Predicting blood-to-plasma concentration ratios of drugs from chemical structures and volumes of distribution in humans

Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experi...

Full description

Saved in:
Bibliographic Details
Published inMolecular diversity Vol. 25; no. 3; pp. 1261 - 1270
Main Authors Mamada, Hideaki, Iwamoto, Kazuhiko, Nomura, Yukihiro, Uesawa, Yoshihiro
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experimental Rb values were compiled for 289 compounds, offering reliable predictions by expanding the applicability domain. Notably, it is the largest list of Rb values reported so far. Subsequently, human PK parameters calculated from plasma drug concentrations, including the volume of distribution (Vd), clearance, mean residence time, and plasma protein binding rate, as well as 2702 kinds of molecular descriptors, were used to construct quantitative structure–PK relationship models for Rb. Among the evaluated PK parameters, logVd correlated best with Rb (correlation coefficient of 0.47). Thus, in addition to molecular descriptors selected by XGBoost, logVd was employed to construct the prediction models. Among the analyzed algorithms, artificial neural networks gave the best results. Following optimization using six molecular descriptors and logVd, the model exhibited a correlation coefficient of 0.64 and a root-mean-square error of 0.205, which were superior to those previously reported for other Rb prediction methods. Since Vd values and chemical structures are known for most medications, the Rb prediction model described herein is expected to be valuable in clinical settings. Graphical abstract
AbstractList Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experimental Rb values were compiled for 289 compounds, offering reliable predictions by expanding the applicability domain. Notably, it is the largest list of Rb values reported so far. Subsequently, human PK parameters calculated from plasma drug concentrations, including the volume of distribution (Vd), clearance, mean residence time, and plasma protein binding rate, as well as 2702 kinds of molecular descriptors, were used to construct quantitative structure-PK relationship models for Rb. Among the evaluated PK parameters, logVd correlated best with Rb (correlation coefficient of 0.47). Thus, in addition to molecular descriptors selected by XGBoost, logVd was employed to construct the prediction models. Among the analyzed algorithms, artificial neural networks gave the best results. Following optimization using six molecular descriptors and logVd, the model exhibited a correlation coefficient of 0.64 and a root-mean-square error of 0.205, which were superior to those previously reported for other Rb prediction methods. Since Vd values and chemical structures are known for most medications, the Rb prediction model described herein is expected to be valuable in clinical settings.
Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experimental Rb values were compiled for 289 compounds, offering reliable predictions by expanding the applicability domain. Notably, it is the largest list of Rb values reported so far. Subsequently, human PK parameters calculated from plasma drug concentrations, including the volume of distribution (Vd), clearance, mean residence time, and plasma protein binding rate, as well as 2702 kinds of molecular descriptors, were used to construct quantitative structure–PK relationship models for Rb. Among the evaluated PK parameters, logVd correlated best with Rb (correlation coefficient of 0.47). Thus, in addition to molecular descriptors selected by XGBoost, logVd was employed to construct the prediction models. Among the analyzed algorithms, artificial neural networks gave the best results. Following optimization using six molecular descriptors and logVd, the model exhibited a correlation coefficient of 0.64 and a root-mean-square error of 0.205, which were superior to those previously reported for other Rb prediction methods. Since Vd values and chemical structures are known for most medications, the Rb prediction model described herein is expected to be valuable in clinical settings. Graphical abstract
Abstract Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating typical human pharmacokinetics (PK) parameters. Experimental Rb values were compiled for 289 compounds, offering reliable predictions by expanding the applicability domain. Notably, it is the largest list of Rb values reported so far. Subsequently, human PK parameters calculated from plasma drug concentrations, including the volume of distribution (Vd), clearance, mean residence time, and plasma protein binding rate, as well as 2702 kinds of molecular descriptors, were used to construct quantitative structure–PK relationship models for Rb. Among the evaluated PK parameters, logVd correlated best with Rb (correlation coefficient of 0.47). Thus, in addition to molecular descriptors selected by XGBoost, logVd was employed to construct the prediction models. Among the analyzed algorithms, artificial neural networks gave the best results. Following optimization using six molecular descriptors and logVd, the model exhibited a correlation coefficient of 0.64 and a root-mean-square error of 0.205, which were superior to those previously reported for other Rb prediction methods. Since Vd values and chemical structures are known for most medications, the Rb prediction model described herein is expected to be valuable in clinical settings. Graphical abstract
Author Iwamoto, Kazuhiko
Nomura, Yukihiro
Uesawa, Yoshihiro
Mamada, Hideaki
Author_xml – sequence: 1
  givenname: Hideaki
  surname: Mamada
  fullname: Mamada, Hideaki
  organization: Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
– sequence: 2
  givenname: Kazuhiko
  surname: Iwamoto
  fullname: Iwamoto, Kazuhiko
  organization: Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
– sequence: 3
  givenname: Yukihiro
  surname: Nomura
  fullname: Nomura, Yukihiro
  organization: Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
– sequence: 4
  givenname: Yoshihiro
  orcidid: 0000-0002-5773-991X
  surname: Uesawa
  fullname: Uesawa, Yoshihiro
  email: uesawa@my-pharm.ac.jp
  organization: Department of Medical Molecular Informatics, Meiji Pharmaceutical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33569705$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rHSEUxaUkNB_tP9BFEbq20fE5OptACU1bCDSLBLqTO46-Z5jRFx0T-t_HvEnzsenqCud3zr1yjtBeiMEi9InRr4xSeZIZo5wS2jDCKFMtke_QIROSE0HZn7365qpKXccO0FHON5RWG-Pv0QHnou0kFYfo_jLZwZvZhzXuxxgHMkeyHSFPgE0MxoY5wexjwLuRcXR4SGWdsUtxwmZjJ29gxHlOxcwl2YwhDPgujmWyC-2r5vuyC_EBb8oEIX9A-w7GbD8-zWN0ff796uwnufj949fZtwtixIrOhEsQHYAUggnnrHArZzroWxjkygnVc86cpAoEKLBK9VbZHiRz3dAZ23PGj9Hpkrst_WSH5T-j3iY_QfqrI3j9Vgl-o9fxTiu-ajjrasCXp4AUb4vNs76JJYV6s26EUE3bCikr1SyUSTHnZN3zBkb1Y1l6KUvXsvSuLP1o-vz6tmfLv3YqwBcgVymsbXrZ_Z_YB_ppplE
CitedBy_id crossref_primary_10_1016_j_xphs_2022_08_015
crossref_primary_10_1007_s11419_022_00616_y
crossref_primary_10_1016_j_envint_2024_108663
crossref_primary_10_3390_ijms25105202
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_1080_00498254_2023_2265475
crossref_primary_10_1093_jat_bkae006
crossref_primary_10_1021_acsomega_2c00261
crossref_primary_10_3390_pharmaceutics15041282
crossref_primary_10_1021_acsomega_3c04073
crossref_primary_10_1016_j_jpba_2024_116065
crossref_primary_10_3390_pharmaceutics15092348
crossref_primary_10_1021_acsomega_1c03689
crossref_primary_10_3390_toxics12010037
crossref_primary_10_3390_pharmaceutics15010239
crossref_primary_10_56082_annalsarscibio_2023_1_129
crossref_primary_10_3389_fphar_2024_1330855
crossref_primary_10_1007_s11095_024_03725_y
crossref_primary_10_1080_10543406_2024_2358797
crossref_primary_10_1016_j_comtox_2023_100293
crossref_primary_10_1123_ijsnem_2023_0141
Cites_doi 10.1208/s12248-014-9626-3
10.1124/dmd.105.004259.lenged
10.1021/ci049884m
10.1007/s11095-006-9210-3
10.2174/156802606778108915
10.1002/psp4.12279
10.1016/S1056-8719(00)00109-X
10.1007/s11095-008-9607-2
10.1002/psp4.12101
10.1124/dmd.114.059857
10.1002/jps.20117
10.1002/bdd
10.3390/medicines6020045
10.1002/jps.20322
10.1021/acs.jcim.9b00300
10.1016/j.ejps.2008.12.011
10.1211/jpp.59.9.0001
10.1016/j.ejps.2009.12.007
10.1023/B:MODI.0000006562.93049.36
10.1021/js980294a
10.3109/00498254.2010.500407
10.1021/acs.jcim.6b00591
10.3109/00498251003706598
10.1021/acs.molpharmaceut.8b01143
10.1038/s41563-019-0332-5
10.1016/j.jmgm.2005.10.004
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
88I
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
PQEST
PQQKQ
PQUKI
PRINS
Q9U
5PM
DOI 10.1007/s11030-021-10186-7
DatabaseName Springer_OA刊
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
DatabaseTitleList MEDLINE
ProQuest Science Journals (Alumni Edition)

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 1573-501X
EndPage 1270
ExternalDocumentID 10_1007_s11030_021_10186_7
33569705
Genre Journal Article
GroupedDBID ---
-4W
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40E
53G
5QI
5VS
67Z
6NX
7X7
88E
88I
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LK5
LLZTM
M1P
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7V
Z87
Z8O
Z8P
Z91
ZMTXR
ZOVNA
~A9
~EX
~KM
AACDK
AAEOY
AAJBT
AAQLM
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
5PM
ID FETCH-LOGICAL-c540t-37a59aa75515ffe5f4fc9ab6ad74f58b331f708a5a8ae88be8eba71f9d9ceb313
IEDL.DBID U2A
ISSN 1381-1991
IngestDate Tue Sep 17 21:06:53 EDT 2024
Thu Oct 10 19:46:23 EDT 2024
Thu Sep 12 17:19:12 EDT 2024
Wed Oct 16 00:43:09 EDT 2024
Sat Dec 16 12:10:07 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Blood-to-plasma ratio
Volume of distribution
Quantitative structure–pharmacokinetic relationships
Pharmacokinetics
Artificial neural networks
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-37a59aa75515ffe5f4fc9ab6ad74f58b331f708a5a8ae88be8eba71f9d9ceb313
ORCID 0000-0002-5773-991X
OpenAccessLink http://link.springer.com/10.1007/s11030-021-10186-7
PMID 33569705
PQID 2558266577
PQPubID 54625
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8342319
proquest_journals_2558266577
crossref_primary_10_1007_s11030_021_10186_7
pubmed_primary_33569705
springer_journals_10_1007_s11030_021_10186_7
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationTitle Molecular diversity
PublicationTitleAbbrev Mol Divers
PublicationTitleAlternate Mol Divers
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References (2008) European Medicines Agency Evaluation of Medicines for Human Use CHMP ASSESSMENT REPORT FOR Doribax. In: Eur. Med. Agency. https://www.ema.europa.eu/en/documents/assessment-report/doribax-epar-public-assessment-report_en.pdf
FoxTKrieglJMMachine learning techniques for in silico modeling of drug metabolismCurr Top Med Chem20066157915911:CAS:528:DC%2BD28XhtVCgsLvF10.2174/15680260677810891516918470
Bhhatarai B, Walters WP, Hop CECA, et al (2019) Opportunities and challenges using artificial intelligence in ADME/Tox. Nat. Mater. 418–422
Van der GraafPHNilssonJVan SchaickEADanhofMMultivariate quantitative structure-pharmacokinetic relationships (QSPKR) analysis of adenosine A1 receptor agonists in ratJ Pharm Sci19998830631210.1021/js980294a
PaixãoPGouveiaLFMoraisJAGPrediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networksEur J Pharm Sci2010393103211:CAS:528:DC%2BC3cXjtVWksbg%3D10.1016/j.ejps.2009.12.00720056146
PaixãoPGouveiaLFMoraisJAGPrediction of drug distribution within bloodEur J Pharm Sci2009365445541:CAS:528:DC%2BD1MXhs1aqur0%3D10.1016/j.ejps.2008.12.01119152835
EkinsSWallerCLSwaanPWProgress in predicting human ADME parameters in silicoJ Pharmacol Toxicol Methods2000442512721:CAS:528:DC%2BD3MXitF2ks74%3D10.1016/S1056-8719(00)00109-X11274894
RodgersTLeahyDRowlandMPhysiologically based pharmacokinetic modeling 1: Predicting the tissue distribution of moderate-to-strong basesJ Pharm Sci200594125912761:CAS:528:DC%2BD2MXkvF2qtLs%3D10.1002/jps.2032215858854
RodgersTRowlandMMechanistic approaches to volume of distribution predictions: understanding the processesPharm Res2007249189331:CAS:528:DC%2BD2sXkslWgt7c%3D10.1007/s11095-006-9210-317372687
EngHNiosiMMcDonaldTSUtility of the carboxylesterase inhibitor bis-para-nitrophenylphosphate (BNPP) in the plasma unbound fraction determination for a hydrolytically unstable amide derivative and agonist of the TGR5 receptorXenobiotica2010403693801:CAS:528:DC%2BC3cXlvVGksLk%3D10.3109/0049825100370659820297923
OhashiRWatanabeREsakiTDevelopment of Simplified in Vitro P-Glycoprotein Substrate Assay and in Silico Prediction Models to Evaluate Transport Potential of P-GlycoproteinMol Pharm201916185118631:CAS:528:DC%2BC1MXmt1Oltbs%3D10.1021/acs.molpharmaceut.8b0114330933526
KatoMShitaraYSatoHThe quantitative prediction of CYP-mediated drug interaction by physiologically based pharmacokinetic modelingPharm Res200825189119011:CAS:528:DC%2BD1cXot1WhsLY%3D10.1007/s11095-008-9607-218483837
ZhouWJohnsonTNXuHPredictive performance of physiologically based pharmacokinetic and population pharmacokinetic modeling of renally cleared drugs in childrenCPT Pharmacometrics Syst Pharmacol201654754831:CAS:528:DC%2BC28XhsVWjtLvK10.1002/psp4.12101275669925036422
GabrielssonJWeinerDPharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications2006ApotekarsocietetenFourth Edition
EmotoCJohnsonTNMcPhailBTUsing a Vancomycin PBPK model in special populations to elucidate case-based clinical PK observationsCPT Pharmacometrics Syst Pharmacol201872372501:CAS:528:DC%2BC1cXislSkur4%3D10.1002/psp4.12279294462565915605
WangYLiuHFanYIn Silico prediction of human intravenous pharmacokinetic parameters with improved accuracyJ Chem Inf Model201959396839801:CAS:528:DC%2BC1MXhsFKlu7%2FI10.1021/acs.jcim.9b0030031403793
DaveRAMorrisMEQuantitative structure-pharmacokinetic relationships for the prediction of renal clearance in humansDrug Metab Dispos20154373811:CAS:528:DC%2BC2MXht1Okuw%3D%3D10.1124/dmd.114.059857253526574279087
SheridanRPWangWMLiawAExtreme gradient boosting as a method for quantitative structure-activity relationshipsJ Chem Inf Model201656235323601:CAS:528:DC%2BC28XhvFCgs73E10.1021/acs.jcim.6b0059127958738
RileyRJMcginnityDFAustinRPA unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomesPharmacology200533130413111:CAS:528:DC%2BD2MXpsFamt74%3D10.1124/dmd.105.004259.lenged
YamazakiKKanaokaMComputational Prediction of the Plasma Protein-Binding Rate of Diverse Chemical Compounds200493148014941:CAS:528:DC%2BD2cXks12iu7s%3D
FagerholmUPrediction of human pharmacokinetics - evaluation of methods for prediction of volume of distributionJ Pharm Pharmacol200759118111901:CAS:528:DC%2BD2sXhtV2qur3K10.1211/jpp.59.9.000117883888
UesawaYKagayaHVolume of distribution in opioids estimated by electric charge under biological pH conditionsJpn J Pharm Palliat Care Sci201475561
NagaiJImamuraMSakagamiHUesawaYQSAR Prediction model to search for compounds with selective cytotoxicity against oral cell cancerMedicines20196451:CAS:528:DC%2BC1MXhsFGkt7rN10.3390/medicines60200456631777
HouTJZhangWXiaKADME evaluation in drug discovery. 5. Correlation of caco-2 permeation with simple molecular propertiesJ Chem Inf Comput Sci200444158516001:CAS:528:DC%2BD2cXlt1yns7c%3D10.1021/ci049884m15446816
HinderlingPHRed blood cells: a neglected compartment in pharmacokinetics and pharmacodynamicsPharmacol Rev1997492792951:CAS:528:DyaK2sXmtl2hsbs%3D9311024
UchimuraTKatoMSaitoTKinoshitaHPrediction of Human Blood-to-Plasma Drug Concentration RatioBiopharm Drug Dispos2010312862971:CAS:528:DC%2BC3cXotFeitLo%3D10.1002/bdd20549836
SayamaHTakuboHKomuraHApplication of a physiologically based pharmacokinetic model informed by a top-down approach for the prediction of pharmacokinetics in chronic kidney disease patientsAAPS J201416101810281:CAS:528:DC%2BC2cXhtVWhurrP10.1208/s12248-014-9626-3249127984147047
NgCXiaoYPutnamWQuantitative structure-pharmacokinetic parameters relationships (QSPKR) analysis of antimicrobial agents in humans using simulated annealing k-nearest-neighbor and partial least-square analysis methodsJ Pharm Sci200493253525441:CAS:528:DC%2BD2cXotl2gt7w%3D10.1002/jps.2011715349962
Sohlenius-SternbeckAKAfzeliusLPrusisPEvaluation of the human prediction of clearance from hepatocyte and microsome intrinsic clearance for 52 drug compoundsXenobiotica2010406376491:CAS:528:DC%2BC3cXhtVajsLnI10.3109/00498254.2010.50040720624033
YapCWLiZRChenYZQuantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methodsJ Mol Graph Model2006243833951:CAS:528:DC%2BD28XitVKgtb4%3D10.1016/j.jmgm.2005.10.00416290201
LobellMSivarajahVIn silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 valuesMol Divers2003769871:CAS:528:DC%2BD3sXpsVGiurc%3D10.1023/B:MODI.0000006562.93049.3614768905
NishimuraAMurakamiTHigashiYYataNRole of acidic phospholipids in tissue distribution of quinidine in ratsJ pharmacobio-dynamics198710134141
H Eng (10186_CR17) 2010; 40
10186_CR1
T Rodgers (10186_CR25) 2005; 94
P Paixão (10186_CR14) 2009; 36
RP Sheridan (10186_CR26) 2016; 56
H Sayama (10186_CR4) 2014; 16
J Gabrielsson (10186_CR18) 2006
M Lobell (10186_CR27) 2003; 7
Y Uesawa (10186_CR5) 2014; 7
T Fox (10186_CR11) 2006; 6
10186_CR15
K Yamazaki (10186_CR28) 2004; 93
Y Wang (10186_CR12) 2019; 59
RA Dave (10186_CR8) 2015; 43
U Fagerholm (10186_CR29) 2007; 59
T Uchimura (10186_CR16) 2010; 31
RJ Riley (10186_CR21) 2005; 33
TJ Hou (10186_CR30) 2004; 44
C Emoto (10186_CR32) 2018; 7
CW Yap (10186_CR6) 2006; 24
J Nagai (10186_CR20) 2019; 6
PH Hinderling (10186_CR13) 1997; 49
T Rodgers (10186_CR23) 2007; 24
PH Van der Graaf (10186_CR9) 1999; 88
AK Sohlenius-Sternbeck (10186_CR22) 2010; 40
A Nishimura (10186_CR24) 1987; 10
S Ekins (10186_CR10) 2000; 44
P Paixão (10186_CR2) 2010; 39
W Zhou (10186_CR31) 2016; 5
M Kato (10186_CR3) 2008; 25
R Ohashi (10186_CR19) 2019; 16
C Ng (10186_CR7) 2004; 93
References_xml – volume: 16
  start-page: 1018
  year: 2014
  ident: 10186_CR4
  publication-title: AAPS J
  doi: 10.1208/s12248-014-9626-3
  contributor:
    fullname: H Sayama
– volume: 33
  start-page: 1304
  year: 2005
  ident: 10186_CR21
  publication-title: Pharmacology
  doi: 10.1124/dmd.105.004259.lenged
  contributor:
    fullname: RJ Riley
– volume: 44
  start-page: 1585
  year: 2004
  ident: 10186_CR30
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci049884m
  contributor:
    fullname: TJ Hou
– volume: 10
  start-page: 134
  year: 1987
  ident: 10186_CR24
  publication-title: J pharmacobio-dynamics
  contributor:
    fullname: A Nishimura
– volume: 93
  start-page: 1480
  year: 2004
  ident: 10186_CR28
  publication-title: Computational Prediction of the Plasma Protein-Binding Rate of Diverse Chemical Compounds
  contributor:
    fullname: K Yamazaki
– volume: 24
  start-page: 918
  year: 2007
  ident: 10186_CR23
  publication-title: Pharm Res
  doi: 10.1007/s11095-006-9210-3
  contributor:
    fullname: T Rodgers
– ident: 10186_CR1
– volume: 6
  start-page: 1579
  year: 2006
  ident: 10186_CR11
  publication-title: Curr Top Med Chem
  doi: 10.2174/156802606778108915
  contributor:
    fullname: T Fox
– volume: 7
  start-page: 237
  year: 2018
  ident: 10186_CR32
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1002/psp4.12279
  contributor:
    fullname: C Emoto
– volume: 44
  start-page: 251
  year: 2000
  ident: 10186_CR10
  publication-title: J Pharmacol Toxicol Methods
  doi: 10.1016/S1056-8719(00)00109-X
  contributor:
    fullname: S Ekins
– volume: 25
  start-page: 1891
  year: 2008
  ident: 10186_CR3
  publication-title: Pharm Res
  doi: 10.1007/s11095-008-9607-2
  contributor:
    fullname: M Kato
– volume: 5
  start-page: 475
  year: 2016
  ident: 10186_CR31
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1002/psp4.12101
  contributor:
    fullname: W Zhou
– volume: 43
  start-page: 73
  year: 2015
  ident: 10186_CR8
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.114.059857
  contributor:
    fullname: RA Dave
– volume: 7
  start-page: 55
  year: 2014
  ident: 10186_CR5
  publication-title: Jpn J Pharm Palliat Care Sci
  contributor:
    fullname: Y Uesawa
– volume: 93
  start-page: 2535
  year: 2004
  ident: 10186_CR7
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20117
  contributor:
    fullname: C Ng
– volume: 31
  start-page: 286
  year: 2010
  ident: 10186_CR16
  publication-title: Biopharm Drug Dispos
  doi: 10.1002/bdd
  contributor:
    fullname: T Uchimura
– volume: 6
  start-page: 45
  year: 2019
  ident: 10186_CR20
  publication-title: Medicines
  doi: 10.3390/medicines6020045
  contributor:
    fullname: J Nagai
– volume-title: Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications
  year: 2006
  ident: 10186_CR18
  contributor:
    fullname: J Gabrielsson
– volume: 94
  start-page: 1259
  year: 2005
  ident: 10186_CR25
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20322
  contributor:
    fullname: T Rodgers
– volume: 59
  start-page: 3968
  year: 2019
  ident: 10186_CR12
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00300
  contributor:
    fullname: Y Wang
– volume: 49
  start-page: 279
  year: 1997
  ident: 10186_CR13
  publication-title: Pharmacol Rev
  contributor:
    fullname: PH Hinderling
– volume: 36
  start-page: 544
  year: 2009
  ident: 10186_CR14
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2008.12.011
  contributor:
    fullname: P Paixão
– volume: 59
  start-page: 1181
  year: 2007
  ident: 10186_CR29
  publication-title: J Pharm Pharmacol
  doi: 10.1211/jpp.59.9.0001
  contributor:
    fullname: U Fagerholm
– volume: 39
  start-page: 310
  year: 2010
  ident: 10186_CR2
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2009.12.007
  contributor:
    fullname: P Paixão
– volume: 7
  start-page: 69
  year: 2003
  ident: 10186_CR27
  publication-title: Mol Divers
  doi: 10.1023/B:MODI.0000006562.93049.36
  contributor:
    fullname: M Lobell
– volume: 88
  start-page: 306
  year: 1999
  ident: 10186_CR9
  publication-title: J Pharm Sci
  doi: 10.1021/js980294a
  contributor:
    fullname: PH Van der Graaf
– volume: 40
  start-page: 637
  year: 2010
  ident: 10186_CR22
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2010.500407
  contributor:
    fullname: AK Sohlenius-Sternbeck
– volume: 56
  start-page: 2353
  year: 2016
  ident: 10186_CR26
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00591
  contributor:
    fullname: RP Sheridan
– volume: 40
  start-page: 369
  year: 2010
  ident: 10186_CR17
  publication-title: Xenobiotica
  doi: 10.3109/00498251003706598
  contributor:
    fullname: H Eng
– volume: 16
  start-page: 1851
  year: 2019
  ident: 10186_CR19
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.8b01143
  contributor:
    fullname: R Ohashi
– ident: 10186_CR15
  doi: 10.1038/s41563-019-0332-5
– volume: 24
  start-page: 383
  year: 2006
  ident: 10186_CR6
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2005.10.004
  contributor:
    fullname: CW Yap
SSID ssj0010013
Score 2.4319143
Snippet Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting blood-to-plasma...
Abstract Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated methods for predicting...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1261
SubjectTerms Algorithms
Biochemistry
Biomedical and Life Sciences
Databases, Pharmaceutical
Drug Monitoring
Humans
Life Sciences
Models, Theoretical
Molecular Structure
Neural Networks, Computer
Organic Chemistry
Original
Original Article
Pharmaceutical Preparations - chemistry
Pharmacokinetics
Pharmacy
Plasma
Polymer Sciences
Quantitative Structure-Activity Relationship
Structure-Activity Relationship
Tissue Distribution
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkLonwGWuQDN7CIk_jrhBCiqpBacaDS3iJ_Qg9kt81WiH_PjO3d1VLBKZFiJVGeY7-x37wh5A0wcBcl94zLAAEKBB3M6H5g3gZtlNfBWUwUPjuXpxfDl4VY1AW3ucoqN2NiHqjD0uMa-XugvsCEpVDqw-qKYdUo3F2tJTTuknu8ayVKutRiG3ChvVAW2MOshIIKXpNmSuoc1tdiKFBAzyrJ1P7EdItt3hZN_rVzmiekk0fkYWWS9GOB_pDcidNjcr_UlvwNZ1nb6ecn5NfXa9yNQX0zLTr19ZKtgDX_tNRj1uJUrXNpPsx0mWi4vvk-U8w9ob5aCtBiNXsD8Tm1U6BlXCut0X23Fs6ilxPNhf_mp-Ti5PO3T6es1ltgHnjbGsYaK4y1CkiUSCmKNCRvrJM2qCEJ7fqeJ9VqK6y2UWsXdXRW8WSC8RCT8_4ZOZiWU3yBgqle-sSt6EwcQoCYTvjBtq4Lrem4Cw15u_nY46rYaow7A2WEZgRoxgzNqBpytMFjrL_YPO46REOeF2i2t-p7IY1qRUPUHmjbBmiqvX9luvyRzbU1WiJy05B3G3h3j_z3G778_xu-Ig867GpZOHhEDgCveAxkZu1e5x77B8xN89k
  priority: 102
  providerName: ProQuest
Title Predicting blood-to-plasma concentration ratios of drugs from chemical structures and volumes of distribution in humans
URI https://link.springer.com/article/10.1007/s11030-021-10186-7
https://www.ncbi.nlm.nih.gov/pubmed/33569705
https://www.proquest.com/docview/2558266577
https://pubmed.ncbi.nlm.nih.gov/PMC8342319
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVkhcEG8CJdoDN7CUtb2vY4hSKhBVhYgUTtY-oQecqk6F-u87s3YShcKB01re1dryt96d0XzzDcBbtMBdlNwXXAZ0UNDpKIyu6sLboI3yOjhLicJfzuTpov60FMtdHncmu28iknmj3uW6UUGsghgFJDIlC3UAR4Lk0HARL8rpNnRARk32sjQnFgUfMmX-Psf-aXTHxLzLlPwjXJpPoZNH8HAwH9m0x_sx3IvtE7jfF5S8watM6PTdU_h9fkUhGCI1s56cvl4Vl2gq_7LMU6piO-jlstx0bJVYuLr-0TFKOGF-0BFgvb7sNTrlzLaB9ZtZP5okd4dqWeyiZbnaX_cMFifzb7PTYiiyUHg01ta4wVhhrFVoOYmUokh18sY6aYOqk9CuqnhSE22F1TZq7aKOziqeTDAeHXFePYfDdtXGl8SSqqRP3IrSxDoEdOSEr-3ElWFiSu7CCN5tPnZz2WtpNDvVZIKmQWiaDE2jRnC8waMZ_quuQQcI_SEpFHa_6KHZTlVVQho1ESNQe6BtB5CS9n5Pe_EzK2pr0kHkZgTvN_DuHvnvN3z1f8Nfw4OSll5mDx7DIeIX36BFs3ZjOFBLNYaj6cfvn-fYfpifnX_FuzM5G-fVfQtFxfUW
link.rule.ids 230,315,783,787,888,12068,21400,27936,27937,31731,33756,41093,41132,41535,42162,42201,42604,43322,43817,51588,52123,52246,74073,74630
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BKwQXxDeBAj5wA4v1Jo7tUwVVqwXaVYVaqbfIn6UHskuzFeLf12N7d7Wt4JRIsZIoz7Hf2G_eALyPDNz4llnKWhcDlBh0UCXrhlrtpBJWOqMxUfho2k5Om29n_KwsuA1FVrkcE9NA7WYW18g_ReobmXDLhdid_6ZYNQp3V0sJjbuwjVZVMfja_rI_Pf6x2kdAhpNCLslQUsFK2kxOnsMKWxQlCuha1VKxOTXd4pu3ZZM39k7TlHTwCB4WLkk-Z_Afwx3fP4F7ubrk33iW1J12eAp_ji9xPwYVziQr1RczOo-8-ZcmFvMW-2KeS9JhILNA3OXV-UAw-4TYYipAstnsVYzQie4dySNbbo3-u6V0FrnoSSr9NzyD04P9k70JLRUXqI3MbRFHG82V1iLSKB6C56EJVmnTaieawKWpaxbESGqupfZSGi-90YIF5ZSNUTmrn8NWP-v9S5RM1a0NTPOx8o1zMarjttEjM3YjNWbGVfBh-bG7eTbW6NYWyghNF6HpEjSdqGBniUdXfrKhW3eJCl5kaFa3qmveKjHiFYgN0FYN0FZ780p_8TPZa0s0RWSqgo9LeNeP_Pcbvvr_G76D-5OTo8Pu8Ov0-2t4MMZul2SEO7AVsfNvIrVZmLel_14Dk-n4Lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgK1AviHcDBXzgBlbjTfw6IR5dlddqhajUW-Qn7aHZpdkK9d_XY3t3tVRwSqRYiZWZ2N9kvvkGodcRgRvPqSWUuxigxKCDKNm0xGonlbDSGQ2Fwt-n_Oi4_XLCTgr_aSi0ytWamBZqN7fwj_wgQt-IhDkT4iAUWsTs0-Td4jeBDlKQaS3tNG6jHdHyph6hnQ-H09mPdU4B0E4KvyQFegUtJTS5kA66bRGgK4CCFSdie5u6gT1vUij_yqOm7WlyH90ruBK_z47wAN3y_UN0J3eavIpnielph0foz-wCcjPAdsaZtb6ck0XE0OcaW6hh7IuQLk6HAc8DdheXvwYMlSjYFoEBnIVnL2O0jnXvcF7l8mjQ4i1ttPBZj1MbwOExOp4c_vx4REr3BWIjilvGlUczpbWIkIqF4Flog1XacO1EG5g0TUODqKVmWmovpfHSGy1oUE7ZGKHT5gka9fPe7wF9quE2UM3GyrfOxQiP2VbXZuxqNabGVejN6mV3iyyy0W3klME0XTRNl0zTiQrtr-zRlQ9u6DbuUaGn2TTrWzUN40rUrEJiy2jrASCxvX2lPztNUtsSBBKpqtDblXk3j_z3DJ_9f4av0N3out23z9Ovz9HuGLwuMQr30Siazr-IKGdpXhb3vQYWc_xd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+blood-to-plasma+concentration+ratios+of+drugs+from+chemical+structures+and+volumes+of+distribution+in+humans&rft.jtitle=Molecular+diversity&rft.au=Mamada%2C+Hideaki&rft.au=Iwamoto%2C+Kazuhiko&rft.au=Nomura%2C+Yukihiro&rft.au=Uesawa%2C+Yoshihiro&rft.date=2021-08-01&rft.issn=1381-1991&rft.eissn=1573-501X&rft.volume=25&rft.issue=3&rft.spage=1261&rft.epage=1270&rft_id=info:doi/10.1007%2Fs11030-021-10186-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11030_021_10186_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1991&client=summon