year: 2010
  end-page: 200
  ident: CR49
  article-title: The role of formins in filopodia formation
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.12.018
– volume: 1
  start-page: 105
  year: 2000
  end-page: 107
  ident: CR25
  article-title: Tapping mode atomic force microscopy allows the in situ imaging of fragile membrane structures and of intact cells surface at high resolution
  publication-title: Single Mol.
  doi: 10.1002/1438-5171(200006)1:2<105::AID-SIMO105>3.0.CO;2-3
– volume: 10
  start-page: 675
  year: 2019
  ident: CR14
  article-title: Fix your membrane receptor imaging: actin cytoskeleton and cd4 membrane organization disruption by chemical fixation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00675
– volume: 26
  start-page: 412
  year: 1978
  end-page: 414
  ident: CR8
  article-title: A new method for the study of glutaraldehyde-induced crosslinking properties in proteins with special reference to the reaction with amino groups
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/26.5.96177
– volume: 43
  start-page: 65
  year: 2010
  ident: 3437_CR39
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583510000041
– volume: 50
  start-page: 10
  year: 2020
  ident: 3437_CR9
  publication-title: Appl. Microsc.
  doi: 10.1186/s42649-020-00028-5
– volume: 10
  start-page: 1753
  year: 2019
  ident: 3437_CR51
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01753
– volume: 260
  start-page: 1451
  year: 1993
  ident: 3437_CR27
  publication-title: Science
  doi: 10.1126/science.260.5113.1451
– volume: 33
  start-page: 3303
  year: 2013
  ident: 3437_CR43
  publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl.
  doi: 10.1016/j.msec.2013.04.009
– volume: 10
  start-page: 675
  year: 2019
  ident: 3437_CR14
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00675
– volume: 537
  start-page: 297
  year: 2014
  ident: 3437_CR53
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-411619-1.00016-1
– volume: 358
  start-page: 253
  year: 2017
  ident: 3437_CR13
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2017.06.022
– volume: 3
  start-page: 47
  year: 1965
  ident: 3437_CR45
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(65)90019-4
– volume: 1641
  start-page: 115
  year: 2017
  ident: 3437_CR3
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7172-5_5
– volume: 26
  start-page: 412
  year: 1978
  ident: 3437_CR8
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/26.5.96177
– volume: 12
  start-page: 295
  year: 2017
  ident: 3437_CR30
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.45
– volume: 11
  start-page: 32
  year: 2009
  ident: 3437_CR40
  publication-title: Biol. Proceed. Online
  doi: 10.1007/s12575-009-9008-x
– volume: 14
  start-page: 127
  year: 2017
  ident: 3437_CR33
  publication-title: Biophys. Physicobiol.
  doi: 10.2142/biophysico.14.0_127
– volume: 78
  start-page: 023701
  year: 2007
  ident: 3437_CR41
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2437196
– volume: 243
  start-page: 1586
  year: 1989
  ident: 3437_CR26
  publication-title: Science
  doi: 10.1126/science.2928794
– volume: 117
  start-page: 31157
  year: 2020
  ident: 3437_CR48
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2010209117
– volume: 17
  start-page: 19
  year: 1963
  ident: 3437_CR1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.17.1.19
– volume: 24
  start-page: 173
  year: 2001
  ident: 3437_CR5
  publication-title: J. Histotechnol.
  doi: 10.1179/his.2001.24.3.173
– volume: 5
  start-page: 1343
  year: 2016
  ident: 3437_CR10
  publication-title: Biol. Open
  doi: 10.1242/bio.019943
– volume: 11
  start-page: 033003
  year: 2010
  ident: 3437_CR29
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/11/3/033003
– volume: 14
  start-page: e0219006
  year: 2019
  ident: 3437_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0219006
– volume: 2
  start-page: 618
  year: 2010
  ident: 3437_CR34
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol
  doi: 10.1002/wnan.104
– volume: 15
  start-page: 261
  year: 2000
  ident: 3437_CR6
  publication-title: Histol. Histopathol.
– volume: 4
  start-page: 5
  year: 2017
  ident: 3437_CR20
  publication-title: Nano Converg.
  doi: 10.1186/s40580-017-0099-9
– volume: 87
  start-page: 034101
  year: 2005
  ident: 3437_CR28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1999856
– volume: 75
  start-page: 695
  year: 1998
  ident: 3437_CR22
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77559-9
– volume: 166
  start-page: 431
  year: 1993
  ident: 3437_CR12
  publication-title: Am. J. Surg.
  doi: 10.1016/S0002-9610(05)80349-6
– volume: 422
  start-page: 300
  year: 2012
  ident: 3437_CR31
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.05.018
– volume: 100
  start-page: 153
  year: 2004
  ident: 3437_CR36
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2003.12.010
– volume: 58
  start-page: 3177
  year: 2013
  ident: 3437_CR32
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-013-5906-z
– volume: 9
  start-page: 152
  year: 2012
  ident: 3437_CR23
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1855
– volume: 219
  start-page: 61
  year: 2005
  ident: 3437_CR42
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2005.01497.x
– volume: 38
  start-page: 824
  year: 2007
  ident: 3437_CR47
  publication-title: Micron
  doi: 10.1016/j.micron.2007.06.011
– volume: 39
  start-page: 225
  year: 1991
  ident: 3437_CR19
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/39.2.1987266
– volume: 1803
  start-page: 191
  year: 2010
  ident: 3437_CR49
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.12.018
– volume: 7
  start-page: 865
  year: 2010
  ident: 3437_CR11
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.314
– volume: 28
  start-page: 319
  year: 1999
  ident: 3437_CR38
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.28.1.319
– volume: 16
  start-page: 7222
  year: 2020
  ident: 3437_CR50
  publication-title: Soft Matter
  doi: 10.1039/C9SM02444A
– volume: 1
  start-page: 105
  year: 2000
  ident: 3437_CR25
  publication-title: Single Mol.
  doi: 10.1002/1438-5171(200006)1:2<105::AID-SIMO105>3.0.CO;2-3
– volume: 49
  start-page: 463
  year: 2000
  ident: 3437_CR44
  publication-title: J. Electron. Microsc.
  doi: 10.1093/oxfordjournals.jmicro.a023830
– volume: 126
  start-page: 16
  year: 1968
  ident: 3437_CR7
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(68)90554-7
– volume: 212
  start-page: 81
  year: 2003
  ident: 3437_CR16
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.2003.01238.x
– volume: 66
  start-page: S575
  year: 1998
  ident: 3437_CR18
  publication-title: Appl. Phys. A-Mater. Sci. Process.
  doi: 10.1007/s003390051204
– volume: 2014
  start-page: 167
  year: 2014
  ident: 3437_CR35
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.top080473
– volume: 86
  start-page: 10909
  year: 2014
  ident: 3437_CR15
  publication-title: Anal. Chem.
  doi: 10.1021/ac503172b
– volume: 9
  year: 2019
  ident: 3437_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48400-0
– volume: 115
  start-page: 80
  year: 2017
  ident: 3437_CR54
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.016
– volume: 25
  start-page: 61
  year: 2002
  ident: 3437_CR24
  publication-title: Curr. Eye Res.
  doi: 10.1076/ceyr.25.1.61.9963
– volume: 5
  start-page: e01363
  year: 2014
  ident: 3437_CR37
  publication-title: mBio.
  doi: 10.1128/mBio.01363-14
– volume: 17
  start-page: 389
  year: 1985
  ident: 3437_CR2
  publication-title: Histochem. J.
  doi: 10.1007/BF01003203
– volume: 1
  start-page: 8
  year: 2000
  ident: 3437_CR4
  publication-title: Microsc. Today
  doi: 10.1017/S1551929500057060
– volume: 29
  start-page: 156
  year: 1882
  ident: 3437_CR46
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1882.92.156
– volume: 34
  start-page: 6
  year: 2012
  ident: 3437_CR21
  publication-title: Scanning
  doi: 10.1002/sca.20269
SSID ssj0001999634
Score 2.3082056
Snippet Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate...
Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins.
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 487
SubjectTerms 14/19
14/3
631/1647/245
631/57/2271
631/57/2282
Atomic force microscopy
Biology
Biomedical and Life Sciences
Cell surface
Fixatives
Life Sciences
Membrane proteins
Microscopy
Proteins
Silicon nitride
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VSEhcKh59hJdcqTca4cT2Oj4CAqFK7alI3Cy_QlcCLyK7Evx7xk52y1JaLlxjR3Hm4fnGHn8G-FoFyZ1QrJRt2mYcCVFam04BC1b7ynHbVumA84-fo_ML_v1SXD656ivVhPX0wL3gDm1ragzpAuNwwxm1tho1ykjpnEJjozlbx5j3JJnKqysJxzM-nJKhrDnseC7DSsXrlHEmy3opEmXC_pdQ5t_Fks92THMgOluH9wOCJEf9yDfgXYibsNrfKfmwBWZOAUDa8X0WO8nAMHQkmjjpsCUQdz1LBAkdwVZEgCQt35NudtcaF4h9IOYK0_DEvRGvyE24wYw6BpIpHcax-wAXZ6e_Ts7L4R6F0iEem5YMUbRpgmNehEAVa4xUzow8l1Ya3iKgMQa9LwjpW2odrVpfSe-dSMWahgn2EVbiJIbPQJSwzHpFma8tt5hbWpGOs0phcXLAXKWAai5T7QaS8XTXxbXOm92s0b0eNOpBZz3ouoCDxTu3PcXGf3sfJ1UteiZ67PwAjUYPRqNfM5oCdueK1oPPdhqhiqSKNhL_4suiGb0t6QDFPJn1fVL9JVcFfOrtYjES_J4SmBAWIJcsZmmoyy1x_DszequqrhVnBXyb29afYf1bFNtvIYodWKuzUwicMHdhZXo3C3uIs6Z2P7vUI2OrIE4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5CSqGXkr7dpEWF3lpT2ZIs65gsDaHQnhrITejl7UKiDetdaP59RrK9YZu00KslYXlmNP5GmvkE8LEKkjuhWCm7dMzYCFFam6qABat95bjtqlTg_P1Hc3bOv12Iiz2op1qYnLSfKS2zm56yw770PGdRpdxzyjiTJbrdR4m6PVn1rJnd7askBM_4WB9DWfvA0J1_UKbqfwhf3k-T_OOsNP-CTg_g6YgdyfEw22ewF-JzeDzcJnnzAsxU_E-6xe8scJIhYehJNHHZY0sg7nKTqBF6gq2I_UjauCf9ZtUZF4i9IWaOAXhi3YhzchWuMJaOgWQyh0XsX8L56defs7NyvEGhdIjE1iVD_Gza4JgXIVDFWiOVM43n0krDO4QyxuC6C0L6jlpHq85X0nsnUpqmYYK9gv24jOENECUss15R5mvLLUaVVqRCViksugWMUgqoJplqN9KLp1suLnU-5matHvSgUQ8660HXBXzajrkeyDX-2fskqWrbMxFj5wfL1VyPhqJtZ2pEgAJhW8sZtbZqWmWkdE6hb6K0gKNJ0Xpcrb1GkCKpoq3Er_iwbcZ1lnSAYl5uhj4p85KrAl4PdrGdCb5PCQwFC5A7FrMz1d2WuPiVubxVVdeKswI-T7Z1N62_i-Lt_3U_hCd1Nn-BTvEI9terTXiHWGpt3-fFcwuX8Rbb
  priority: 102
  providerName: Springer Nature
Title Chemical fixation creates nanoscale clusters on the cell surface by aggregating membrane proteins
URI https://link.springer.com/article/10.1038/s42003-022-03437-2
https://www.ncbi.nlm.nih.gov/pubmed/35595960
https://www.proquest.com/docview/2667090878
https://www.proquest.com/docview/2667788749
https://pubmed.ncbi.nlm.nih.gov/PMC9122943
https://doaj.org/article/bfa243552518430bb1689a77cc957800
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WhsFexr7nrQsa7G0zlS3Jsp5GGlpKYGVsK_TNSLKcBlq7ixNo__ueZDsh--hrpBBF96HfnU6_A_iUOMmtUCyWlb9mzISIjfGvgAVLy8RyUyX-gfO3s-z0nM8uxEWfcGv7ssrBJwZHXTbW58gP8SCRVNFc5l9vfse-a5S_Xe1baOzBCF1wjsHX6Oj47PuPbZbF43nG-9cylOWHLQ_lWL6InTLOZJzunEiBuP9faPPvosk_bk7DgXTyDJ72SJJMOtE_h0eufgGPu96Sdy9BD1QApFrchu0nASC6ltS6blocccRerT1RQktwFJEg8Wl80q6XlbaOmDui5xiOew6Oek6u3TVG1rUjgdphUbev4Pzk-Nf0NO77KcQWcdkqZoimde4sK4VzVLFcS2V1VnJppOYVAhut0QqdkGVFjaVJVSayLK3wRZuaCfYa9uumdm-BKGGYKRVlZWq4wRjTCP-sVQqDTgJjlgiSYU8L25ON-54XV0W49GZ50cmhQDkUQQ5FGsHnzXduOqqNB2cfeVFtZnqa7PBBs5wXvdUVptIp4kGBIC7njBqTZLnSUlqr0FNRGsHBIOiit9222GpaBB83w2h1Xga4zc26m-PrMLmK4E2nF5uV4O8pgYFhBHJHY3aWujtSLy4Ds7dK0lRxFsGXQbe2y_r_Vrx7-F-8hydpUHeBLvEA9lfLtfuASGplxjCaTGY_Z-PebMawN82m45CXuAe1hB4R
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aOiF4QdwXGGAkeIJoSWzX8QNCDDZ1bKsQ2qS9GdtxSqUtHU0r6J_iN3LsJK3KZW97jV3V8Tk-_r6cG8DL1AlmuaSxKL2bsc95bIzPAuY0K1LLTJn6BOfjYX9wyj6d8bMN-NXlwviwys4mBkNdTKz_Rr6DF4lIZJKL_N3l99h3jfLe1a6FRqMWh27xAylb_fbgI8r3VZbt7518GMRtV4HYIjqZxRQxpc6dpQV3Dvl8roW0ul8wYYRmJV7vWqMuOi6KMjE2ScsiFUVhuQ9d1KFLBJr8TUaRyvRgc3dv-PnL6quO5w-Utdk5Cc13ahbCv3zQfEIZFXG2dgOGRgH_Qrd_B2n-4akNF-D-HbjdIlfyvlG1u7Dhqntwo-llubgPuis9QMrxzyBuEgCpq0mlq0mNI47Y87kvzFATHEXkSbzbgNTzaamtI2ZB9Ajpv6_5UY3IhbtAJl85EkpJjKv6AZxey04_hF41qdwWEMkNNYVMaJEZZpDTGu7TaAU3aJSQI0WQdnuqbFvc3PfYOFfByU5z1chBoRxUkIPKIni9_M1lU9rjytm7XlTLmb4sd3gwmY5Ue8qVKXWG-JMjaMwZTYxJ-7nUQlgr0TImSQTbnaBVaytqtdLsCF4sh_GUexngNk_mzRwf98lkBI8avViuBP9PciSiEYg1jVlb6vpINf4WKonLNMskoxG86XRrtaz_b8Xjq9_iOdwcnBwfqaOD4eETuJUF1edojrehN5vO3VNEcTPzrD06BL5e92n9DXgoWFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIhAXVN6BFozEDSKc2I7jI2y7Kq-KA5V6s_zKslKbRZtdif57xk6y1UJB4hqPFccz43xjz3wGeFUEyZ1QLJdNPGashMitjVXAgpW-cNw2RSxw_nJSHZ_yj2fibAeqsRYmJe0nSsu0TI_ZYW87nrKoYu45ZZzJHONB39yAm4i3aQy6JtXkam8lonjGhxoZyuprum_9hxJd_3UY889Uyd_OS9NvaLoHdwf8SN71I74HO6G9D7f6GyUvH4AZCQBIM_-ZJp0kWBg60pp20WFLIO58HekROoKtiP9I3Lwn3XrZGBeIvSRmhkF4ZN5oZ-QiXGA83QaSCB3mbfcQTqdH3ybH-XCLQu4Qja1yhhja1MExL0KgitVGKmcqz6WVhjcIZ4xB3wtC-oZaR4vGF9J7J2KqpmGCPYLddtGGJ0CUsMx6RZkvLbcYWVoRi1mlsLg0YKSSQTHOqXYDxXi86eJcp6NuVuteDxr1oJMedJnB602fHz3Bxj-l30dVbSQjOXZ6sFjO9GAs2jamRBQoELrVnFFri6pWRkrnFK5PlGawPypaDx7baQQqkipaS_yKl5tm9LWoA5zmxbqXidmXXGXwuLeLzUjwfUpgOJiB3LKYraFut7Tz74nPWxVlqTjL4M1oW1fD-vtUPP0_8Rdw--vhVH_-cPLpGdwpkycIXCP3YXe1XIcDhFYr-zz50S_ZoBrT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+fixation+creates+nanoscale+clusters+on+the+cell+surface+by+aggregating+membrane+proteins&rft.jtitle=Communications+biology&rft.au=Ichikawa%2C+Takehiko&rft.au=Wang%2C+Dong&rft.au=Miyazawa%2C+Keisuke&rft.au=Miyata%2C+Kazuki&rft.date=2022-05-20&rft.issn=2399-3642&rft.eissn=2399-3642&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-022-03437-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42003_022_03437_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon