Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures
Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological a...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 6308 - 15 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.04.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage ‘Xiao Baojian’ grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes (
DFR
,
ANS
,
F3H
,
FLS1
,
CHS1
,
CHS3
, and
TT8
) and defense mechanisms-related genes (
DFR
,
SNL6
, and
TKPR1
) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources. |
---|---|
AbstractList | Abstract Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage ‘Xiao Baojian’ grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes (DFR, ANS, F3H, FLS1, CHS1, CHS3, and TT8) and defense mechanisms-related genes (DFR, SNL6, and TKPR1) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources. Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage ‘Xiao Baojian’ grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes ( DFR , ANS , F3H , FLS1 , CHS1 , CHS3 , and TT8 ) and defense mechanisms-related genes ( DFR , SNL6 , and TKPR1 ) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources. Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage 'Xiao Baojian' grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes (DFR, ANS, F3H, FLS1, CHS1, CHS3, and TT8) and defense mechanisms-related genes (DFR, SNL6, and TKPR1) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources.Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage 'Xiao Baojian' grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes (DFR, ANS, F3H, FLS1, CHS1, CHS3, and TT8) and defense mechanisms-related genes (DFR, SNL6, and TKPR1) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources. Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage 'Xiao Baojian' grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes (DFR, ANS, F3H, FLS1, CHS1, CHS3, and TT8) and defense mechanisms-related genes (DFR, SNL6, and TKPR1) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources. |
ArticleNumber | 6308 |
Author | Zhang, Hui Dai, Yun Sun, Xiao Fang, Zhiyuan Sun, Rifei Hou, Xilin Li, Fei Zhang, Shujiang Li, Guoliang Zhang, Lei Zhang, Shifan |
Author_xml | – sequence: 1 givenname: Yun surname: Dai fullname: Dai, Yun organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 3 givenname: Xiao surname: Sun fullname: Sun, Xiao organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 4 givenname: Fei surname: Li fullname: Li, Fei organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 5 givenname: Shifan surname: Zhang fullname: Zhang, Shifan organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 6 givenname: Hui surname: Zhang fullname: Zhang, Hui organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 7 givenname: Guoliang surname: Li fullname: Li, Guoliang organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 8 givenname: Zhiyuan surname: Fang fullname: Fang, Zhiyuan organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 9 givenname: Rifei surname: Sun fullname: Sun, Rifei organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 10 givenname: Xilin surname: Hou fullname: Hou, Xilin email: hxl@njau.edu.cn organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University – sequence: 11 givenname: Shujiang surname: Zhang fullname: Zhang, Shujiang email: shujiang_zhang@163.com organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35428824$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vEzEQtVARLaF_gANaiUs5bBl_7K5zQYKIj0qRuORuzTqTxNHGDra3KP8ek5TS9lBfbD-_9_xGM6_ZmQ-eGHvL4ZqD1B-T4s1U1yBEzYFDW_MX7EKAamohhTh7cD5nlyltoaxGTBWfvmLnslFCa6EuWFhE9MlGt89hRxV6HA7JpSrSLeGQCpA3wR7QO1-w9ThgdsFX5TbbOE-JKot9j2uqrr5ETMlZrCLusZpff6gwV0P4XWXa7SliHiOlN-zlqvjS5d0-YYtvXxezH_X85_eb2ed5bRsFuZZt00iwfQc9B9WJFSjVwapv0XLEpQVqFSxlgazsyYLql7znrVIgpbAoJ-zmZLsMuDX76HYYDyagM0cgxLXBmJ0dyHAUIKFRnYZOcdK6wc6uVNMJ0fVc6uL16eS1H_sdLS35HHF4ZPr4xbuNWYdbMwUuulLHhF3dGcTwa6SUzc4lS8OAnsKYjGgb3uoSYFqo759Qt2GMpSlHFkjetrorrHcPE91H-dfWQhAngo0hpUirewoH83d8zGl8TBkfcxwfw4tIPxFZl4_tLlW54XmpPElT-cevKf6P_YzqD-mS2GA |
CitedBy_id | crossref_primary_10_1007_s00122_024_04552_w crossref_primary_10_3389_fpls_2022_1092857 crossref_primary_10_1016_j_ijbiomac_2025_141590 crossref_primary_10_3389_fphgy_2024_1507833 crossref_primary_10_3390_f15071146 crossref_primary_10_1007_s11240_024_02846_x crossref_primary_10_1186_s12870_024_05837_4 crossref_primary_10_3390_genes13112084 crossref_primary_10_1016_j_scienta_2023_112182 crossref_primary_10_3390_antiox13010055 crossref_primary_10_1016_j_jbiotec_2022_11_009 crossref_primary_10_1007_s10725_025_01298_3 crossref_primary_10_1186_s12864_024_10341_y crossref_primary_10_3390_plants13050700 crossref_primary_10_1186_s12870_024_05991_9 crossref_primary_10_3389_fpls_2023_1326218 crossref_primary_10_1016_j_stress_2024_100657 crossref_primary_10_1007_s00425_025_04630_3 crossref_primary_10_3390_ijms241411391 crossref_primary_10_3389_fpls_2023_1232421 crossref_primary_10_1134_S1021443724607353 crossref_primary_10_1016_j_foodchem_2024_140111 crossref_primary_10_1016_j_plaphy_2025_109656 crossref_primary_10_1186_s12870_024_05316_w |
Cites_doi | 10.1186/gb-2010-11-2-r14 10.3389/fpls.2020.619417 10.1016/j.pbi.2014.05.011 10.1093/nar/28.1.27 10.1007/s00425-012-1674-2 10.1016/j.plantsci.2011.05.009 10.1016/j.scienta.2013.05.039 10.1016/j.plaphy.2018.08.016 10.1104/pp.109.3.1125 10.3390/molecules23071832 10.1038/hortres.2017.70 10.1007/s11676-015-0121-1 10.1016/j.tplants.2014.12.001 10.1016/j.gene.2015.08.003 10.1111/tpj.14013 10.1016/j.foodchem.2018.07.120 10.1046/j.1365-313x.2001.01099.x 10.2307/3869583 10.1016/j.jplph.2005.07.007 10.1016/j.jplph.2011.12.015 10.1111/tpj.14555 10.1105/tpc.110.080036 10.1186/1471-2105-7-191 10.1007/s00299-017-2147-7 10.1007/s10725-019-00493-3 10.1007/s10142-014-0427-7 10.1007/s00344-012-9289-1 10.3390/genes11040392 10.1021/jf070010k 10.3390/agronomy9020061 10.1186/1752-0509-8-S4-S11 10.1080/07929978.1999.10676777 10.7717/peerj.4607 10.1093/pcp/pcm066 10.1371/journal.pone.0078484 10.1104/pp.126.2.485 10.1007/s00299-011-1162-3 10.1105/tpc.113.122069 10.1111/ppl.12018 10.1016/j.febslet.2009.05.006 10.1111/j.1365-313X.2007.03373.x 10.1016/S0168-9452(99)00146-6 10.3389/fchem.2018.00052 10.1016/j.biortech.2010.07.083 10.3390/genes11010081 10.1016/j.plantsci.2005.10.009 10.21273/JASHS.129.1.0006 10.1038/s41438-018-0071-9 10.1016/j.plantsci.2006.07.010 10.1371/journal.pgen.1001123 10.1186/s13059-014-0550-8 10.1016/j.scienta.2013.08.017 10.3390/ijms11041679 10.1146/annurev.arplant.57.032905.105248 10.1111/j.1365-313X.2008.03447.x 10.1016/j.phytochem.2009.07.008 10.17660/ActaHortic.2005.671.9 10.3732/ajb.1300305 10.4161/psb.6.11.17613 10.1111/j.1469-8137.2008.02737.x 10.1104/pp.108.1.39 10.1038/nprot.2012.016 10.1007/s00044-018-2278-6 10.1104/pp.17.00311 10.1007/s11101-007-9076-y 10.1007/s11033-012-2169-8 10.1016/j.plaphy.2020.11.035 10.1016/j.foodchem.2017.05.076 10.1007/s13562-012-0122-5 10.4161/15592316.2014.970440 10.1111/j.1365-313X.2007.03078.x 10.1111/j.2517-6161.1995.tb02031.x 10.1016/S1016-8478(23)17587-X |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-10106-1 |
DatabaseName | SpringerOpen CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_1a203054780741e885a7cf457227b138 PMC9012755 35428824 10_1038_s41598_022_10106_1 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences grantid: CAAS-ASTIP-IVFCAAS – fundername: China Agricultural Research System grantid: CARS-23-A14 – fundername: Beijing Natural Science Foundation grantid: 6212030 – fundername: National Natural Science Foundation of China grantid: 32102373 – fundername: ; grantid: 6212030 – fundername: ; grantid: CAAS-ASTIP-IVFCAAS – fundername: ; grantid: CARS-23-A14 – fundername: ; grantid: 32102373 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-365530cb70b10472f04470fb6ac1aadc0e640d370fc3bec04bd1b16440332ca3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:04:34 EDT 2025 Thu Aug 21 18:28:51 EDT 2025 Fri Jul 11 15:32:46 EDT 2025 Wed Aug 13 04:54:49 EDT 2025 Mon Jul 21 06:00:58 EDT 2025 Thu Apr 24 23:03:59 EDT 2025 Tue Jul 01 04:16:14 EDT 2025 Fri Feb 21 02:38:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-365530cb70b10472f04470fb6ac1aadc0e640d370fc3bec04bd1b16440332ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-10106-1 |
PMID | 35428824 |
PQID | 2650316687 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a203054780741e885a7cf457227b138 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9012755 proquest_miscellaneous_2651684789 proquest_journals_2650316687 pubmed_primary_35428824 crossref_primary_10_1038_s41598_022_10106_1 crossref_citationtrail_10_1038_s41598_022_10106_1 springer_journals_10_1038_s41598_022_10106_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li (CR65) 1993; 5 de Pascual-Teresa (CR2) 2010; 11 Sperdouli, Moustakas (CR18) 2012; 169 Zhang (CR50) 2018; 6 Bart (CR68) 2010; 6 Sirin, Aslim (CR73) 2019; 28 Zhao (CR4) 2016; 27 Maier, Hoecker (CR16) 2015; 10 Massonnet (CR59) 2017; 174 Katz, Weiss (CR17) 1999; 47 Ubi (CR24) 2006; 170 Benjamini, Hochberg (CR33) 1995; 57 Preuss (CR63) 2009; 583 Kaliamoorthy, Rao (CR13) 1994; 37 Xu (CR8) 2015; 20 He (CR42) 2020; 11 Kim (CR57) 2017; 36 André (CR19) 2009; 70 Trapnell (CR31) 2012; 7 Love (CR32) 2014; 15 Steyn (CR26) 2005; 671 CR5 Dai (CR49) 2020; 11 Wang (CR45) 2018; 96 Kumar (CR75) 2013; 40 Xu (CR74) 2010; 101 Chin (CR37) 2014; 8 Ernst, Bar-Joseph (CR36) 2006; 7 Albert (CR9) 2014; 26 Tian (CR61) 2008; 7 Keutgen, Pawelzik (CR14) 2007; 55 Roehl (CR52) 1995; 109 Rosati (CR62) 1999; 149 Piao (CR12) 2001; 27 Chu (CR56) 2014; 165 Dong (CR48) 2019; 271 Zhang (CR30) 2018; 5 Zhang (CR43) 2015; 574 Tanaka (CR64) 2008; 54 Zhang (CR27) 2012; 31 Winkel-Shirley (CR7) 2001; 126 Sudheeran (CR51) 2018; 23 Wang (CR69) 2013; 149 Petroni, Tonelli (CR10) 2011; 181 Dai (CR38) 2019; 9 Carmona (CR44) 2017; 237 Grienenberger (CR70) 2010; 22 Wang (CR71) 2013; 8 Gonzalez (CR11) 2008; 53 Rowan (CR23) 2009; 182 Steyn (CR25) 2004; 129 Zhou (CR41) 2012; 236 Leyva (CR22) 1995; 108 Jiang (CR55) 2013; 32 Zhang (CR1) 2014; 19 Young (CR34) 2010; 11 Li (CR58) 2017; 8 Zhou (CR67) 2013; 100 Akula, Ravishankar (CR20) 2011; 6 Ban (CR28) 2007; 48 Ahmed (CR47) 2015; 15 Liu (CR29) 2018; 6 Fu (CR77) 2019; 88 Kim (CR53) 2008; 25 An (CR21) 2020; 101 Kanehisa, Goto (CR35) 2000; 28 Watkinson (CR54) 2006; 171 Stracke (CR76) 2007; 50 Lotkowska (CR40) 2015; 169 Rahnama (CR66) 2013; 22 Wahid, Ghazanfar (CR15) 2006; 163 Grotewold (CR3) 2006; 57 Tian (CR60) 2017; 4 Guo (CR46) 2018; 130 Akter (CR39) 2021; 11 Li (CR6) 2021; 158 Chen (CR72) 2013; 160 DD Rowan (10106_CR23) 2009; 182 BE Ubi (10106_CR24) 2006; 170 M Massonnet (10106_CR59) 2017; 174 YZ Zhang (10106_CR50) 2018; 6 Y Ban (10106_CR28) 2007; 48 F Jiang (10106_CR55) 2013; 32 NU Ahmed (10106_CR47) 2015; 15 JY Li (10106_CR65) 1993; 5 A Leyva (10106_CR22) 1995; 108 L Zhang (10106_CR30) 2018; 5 I Sperdouli (10106_CR18) 2012; 169 J Ernst (10106_CR36) 2006; 7 E Grotewold (10106_CR3) 2006; 57 A Wahid (10106_CR15) 2006; 163 Y Li (10106_CR58) 2017; 8 A Preuss (10106_CR63) 2009; 583 C André (10106_CR19) 2009; 70 S Chen (10106_CR72) 2013; 160 Z Fu (10106_CR77) 2019; 88 NW Albert (10106_CR9) 2014; 26 J Kim (10106_CR57) 2017; 36 HX Wang (10106_CR71) 2013; 8 L Carmona (10106_CR44) 2017; 237 N Wang (10106_CR45) 2018; 96 Y Benjamini (10106_CR33) 1995; 57 Y Dai (10106_CR49) 2020; 11 S Kaliamoorthy (10106_CR13) 1994; 37 ME Lotkowska (10106_CR40) 2015; 169 10106_CR5 M Kanehisa (10106_CR35) 2000; 28 R Stracke (10106_CR76) 2007; 50 K Petroni (10106_CR10) 2011; 181 E Grienenberger (10106_CR70) 2010; 22 A Katz (10106_CR17) 1999; 47 W Xu (10106_CR8) 2015; 20 Q He (10106_CR42) 2020; 11 L Tian (10106_CR61) 2008; 7 S de Pascual-Teresa (10106_CR2) 2010; 11 B Zhou (10106_CR67) 2013; 100 C Trapnell (10106_CR31) 2012; 7 J An (10106_CR21) 2020; 101 JI Watkinson (10106_CR54) 2006; 171 B Zhang (10106_CR27) 2012; 31 MI Love (10106_CR32) 2014; 15 MD Young (10106_CR34) 2010; 11 CH Chin (10106_CR37) 2014; 8 A Gonzalez (10106_CR11) 2008; 53 JH Kim (10106_CR53) 2008; 25 Q Zhao (10106_CR4) 2016; 27 HL Piao (10106_CR12) 2001; 27 WJ Steyn (10106_CR25) 2004; 129 Y Dai (10106_CR38) 2019; 9 X Guo (10106_CR46) 2018; 130 T Roehl (10106_CR52) 1995; 109 WJ Steyn (10106_CR26) 2005; 671 TT Dong (10106_CR48) 2019; 271 A Akter (10106_CR39) 2021; 11 J Tian (10106_CR60) 2017; 4 H Xu (10106_CR74) 2010; 101 S Kumar (10106_CR75) 2013; 40 RS Bart (10106_CR68) 2010; 6 A Maier (10106_CR16) 2015; 10 H Rahnama (10106_CR66) 2013; 22 Y Wang (10106_CR69) 2013; 149 Y Liu (10106_CR29) 2018; 6 C Rosati (10106_CR62) 1999; 149 B Winkel-Shirley (10106_CR7) 2001; 126 S Sirin (10106_CR73) 2019; 28 Q Li (10106_CR6) 2021; 158 C Zhang (10106_CR43) 2015; 574 Y Tanaka (10106_CR64) 2008; 54 Y Chu (10106_CR56) 2014; 165 Y Zhang (10106_CR1) 2014; 19 R Akula (10106_CR20) 2011; 6 LL Zhou (10106_CR41) 2012; 236 PK Sudheeran (10106_CR51) 2018; 23 AJ Keutgen (10106_CR14) 2007; 55 |
References_xml | – volume: 11 start-page: R14 year: 2010 ident: CR34 article-title: Gene ontology analysis for RNA-seq: accounting for selection bias publication-title: Genome Biol. doi: 10.1186/gb-2010-11-2-r14 – volume: 11 start-page: 619417 year: 2021 ident: CR39 article-title: Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.619417 – volume: 19 start-page: 81 year: 2014 end-page: 90 ident: CR1 article-title: Engineering anthocyanin biosynthesis in plants publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2014.05.011 – volume: 28 start-page: 27 year: 2000 end-page: 30 ident: CR35 article-title: KEGG: Kyoto encyclopedia of genes and genomes publication-title: Nucl. Acids Res. doi: 10.1093/nar/28.1.27 – volume: 169 start-page: 1862 year: 2015 end-page: 1880 ident: CR40 article-title: The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress publication-title: Plant Physiol. – volume: 236 start-page: 825 year: 2012 end-page: 837 ident: CR41 article-title: Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of publication-title: Planta doi: 10.1007/s00425-012-1674-2 – volume: 181 start-page: 219 year: 2011 end-page: 229 ident: CR10 article-title: Recent advances on the regulation of anthocyanin synthesis in reproductive organs publication-title: Plant Sci. doi: 10.1016/j.plantsci.2011.05.009 – volume: 160 start-page: 222 year: 2013 end-page: 229 ident: CR72 article-title: fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress publication-title: Sci. Horticult. doi: 10.1016/j.scienta.2013.05.039 – volume: 130 start-page: 663 year: 2018 end-page: 677 ident: CR46 article-title: Transcriptomic analysis of light-dependent anthocyanin accumulation in bicolored cherry fruits publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.08.016 – volume: 109 start-page: 1125 year: 1995 end-page: 1127 ident: CR52 article-title: The electronic plant gene register publication-title: Plant Physiol. doi: 10.1104/pp.109.3.1125 – volume: 23 start-page: 1832 year: 2018 ident: CR51 article-title: Improved cold tolerance of mango fruit with enhanced anthocyanin and flavonoid contents publication-title: Molecules doi: 10.3390/molecules23071832 – volume: 4 start-page: 17070 year: 2017 ident: CR60 article-title: Characteristics of dihydroflavonol 4-reductase gene promoters from different leaf colored Malus crabapple cultivars publication-title: Hortic. Res. doi: 10.1038/hortres.2017.70 – volume: 27 start-page: 647 year: 2016 end-page: 657 ident: CR4 article-title: Expression of structural genes related to anthocyanin biosynthesis of publication-title: J. For. Res. doi: 10.1007/s11676-015-0121-1 – volume: 20 start-page: 176 year: 2015 end-page: 185 ident: CR8 article-title: Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.12.001 – volume: 574 start-page: 168 year: 2015 end-page: 177 ident: CR43 article-title: Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress publication-title: Gene doi: 10.1016/j.gene.2015.08.003 – volume: 96 start-page: 39 year: 2018 end-page: 55 ident: CR45 article-title: The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low-temperature conditions in red-fleshed apples publication-title: Plant J. doi: 10.1111/tpj.14013 – volume: 271 start-page: 18 year: 2019 end-page: 28 ident: CR48 article-title: Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses ( L.) publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.07.120 – volume: 27 start-page: 305 year: 2001 end-page: 314 ident: CR12 article-title: Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis publication-title: Plant J. doi: 10.1046/j.1365-313x.2001.01099.x – volume: 5 start-page: 171 year: 1993 end-page: 179 ident: CR65 article-title: Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation publication-title: Plant Cell doi: 10.2307/3869583 – volume: 163 start-page: 723 year: 2006 end-page: 730 ident: CR15 article-title: Possible involvement of some secondary metabolites in salt tolerance of sugarcane publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2005.07.007 – volume: 169 start-page: 577 year: 2012 end-page: 585 ident: CR18 article-title: Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of to drought stress publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.12.015 – volume: 101 start-page: 573 year: 2020 end-page: 589 ident: CR21 article-title: The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple publication-title: Plant J. doi: 10.1111/tpj.14555 – volume: 22 start-page: 4067 year: 2010 end-page: 4083 ident: CR70 article-title: Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis publication-title: Plant Cell doi: 10.1105/tpc.110.080036 – volume: 7 start-page: 191 year: 2006 ident: CR36 article-title: STEM: a tool for the analysis of short time series gene expression data publication-title: BMC Bioinform. doi: 10.1186/1471-2105-7-191 – volume: 36 start-page: 1215 year: 2017 end-page: 1224 ident: CR57 article-title: High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in L. publication-title: Plant Cell Rep. doi: 10.1007/s00299-017-2147-7 – volume: 88 start-page: 129 year: 2019 end-page: 138 ident: CR77 article-title: An R3-MYB gene of Phalaenopsis, MYBx1, represses anthocyanin accumulation publication-title: Plant Growth Regul. doi: 10.1007/s10725-019-00493-3 – volume: 15 start-page: 383 year: 2015 end-page: 394 ident: CR47 article-title: Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in publication-title: Funct. Integr. Genom. doi: 10.1007/s10142-014-0427-7 – volume: 32 start-page: 182 year: 2013 end-page: 190 ident: CR55 article-title: RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-012-9289-1 – volume: 11 start-page: 392 year: 2020 ident: CR49 article-title: Comparative transcriptome analysis of gene expression and regulatory characteristics associated with different vernalization periods in publication-title: Genes doi: 10.3390/genes11040392 – volume: 55 start-page: 4066 year: 2007 end-page: 4072 ident: CR14 article-title: Modifications of strawberry fruit antioxidant pools and fruit quality under NaCl stress publication-title: J. Agric. Food Chem. doi: 10.1021/jf070010k – volume: 9 start-page: 61 year: 2019 ident: CR38 article-title: Comprehensive evaluation for cold tolerance in wucai ( L.) by the performance index on an absorption basis (PIabs) publication-title: Agron. Basel doi: 10.3390/agronomy9020061 – ident: CR5 – volume: 8 start-page: S11 year: 2014 ident: CR37 article-title: cytoHubba: identifying hub objects and sub-networks from complex interactome publication-title: Bmc Syst. Biol. doi: 10.1186/1752-0509-8-S4-S11 – volume: 47 start-page: 225 year: 1999 end-page: 229 ident: CR17 article-title: Light regulation of anthocyanin accumulation and chalcone synthase gene expression in petunia flowers publication-title: Isr. J. Plant Sci. doi: 10.1080/07929978.1999.10676777 – volume: 6 start-page: e4607 year: 2018 ident: CR50 article-title: Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce publication-title: PeerJ doi: 10.7717/peerj.4607 – volume: 48 start-page: 958 year: 2007 end-page: 970 ident: CR28 article-title: Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm066 – volume: 8 start-page: e78484 year: 2013 ident: CR71 article-title: Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses publication-title: PLoS ONE doi: 10.1371/journal.pone.0078484 – volume: 126 start-page: 485 year: 2001 end-page: 493 ident: CR7 article-title: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology publication-title: Plant Physiol. doi: 10.1104/pp.126.2.485 – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: CR33 article-title: Controlling the false discovery rate - a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. B – volume: 31 start-page: 281 year: 2012 end-page: 289 ident: CR27 article-title: A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale ( var. acephala f. tricolor) publication-title: Plant Cell Rep. doi: 10.1007/s00299-011-1162-3 – volume: 26 start-page: 962 year: 2014 end-page: 980 ident: CR9 article-title: A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots publication-title: Plant Cell doi: 10.1105/tpc.113.122069 – volume: 149 start-page: 13 year: 2013 end-page: 24 ident: CR69 article-title: Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice publication-title: Physiol. Plantarum. doi: 10.1111/ppl.12018 – volume: 583 start-page: 1981 year: 2009 end-page: 1986 ident: CR63 article-title: Arabidopsis thaliana expresses a second functional flavonol synthase publication-title: Febs. Lett. doi: 10.1016/j.febslet.2009.05.006 – volume: 53 start-page: 814 year: 2008 end-page: 827 ident: CR11 article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03373.x – volume: 37 start-page: 169 year: 1994 end-page: 170 ident: CR13 article-title: Effect of salinity on anthocyanin accumulation in the root of maize publication-title: Indian J. Agr. Sci. – volume: 149 start-page: 73 year: 1999 end-page: 79 ident: CR62 article-title: Molecular characterization of the anthocyanidin synthase gene in Forsythia x intermedia reveals organ-specific expression during flower development publication-title: Plant Sci. doi: 10.1016/S0168-9452(99)00146-6 – volume: 6 start-page: 52 year: 2018 ident: CR29 article-title: Anthocyanin Biosynthesis and degradation mechanisms in solanaceous vegetables: a review publication-title: Front. Chem. doi: 10.3389/fchem.2018.00052 – volume: 101 start-page: 9715 year: 2010 end-page: 9722 ident: CR74 article-title: Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.07.083 – volume: 25 start-page: 312 year: 2008 end-page: 316 ident: CR53 article-title: Flavanone 3 beta-hydroxylases from rice: Key enzymes for favonol and anthocyanin biosynthesis publication-title: Mol. Cells – volume: 11 start-page: 81 year: 2020 ident: CR42 article-title: Low temperature promotes anthocyanin biosynthesis and related gene expression in the seedlings of purple head Chinese Cabbage ( L.) publication-title: Genes doi: 10.3390/genes11010081 – volume: 170 start-page: 571 year: 2006 end-page: 578 ident: CR24 article-title: Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature publication-title: Plant Sci. doi: 10.1016/j.plantsci.2005.10.009 – volume: 129 start-page: 6 year: 2004 end-page: 12 ident: CR25 article-title: Regulation of pear color development in relation to activity of flavonoid enzymes publication-title: J. Am. Soc. Hort. Sci. doi: 10.21273/JASHS.129.1.0006 – volume: 5 start-page: 50 year: 2018 ident: CR30 article-title: Improved reference genome by single-molecule sequencing and chromosome conformation capture technologies publication-title: Hortic. Res. doi: 10.1038/s41438-018-0071-9 – volume: 171 start-page: 745 year: 2006 end-page: 758 ident: CR54 article-title: Accessions of ssp. andigena show differences in photosynthetic recovery after drought stress as reflected in gene expression profiles publication-title: Plant Sci. doi: 10.1016/j.plantsci.2006.07.010 – volume: 6 start-page: e1001123 year: 2010 ident: CR68 article-title: Rice Snl6, a cinnamoyl-coA reductase-like gene family member, is required for NH1-mediated immunity to pv. oryzae publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001123 – volume: 15 start-page: 550 year: 2014 ident: CR32 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 165 start-page: 398 year: 2014 end-page: 403 ident: CR56 article-title: Molecular cloning and functional characterization of dihydroflavonol-4-reductase gene from publication-title: Sci. Horticult. doi: 10.1016/j.scienta.2013.08.017 – volume: 11 start-page: 1679 year: 2010 end-page: 1703 ident: CR2 article-title: Flavanols and anthocyanins in cardiovascular health: a review of current evidence publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms11041679 – volume: 57 start-page: 761 year: 2006 end-page: 780 ident: CR3 article-title: The genetics and biochemistry of floral pigments publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105248 – volume: 54 start-page: 733 year: 2008 end-page: 749 ident: CR64 article-title: Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03447.x – volume: 70 start-page: 1107 year: 2009 end-page: 1116 ident: CR19 article-title: Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress publication-title: Phytochemistry doi: 10.1016/j.phytochem.2009.07.008 – volume: 671 start-page: 79 year: 2005 end-page: 85 ident: CR26 article-title: Red colour development and loss in pears publication-title: Acta Horticult. doi: 10.17660/ActaHortic.2005.671.9 – volume: 100 start-page: 2458 year: 2013 end-page: 2467 ident: CR67 article-title: Chalcone synthase family genes have redundant roles in anthocyanin biosynthesis and in response to blue/UV-A light in turnip ( ; Brassicaceae) publication-title: Am. J. Bot. doi: 10.3732/ajb.1300305 – volume: 6 start-page: 1720 year: 2011 end-page: 1731 ident: CR20 article-title: Influence of abiotic stress signals on secondary metabolites in plants publication-title: Plant Signal Behav. doi: 10.4161/psb.6.11.17613 – volume: 182 start-page: 102 year: 2009 end-page: 115 ident: CR23 article-title: Environmental regulation of leaf colour in red 35S:PAP1 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02737.x – volume: 8 start-page: 428 year: 2017 ident: CR58 article-title: Dihydroflavonol 4-reductase genes from freesia hybrida play important and partially overlapping roles in the biosynthesis of flavonoids publication-title: Front. Plant Sci. – volume: 108 start-page: 39 year: 1995 end-page: 46 ident: CR22 article-title: Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of in a light-dependent manner publication-title: Plant Physiol. doi: 10.1104/pp.108.1.39 – volume: 7 start-page: 562 year: 2012 end-page: 578 ident: CR31 article-title: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.016 – volume: 28 start-page: 229 year: 2019 end-page: 238 ident: CR73 article-title: Determination of antioxidant capacity, phenolic acid composition and antiproliferative effect associated with phenylalanine ammonia lyase (PAL) activity in some plants naturally growing under salt stress publication-title: Med. Chem. Res. doi: 10.1007/s00044-018-2278-6 – volume: 174 start-page: 2376 year: 2017 end-page: 2396 ident: CR59 article-title: Ripening transcriptomic program in red and white grapevine varieties correlates with berry skin anthocyanin accumulation publication-title: Plant Physiol. doi: 10.1104/pp.17.00311 – volume: 7 start-page: 445 year: 2008 end-page: 465 ident: CR61 article-title: Biosynthesis and genetic engineering of proanthocyanidins and (iso) flavonoids publication-title: Phytochem. Rev. doi: 10.1007/s11101-007-9076-y – volume: 40 start-page: 1265 year: 2013 end-page: 1274 ident: CR75 article-title: Cinnamate 4-Hydroxylase (C4H) genes from : a pulp yielding leguminous tree publication-title: Mol. Bio. Rep. doi: 10.1007/s11033-012-2169-8 – volume: 158 start-page: 508 year: 2021 end-page: 517 ident: CR6 article-title: Comparative transcriptome analysis reveals candidate genes involved in anthocyanin biosynthesis in sweetpotato ( L.) publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.11.035 – volume: 237 start-page: 7 year: 2017 end-page: 14 ident: CR44 article-title: Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.05.076 – volume: 22 start-page: 138 year: 2013 end-page: 143 ident: CR66 article-title: Enhanced production of flavonolignans in hairy root cultures of by over-expression of chalcone synthase gene publication-title: J. Plant Biochem. Biot. doi: 10.1007/s13562-012-0122-5 – volume: 10 start-page: e970440 year: 2015 ident: CR16 article-title: COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions publication-title: Plant Signal Behav. doi: 10.4161/15592316.2014.970440 – volume: 50 start-page: 660 year: 2007 end-page: 677 ident: CR76 article-title: Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the seedling publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03078.x – volume: 28 start-page: 229 year: 2019 ident: 10106_CR73 publication-title: Med. Chem. Res. doi: 10.1007/s00044-018-2278-6 – volume: 170 start-page: 571 year: 2006 ident: 10106_CR24 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2005.10.009 – volume: 181 start-page: 219 year: 2011 ident: 10106_CR10 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2011.05.009 – volume: 57 start-page: 289 year: 1995 ident: 10106_CR33 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 19 start-page: 81 year: 2014 ident: 10106_CR1 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2014.05.011 – volume: 7 start-page: 191 year: 2006 ident: 10106_CR36 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-7-191 – volume: 6 start-page: 52 year: 2018 ident: 10106_CR29 publication-title: Front. Chem. doi: 10.3389/fchem.2018.00052 – volume: 23 start-page: 1832 year: 2018 ident: 10106_CR51 publication-title: Molecules doi: 10.3390/molecules23071832 – volume: 165 start-page: 398 year: 2014 ident: 10106_CR56 publication-title: Sci. Horticult. doi: 10.1016/j.scienta.2013.08.017 – volume: 28 start-page: 27 year: 2000 ident: 10106_CR35 publication-title: Nucl. Acids Res. doi: 10.1093/nar/28.1.27 – volume: 6 start-page: e4607 year: 2018 ident: 10106_CR50 publication-title: PeerJ doi: 10.7717/peerj.4607 – volume: 36 start-page: 1215 year: 2017 ident: 10106_CR57 publication-title: Plant Cell Rep. doi: 10.1007/s00299-017-2147-7 – volume: 5 start-page: 50 year: 2018 ident: 10106_CR30 publication-title: Hortic. Res. doi: 10.1038/s41438-018-0071-9 – volume: 8 start-page: 428 year: 2017 ident: 10106_CR58 publication-title: Front. Plant Sci. – volume: 169 start-page: 577 year: 2012 ident: 10106_CR18 publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.12.015 – volume: 101 start-page: 9715 year: 2010 ident: 10106_CR74 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.07.083 – ident: 10106_CR5 – volume: 149 start-page: 73 year: 1999 ident: 10106_CR62 publication-title: Plant Sci. doi: 10.1016/S0168-9452(99)00146-6 – volume: 101 start-page: 573 year: 2020 ident: 10106_CR21 publication-title: Plant J. doi: 10.1111/tpj.14555 – volume: 6 start-page: 1720 year: 2011 ident: 10106_CR20 publication-title: Plant Signal Behav. doi: 10.4161/psb.6.11.17613 – volume: 574 start-page: 168 year: 2015 ident: 10106_CR43 publication-title: Gene doi: 10.1016/j.gene.2015.08.003 – volume: 171 start-page: 745 year: 2006 ident: 10106_CR54 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2006.07.010 – volume: 27 start-page: 647 year: 2016 ident: 10106_CR4 publication-title: J. For. Res. doi: 10.1007/s11676-015-0121-1 – volume: 149 start-page: 13 year: 2013 ident: 10106_CR69 publication-title: Physiol. Plantarum. doi: 10.1111/ppl.12018 – volume: 5 start-page: 171 year: 1993 ident: 10106_CR65 publication-title: Plant Cell doi: 10.2307/3869583 – volume: 126 start-page: 485 year: 2001 ident: 10106_CR7 publication-title: Plant Physiol. doi: 10.1104/pp.126.2.485 – volume: 11 start-page: 81 year: 2020 ident: 10106_CR42 publication-title: Genes doi: 10.3390/genes11010081 – volume: 129 start-page: 6 year: 2004 ident: 10106_CR25 publication-title: J. Am. Soc. Hort. Sci. doi: 10.21273/JASHS.129.1.0006 – volume: 88 start-page: 129 year: 2019 ident: 10106_CR77 publication-title: Plant Growth Regul. doi: 10.1007/s10725-019-00493-3 – volume: 53 start-page: 814 year: 2008 ident: 10106_CR11 publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03373.x – volume: 8 start-page: e78484 year: 2013 ident: 10106_CR71 publication-title: PLoS ONE doi: 10.1371/journal.pone.0078484 – volume: 11 start-page: 619417 year: 2021 ident: 10106_CR39 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.619417 – volume: 108 start-page: 39 year: 1995 ident: 10106_CR22 publication-title: Plant Physiol. doi: 10.1104/pp.108.1.39 – volume: 11 start-page: R14 year: 2010 ident: 10106_CR34 publication-title: Genome Biol. doi: 10.1186/gb-2010-11-2-r14 – volume: 163 start-page: 723 year: 2006 ident: 10106_CR15 publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2005.07.007 – volume: 15 start-page: 383 year: 2015 ident: 10106_CR47 publication-title: Funct. Integr. Genom. doi: 10.1007/s10142-014-0427-7 – volume: 47 start-page: 225 year: 1999 ident: 10106_CR17 publication-title: Isr. J. Plant Sci. doi: 10.1080/07929978.1999.10676777 – volume: 15 start-page: 550 year: 2014 ident: 10106_CR32 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 100 start-page: 2458 year: 2013 ident: 10106_CR67 publication-title: Am. J. Bot. doi: 10.3732/ajb.1300305 – volume: 583 start-page: 1981 year: 2009 ident: 10106_CR63 publication-title: Febs. Lett. doi: 10.1016/j.febslet.2009.05.006 – volume: 31 start-page: 281 year: 2012 ident: 10106_CR27 publication-title: Plant Cell Rep. doi: 10.1007/s00299-011-1162-3 – volume: 237 start-page: 7 year: 2017 ident: 10106_CR44 publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.05.076 – volume: 22 start-page: 4067 year: 2010 ident: 10106_CR70 publication-title: Plant Cell doi: 10.1105/tpc.110.080036 – volume: 7 start-page: 562 year: 2012 ident: 10106_CR31 publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.016 – volume: 11 start-page: 392 year: 2020 ident: 10106_CR49 publication-title: Genes doi: 10.3390/genes11040392 – volume: 11 start-page: 1679 year: 2010 ident: 10106_CR2 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms11041679 – volume: 169 start-page: 1862 year: 2015 ident: 10106_CR40 publication-title: Plant Physiol. – volume: 25 start-page: 312 year: 2008 ident: 10106_CR53 publication-title: Mol. Cells doi: 10.1016/S1016-8478(23)17587-X – volume: 271 start-page: 18 year: 2019 ident: 10106_CR48 publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.07.120 – volume: 22 start-page: 138 year: 2013 ident: 10106_CR66 publication-title: J. Plant Biochem. Biot. doi: 10.1007/s13562-012-0122-5 – volume: 236 start-page: 825 year: 2012 ident: 10106_CR41 publication-title: Planta doi: 10.1007/s00425-012-1674-2 – volume: 6 start-page: e1001123 year: 2010 ident: 10106_CR68 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001123 – volume: 20 start-page: 176 year: 2015 ident: 10106_CR8 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.12.001 – volume: 27 start-page: 305 year: 2001 ident: 10106_CR12 publication-title: Plant J. doi: 10.1046/j.1365-313x.2001.01099.x – volume: 8 start-page: S11 year: 2014 ident: 10106_CR37 publication-title: Bmc Syst. Biol. doi: 10.1186/1752-0509-8-S4-S11 – volume: 54 start-page: 733 year: 2008 ident: 10106_CR64 publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03447.x – volume: 57 start-page: 761 year: 2006 ident: 10106_CR3 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105248 – volume: 48 start-page: 958 year: 2007 ident: 10106_CR28 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm066 – volume: 4 start-page: 17070 year: 2017 ident: 10106_CR60 publication-title: Hortic. Res. doi: 10.1038/hortres.2017.70 – volume: 130 start-page: 663 year: 2018 ident: 10106_CR46 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.08.016 – volume: 32 start-page: 182 year: 2013 ident: 10106_CR55 publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-012-9289-1 – volume: 160 start-page: 222 year: 2013 ident: 10106_CR72 publication-title: Sci. Horticult. doi: 10.1016/j.scienta.2013.05.039 – volume: 26 start-page: 962 year: 2014 ident: 10106_CR9 publication-title: Plant Cell doi: 10.1105/tpc.113.122069 – volume: 9 start-page: 61 year: 2019 ident: 10106_CR38 publication-title: Agron. Basel doi: 10.3390/agronomy9020061 – volume: 37 start-page: 169 year: 1994 ident: 10106_CR13 publication-title: Indian J. Agr. Sci. – volume: 70 start-page: 1107 year: 2009 ident: 10106_CR19 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2009.07.008 – volume: 55 start-page: 4066 year: 2007 ident: 10106_CR14 publication-title: J. Agric. Food Chem. doi: 10.1021/jf070010k – volume: 40 start-page: 1265 year: 2013 ident: 10106_CR75 publication-title: Mol. Bio. Rep. doi: 10.1007/s11033-012-2169-8 – volume: 10 start-page: e970440 year: 2015 ident: 10106_CR16 publication-title: Plant Signal Behav. doi: 10.4161/15592316.2014.970440 – volume: 182 start-page: 102 year: 2009 ident: 10106_CR23 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02737.x – volume: 174 start-page: 2376 year: 2017 ident: 10106_CR59 publication-title: Plant Physiol. doi: 10.1104/pp.17.00311 – volume: 158 start-page: 508 year: 2021 ident: 10106_CR6 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.11.035 – volume: 109 start-page: 1125 year: 1995 ident: 10106_CR52 publication-title: Plant Physiol. doi: 10.1104/pp.109.3.1125 – volume: 7 start-page: 445 year: 2008 ident: 10106_CR61 publication-title: Phytochem. Rev. doi: 10.1007/s11101-007-9076-y – volume: 50 start-page: 660 year: 2007 ident: 10106_CR76 publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03078.x – volume: 96 start-page: 39 year: 2018 ident: 10106_CR45 publication-title: Plant J. doi: 10.1111/tpj.14013 – volume: 671 start-page: 79 year: 2005 ident: 10106_CR26 publication-title: Acta Horticult. doi: 10.17660/ActaHortic.2005.671.9 |
SSID | ssj0000529419 |
Score | 2.4860508 |
Snippet | Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin... Abstract Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6308 |
SubjectTerms | 631/208 631/443 Accumulation Anthocyanins Biological stress Biosynthesis Brassica - genetics Brassica - metabolism Brassica oleracea Brassica rapa - genetics Brassica rapa - metabolism China Flavonoids Gene Expression Profiling - methods Gene Expression Regulation, Plant Gene mapping Genomes Germplasm Humanities and Social Sciences Low temperature Metabolites multidisciplinary Plant Proteins - genetics Plant Proteins - metabolism Science Science (multidisciplinary) Secondary metabolites Temperature Transcription factors Transcriptome Transcriptomes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LaxYxEB-kUPAitr7WVongQdG1m8cmu0crliLqqUJvIclmbaHuln5bSv97Z7L5Pvv5vHjcSRaGeWRmSOY3AM9lr6pOcFeaTuhStQJdKvRd6TXXXgrjdOpb-_RZH35RH47r4xujvuhN2AwPPAtujztBNqkMobbw2DS1M6FXtRHCeC5Tmy_GvBvF1IzqLVrF29wlU8lmb4GRirrJsPbiVAeVfC0SJcD-32WZvz6W_OnGNAWig7twJ2eQ7O3M-RbcisM2bM4zJa_vwZiiTzoLxm-RuQw6wgiqCU0NCdPJGK7dcDog7Wue3sXwi0Zpx0VkwXmPpwx7sX-BmTUqkdGUdPbxzUvmJnY2XjHCs8pgzIv7cHTw_ujdYZmnKpQBs7OplJomBQVvKk8wDaKvlDJV77UL3LkuVFGj-iSSgkQFV8p33GNRpSopRXDyAWwM4xAfAas7zF663let98pJ5bniPUo-YJLnjRcF8KWAbciI4zT44symm2_Z2FkpFpVik1IsL-DV6p_zGW_jr7v3SW-rnYSVnQhoQTZbkP2XBRWwu9S6zQ68sAIzV8m1bkwBz1bL6Hp0n-KGOF6mPVxjdG_aAh7ORrLiRNZY1zVCFWDWzGeN1fWV4fQkwXu39Bqgrgt4vTS0H2z9WRSP_4coduC2IA8hLMt6Fzami8v4BJOuyT9N_vUdJrsjjA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJuUgozEAQSh8SN2ckIUUVUIOBVpb5btJG2lkpRNqqr_nhnHu9Xy6DGOIzn-5mWP_Q3AK9mpohHc5aYROle1QJUKXZN7zbWXwjgd7619-64Pfqgvi3KRNtzGdKxyZROjoW6GQHvkuwJDCcm1rsyHs185VY2i7GoqoXETbhF1GUm1WZj1HgtlsRSv012ZQla7I_orulOGKzBOq6Gcb_ijSNv_r1jz7yOTf-RNozvavwd3UxzJPs7A34cbbf8Abs-VJS8fwhB9ULQIw8-WuUQ9woiwCQUOG6bjIVy6_qTHtqNUw4vhExXUbseWBec92hr2em-J8TVCyahWOvv6_g1zEzsdLhixWiVK5vERHO5_Pvx0kKfaCnnAGG3KpaZ6QcGbwhNZg-gKpUzRee0Cd64JRasRRIlNQSLMhfIN97i0UoWUIjj5GLb6oW-fAisbjGGazhe198pJ5bniHc58wFDPGy8y4KsJtiHxjlP5i1Mb89-ysjMoFkGxERTLM3i7_uZsZt24tvce4bbuSYzZsWFYHtmkgJY7QbZNGWL_4W1Vlc6ETpVGCOO5rDLYWaFukxqP9kroMni5fo0KSFkV17fDeezDNfr4qs7gySwk65HIEld3lVAZmA3x2Rjq5pv-5DiSfNd0JqAsM3i3ErSrYf1_Krav_4tncEeQ7BNXZbkDW9PyvH2OQdXkX0TN-Q2a8x1C priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD-MDcEX8dvqlAg-KFptPpq0j3fiGBf1xQl7C0naboPZyr0dsv_ec9LcytUp-Nh8QMj57jn5HYAXslNFI7jLTSN0rmqBIhW6Jveaay-FcTq-W_v0WR99VcuT8mQHxOYtTCzaj5CWUU1vqsPerdHQ0GMwDJ04hTE5Rjx7BNWOvL23WCy_LOc_K5S7UrxOL2QKWV2zecsKRbD-6zzMPwslf8uWRiN0eBtuJe-RLabz3oGdtr8LN6Z-klf3YIiWJ-qB4VvLXAIcYQTThGyGA-PZEK5cf97j2Gnq3MXwi9pot-uWBec9ahj28mCFXjUSkFGHdPbx7SvmRnYx_GCEZZWAmNf34fjww_H7ozx1VMgDemZjLjV1CQreFJ4gGkRXKGWKzmsXuHNNKFqNpJM4FCQSt1C-4R4DKlVIKYKTD2C3H_r2EbCyQc-l6XxRe6-cVJ4r3uHNB3TwvPEiA765YBsS2jg1vbiwMestKzsRxSJRbCSK5Rm8nvd8n7A2_rn6gOg2rySc7DgwrE5t4hvLnSCNpgxh_vC2qkpnQqdKI4TxXFYZ7G-obpPwrq1Ar1VyrSuTwfN5GsWOcimub4fLuIZrtOxVncHDiUnmk8gSY7pKqAzMFvtsHXV7pj8_i9DeNVUClGUGbzaM9utYf7-Kx_-3_AncFCQLhFhZ7sPuuLpsn6JrNfpnSZZ-AjNGHEk priority: 102 providerName: Springer Nature |
Title | Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures |
URI | https://link.springer.com/article/10.1038/s41598-022-10106-1 https://www.ncbi.nlm.nih.gov/pubmed/35428824 https://www.proquest.com/docview/2650316687 https://www.proquest.com/docview/2651684789 https://pubmed.ncbi.nlm.nih.gov/PMC9012755 https://doaj.org/article/1a203054780741e885a7cf457227b138 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTaC9IH4TGJWReABBRvwjdvKAUFttmio2IdikvkW2k2yTSrK1maD_PWcnKSoUHniK6jiK5bvzfVfH3wfwipciyhnVocqZDEXKMKRsmYdGUmk4U1r6c2vHJ_LoTEym8XQLermjbgIXG0s7pyd1Np_t_7hefsSA_9AeGU_eLzAJuYNiWFZRV-KEWA3tYGZSTtHguIP7Ldc3SwVNu7Mzmx_dhTs8RkyeMLGWqjyj_yYY-ufXlL9tqfpMdXgP7nYQkwxbn7gPW0X1AG63opPLh1D79OQXi_pbQXTHSkIclxPOCTY0F7Vd6uqywrbzTt6L4C-ntV0sCmK1MbgMkdejOUJvtDJxMurk0_4bohsyq78TR3jVsTUvHsHp4cHp-CjsZBdCi_CtCbl0UkLWqMg4HgdWRkKoqDRSW6p1bqNCon05NlmOHhAJk1ODVZeIOGdW88ewXdVV8RRInCO8yUsTpcYIzYWhgpZoBIso0CjDAqD9BGe2oyR3yhizzG-N8yRr7ZOhfTJvn4wG8Hb1zFVLyPHP3iNnt1VPR6btG-r5edbFZkY1c8ueUI4YiBZJEmtlSxErxpShPAlgr7d61jtoxhDaciplogJ4ubqNsek2XHRV1De-D5WY_pM0gCetk6xG0jtZAGrNfdaGun6nurzw_N-p-1wgjgN41zvar2H9fSqe_feLnsMucxHiGC7jPdhu5jfFC4RijRnALTVVA9gZDidfJ3gdHZx8_oKtYzke-L83Bj4CfwJ2LjOO |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASOBBKKh8SNx9oAQBaot3fa0SHuzbCdpK5Wk7G5V7Y_iPzLjJFstj956jONEjufhmYz9fQCvZKWSQnAb60JksRoINClfFbHLeOak0DYL59b2D7Lhd_Vtkk7W4Fd_Foa2VfY-MTjqovH0j3xLYCgheZbl-uPpz5hYo6i62lNotGqxVy7OMWWbfdj9gvJ9LcTO1_HnYdyxCsQeo5N5LDNiyvFOJ45gCkSVKKWTymXWc2sLn5QZDl9ik5f4gYlyBXeYVKhESuGtxNdeg-u47iaU6-mJXv7SoaKZ4oPuaE4i860ZLo90hA0TPk7JV8xXlr_AEvCv0PbvHZp_lGnD6rdzB253YSv71OrZXVgr63twoyWyXNyHJix5wQE1P0pmO6QTRvhQqN_YMD9q_MLWxzW2HXaUYQyviL-7nJXMW-fQtbE321MM51FzGFGzs9H7t8zO2UlzzghEq0OAnj2A8VVM-kNYr5u6fAwsLTBkKiqXDJxTVirHFa9w5j1Glk47EQHvJ9j4Duac2DZOTCi3y9y0QjEoFBOEYngE75bPnLYgH5f23ia5LXsSQHdoaKaHprN3w60gV6o0gQ3xMs9Tq32lUi2EdlzmEWz0Ujed15iZCx2P4OXyNto7FXFsXTZnoQ_PMKTIBxE8apVkORKZYjKZCxWBXlGflaGu3qmPjwKm-IC2IKRpBJu9ol0M6_9T8eTyr3gBN4fj_ZEZ7R7sPYVbguyAYDLTDVifT8_KZxjPzd3zYEUMzBVb7W8s_1jr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IO5kDDASSCAIjS-J0weEKFu1sVFNaEh7s2wn2SZtyWg7Tf1p_DvOyaVTuextj3Wcyva5-Jwc-_sAXslCRZngNtSZSEI1EGhSvshCl_DESaFtUt9b-zZOtn6orwfxwQr86u7C0LHKzifWjjqrPH0j7wsMJSRPklT3i_ZYxN7G6NPZz5AYpKjS2tFpNCqyk88vMH2bftzeQFm_FmK0uf9lK2wZBkKPkcoslAmx5ninI0eQBaKIlNJR4RLrubWZj_IEpyKxyUucbKRcxh0mGCqSUngr8W9vwKqmpKgHq8PN8d73xQceKqEpPmgv6kQy7U9xs6QLbZj-cUrFQr60GdacAf8KdP8-r_lH0bbeC0d34U4bxLLPjdbdg5W8vA83G1rL-QOo6g2wdkfVac5si3vCCC0KtR0bZkeVn9vyuMS2w5ZAjOEvYvPOpznz1jl0dOzNcILBPeoRI6J2tvvhLbMzdlJdMILUavGgpw9h_zqW_RH0yqrMnwCLMwygssJFA-eUlcpxxQtceY9xptNOBMC7BTa-BT0n7o0TUxffZWoaoRgUiqmFYngA7xbvnDWQH1f2HpLcFj0JrrtuqCaHprV-w60gx6o0QQ_xPE1jq32hYi2EdlymAax3UjetD5maS40P4OXiMVo_lXRsmVfndR-eYICRDgJ43CjJYiQyxtQyFSoAvaQ-S0NdflIeH9UI4wM6kBDHAbzvFO1yWP9firWrZ_ECbqHFmt3t8c5TuC3IDAgzM16H3mxynj_D4G7mnrdmxMBcs-H-Blq9XoY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+analysis+reveals+anthocyanin+regulation+in+Chinese+cabbage+%28Brassica+rapa+L.%29+at+low+temperatures&rft.jtitle=Scientific+reports&rft.au=Dai%2C+Yun&rft.au=Zhang%2C+Lei&rft.au=Sun%2C+Xiao&rft.au=Li%2C+Fei&rft.date=2022-04-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft_id=info:doi/10.1038%2Fs41598-022-10106-1&rft_id=info%3Apmid%2F35428824&rft.externalDocID=PMC9012755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |