Hierarchical graph learning for protein–protein interaction
Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in si...
Saved in:
Published in | Nature communications Vol. 14; no. 1; p. 1093 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.02.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, “HIGH-PPI [
https://github.com/zqgao22/HIGH-PPI
]” is a domain-knowledge-driven and interpretable framework for PPI prediction studies.
Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction. Here, the authors present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. |
---|---|
AbstractList | Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction. Here, the authors present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, “HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]” is a domain-knowledge-driven and interpretable framework for PPI prediction studies. Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction. Here, the authors present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, “HIGH-PPI [https://github.com/zqgao22/HIGH-PPI]” is a domain-knowledge-driven and interpretable framework for PPI prediction studies.Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction. Here, the authors present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, "HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]" is a domain-knowledge-driven and interpretable framework for PPI prediction studies. Abstract Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, “HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]” is a domain-knowledge-driven and interpretable framework for PPI prediction studies. |
ArticleNumber | 1093 |
Author | Jiang, Xiaosen Zhao, Peilin Jiang, Chenran Gao, Ziqi Li, Jia Li, Lanqing Huang, Yong Zhang, Jiawen Yang, Huanming |
Author_xml | – sequence: 1 givenname: Ziqi orcidid: 0000-0002-7417-3620 surname: Gao fullname: Gao, Ziqi organization: Data Science and Analytics, The Hong Kong University of Science and Technology, Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology – sequence: 2 givenname: Chenran surname: Jiang fullname: Jiang, Chenran organization: Pingshan Translational Medicine Center, Shenzhen Bay Laboratory – sequence: 3 givenname: Jiawen surname: Zhang fullname: Zhang, Jiawen organization: Data Science and Analytics, The Hong Kong University of Science and Technology – sequence: 4 givenname: Xiaosen surname: Jiang fullname: Jiang, Xiaosen organization: The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences – sequence: 5 givenname: Lanqing orcidid: 0000-0003-1998-4022 surname: Li fullname: Li, Lanqing organization: AI Lab, Tencent – sequence: 6 givenname: Peilin surname: Zhao fullname: Zhao, Peilin organization: AI Lab, Tencent – sequence: 7 givenname: Huanming orcidid: 0000-0002-0858-3410 surname: Yang fullname: Yang, Huanming organization: The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences – sequence: 8 givenname: Yong orcidid: 0000-0001-8377-8923 surname: Huang fullname: Huang, Yong email: yonghuang@ust.hk organization: Department of Chemistry, The Hong Kong University of Science and Technology – sequence: 9 givenname: Jia orcidid: 0000-0002-6362-4385 surname: Li fullname: Li, Jia email: jialee@ust.hk organization: Data Science and Analytics, The Hong Kong University of Science and Technology, Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36841846$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb9OHDEQxq2IKBDgBSjQSjRpNvG_XdtFkCKUBCSkNKG2fPZ4z6c9-2LvIaXLO-QN8yQx7IUABW48mvnmNx5_b9FeTBEQOiH4PcFMfiic8F60mLKW9YL1LXmFDijmpCWCsr1H8T46LmWF62GKSM7foH3WS17D_gB9vAyQTbbLYM3YDNlsls0IJscQh8an3GxymiDEP79-76ImxKm22CmkeIReezMWON7dh-jmy-fvF5ft9bevVxefrlvbcTy11DnjO3DUE-IWwvcGhHDWLhTlnuMOBLGECO8tFZ3opOJMKYWZBeqwXTB2iK5mrktmpTc5rE3-qZMJ-j6R8qBNnoIdQRPLGCaeG8c7DpUl6wRB63gDrutdZZ3PrM12sQZnIU7ZjE-gTysxLPWQbrVSvWRUVcC7HSCnH1sok16HYmEcTYS0LZoKibEkdYcqPXsmXaVtjvWrqkooiQXDd9vRWWVzKiWDf3gMwfrObD2bravZ-t5sTWrT6eM1Hlr-WVsFbBaUWooD5P-zX8D-BfZYt-s |
CitedBy_id | crossref_primary_10_1021_acscatal_3c02743 crossref_primary_10_1080_17460441_2023_2218641 crossref_primary_10_1016_j_iswa_2024_200353 crossref_primary_10_1109_TPEL_2024_3358841 crossref_primary_10_1038_s41467_024_48801_4 crossref_primary_10_1016_j_compbiomed_2024_108623 crossref_primary_10_1080_10408398_2023_2295016 crossref_primary_10_1093_protein_gzad023 crossref_primary_10_52601_bpr_2024_240006 crossref_primary_10_1093_bioinformatics_btad567 crossref_primary_10_1016_j_drudis_2024_103979 crossref_primary_10_1142_S0219720024500045 crossref_primary_10_1007_s11042_024_19251_3 crossref_primary_10_1007_s12273_024_1136_3 crossref_primary_10_1186_s12864_024_10299_x crossref_primary_10_1039_D3CB00208J crossref_primary_10_1016_j_neucom_2024_127320 crossref_primary_10_1021_acs_analchem_4c01639 |
Cites_doi | 10.1093/bioinformatics/btz328 10.1038/nmeth.2259 10.1002/pro.5560030501 10.1093/nar/gkh028 10.1038/ni1080 10.1128/MCB.17.6.3094 10.1038/s41586-020-2782-y 10.1093/nar/28.1.235 10.1093/nar/gky1131 10.1016/j.cell.2015.09.053 10.1093/bioinformatics/btx624 10.1140/epjb/e2009-00335-8 10.1038/s41467-021-27396-0 10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A 10.1038/mt.2015.214 10.1016/j.compbiomed.2021.104772 10.1038/nn.3859 10.1016/j.carbpol.2009.07.035 10.1038/nature22366 10.1002/prot.340090106 10.1126/science.286.5439.509 10.1016/j.jmb.2007.05.022 10.1007/s12033-007-0069-2 10.1093/bioinformatics/btx350 10.1016/j.cell.2014.10.050 10.1038/s41586-021-03819-2 10.1038/s41467-022-32151-0 10.1016/j.omtn.2020.08.025 10.1002/prot.21078 10.1038/s41467-021-23303-9 10.1109/TKDE.2007.46 10.1038/s41567-021-01164-9 10.7717/peerj.4750 10.1073/pnas.0735871100 10.1021/jm801389m 10.1038/s42003-022-03391-z 10.1007/BF02289026 10.1038/s41467-022-31675-9 10.1038/s41467-019-09177-y 10.1038/s42256-020-0152-y 10.1038/s41586-020-03171-x 10.1007/978-1-59745-535-0_4 10.1007/s11263-019-01228-7 10.48550/arXiv.1903.03894 10.48550/arXiv.1609.02907 10.1007/978-3-319-22053-6_75 10.48550/arXiv.2105.06709 10.48550/arXiv.1810.00826 10.48550/arXiv.1710.10777 10.48550/arXiv.1904.05003 10.1038/s41591-022-01819-x 10.1109/ISDA.2011.6121636 10.48550/arXiv.1904.08082 10.1038/s41592-022-01490-7 10.1038/s41467-019-13993-7 10.1038/s41598-016-0001-8 10.1007/978-1-60327-064-9_27 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-36736-1 |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Publicly Available Content database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 1093 |
ExternalDocumentID | oai_doaj_org_article_1c3301f4ad454e5898f4072f5eaed56d 10_1038_s41467_023_36736_1 36841846 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21825101; 62206067 funderid: https://doi.org/10.13039/501100001809 – fundername: Tencent AI Lab Rhino-Bird Focused Research Program RBFR2022008; Guangzhou-HKUST(GZ) Joint Funding Scheme – fundername: ; – fundername: ; grantid: 21825101; 62206067 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c540t-2ddaf5ed2f11db7f6ae77dccb924f405e71c117ffc27575894399903ce2d0cb33 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:15:15 EDT 2024 Tue Sep 17 21:32:06 EDT 2024 Sat Oct 05 06:27:51 EDT 2024 Thu Oct 10 21:09:55 EDT 2024 Fri Aug 23 02:30:56 EDT 2024 Sat Sep 28 08:15:17 EDT 2024 Fri Oct 11 20:46:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-2ddaf5ed2f11db7f6ae77dccb924f405e71c117ffc27575894399903ce2d0cb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1998-4022 0000-0002-7417-3620 0000-0002-6362-4385 0000-0001-8377-8923 0000-0002-0858-3410 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968329/ |
PMID | 36841846 |
PQID | 2779807303 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1c3301f4ad454e5898f4072f5eaed56d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9968329 proquest_miscellaneous_2780081439 proquest_journals_2779807303 crossref_primary_10_1038_s41467_023_36736_1 pubmed_primary_36841846 springer_journals_10_1038_s41467_023_36736_1 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-25 |
PublicationDateYYYYMMDD | 2023-02-25 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Fernandes, Gattass (CR46) 2009; 52 Skrabanek, Saini, Bader, Enright (CR2) 2008; 38 CR39 CR37 Park, Marcotte (CR42) 2012; 9 Hein (CR15) 2015; 163 CR36 CR35 CR32 Huttlin (CR16) 2017; 545 Katz (CR50) 1953; 18 Szklarczyk (CR38) 2019; 47 Porter, Bartlett, Thornton (CR56) 2004; 32 Ho (CR8) 2014; 17 CR4 Saha, Raghava (CR28) 2006; 65 Jiménez (CR30) 2017; 33 Zheng, Li, Chen, Xu, Yang (CR40) 2020; 2 Gligorijević (CR29) 2021; 12 Siegle (CR9) 2021; 592 Amidi (CR31) 2018; 6 CR45 Krissinel, Henrick (CR55) 2007; 372 Hope, Jin, Dick (CR3) 2004; 5 CR44 Fouss, Pirotte, Renders, Saerens (CR34) 2007; 19 CR41 Wu (CR13) 2016; 6 Su, Huang, Yuan, Wang, Li (CR19) 2010; 79 Nasiri, Berahmand, Rostami, Dabiri (CR23) 2021; 137 Kulmanov, Khan, Hoehndorf (CR25) 2018; 34 Engelberg, Bechtel, Michaud, Weerapana, Gubbels (CR6) 2022; 13 Aronheim, Zandi, Hennemann, Elledge, Karin (CR18) 1997; 17 CR17 Zhou, Lv, Zhang (CR51) 2009; 71 CR59 CR58 CR57 Zhang (CR11) 2020; 586 Jumper (CR43) 2021; 596 CR54 CR53 Korn, Burnett (CR49) 1991; 9 Goldberg, Roth (CR33) 2003; 100 Barabási, Albert (CR52) 1999; 286 Renaud (CR21) 2021; 12 Rolland (CR14) 2014; 159 Chen (CR26) 2019; 35 Zhao, Wang, Hu, Cheng (CR20) 2020; 22 Young, Jernigan, Covell (CR48) 1994; 3 Berman (CR60) 2000; 28 CR27 Guharoy, Lazar, Macossay-Castillo, Tompa (CR12) 2022; 5 Couturier (CR5) 2020; 11 Hendrikx, Paul, van Ackooij, van der Stoep, Harvey (CR10) 2022; 13 CR24 CR62 CR61 Petta (CR1) 2016; 24 Kov´acs (CR22) 2019; 10 Hu, Ma, Wolfson, Nussinov (CR47) 2000; 39 Wigbers (CR7) 2021; 17 DS Goldberg (36736_CR33) 2003; 100 JH Siegle (36736_CR9) 2021; 592 Z Hu (36736_CR47) 2000; 39 Y Zhang (36736_CR11) 2020; 586 L Skrabanek (36736_CR2) 2008; 38 JF Su (36736_CR19) 2010; 79 M Chen (36736_CR26) 2019; 35 T Zhou (36736_CR51) 2009; 71 F Fouss (36736_CR34) 2007; 19 E Krissinel (36736_CR55) 2007; 372 KJ Hope (36736_CR3) 2004; 5 S Zheng (36736_CR40) 2020; 2 V Gligorijević (36736_CR29) 2021; 12 36736_CR45 T Rolland (36736_CR14) 2014; 159 36736_CR44 J Fernandes (36736_CR46) 2009; 52 CP Couturier (36736_CR5) 2020; 11 36736_CR41 L Zhao (36736_CR20) 2020; 22 M Guharoy (36736_CR12) 2022; 5 J Jumper (36736_CR43) 2021; 596 TSY Ho (36736_CR8) 2014; 17 36736_CR17 L Katz (36736_CR50) 1953; 18 36736_CR59 36736_CR58 36736_CR57 36736_CR4 A Amidi (36736_CR31) 2018; 6 36736_CR54 36736_CR53 CH Wu (36736_CR13) 2016; 6 EL Huttlin (36736_CR16) 2017; 545 IA Kov´acs (36736_CR22) 2019; 10 I Petta (36736_CR1) 2016; 24 36736_CR27 HM Berman (36736_CR60) 2000; 28 36736_CR24 D Szklarczyk (36736_CR38) 2019; 47 M Kulmanov (36736_CR25) 2018; 34 Y Park (36736_CR42) 2012; 9 36736_CR62 36736_CR61 K Engelberg (36736_CR6) 2022; 13 E Nasiri (36736_CR23) 2021; 137 AL Barabási (36736_CR52) 1999; 286 L Young (36736_CR48) 1994; 3 AP Korn (36736_CR49) 1991; 9 CT Porter (36736_CR56) 2004; 32 S Saha (36736_CR28) 2006; 65 MY Hein (36736_CR15) 2015; 163 N Renaud (36736_CR21) 2021; 12 36736_CR39 E Hendrikx (36736_CR10) 2022; 13 36736_CR37 36736_CR36 MC Wigbers (36736_CR7) 2021; 17 36736_CR35 36736_CR32 A Aronheim (36736_CR18) 1997; 17 J Jiménez (36736_CR30) 2017; 33 |
References_xml | – ident: CR45 – ident: CR4 – ident: CR39 – volume: 35 start-page: i305 year: 2019 end-page: i314 ident: CR26 article-title: Multifaceted protein–protein interaction prediction based on Siamese residual RCNN publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz328 contributor: fullname: Chen – volume: 9 start-page: 1134 year: 2012 end-page: 1136 ident: CR42 article-title: Flaws in evaluation schemes for pair-input computational predictions publication-title: Nat. methods doi: 10.1038/nmeth.2259 contributor: fullname: Marcotte – ident: CR35 – ident: CR54 – ident: CR61 – ident: CR58 – volume: 3 start-page: 717 year: 1994 end-page: 729 ident: CR48 article-title: A role for surface hydrophobicity in protein-protein recognition publication-title: Protein Sci. doi: 10.1002/pro.5560030501 contributor: fullname: Covell – volume: 32 start-page: D129 year: 2004 end-page: D133 ident: CR56 article-title: The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data publication-title: Nucleic acids Res. doi: 10.1093/nar/gkh028 contributor: fullname: Thornton – volume: 5 start-page: 738 year: 2004 end-page: 743 ident: CR3 article-title: Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity publication-title: Nat. Immunol. doi: 10.1038/ni1080 contributor: fullname: Dick – volume: 17 start-page: 3094 year: 1997 end-page: 3102 ident: CR18 article-title: Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.6.3094 contributor: fullname: Karin – volume: 586 start-page: 378 year: 2020 end-page: 384 ident: CR11 article-title: A system hierarchy for brain-inspired computing publication-title: Nature doi: 10.1038/s41586-020-2782-y contributor: fullname: Zhang – volume: 28 start-page: 235 year: 2000 end-page: 242 ident: CR60 article-title: The protein data bank publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 contributor: fullname: Berman – ident: CR57 – volume: 47 start-page: D607 year: 2019 end-page: D613 ident: CR38 article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic acids Res. doi: 10.1093/nar/gky1131 contributor: fullname: Szklarczyk – ident: CR32 – ident: CR36 – volume: 163 start-page: 712 year: 2015 end-page: 723 ident: CR15 article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances publication-title: Cell doi: 10.1016/j.cell.2015.09.053 contributor: fullname: Hein – volume: 34 start-page: 660 year: 2018 end-page: 668 ident: CR25 article-title: DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx624 contributor: fullname: Hoehndorf – volume: 71 start-page: 623 year: 2009 end-page: 630 ident: CR51 article-title: Predicting missing links via local information publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2009-00335-8 contributor: fullname: Zhang – volume: 12 start-page: 1 year: 2021 end-page: 8 ident: CR21 article-title: DeepRank: a deep learning framework for data mining 3D protein-protein interfaces publication-title: Nat. Commun. doi: 10.1038/s41467-021-27396-0 contributor: fullname: Renaud – volume: 39 start-page: 331 year: 2000 end-page: 342 ident: CR47 article-title: Conservation of polar residues as hot spots at protein interfaces publication-title: Proteins: Struct., Funct., Bioinforma. doi: 10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A contributor: fullname: Nussinov – volume: 24 start-page: 707 year: 2016 end-page: 718 ident: CR1 article-title: Modulation of protein–protein interactions for the development of novel therapeutics publication-title: Mol. Ther. doi: 10.1038/mt.2015.214 contributor: fullname: Petta – volume: 137 start-page: 104772 year: 2021 ident: CR23 article-title: A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding publication-title: Computers Biol. Med. doi: 10.1016/j.compbiomed.2021.104772 contributor: fullname: Dabiri – ident: CR37 – ident: CR53 – volume: 17 start-page: 1664 year: 2014 end-page: 1672 ident: CR8 article-title: A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier publication-title: Nat. Neurosci. doi: 10.1038/nn.3859 contributor: fullname: Ho – volume: 79 start-page: 145 year: 2010 end-page: 153 ident: CR19 article-title: Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2009.07.035 contributor: fullname: Li – volume: 545 start-page: 505 year: 2017 end-page: 509 ident: CR16 article-title: Architecture of the human interactome defines protein communities and disease networks publication-title: Nature doi: 10.1038/nature22366 contributor: fullname: Huttlin – volume: 9 start-page: 37 year: 1991 end-page: 55 ident: CR49 article-title: Distribution and complementarity of hydropathy in mutisunit proteins publication-title: Proteins: Struct., Funct., Bioinforma. doi: 10.1002/prot.340090106 contributor: fullname: Burnett – volume: 286 start-page: 509 year: 1999 end-page: 512 ident: CR52 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 contributor: fullname: Albert – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: CR55 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 contributor: fullname: Henrick – volume: 38 start-page: 1 year: 2008 end-page: 17 ident: CR2 article-title: Computational prediction of protein–protein interactions publication-title: Mol. Biotechnol. doi: 10.1007/s12033-007-0069-2 contributor: fullname: Enright – volume: 33 start-page: 3036 year: 2017 end-page: 3042 ident: CR30 article-title: DeepSite: protein-binding site predictor using 3D-convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx350 contributor: fullname: Jiménez – ident: CR27 – volume: 159 start-page: 1212 year: 2014 end-page: 1226 ident: CR14 article-title: A proteome-scale map of the human interactome network publication-title: Cell doi: 10.1016/j.cell.2014.10.050 contributor: fullname: Rolland – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: CR43 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 contributor: fullname: Jumper – volume: 13 start-page: 1 year: 2022 end-page: 15 ident: CR6 article-title: Proteomic characterization of the Toxoplasma gondii cytokinesis machinery portrays an expanded hierarchy of its assembly and function publication-title: Nat. Commun. doi: 10.1038/s41467-022-32151-0 contributor: fullname: Gubbels – volume: 11 start-page: 1 year: 2020 end-page: 19 ident: CR5 article-title: Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy publication-title: Nat. Commun. contributor: fullname: Couturier – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: CR13 article-title: Identification of lncRNA functions in lung cancer based on associated protein-protein interaction modules publication-title: Sci. Rep. contributor: fullname: Wu – volume: 22 start-page: 198 year: 2020 end-page: 208 ident: CR20 article-title: Conjoint feature representation of GO and protein sequence for PPI prediction based on an inception RNN attention network publication-title: Mol. Ther.-Nucleic Acids doi: 10.1016/j.omtn.2020.08.025 contributor: fullname: Cheng – volume: 65 start-page: 40 year: 2006 end-page: 48 ident: CR28 article-title: Prediction of continuous B-cell epitopes in an antigen using recurrent neural network publication-title: Proteins: Struct., Funct., Bioinforma. doi: 10.1002/prot.21078 contributor: fullname: Raghava – ident: CR44 – volume: 12 start-page: 1 year: 2021 end-page: 14 ident: CR29 article-title: Structure-based protein function prediction using graph convolutional networks publication-title: Nat. Commun. doi: 10.1038/s41467-021-23303-9 contributor: fullname: Gligorijević – volume: 19 start-page: 355 year: 2007 end-page: 369 ident: CR34 article-title: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.46 contributor: fullname: Saerens – volume: 17 start-page: 578 year: 2021 end-page: 584 ident: CR7 article-title: A hierarchy of protein patterns robustly decodes cell shape information publication-title: Nat. Phys. doi: 10.1038/s41567-021-01164-9 contributor: fullname: Wigbers – volume: 6 start-page: e4750 year: 2018 ident: CR31 article-title: EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation publication-title: PeerJ doi: 10.7717/peerj.4750 contributor: fullname: Amidi – ident: CR17 – volume: 100 start-page: 4372 year: 2003 end-page: 4376 ident: CR33 article-title: Assessing experimentally derived interactions in a small world publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0735871100 contributor: fullname: Roth – volume: 52 start-page: 1214 year: 2009 end-page: 1218 ident: CR46 article-title: Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 (MRP1/ABCC1) publication-title: J. medicinal Chem. doi: 10.1021/jm801389m contributor: fullname: Gattass – volume: 5 start-page: 1 year: 2022 end-page: 15 ident: CR12 article-title: Degron masking outlines degronons, co-degrading functional modules in the proteome publication-title: Commun. Biol. doi: 10.1038/s42003-022-03391-z contributor: fullname: Tompa – volume: 18 start-page: 39 year: 1953 end-page: 43 ident: CR50 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika doi: 10.1007/BF02289026 contributor: fullname: Katz – volume: 13 start-page: 1 year: 2022 end-page: 19 ident: CR10 article-title: Visual timing-tuned responses in human association cortices and response dynamics in early visual cortex publication-title: Nat. Commun. doi: 10.1038/s41467-022-31675-9 contributor: fullname: Harvey – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: CR22 article-title: Network-based prediction of protein interactions publication-title: Nat. Commun. doi: 10.1038/s41467-019-09177-y contributor: fullname: Kov´acs – volume: 2 start-page: 134 year: 2020 end-page: 140 ident: CR40 article-title: Predicting drug–protein interaction using quasi-visual question answering system publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0152-y contributor: fullname: Yang – ident: CR59 – volume: 592 start-page: 86 year: 2021 end-page: 92 ident: CR9 article-title: Survey of spiking in the mouse visual system reveals functional hierarchy publication-title: Nature doi: 10.1038/s41586-020-03171-x contributor: fullname: Siegle – ident: CR41 – ident: CR62 – ident: CR24 – volume: 22 start-page: 198 year: 2020 ident: 36736_CR20 publication-title: Mol. Ther.-Nucleic Acids doi: 10.1016/j.omtn.2020.08.025 contributor: fullname: L Zhao – volume: 5 start-page: 738 year: 2004 ident: 36736_CR3 publication-title: Nat. Immunol. doi: 10.1038/ni1080 contributor: fullname: KJ Hope – volume: 163 start-page: 712 year: 2015 ident: 36736_CR15 publication-title: Cell doi: 10.1016/j.cell.2015.09.053 contributor: fullname: MY Hein – volume: 17 start-page: 578 year: 2021 ident: 36736_CR7 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01164-9 contributor: fullname: MC Wigbers – volume: 137 start-page: 104772 year: 2021 ident: 36736_CR23 publication-title: Computers Biol. Med. doi: 10.1016/j.compbiomed.2021.104772 contributor: fullname: E Nasiri – volume: 13 start-page: 1 year: 2022 ident: 36736_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31675-9 contributor: fullname: E Hendrikx – ident: 36736_CR59 doi: 10.1007/978-1-59745-535-0_4 – ident: 36736_CR57 doi: 10.1007/s11263-019-01228-7 – ident: 36736_CR62 doi: 10.48550/arXiv.1903.03894 – volume: 9 start-page: 37 year: 1991 ident: 36736_CR49 publication-title: Proteins: Struct., Funct., Bioinforma. doi: 10.1002/prot.340090106 contributor: fullname: AP Korn – volume: 47 start-page: D607 year: 2019 ident: 36736_CR38 publication-title: Nucleic acids Res. doi: 10.1093/nar/gky1131 contributor: fullname: D Szklarczyk – ident: 36736_CR36 doi: 10.48550/arXiv.1609.02907 – ident: 36736_CR41 doi: 10.1007/978-3-319-22053-6_75 – volume: 6 start-page: e4750 year: 2018 ident: 36736_CR31 publication-title: PeerJ doi: 10.7717/peerj.4750 contributor: fullname: A Amidi – volume: 5 start-page: 1 year: 2022 ident: 36736_CR12 publication-title: Commun. Biol. doi: 10.1038/s42003-022-03391-z contributor: fullname: M Guharoy – volume: 33 start-page: 3036 year: 2017 ident: 36736_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx350 contributor: fullname: J Jiménez – volume: 596 start-page: 583 year: 2021 ident: 36736_CR43 publication-title: Nature doi: 10.1038/s41586-021-03819-2 contributor: fullname: J Jumper – volume: 17 start-page: 1664 year: 2014 ident: 36736_CR8 publication-title: Nat. Neurosci. doi: 10.1038/nn.3859 contributor: fullname: TSY Ho – volume: 10 start-page: 1 year: 2019 ident: 36736_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09177-y contributor: fullname: IA Kov´acs – volume: 24 start-page: 707 year: 2016 ident: 36736_CR1 publication-title: Mol. Ther. doi: 10.1038/mt.2015.214 contributor: fullname: I Petta – ident: 36736_CR24 doi: 10.48550/arXiv.2105.06709 – ident: 36736_CR53 – volume: 545 start-page: 505 year: 2017 ident: 36736_CR16 publication-title: Nature doi: 10.1038/nature22366 contributor: fullname: EL Huttlin – volume: 19 start-page: 355 year: 2007 ident: 36736_CR34 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.46 contributor: fullname: F Fouss – volume: 52 start-page: 1214 year: 2009 ident: 36736_CR46 publication-title: J. medicinal Chem. doi: 10.1021/jm801389m contributor: fullname: J Fernandes – volume: 286 start-page: 509 year: 1999 ident: 36736_CR52 publication-title: Science doi: 10.1126/science.286.5439.509 contributor: fullname: AL Barabási – ident: 36736_CR37 doi: 10.48550/arXiv.1810.00826 – volume: 592 start-page: 86 year: 2021 ident: 36736_CR9 publication-title: Nature doi: 10.1038/s41586-020-03171-x contributor: fullname: JH Siegle – volume: 3 start-page: 717 year: 1994 ident: 36736_CR48 publication-title: Protein Sci. doi: 10.1002/pro.5560030501 contributor: fullname: L Young – volume: 18 start-page: 39 year: 1953 ident: 36736_CR50 publication-title: Psychometrika doi: 10.1007/BF02289026 contributor: fullname: L Katz – volume: 9 start-page: 1134 year: 2012 ident: 36736_CR42 publication-title: Nat. methods doi: 10.1038/nmeth.2259 contributor: fullname: Y Park – volume: 34 start-page: 660 year: 2018 ident: 36736_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx624 contributor: fullname: M Kulmanov – ident: 36736_CR45 doi: 10.48550/arXiv.1710.10777 – volume: 159 start-page: 1212 year: 2014 ident: 36736_CR14 publication-title: Cell doi: 10.1016/j.cell.2014.10.050 contributor: fullname: T Rolland – volume: 372 start-page: 774 year: 2007 ident: 36736_CR55 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 contributor: fullname: E Krissinel – ident: 36736_CR58 doi: 10.48550/arXiv.1904.05003 – volume: 586 start-page: 378 year: 2020 ident: 36736_CR11 publication-title: Nature doi: 10.1038/s41586-020-2782-y contributor: fullname: Y Zhang – volume: 32 start-page: D129 year: 2004 ident: 36736_CR56 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkh028 contributor: fullname: CT Porter – ident: 36736_CR35 – ident: 36736_CR4 doi: 10.1038/s41591-022-01819-x – volume: 38 start-page: 1 year: 2008 ident: 36736_CR2 publication-title: Mol. Biotechnol. doi: 10.1007/s12033-007-0069-2 contributor: fullname: L Skrabanek – ident: 36736_CR44 – volume: 35 start-page: i305 year: 2019 ident: 36736_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz328 contributor: fullname: M Chen – ident: 36736_CR54 doi: 10.1109/ISDA.2011.6121636 – volume: 13 start-page: 1 year: 2022 ident: 36736_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32151-0 contributor: fullname: K Engelberg – ident: 36736_CR39 doi: 10.48550/arXiv.1904.08082 – volume: 28 start-page: 235 year: 2000 ident: 36736_CR60 publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 contributor: fullname: HM Berman – ident: 36736_CR32 doi: 10.1038/s41592-022-01490-7 – volume: 65 start-page: 40 year: 2006 ident: 36736_CR28 publication-title: Proteins: Struct., Funct., Bioinforma. doi: 10.1002/prot.21078 contributor: fullname: S Saha – volume: 39 start-page: 331 year: 2000 ident: 36736_CR47 publication-title: Proteins: Struct., Funct., Bioinforma. doi: 10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A contributor: fullname: Z Hu – volume: 11 start-page: 1 year: 2020 ident: 36736_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 contributor: fullname: CP Couturier – ident: 36736_CR61 – volume: 12 start-page: 1 year: 2021 ident: 36736_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23303-9 contributor: fullname: V Gligorijević – ident: 36736_CR27 – volume: 71 start-page: 623 year: 2009 ident: 36736_CR51 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2009-00335-8 contributor: fullname: T Zhou – volume: 6 start-page: 1 year: 2016 ident: 36736_CR13 publication-title: Sci. Rep. doi: 10.1038/s41598-016-0001-8 contributor: fullname: CH Wu – volume: 17 start-page: 3094 year: 1997 ident: 36736_CR18 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.6.3094 contributor: fullname: A Aronheim – volume: 12 start-page: 1 year: 2021 ident: 36736_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27396-0 contributor: fullname: N Renaud – volume: 2 start-page: 134 year: 2020 ident: 36736_CR40 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0152-y contributor: fullname: S Zheng – ident: 36736_CR17 doi: 10.1007/978-1-60327-064-9_27 – volume: 100 start-page: 4372 year: 2003 ident: 36736_CR33 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0735871100 contributor: fullname: DS Goldberg – volume: 79 start-page: 145 year: 2010 ident: 36736_CR19 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2009.07.035 contributor: fullname: JF Su |
SSID | ssj0000391844 |
Score | 2.5832803 |
Snippet | Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated... Abstract Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost... Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction.... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1093 |
SubjectTerms | 119/118 631/114/1305 631/114/2784 Active sites Amino Acid Sequence Computer applications Deep Learning Humanities and Social Sciences Humans Machine learning Model accuracy Modelling multidisciplinary Predictions Protein interaction Protein Interaction Mapping - methods Protein Interaction Maps Proteins Proteins - metabolism Science Science (multidisciplinary) Sequences Software Structure-function relationships |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsUwEB1EENyIb-uLCu602DRJky5cqCgXQVcK7kKah16QKnpduPMf_EO_xEnae_X6wI270oSSnkkmZ0jmDMC2IcZheFzjSuNlxrSXWS3RGTqriSul1yQqMZ2dl71LdnrFrz6V-gp3wlp54Ba4PWIw4iaeacs4c1xW0gdNL8-ddpaXNnrfvPoUTEUfTCsMXViXJZNTuffIok_ALSqj4S5TRsZ2oijY_xPL_H5Z8suJadyITmZhpmOQ6UE78jmYcM08TLU1JZ8XYL_XDznFscTJbRr1qNOuNMR1igw1jcoM_ebt5bV7SoNkxEOb4LAIlyfHF0e9rKuRkBnkWoOssFYjFrbwhNha-FI7IawxNcZVCBR3ghhChPemEMjMgto6UsKcGlfY3NSULsFkc9e4FUg5EdLkvpLceWYJRXx17lxeFqy2mokEdoZ4qftWCkPFI2wqVYuuQnRVRFeRBA4DpKOeQcY6vkDjqs646i_jJrA-NIjq1tajKoSoZPBMNIGtUTOuinDUoRt39xT6yEB28GcTWG7tNxoJLSXDyVEmIMYsOzbU8ZamfxOVtzE4RA-I39wdzoGPYf0Oxep_QLEG06HSfcym5-swOXh4chvIhwb1Zpz67yavCDI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6aDYVcQvp2khYXemvNWpZsKYcQmpJlKTSU0oW9CVmPZKF4N7ubQ275D_mH-SUZyVoH93UzlrClmdHoGz2-AfigibYYHtc40soqY8qJrBboDK1RxFbCKRKYmL6dV-MJ-zotp3HBbRWPVW58YnDUZq79Gvmw4PxIeHukJ4urzGeN8rurMYXGFmwXGCkUA9g-PTv__qNbZfH854KxeFsmp2K4YsE34FSVUX-mKSO9GSkQ9_8Nbf55aPK3ndMwIY32YDciyfRzq_pn8MQ2z-Fpm1vy5gUcj2f-bnFIdfIrDbzUaUwRcZEiUk0DQ8Osub-9i0-pp45YthcdXsJkdPbzyziLuRIyjZhrnRXGKFdaUzhCTM1dpSznRusa4yuHoMxyognhzumCI0LzrOsIDXOqbWFyXVP6CgbNvLFvIC0JFzp3R6K0jhlCFeottzavClYbxXgCHzfykouWEkOGrWwqZCtdidKVQbqSJHDqRdrV9HTW4cV8eSHj6JBEU3Q0jinDSmaxdcJ54jbsEP68rEwChxuFyDjGVvLRIhJ43xXj6PBbHqqx82tfR3jQg51N4HWrv64ltBIMjaNKgPc022tqv6SZXQYGbgwS0RPiNz9tbOCxWf8Wxf7_e3EAOz6XfbgvXx7CYL28tm8R8azrd9GsHwAnrgD0 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hENJeEM8lvBQkbhCIYyd2DwgBAlVI7GkrcbMcP9hKVbpbigQ3_gP_kF_C2EmKypYbtyhxEns8M_5G9nwDcKCJthgel2hpeZEw5URSCnSG1ihiC-EUCUxMt7-Kbo_d3OV3c9CWO2oE-DAztPP1pHqjwfHTv-czNPjTOmVcnDywYO64-iTUH1NKMBpayDwxlz_K18D94JlpBwMa1uTOzH51an0KNP6zsOf_Ryg_7aOG5el6GZYaXBmf14qwAnO2WoXFutLk8xqcdvs-0zgUPhnEgaU6bgpG3MeIW-PA19Cv3l5em6vYE0mM6rSHdehdX_2-7CZN5YREIwIbJ5kxyuXWZI4QU3JXKMu50brEaMshRLOcaEK4czrjiNc8BzsCxZRqm5lUl5RuwHw1rOwmxDnhQqeuI3LrmCFU4Sym1qZFxkqjGI_gsJWX_FsTZMiwsU2FrKUrUboySFeSCC68SCctPbl1uDEc3cvGViTRFN2OY8qwnFnsnXCexg0HhD_PCxPBTjshslUYmXHeEd5f0Qj2J4_RVvwGiKrs8NG3ER4C4WAj-FnP36QntBAMlaOIgE_N7FRXp59U_T-BjxtDRvSL-M2jVgc-uvW1KLa-QxTb8CPzyutz7PMdmB-PHu0uoqRxuRdU_x0UgA_R priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EEbyIb-uLCt602DRpEg8edFEWQU8K3kKahy5IV3Q9ePM_-A_9JU7S7kp9HLyVJm0nM5nkS5P5BmDPEONweVyhp5U8Y9rLrJI4GDqriePSaxKZmC6veP-GXdyWty1NToiF6ezfU3n4zKIr48yS0XAEKcOVzkyYg0Oahh7vTf6nBKZzyVgbF_P7o525J1L0_4Yrfx6P_LZHGqee8wWYbzFjetIYeRGmXL0Es00WyddlOO4PQhRxTGrykEYG6rRNBnGXIiZNIxfDoP54e2-v0kAS8dSENKzAzfnZda-ftVkRMoPoapQV1mpfOlt4QmwlPNdOCGtMhSspj_DLCWIIEd6bQiAWC_zqCAJzalxhc1NRugrT9bB265CWREiT-yNZOs8soRotlDuX84JVVjORwP5YX-qxIb9QcdOaStVoV6F2VdSuIgmcBpVOagbi6ngD7alaP1DEUBxSPNOWlcyhdNIHijZsEH685DaBrbFBVOtNz6oQ4kiGsYgmsDspRj8Imxu6dsOXUEcGeIONTWCtsd9EEsolw87BExAdy3ZE7ZbUg_vItY3LQRzz8J0H4z7wJdbfqtj4X_VNmAtZ7GOkfLkF06OnF7eNWGdU7cRO_gkkxfhm priority: 102 providerName: Springer Nature |
Title | Hierarchical graph learning for protein–protein interaction |
URI | https://link.springer.com/article/10.1038/s41467-023-36736-1 https://www.ncbi.nlm.nih.gov/pubmed/36841846 https://www.proquest.com/docview/2779807303 https://search.proquest.com/docview/2780081439 https://pubmed.ncbi.nlm.nih.gov/PMC9968329 https://doaj.org/article/1c3301f4ad454e5898f4072f5eaed56d |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RUhcEG8MJTISN3Dj9T5z4JBGDVGkVBVQKbeVvY82UutUaXrg1v_Qf8gvYXZtB8LjwsW27JU8ntfOeme-AXhniHG4PK7Q0rjIWOlVVil0hs6WxAnlSxKRmGbHYnLKpnM-3wHe1cLEpH1TLQ7qi8uDenEecyuvLk2_yxPrn8xGGKOjIg76u7CLCvrLEj26XzrAVQtrC2RyqvrXLLoDnJ0yGtKYstAehgrFcJzYmo8ibP_fYs0_UyZ_2zeN09H4ETxs48h02ND7GHZc_QTuN50lvz2Fj5NFqCyOjU4u0ohKnbYNIs5SjFPTiM-wqL_f3rVXaQCOWDVlDs_gdHz0dTTJ2k4JmcGIa50V1paeO1t4QmwlvSidlNaYCldXHkMyJ4khRHpvConxWcBcx8Awp8YVNjcVpc9hr17W7iWknEhlcj9Q3HlmCS1RarlzuShYZUsmE3jf8UtfNYAYOm5kU6UbRmtktI6M1iSBw8DSzcgAZh1vLFdnuhWpJoaim_GstIwzh9QpH2Db8IPw5VzYBPY7gejWwq51IeVABf9EE3i7eYy2ETY8ytotb8IYFUIe_NgEXjTy21DSyT8BuSXZLVK3n6A6RvztVv0S-NDpwE-y_s2KV__9otfwIDS5j4X0fB_21qsb9wZDoXXVQwOYSzyq8ace3BsOp1-meD48Oj75jHdHYtSLPxnwOGOqFw3lB4AhEEY |
link.rule.ids | 230,315,730,783,787,867,888,2109,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,41134,42203,43324,43614,43819,51590,53806,53808,74081,74371,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIgQXVF4lUCBI3CBqHDuxe0BVi1iWvk6t1Jvl-NGuVGXL7vbAjf_AP-wv6Yzj3Wp59BbFVmLPjMefH_MNwAfLrMflcYsjrW4KYYIqWoXO0DvDfKOCYZGJ6fCoGZ6IvdP6NG24TdO1yrlPjI7ajS3tkW9WUm4pske-ffmjoKxRdLqaUmjcg_uC40RDkeKDb4s9FmI_V0KkWJmSq82piJ4BJ6qC042mgi3NR5G2_19Y8-8rk3-cm8bpaLAGjxOOzHd6xT-BFd89hQd9Zsmfz-DzcESRxTHRyUUeWanzlCDiLEecmkd-hlF3_et3esqJOGLShzk8h5PB1-MvwyJlSigsIq5ZUTlnQu1dFRhzrQyN8VI6a1tcXQWEZF4yy5gMwVYS8RlxriMwLLn1lStty_kLWO3GnX8Jec2ksmXYUrUPwjFuUGul92VTidYZITP4OJeXvuwJMXQ8yOZK99LVKF0dpatZBrsk0kVNIrOOL8aTM53GhmaWo5sJwjhRC4-tU4Fo27BD-PO6cRlszBWi0wib6lt7yOD9ohjHBh14mM6Pr6iOIsiDnc1gvdffoiW8UQKNo8lALml2qanLJd3oPPJv4xIR_SB-89PcBm6b9X9RvLq7F-_g4fD48EAffD_afw2PKKt9jJyvN2B1NrnybxD7zNq30cBvABORAn8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RUCsuqPQBoZQGiRuNNo6d2BwQaoHVlpc4FGlvluMHrISysLsceuM_9B_2lzB2vIu2r1sUW4k9Ho8_2zPfAOxooi1uj2ucaWWVMeVEVgs0htYoYivhFAlMTOcXVe-KnfTLfvR_Gke3yqlNDIbaDLU_I-8UnO8Jr4-046JbxOVR9-DuPvMZpPxNa0yn8QKWOMOFDnWb9_nsvMUzoQvGYtxMTkVnzIKVwEUro967KSNza1Og8P8b7vzTffK3O9SwNHVfw0rElOmXVglWYcE2b-Blm2Xyx1vY7w18lHFIenKbBobqNCaLuE4Rs6aBq2HQ_Hr8GZ9STyIxakMe3sFV9_j7YS-LWRMyjehrkhXGKFdaUzhCTM1dpSznRusad1oO4ZnlRBPCndMFR6zm-dcRJOZU28Lkuqb0PSw2w8auQ1oSLnTu9kRpHTOEKhzB3Nq8KlhtFOMJ7E7lJe9acgwZLrWpkK10JUpXBulKksBXL9JZTU9sHV4MR9cyzhNJNEWT45gyrGQWWyecp3DDDuHPy8oksDkdEBln21g-60YC27NinCf-8kM1dvjg6wgPf7CzCay14zdrCa0EQ-WoEuBzIzvX1PmSZnATuLhxu4g2Eb_5eaoDz836tyg2_t-LT_AKdVuefbs4_QDLPsF9CKIvN2FxMnqwHxEGTeqtoN9PLFgGtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+graph+learning+for+protein%E2%80%93protein+interaction&rft.jtitle=Nature+communications&rft.au=Ziqi+Gao&rft.au=Chenran+Jiang&rft.au=Jiawen+Zhang&rft.au=Xiaosen+Jiang&rft.date=2023-02-25&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41467-023-36736-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1c3301f4ad454e5898f4072f5eaed56d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |