Predicting blood-to-plasma concentration ratios of drugs from chemical structures and volumes of distribution in humans
Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experi...
Saved in:
Published in | Molecular diversity Vol. 25; no. 3; pp. 1261 - 1270 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experimental Rb values were compiled for 289 compounds, offering reliable predictions by expanding the applicability domain. Notably, it is the largest list of Rb values reported so far. Subsequently, human PK parameters calculated from plasma drug concentrations, including the volume of distribution (Vd), clearance, mean residence time, and plasma protein binding rate, as well as 2702 kinds of molecular descriptors, were used to construct quantitative structure–PK relationship models for Rb. Among the evaluated PK parameters, logVd correlated best with Rb (correlation coefficient of 0.47). Thus, in addition to molecular descriptors selected by XGBoost, logVd was employed to construct the prediction models. Among the analyzed algorithms, artificial neural networks gave the best results. Following optimization using six molecular descriptors and logVd, the model exhibited a correlation coefficient of 0.64 and a root-mean-square error of 0.205, which were superior to those previously reported for other Rb prediction methods. Since Vd values and chemical structures are known for most medications, the Rb prediction model described herein is expected to be valuable in clinical settings.
Graphical abstract |
---|---|
AbstractList | Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experimental Rb values were compiled for 289 compounds, offering reliable predictions by expanding the applicability domain. Notably, it is the largest list of Rb values reported so far. Subsequently, human PK parameters calculated from plasma drug concentrations, including the volume of distribution (Vd), clearance, mean residence time, and plasma protein binding rate, as well as 2702 kinds of molecular descriptors, were used to construct quantitative structure-PK relationship models for Rb. Among the evaluated PK parameters, logVd correlated best with Rb (correlation coefficient of 0.47). Thus, in addition to molecular descriptors selected by XGBoost, logVd was employed to construct the prediction models. Among the analyzed algorithms, artificial neural networks gave the best results. Following optimization using six molecular descriptors and logVd, the model exhibited a correlation coefficient of 0.64 and a root-mean-square error of 0.205, which were superior to those previously reported for other Rb prediction methods. Since Vd values and chemical structures are known for most medications, the Rb prediction model described herein is expected to be valuable in clinical settings. Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experimental Rb values were compiled for 289 compounds, offering reliable predictions by expanding the applicability domain. Notably, it is the largest list of Rb values reported so far. Subsequently, human PK parameters calculated from plasma drug concentrations, including the volume of distribution (Vd), clearance, mean residence time, and plasma protein binding rate, as well as 2702 kinds of molecular descriptors, were used to construct quantitative structure–PK relationship models for Rb. Among the evaluated PK parameters, logVd correlated best with Rb (correlation coefficient of 0.47). Thus, in addition to molecular descriptors selected by XGBoost, logVd was employed to construct the prediction models. Among the analyzed algorithms, artificial neural networks gave the best results. Following optimization using six molecular descriptors and logVd, the model exhibited a correlation coefficient of 0.64 and a root-mean-square error of 0.205, which were superior to those previously reported for other Rb prediction methods. Since Vd values and chemical structures are known for most medications, the Rb prediction model described herein is expected to be valuable in clinical settings. Graphical abstract Abstract Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experimental Rb values were compiled for 289 compounds, offering reliable predictions by expanding the applicability domain. Notably, it is the largest list of Rb values reported so far. Subsequently, human PK parameters calculated from plasma drug concentrations, including the volume of distribution (Vd), clearance, mean residence time, and plasma protein binding rate, as well as 2702 kinds of molecular descriptors, were used to construct quantitative structure–PK relationship models for Rb. Among the evaluated PK parameters, logVd correlated best with Rb (correlation coefficient of 0.47). Thus, in addition to molecular descriptors selected by XGBoost, logVd was employed to construct the prediction models. Among the analyzed algorithms, artificial neural networks gave the best results. Following optimization using six molecular descriptors and logVd, the model exhibited a correlation coefficient of 0.64 and a root-mean-square error of 0.205, which were superior to those previously reported for other Rb prediction methods. Since Vd values and chemical structures are known for most medications, the Rb prediction model described herein is expected to be valuable in clinical settings. Graphical abstract |
Author | Iwamoto, Kazuhiko Nomura, Yukihiro Uesawa, Yoshihiro Mamada, Hideaki |
Author_xml | – sequence: 1 givenname: Hideaki surname: Mamada fullname: Mamada, Hideaki organization: Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc – sequence: 2 givenname: Kazuhiko surname: Iwamoto fullname: Iwamoto, Kazuhiko organization: Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc – sequence: 3 givenname: Yukihiro surname: Nomura fullname: Nomura, Yukihiro organization: Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc – sequence: 4 givenname: Yoshihiro orcidid: 0000-0002-5773-991X surname: Uesawa fullname: Uesawa, Yoshihiro email: uesawa@my-pharm.ac.jp organization: Department of Medical Molecular Informatics, Meiji Pharmaceutical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33569705$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rHSEUxaUkNB_tP9BFEbq20fE5OptACU1bCDSLBLqTO46-Z5jRFx0T-t_HvEnzsenqCud3zr1yjtBeiMEi9InRr4xSeZIZo5wS2jDCKFMtke_QIROSE0HZn7365qpKXccO0FHON5RWG-Pv0QHnou0kFYfo_jLZwZvZhzXuxxgHMkeyHSFPgE0MxoY5wexjwLuRcXR4SGWdsUtxwmZjJ29gxHlOxcwl2YwhDPgujmWyC-2r5vuyC_EBb8oEIX9A-w7GbD8-zWN0ff796uwnufj949fZtwtixIrOhEsQHYAUggnnrHArZzroWxjkygnVc86cpAoEKLBK9VbZHiRz3dAZ23PGj9Hpkrst_WSH5T-j3iY_QfqrI3j9Vgl-o9fxTiu-ajjrasCXp4AUb4vNs76JJYV6s26EUE3bCikr1SyUSTHnZN3zBkb1Y1l6KUvXsvSuLP1o-vz6tmfLv3YqwBcgVymsbXrZ_Z_YB_ppplE |
CitedBy_id | crossref_primary_10_1016_j_xphs_2022_08_015 crossref_primary_10_1007_s11419_022_00616_y crossref_primary_10_1016_j_envint_2024_108663 crossref_primary_10_3390_ijms25105202 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_1080_00498254_2023_2265475 crossref_primary_10_1093_jat_bkae006 crossref_primary_10_1021_acsomega_2c00261 crossref_primary_10_3390_pharmaceutics15041282 crossref_primary_10_1021_acsomega_3c04073 crossref_primary_10_1016_j_jpba_2024_116065 crossref_primary_10_3390_pharmaceutics15092348 crossref_primary_10_1021_acsomega_1c03689 crossref_primary_10_3390_toxics12010037 crossref_primary_10_3390_pharmaceutics15010239 crossref_primary_10_56082_annalsarscibio_2023_1_129 crossref_primary_10_3389_fphar_2024_1330855 crossref_primary_10_1007_s11095_024_03725_y crossref_primary_10_1080_10543406_2024_2358797 crossref_primary_10_1016_j_comtox_2023_100293 crossref_primary_10_1123_ijsnem_2023_0141 |
Cites_doi | 10.1208/s12248-014-9626-3 10.1124/dmd.105.004259.lenged 10.1021/ci049884m 10.1007/s11095-006-9210-3 10.2174/156802606778108915 10.1002/psp4.12279 10.1016/S1056-8719(00)00109-X 10.1007/s11095-008-9607-2 10.1002/psp4.12101 10.1124/dmd.114.059857 10.1002/jps.20117 10.1002/bdd 10.3390/medicines6020045 10.1002/jps.20322 10.1021/acs.jcim.9b00300 10.1016/j.ejps.2008.12.011 10.1211/jpp.59.9.0001 10.1016/j.ejps.2009.12.007 10.1023/B:MODI.0000006562.93049.36 10.1021/js980294a 10.3109/00498254.2010.500407 10.1021/acs.jcim.6b00591 10.3109/00498251003706598 10.1021/acs.molpharmaceut.8b01143 10.1038/s41563-019-0332-5 10.1016/j.jmgm.2005.10.004 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 88I 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P PQEST PQQKQ PQUKI PRINS Q9U 5PM |
DOI | 10.1007/s11030-021-10186-7 |
DatabaseName | Springer_OA刊 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) |
DatabaseTitleList | MEDLINE ProQuest Science Journals (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 1573-501X |
EndPage | 1270 |
ExternalDocumentID | 10_1007_s11030_021_10186_7 33569705 |
Genre | Journal Article |
GroupedDBID | --- -4W -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40E 53G 5QI 5VS 67Z 6NX 7X7 88E 88I 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANXM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOSHJ ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LK5 LLZTM M1P M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z87 Z8O Z8P Z91 ZMTXR ZOVNA ~A9 ~EX ~KM AACDK AAEOY AAJBT AAQLM AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU ALIPV CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI PRINS Q9U 5PM |
ID | FETCH-LOGICAL-c540t-37a59aa75515ffe5f4fc9ab6ad74f58b331f708a5a8ae88be8eba71f9d9ceb313 |
IEDL.DBID | U2A |
ISSN | 1381-1991 |
IngestDate | Tue Sep 17 21:06:53 EDT 2024 Thu Oct 10 19:46:23 EDT 2024 Thu Sep 12 17:19:12 EDT 2024 Wed Oct 16 00:43:09 EDT 2024 Sat Dec 16 12:10:07 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Blood-to-plasma ratio Volume of distribution Quantitative structure–pharmacokinetic relationships Pharmacokinetics Artificial neural networks |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-37a59aa75515ffe5f4fc9ab6ad74f58b331f708a5a8ae88be8eba71f9d9ceb313 |
ORCID | 0000-0002-5773-991X |
OpenAccessLink | http://link.springer.com/10.1007/s11030-021-10186-7 |
PMID | 33569705 |
PQID | 2558266577 |
PQPubID | 54625 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8342319 proquest_journals_2558266577 crossref_primary_10_1007_s11030_021_10186_7 pubmed_primary_33569705 springer_journals_10_1007_s11030_021_10186_7 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationTitle | Molecular diversity |
PublicationTitleAbbrev | Mol Divers |
PublicationTitleAlternate | Mol Divers |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | (2008) European Medicines Agency Evaluation of Medicines for Human Use CHMP ASSESSMENT REPORT FOR Doribax. In: Eur. Med. Agency. https://www.ema.europa.eu/en/documents/assessment-report/doribax-epar-public-assessment-report_en.pdf FoxTKrieglJMMachine learning techniques for in silico modeling of drug metabolismCurr Top Med Chem20066157915911:CAS:528:DC%2BD28XhtVCgsLvF10.2174/15680260677810891516918470 Bhhatarai B, Walters WP, Hop CECA, et al (2019) Opportunities and challenges using artificial intelligence in ADME/Tox. Nat. Mater. 418–422 Van der GraafPHNilssonJVan SchaickEADanhofMMultivariate quantitative structure-pharmacokinetic relationships (QSPKR) analysis of adenosine A1 receptor agonists in ratJ Pharm Sci19998830631210.1021/js980294a PaixãoPGouveiaLFMoraisJAGPrediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networksEur J Pharm Sci2010393103211:CAS:528:DC%2BC3cXjtVWksbg%3D10.1016/j.ejps.2009.12.00720056146 PaixãoPGouveiaLFMoraisJAGPrediction of drug distribution within bloodEur J Pharm Sci2009365445541:CAS:528:DC%2BD1MXhs1aqur0%3D10.1016/j.ejps.2008.12.01119152835 EkinsSWallerCLSwaanPWProgress in predicting human ADME parameters in silicoJ Pharmacol Toxicol Methods2000442512721:CAS:528:DC%2BD3MXitF2ks74%3D10.1016/S1056-8719(00)00109-X11274894 RodgersTLeahyDRowlandMPhysiologically based pharmacokinetic modeling 1: Predicting the tissue distribution of moderate-to-strong basesJ Pharm Sci200594125912761:CAS:528:DC%2BD2MXkvF2qtLs%3D10.1002/jps.2032215858854 RodgersTRowlandMMechanistic approaches to volume of distribution predictions: understanding the processesPharm Res2007249189331:CAS:528:DC%2BD2sXkslWgt7c%3D10.1007/s11095-006-9210-317372687 EngHNiosiMMcDonaldTSUtility of the carboxylesterase inhibitor bis-para-nitrophenylphosphate (BNPP) in the plasma unbound fraction determination for a hydrolytically unstable amide derivative and agonist of the TGR5 receptorXenobiotica2010403693801:CAS:528:DC%2BC3cXlvVGksLk%3D10.3109/0049825100370659820297923 OhashiRWatanabeREsakiTDevelopment of Simplified in Vitro P-Glycoprotein Substrate Assay and in Silico Prediction Models to Evaluate Transport Potential of P-GlycoproteinMol Pharm201916185118631:CAS:528:DC%2BC1MXmt1Oltbs%3D10.1021/acs.molpharmaceut.8b0114330933526 KatoMShitaraYSatoHThe quantitative prediction of CYP-mediated drug interaction by physiologically based pharmacokinetic modelingPharm Res200825189119011:CAS:528:DC%2BD1cXot1WhsLY%3D10.1007/s11095-008-9607-218483837 ZhouWJohnsonTNXuHPredictive performance of physiologically based pharmacokinetic and population pharmacokinetic modeling of renally cleared drugs in childrenCPT Pharmacometrics Syst Pharmacol201654754831:CAS:528:DC%2BC28XhsVWjtLvK10.1002/psp4.12101275669925036422 GabrielssonJWeinerDPharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications2006ApotekarsocietetenFourth Edition EmotoCJohnsonTNMcPhailBTUsing a Vancomycin PBPK model in special populations to elucidate case-based clinical PK observationsCPT Pharmacometrics Syst Pharmacol201872372501:CAS:528:DC%2BC1cXislSkur4%3D10.1002/psp4.12279294462565915605 WangYLiuHFanYIn Silico prediction of human intravenous pharmacokinetic parameters with improved accuracyJ Chem Inf Model201959396839801:CAS:528:DC%2BC1MXhsFKlu7%2FI10.1021/acs.jcim.9b0030031403793 DaveRAMorrisMEQuantitative structure-pharmacokinetic relationships for the prediction of renal clearance in humansDrug Metab Dispos20154373811:CAS:528:DC%2BC2MXht1Okuw%3D%3D10.1124/dmd.114.059857253526574279087 SheridanRPWangWMLiawAExtreme gradient boosting as a method for quantitative structure-activity relationshipsJ Chem Inf Model201656235323601:CAS:528:DC%2BC28XhvFCgs73E10.1021/acs.jcim.6b0059127958738 RileyRJMcginnityDFAustinRPA unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomesPharmacology200533130413111:CAS:528:DC%2BD2MXpsFamt74%3D10.1124/dmd.105.004259.lenged YamazakiKKanaokaMComputational Prediction of the Plasma Protein-Binding Rate of Diverse Chemical Compounds200493148014941:CAS:528:DC%2BD2cXks12iu7s%3D FagerholmUPrediction of human pharmacokinetics - evaluation of methods for prediction of volume of distributionJ Pharm Pharmacol200759118111901:CAS:528:DC%2BD2sXhtV2qur3K10.1211/jpp.59.9.000117883888 UesawaYKagayaHVolume of distribution in opioids estimated by electric charge under biological pH conditionsJpn J Pharm Palliat Care Sci201475561 NagaiJImamuraMSakagamiHUesawaYQSAR Prediction model to search for compounds with selective cytotoxicity against oral cell cancerMedicines20196451:CAS:528:DC%2BC1MXhsFGkt7rN10.3390/medicines60200456631777 HouTJZhangWXiaKADME evaluation in drug discovery. 5. Correlation of caco-2 permeation with simple molecular propertiesJ Chem Inf Comput Sci200444158516001:CAS:528:DC%2BD2cXlt1yns7c%3D10.1021/ci049884m15446816 HinderlingPHRed blood cells: a neglected compartment in pharmacokinetics and pharmacodynamicsPharmacol Rev1997492792951:CAS:528:DyaK2sXmtl2hsbs%3D9311024 UchimuraTKatoMSaitoTKinoshitaHPrediction of Human Blood-to-Plasma Drug Concentration RatioBiopharm Drug Dispos2010312862971:CAS:528:DC%2BC3cXotFeitLo%3D10.1002/bdd20549836 SayamaHTakuboHKomuraHApplication of a physiologically based pharmacokinetic model informed by a top-down approach for the prediction of pharmacokinetics in chronic kidney disease patientsAAPS J201416101810281:CAS:528:DC%2BC2cXhtVWhurrP10.1208/s12248-014-9626-3249127984147047 NgCXiaoYPutnamWQuantitative structure-pharmacokinetic parameters relationships (QSPKR) analysis of antimicrobial agents in humans using simulated annealing k-nearest-neighbor and partial least-square analysis methodsJ Pharm Sci200493253525441:CAS:528:DC%2BD2cXotl2gt7w%3D10.1002/jps.2011715349962 Sohlenius-SternbeckAKAfzeliusLPrusisPEvaluation of the human prediction of clearance from hepatocyte and microsome intrinsic clearance for 52 drug compoundsXenobiotica2010406376491:CAS:528:DC%2BC3cXhtVajsLnI10.3109/00498254.2010.50040720624033 YapCWLiZRChenYZQuantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methodsJ Mol Graph Model2006243833951:CAS:528:DC%2BD28XitVKgtb4%3D10.1016/j.jmgm.2005.10.00416290201 LobellMSivarajahVIn silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 valuesMol Divers2003769871:CAS:528:DC%2BD3sXpsVGiurc%3D10.1023/B:MODI.0000006562.93049.3614768905 NishimuraAMurakamiTHigashiYYataNRole of acidic phospholipids in tissue distribution of quinidine in ratsJ pharmacobio-dynamics198710134141 H Eng (10186_CR17) 2010; 40 10186_CR1 T Rodgers (10186_CR25) 2005; 94 P Paixão (10186_CR14) 2009; 36 RP Sheridan (10186_CR26) 2016; 56 H Sayama (10186_CR4) 2014; 16 J Gabrielsson (10186_CR18) 2006 M Lobell (10186_CR27) 2003; 7 Y Uesawa (10186_CR5) 2014; 7 T Fox (10186_CR11) 2006; 6 10186_CR15 K Yamazaki (10186_CR28) 2004; 93 Y Wang (10186_CR12) 2019; 59 RA Dave (10186_CR8) 2015; 43 U Fagerholm (10186_CR29) 2007; 59 T Uchimura (10186_CR16) 2010; 31 RJ Riley (10186_CR21) 2005; 33 TJ Hou (10186_CR30) 2004; 44 C Emoto (10186_CR32) 2018; 7 CW Yap (10186_CR6) 2006; 24 J Nagai (10186_CR20) 2019; 6 PH Hinderling (10186_CR13) 1997; 49 T Rodgers (10186_CR23) 2007; 24 PH Van der Graaf (10186_CR9) 1999; 88 AK Sohlenius-Sternbeck (10186_CR22) 2010; 40 A Nishimura (10186_CR24) 1987; 10 S Ekins (10186_CR10) 2000; 44 P Paixão (10186_CR2) 2010; 39 W Zhou (10186_CR31) 2016; 5 M Kato (10186_CR3) 2008; 25 R Ohashi (10186_CR19) 2019; 16 C Ng (10186_CR7) 2004; 93 |
References_xml | – volume: 16 start-page: 1018 year: 2014 ident: 10186_CR4 publication-title: AAPS J doi: 10.1208/s12248-014-9626-3 contributor: fullname: H Sayama – volume: 33 start-page: 1304 year: 2005 ident: 10186_CR21 publication-title: Pharmacology doi: 10.1124/dmd.105.004259.lenged contributor: fullname: RJ Riley – volume: 44 start-page: 1585 year: 2004 ident: 10186_CR30 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci049884m contributor: fullname: TJ Hou – volume: 10 start-page: 134 year: 1987 ident: 10186_CR24 publication-title: J pharmacobio-dynamics contributor: fullname: A Nishimura – volume: 93 start-page: 1480 year: 2004 ident: 10186_CR28 publication-title: Computational Prediction of the Plasma Protein-Binding Rate of Diverse Chemical Compounds contributor: fullname: K Yamazaki – volume: 24 start-page: 918 year: 2007 ident: 10186_CR23 publication-title: Pharm Res doi: 10.1007/s11095-006-9210-3 contributor: fullname: T Rodgers – ident: 10186_CR1 – volume: 6 start-page: 1579 year: 2006 ident: 10186_CR11 publication-title: Curr Top Med Chem doi: 10.2174/156802606778108915 contributor: fullname: T Fox – volume: 7 start-page: 237 year: 2018 ident: 10186_CR32 publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1002/psp4.12279 contributor: fullname: C Emoto – volume: 44 start-page: 251 year: 2000 ident: 10186_CR10 publication-title: J Pharmacol Toxicol Methods doi: 10.1016/S1056-8719(00)00109-X contributor: fullname: S Ekins – volume: 25 start-page: 1891 year: 2008 ident: 10186_CR3 publication-title: Pharm Res doi: 10.1007/s11095-008-9607-2 contributor: fullname: M Kato – volume: 5 start-page: 475 year: 2016 ident: 10186_CR31 publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1002/psp4.12101 contributor: fullname: W Zhou – volume: 43 start-page: 73 year: 2015 ident: 10186_CR8 publication-title: Drug Metab Dispos doi: 10.1124/dmd.114.059857 contributor: fullname: RA Dave – volume: 7 start-page: 55 year: 2014 ident: 10186_CR5 publication-title: Jpn J Pharm Palliat Care Sci contributor: fullname: Y Uesawa – volume: 93 start-page: 2535 year: 2004 ident: 10186_CR7 publication-title: J Pharm Sci doi: 10.1002/jps.20117 contributor: fullname: C Ng – volume: 31 start-page: 286 year: 2010 ident: 10186_CR16 publication-title: Biopharm Drug Dispos doi: 10.1002/bdd contributor: fullname: T Uchimura – volume: 6 start-page: 45 year: 2019 ident: 10186_CR20 publication-title: Medicines doi: 10.3390/medicines6020045 contributor: fullname: J Nagai – volume-title: Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications year: 2006 ident: 10186_CR18 contributor: fullname: J Gabrielsson – volume: 94 start-page: 1259 year: 2005 ident: 10186_CR25 publication-title: J Pharm Sci doi: 10.1002/jps.20322 contributor: fullname: T Rodgers – volume: 59 start-page: 3968 year: 2019 ident: 10186_CR12 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00300 contributor: fullname: Y Wang – volume: 49 start-page: 279 year: 1997 ident: 10186_CR13 publication-title: Pharmacol Rev contributor: fullname: PH Hinderling – volume: 36 start-page: 544 year: 2009 ident: 10186_CR14 publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2008.12.011 contributor: fullname: P Paixão – volume: 59 start-page: 1181 year: 2007 ident: 10186_CR29 publication-title: J Pharm Pharmacol doi: 10.1211/jpp.59.9.0001 contributor: fullname: U Fagerholm – volume: 39 start-page: 310 year: 2010 ident: 10186_CR2 publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2009.12.007 contributor: fullname: P Paixão – volume: 7 start-page: 69 year: 2003 ident: 10186_CR27 publication-title: Mol Divers doi: 10.1023/B:MODI.0000006562.93049.36 contributor: fullname: M Lobell – volume: 88 start-page: 306 year: 1999 ident: 10186_CR9 publication-title: J Pharm Sci doi: 10.1021/js980294a contributor: fullname: PH Van der Graaf – volume: 40 start-page: 637 year: 2010 ident: 10186_CR22 publication-title: Xenobiotica doi: 10.3109/00498254.2010.500407 contributor: fullname: AK Sohlenius-Sternbeck – volume: 56 start-page: 2353 year: 2016 ident: 10186_CR26 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00591 contributor: fullname: RP Sheridan – volume: 40 start-page: 369 year: 2010 ident: 10186_CR17 publication-title: Xenobiotica doi: 10.3109/00498251003706598 contributor: fullname: H Eng – volume: 16 start-page: 1851 year: 2019 ident: 10186_CR19 publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.8b01143 contributor: fullname: R Ohashi – ident: 10186_CR15 doi: 10.1038/s41563-019-0332-5 – volume: 24 start-page: 383 year: 2006 ident: 10186_CR6 publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2005.10.004 contributor: fullname: CW Yap |
SSID | ssj0010013 |
Score | 2.4319143 |
Snippet | Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma... Abstract Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1261 |
SubjectTerms | Algorithms Biochemistry Biomedical and Life Sciences Databases, Pharmaceutical Drug Monitoring Humans Life Sciences Models, Theoretical Molecular Structure Neural Networks, Computer Organic Chemistry Original Original Article Pharmaceutical Preparations - chemistry Pharmacokinetics Pharmacy Plasma Polymer Sciences Quantitative Structure-Activity Relationship Structure-Activity Relationship Tissue Distribution |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkLonwGWuQDN7CIk_jrhBCiqpBacaDS3iJ_Qg9kt81WiH_PjO3d1VLBKZFiJVGeY7-x37wh5A0wcBcl94zLAAEKBB3M6H5g3gZtlNfBWUwUPjuXpxfDl4VY1AW3ucoqN2NiHqjD0uMa-XugvsCEpVDqw-qKYdUo3F2tJTTuknu8ayVKutRiG3ChvVAW2MOshIIKXpNmSuoc1tdiKFBAzyrJ1P7EdItt3hZN_rVzmiekk0fkYWWS9GOB_pDcidNjcr_UlvwNZ1nb6ecn5NfXa9yNQX0zLTr19ZKtgDX_tNRj1uJUrXNpPsx0mWi4vvk-U8w9ob5aCtBiNXsD8Tm1U6BlXCut0X23Fs6ilxPNhf_mp-Ti5PO3T6es1ltgHnjbGsYaK4y1CkiUSCmKNCRvrJM2qCEJ7fqeJ9VqK6y2UWsXdXRW8WSC8RCT8_4ZOZiWU3yBgqle-sSt6EwcQoCYTvjBtq4Lrem4Cw15u_nY46rYaow7A2WEZgRoxgzNqBpytMFjrL_YPO46REOeF2i2t-p7IY1qRUPUHmjbBmiqvX9luvyRzbU1WiJy05B3G3h3j_z3G778_xu-Ig867GpZOHhEDgCveAxkZu1e5x77B8xN89k priority: 102 providerName: ProQuest |
Title | Predicting blood-to-plasma concentration ratios of drugs from chemical structures and volumes of distribution in humans |
URI | https://link.springer.com/article/10.1007/s11030-021-10186-7 https://www.ncbi.nlm.nih.gov/pubmed/33569705 https://www.proquest.com/docview/2558266577 https://pubmed.ncbi.nlm.nih.gov/PMC8342319 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVkhcEG8CJdoDN7CUtb2vY4hSKhBVhYgUTtY-oQecqk6F-u87s3YShcKB01re1dryt96d0XzzDcBbtMBdlNwXXAZ0UNDpKIyu6sLboI3yOjhLicJfzuTpov60FMtdHncmu28iknmj3uW6UUGsghgFJDIlC3UAR4Lk0HARL8rpNnRARk32sjQnFgUfMmX-Psf-aXTHxLzLlPwjXJpPoZNH8HAwH9m0x_sx3IvtE7jfF5S8watM6PTdU_h9fkUhGCI1s56cvl4Vl2gq_7LMU6piO-jlstx0bJVYuLr-0TFKOGF-0BFgvb7sNTrlzLaB9ZtZP5okd4dqWeyiZbnaX_cMFifzb7PTYiiyUHg01ta4wVhhrFVoOYmUokh18sY6aYOqk9CuqnhSE22F1TZq7aKOziqeTDAeHXFePYfDdtXGl8SSqqRP3IrSxDoEdOSEr-3ElWFiSu7CCN5tPnZz2WtpNDvVZIKmQWiaDE2jRnC8waMZ_quuQQcI_SEpFHa_6KHZTlVVQho1ESNQe6BtB5CS9n5Pe_EzK2pr0kHkZgTvN_DuHvnvN3z1f8Nfw4OSll5mDx7DIeIX36BFs3ZjOFBLNYaj6cfvn-fYfpifnX_FuzM5G-fVfQtFxfUW |
link.rule.ids | 230,315,783,787,888,12068,21400,27936,27937,31731,33756,41093,41132,41535,42162,42201,42604,43322,43817,51588,52123,52246,74073,74630 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BKwQXxDeBAj5wA4v1Jo7tUwVVqwXaVYVaqbfIn6UHskuzFeLf12N7d7Wt4JRIsZIoz7Hf2G_eALyPDNz4llnKWhcDlBh0UCXrhlrtpBJWOqMxUfho2k5Om29n_KwsuA1FVrkcE9NA7WYW18g_ReobmXDLhdid_6ZYNQp3V0sJjbuwjVZVMfja_rI_Pf6x2kdAhpNCLslQUsFK2kxOnsMKWxQlCuha1VKxOTXd4pu3ZZM39k7TlHTwCB4WLkk-Z_Afwx3fP4F7ubrk33iW1J12eAp_ji9xPwYVziQr1RczOo-8-ZcmFvMW-2KeS9JhILNA3OXV-UAw-4TYYipAstnsVYzQie4dySNbbo3-u6V0FrnoSSr9NzyD04P9k70JLRUXqI3MbRFHG82V1iLSKB6C56EJVmnTaieawKWpaxbESGqupfZSGi-90YIF5ZSNUTmrn8NWP-v9S5RM1a0NTPOx8o1zMarjttEjM3YjNWbGVfBh-bG7eTbW6NYWyghNF6HpEjSdqGBniUdXfrKhW3eJCl5kaFa3qmveKjHiFYgN0FYN0FZ780p_8TPZa0s0RWSqgo9LeNeP_Pcbvvr_G76D-5OTo8Pu8Ov0-2t4MMZul2SEO7AVsfNvIrVZmLel_14Dk-n4Lw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgK1AviHcDBXzgBlbjTfw6IR5dlddqhajUW-Qn7aHZpdkK9d_XY3t3tVRwSqRYiZWZ2N9kvvkGodcRgRvPqSWUuxigxKCDKNm0xGonlbDSGQ2Fwt-n_Oi4_XLCTgr_aSi0ytWamBZqN7fwj_wgQt-IhDkT4iAUWsTs0-Td4jeBDlKQaS3tNG6jHdHyph6hnQ-H09mPdU4B0E4KvyQFegUtJTS5kA66bRGgK4CCFSdie5u6gT1vUij_yqOm7WlyH90ruBK_z47wAN3y_UN0J3eavIpnielph0foz-wCcjPAdsaZtb6ck0XE0OcaW6hh7IuQLk6HAc8DdheXvwYMlSjYFoEBnIVnL2O0jnXvcF7l8mjQ4i1ttPBZj1MbwOExOp4c_vx4REr3BWIjilvGlUczpbWIkIqF4Flog1XacO1EG5g0TUODqKVmWmovpfHSGy1oUE7ZGKHT5gka9fPe7wF9quE2UM3GyrfOxQiP2VbXZuxqNabGVejN6mV3iyyy0W3klME0XTRNl0zTiQrtr-zRlQ9u6DbuUaGn2TTrWzUN40rUrEJiy2jrASCxvX2lPztNUtsSBBKpqtDblXk3j_z3DJ_9f4av0N3out23z9Ovz9HuGLwuMQr30Siazr-IKGdpXhb3vQYWc_xd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+blood-to-plasma+concentration+ratios+of+drugs+from+chemical+structures+and+volumes+of+distribution+in+humans&rft.jtitle=Molecular+diversity&rft.au=Mamada%2C+Hideaki&rft.au=Iwamoto%2C+Kazuhiko&rft.au=Nomura%2C+Yukihiro&rft.au=Uesawa%2C+Yoshihiro&rft.date=2021-08-01&rft.issn=1381-1991&rft.eissn=1573-501X&rft.volume=25&rft.issue=3&rft.spage=1261&rft.epage=1270&rft_id=info:doi/10.1007%2Fs11030-021-10186-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11030_021_10186_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1991&client=summon |