Hierarchical graph learning for protein–protein interaction

Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in si...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 1093
Main Authors Gao, Ziqi, Jiang, Chenran, Zhang, Jiawen, Jiang, Xiaosen, Li, Lanqing, Zhao, Peilin, Yang, Huanming, Huang, Yong, Li, Jia
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.02.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, “HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]” is a domain-knowledge-driven and interpretable framework for PPI prediction studies. Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction. Here, the authors present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved.
AbstractList Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction. Here, the authors present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved.
Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, “HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]” is a domain-knowledge-driven and interpretable framework for PPI prediction studies. Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction. Here, the authors present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved.
Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, “HIGH-PPI [https://github.com/zqgao22/HIGH-PPI]” is a domain-knowledge-driven and interpretable framework for PPI prediction studies.Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction. Here, the authors present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved.
Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, "HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]" is a domain-knowledge-driven and interpretable framework for PPI prediction studies.
Abstract Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, “HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]” is a domain-knowledge-driven and interpretable framework for PPI prediction studies.
ArticleNumber 1093
Author Jiang, Xiaosen
Zhao, Peilin
Jiang, Chenran
Gao, Ziqi
Li, Jia
Li, Lanqing
Huang, Yong
Zhang, Jiawen
Yang, Huanming
Author_xml – sequence: 1
  givenname: Ziqi
  orcidid: 0000-0002-7417-3620
  surname: Gao
  fullname: Gao, Ziqi
  organization: Data Science and Analytics, The Hong Kong University of Science and Technology, Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology
– sequence: 2
  givenname: Chenran
  surname: Jiang
  fullname: Jiang, Chenran
  organization: Pingshan Translational Medicine Center, Shenzhen Bay Laboratory
– sequence: 3
  givenname: Jiawen
  surname: Zhang
  fullname: Zhang, Jiawen
  organization: Data Science and Analytics, The Hong Kong University of Science and Technology
– sequence: 4
  givenname: Xiaosen
  surname: Jiang
  fullname: Jiang, Xiaosen
  organization: The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences
– sequence: 5
  givenname: Lanqing
  orcidid: 0000-0003-1998-4022
  surname: Li
  fullname: Li, Lanqing
  organization: AI Lab, Tencent
– sequence: 6
  givenname: Peilin
  surname: Zhao
  fullname: Zhao, Peilin
  organization: AI Lab, Tencent
– sequence: 7
  givenname: Huanming
  orcidid: 0000-0002-0858-3410
  surname: Yang
  fullname: Yang, Huanming
  organization: The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences
– sequence: 8
  givenname: Yong
  orcidid: 0000-0001-8377-8923
  surname: Huang
  fullname: Huang, Yong
  email: yonghuang@ust.hk
  organization: Department of Chemistry, The Hong Kong University of Science and Technology
– sequence: 9
  givenname: Jia
  orcidid: 0000-0002-6362-4385
  surname: Li
  fullname: Li, Jia
  email: jialee@ust.hk
  organization: Data Science and Analytics, The Hong Kong University of Science and Technology, Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36841846$$D View this record in MEDLINE/PubMed
BookMark eNp9kb9OHDEQxq2IKBDgBSjQSjRpNvG_XdtFkCKUBCSkNKG2fPZ4z6c9-2LvIaXLO-QN8yQx7IUABW48mvnmNx5_b9FeTBEQOiH4PcFMfiic8F60mLKW9YL1LXmFDijmpCWCsr1H8T46LmWF62GKSM7foH3WS17D_gB9vAyQTbbLYM3YDNlsls0IJscQh8an3GxymiDEP79-76ImxKm22CmkeIReezMWON7dh-jmy-fvF5ft9bevVxefrlvbcTy11DnjO3DUE-IWwvcGhHDWLhTlnuMOBLGECO8tFZ3opOJMKYWZBeqwXTB2iK5mrktmpTc5rE3-qZMJ-j6R8qBNnoIdQRPLGCaeG8c7DpUl6wRB63gDrutdZZ3PrM12sQZnIU7ZjE-gTysxLPWQbrVSvWRUVcC7HSCnH1sok16HYmEcTYS0LZoKibEkdYcqPXsmXaVtjvWrqkooiQXDd9vRWWVzKiWDf3gMwfrObD2bravZ-t5sTWrT6eM1Hlr-WVsFbBaUWooD5P-zX8D-BfZYt-s
CitedBy_id crossref_primary_10_1021_acscatal_3c02743
crossref_primary_10_1080_17460441_2023_2218641
crossref_primary_10_1016_j_iswa_2024_200353
crossref_primary_10_1109_TPEL_2024_3358841
crossref_primary_10_1038_s41467_024_48801_4
crossref_primary_10_1016_j_compbiomed_2024_108623
crossref_primary_10_1080_10408398_2023_2295016
crossref_primary_10_1093_protein_gzad023
crossref_primary_10_52601_bpr_2024_240006
crossref_primary_10_1093_bioinformatics_btad567
crossref_primary_10_1016_j_drudis_2024_103979
crossref_primary_10_1142_S0219720024500045
crossref_primary_10_1007_s11042_024_19251_3
crossref_primary_10_1007_s12273_024_1136_3
crossref_primary_10_1186_s12864_024_10299_x
crossref_primary_10_1039_D3CB00208J
crossref_primary_10_1016_j_neucom_2024_127320
crossref_primary_10_1021_acs_analchem_4c01639
Cites_doi 10.1093/bioinformatics/btz328
10.1038/nmeth.2259
10.1002/pro.5560030501
10.1093/nar/gkh028
10.1038/ni1080
10.1128/MCB.17.6.3094
10.1038/s41586-020-2782-y
10.1093/nar/28.1.235
10.1093/nar/gky1131
10.1016/j.cell.2015.09.053
10.1093/bioinformatics/btx624
10.1140/epjb/e2009-00335-8
10.1038/s41467-021-27396-0
10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A
10.1038/mt.2015.214
10.1016/j.compbiomed.2021.104772
10.1038/nn.3859
10.1016/j.carbpol.2009.07.035
10.1038/nature22366
10.1002/prot.340090106
10.1126/science.286.5439.509
10.1016/j.jmb.2007.05.022
10.1007/s12033-007-0069-2
10.1093/bioinformatics/btx350
10.1016/j.cell.2014.10.050
10.1038/s41586-021-03819-2
10.1038/s41467-022-32151-0
10.1016/j.omtn.2020.08.025
10.1002/prot.21078
10.1038/s41467-021-23303-9
10.1109/TKDE.2007.46
10.1038/s41567-021-01164-9
10.7717/peerj.4750
10.1073/pnas.0735871100
10.1021/jm801389m
10.1038/s42003-022-03391-z
10.1007/BF02289026
10.1038/s41467-022-31675-9
10.1038/s41467-019-09177-y
10.1038/s42256-020-0152-y
10.1038/s41586-020-03171-x
10.1007/978-1-59745-535-0_4
10.1007/s11263-019-01228-7
10.48550/arXiv.1903.03894
10.48550/arXiv.1609.02907
10.1007/978-3-319-22053-6_75
10.48550/arXiv.2105.06709
10.48550/arXiv.1810.00826
10.48550/arXiv.1710.10777
10.48550/arXiv.1904.05003
10.1038/s41591-022-01819-x
10.1109/ISDA.2011.6121636
10.48550/arXiv.1904.08082
10.1038/s41592-022-01490-7
10.1038/s41467-019-13993-7
10.1038/s41598-016-0001-8
10.1007/978-1-60327-064-9_27
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-36736-1
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Publicly Available Content database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 1093
ExternalDocumentID oai_doaj_org_article_1c3301f4ad454e5898f4072f5eaed56d
10_1038_s41467_023_36736_1
36841846
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21825101; 62206067
  funderid: https://doi.org/10.13039/501100001809
– fundername: Tencent AI Lab Rhino-Bird Focused Research Program RBFR2022008; Guangzhou-HKUST(GZ) Joint Funding Scheme
– fundername: ;
– fundername: ;
  grantid: 21825101; 62206067
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c540t-2ddaf5ed2f11db7f6ae77dccb924f405e71c117ffc27575894399903ce2d0cb33
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 15:15:15 EDT 2024
Tue Sep 17 21:32:06 EDT 2024
Sat Oct 05 06:27:51 EDT 2024
Thu Oct 10 21:09:55 EDT 2024
Fri Aug 23 02:30:56 EDT 2024
Sat Sep 28 08:15:17 EDT 2024
Fri Oct 11 20:46:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-2ddaf5ed2f11db7f6ae77dccb924f405e71c117ffc27575894399903ce2d0cb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1998-4022
0000-0002-7417-3620
0000-0002-6362-4385
0000-0001-8377-8923
0000-0002-0858-3410
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968329/
PMID 36841846
PQID 2779807303
PQPubID 546298
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_1c3301f4ad454e5898f4072f5eaed56d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9968329
proquest_miscellaneous_2780081439
proquest_journals_2779807303
crossref_primary_10_1038_s41467_023_36736_1
pubmed_primary_36841846
springer_journals_10_1038_s41467_023_36736_1
PublicationCentury 2000
PublicationDate 2023-02-25
PublicationDateYYYYMMDD 2023-02-25
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Fernandes, Gattass (CR46) 2009; 52
Skrabanek, Saini, Bader, Enright (CR2) 2008; 38
CR39
CR37
Park, Marcotte (CR42) 2012; 9
Hein (CR15) 2015; 163
CR36
CR35
CR32
Huttlin (CR16) 2017; 545
Katz (CR50) 1953; 18
Szklarczyk (CR38) 2019; 47
Porter, Bartlett, Thornton (CR56) 2004; 32
Ho (CR8) 2014; 17
CR4
Saha, Raghava (CR28) 2006; 65
Jiménez (CR30) 2017; 33
Zheng, Li, Chen, Xu, Yang (CR40) 2020; 2
Gligorijević (CR29) 2021; 12
Siegle (CR9) 2021; 592
Amidi (CR31) 2018; 6
CR45
Krissinel, Henrick (CR55) 2007; 372
Hope, Jin, Dick (CR3) 2004; 5
CR44
Fouss, Pirotte, Renders, Saerens (CR34) 2007; 19
CR41
Wu (CR13) 2016; 6
Su, Huang, Yuan, Wang, Li (CR19) 2010; 79
Nasiri, Berahmand, Rostami, Dabiri (CR23) 2021; 137
Kulmanov, Khan, Hoehndorf (CR25) 2018; 34
Engelberg, Bechtel, Michaud, Weerapana, Gubbels (CR6) 2022; 13
Aronheim, Zandi, Hennemann, Elledge, Karin (CR18) 1997; 17
CR17
Zhou, Lv, Zhang (CR51) 2009; 71
CR59
CR58
CR57
Zhang (CR11) 2020; 586
Jumper (CR43) 2021; 596
CR54
CR53
Korn, Burnett (CR49) 1991; 9
Goldberg, Roth (CR33) 2003; 100
Barabási, Albert (CR52) 1999; 286
Renaud (CR21) 2021; 12
Rolland (CR14) 2014; 159
Chen (CR26) 2019; 35
Zhao, Wang, Hu, Cheng (CR20) 2020; 22
Young, Jernigan, Covell (CR48) 1994; 3
Berman (CR60) 2000; 28
CR27
Guharoy, Lazar, Macossay-Castillo, Tompa (CR12) 2022; 5
Couturier (CR5) 2020; 11
Hendrikx, Paul, van Ackooij, van der Stoep, Harvey (CR10) 2022; 13
CR24
CR62
CR61
Petta (CR1) 2016; 24
Kov´acs (CR22) 2019; 10
Hu, Ma, Wolfson, Nussinov (CR47) 2000; 39
Wigbers (CR7) 2021; 17
DS Goldberg (36736_CR33) 2003; 100
JH Siegle (36736_CR9) 2021; 592
Z Hu (36736_CR47) 2000; 39
Y Zhang (36736_CR11) 2020; 586
L Skrabanek (36736_CR2) 2008; 38
JF Su (36736_CR19) 2010; 79
M Chen (36736_CR26) 2019; 35
T Zhou (36736_CR51) 2009; 71
F Fouss (36736_CR34) 2007; 19
E Krissinel (36736_CR55) 2007; 372
KJ Hope (36736_CR3) 2004; 5
S Zheng (36736_CR40) 2020; 2
V Gligorijević (36736_CR29) 2021; 12
36736_CR45
T Rolland (36736_CR14) 2014; 159
36736_CR44
J Fernandes (36736_CR46) 2009; 52
CP Couturier (36736_CR5) 2020; 11
36736_CR41
L Zhao (36736_CR20) 2020; 22
M Guharoy (36736_CR12) 2022; 5
J Jumper (36736_CR43) 2021; 596
TSY Ho (36736_CR8) 2014; 17
36736_CR17
L Katz (36736_CR50) 1953; 18
36736_CR59
36736_CR58
36736_CR57
36736_CR4
A Amidi (36736_CR31) 2018; 6
36736_CR54
36736_CR53
CH Wu (36736_CR13) 2016; 6
EL Huttlin (36736_CR16) 2017; 545
IA Kov´acs (36736_CR22) 2019; 10
I Petta (36736_CR1) 2016; 24
36736_CR27
HM Berman (36736_CR60) 2000; 28
36736_CR24
D Szklarczyk (36736_CR38) 2019; 47
M Kulmanov (36736_CR25) 2018; 34
Y Park (36736_CR42) 2012; 9
36736_CR62
36736_CR61
K Engelberg (36736_CR6) 2022; 13
E Nasiri (36736_CR23) 2021; 137
AL Barabási (36736_CR52) 1999; 286
L Young (36736_CR48) 1994; 3
AP Korn (36736_CR49) 1991; 9
CT Porter (36736_CR56) 2004; 32
S Saha (36736_CR28) 2006; 65
MY Hein (36736_CR15) 2015; 163
N Renaud (36736_CR21) 2021; 12
36736_CR39
E Hendrikx (36736_CR10) 2022; 13
36736_CR37
36736_CR36
MC Wigbers (36736_CR7) 2021; 17
36736_CR35
36736_CR32
A Aronheim (36736_CR18) 1997; 17
J Jiménez (36736_CR30) 2017; 33
References_xml – ident: CR45
– ident: CR4
– ident: CR39
– volume: 35
  start-page: i305
  year: 2019
  end-page: i314
  ident: CR26
  article-title: Multifaceted protein–protein interaction prediction based on Siamese residual RCNN
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz328
  contributor:
    fullname: Chen
– volume: 9
  start-page: 1134
  year: 2012
  end-page: 1136
  ident: CR42
  article-title: Flaws in evaluation schemes for pair-input computational predictions
  publication-title: Nat. methods
  doi: 10.1038/nmeth.2259
  contributor:
    fullname: Marcotte
– ident: CR35
– ident: CR54
– ident: CR61
– ident: CR58
– volume: 3
  start-page: 717
  year: 1994
  end-page: 729
  ident: CR48
  article-title: A role for surface hydrophobicity in protein-protein recognition
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560030501
  contributor:
    fullname: Covell
– volume: 32
  start-page: D129
  year: 2004
  end-page: D133
  ident: CR56
  article-title: The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkh028
  contributor:
    fullname: Thornton
– volume: 5
  start-page: 738
  year: 2004
  end-page: 743
  ident: CR3
  article-title: Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1080
  contributor:
    fullname: Dick
– volume: 17
  start-page: 3094
  year: 1997
  end-page: 3102
  ident: CR18
  article-title: Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.17.6.3094
  contributor:
    fullname: Karin
– volume: 586
  start-page: 378
  year: 2020
  end-page: 384
  ident: CR11
  article-title: A system hierarchy for brain-inspired computing
  publication-title: Nature
  doi: 10.1038/s41586-020-2782-y
  contributor:
    fullname: Zhang
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  ident: CR60
  article-title: The protein data bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
  contributor:
    fullname: Berman
– ident: CR57
– volume: 47
  start-page: D607
  year: 2019
  end-page: D613
  ident: CR38
  article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gky1131
  contributor:
    fullname: Szklarczyk
– ident: CR32
– ident: CR36
– volume: 163
  start-page: 712
  year: 2015
  end-page: 723
  ident: CR15
  article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.053
  contributor:
    fullname: Hein
– volume: 34
  start-page: 660
  year: 2018
  end-page: 668
  ident: CR25
  article-title: DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx624
  contributor:
    fullname: Hoehndorf
– volume: 71
  start-page: 623
  year: 2009
  end-page: 630
  ident: CR51
  article-title: Predicting missing links via local information
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00335-8
  contributor:
    fullname: Zhang
– volume: 12
  start-page: 1
  year: 2021
  end-page: 8
  ident: CR21
  article-title: DeepRank: a deep learning framework for data mining 3D protein-protein interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27396-0
  contributor:
    fullname: Renaud
– volume: 39
  start-page: 331
  year: 2000
  end-page: 342
  ident: CR47
  article-title: Conservation of polar residues as hot spots at protein interfaces
  publication-title: Proteins: Struct., Funct., Bioinforma.
  doi: 10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A
  contributor:
    fullname: Nussinov
– volume: 24
  start-page: 707
  year: 2016
  end-page: 718
  ident: CR1
  article-title: Modulation of protein–protein interactions for the development of novel therapeutics
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.214
  contributor:
    fullname: Petta
– volume: 137
  start-page: 104772
  year: 2021
  ident: CR23
  article-title: A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding
  publication-title: Computers Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104772
  contributor:
    fullname: Dabiri
– ident: CR37
– ident: CR53
– volume: 17
  start-page: 1664
  year: 2014
  end-page: 1672
  ident: CR8
  article-title: A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3859
  contributor:
    fullname: Ho
– volume: 79
  start-page: 145
  year: 2010
  end-page: 153
  ident: CR19
  article-title: Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.07.035
  contributor:
    fullname: Li
– volume: 545
  start-page: 505
  year: 2017
  end-page: 509
  ident: CR16
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
  doi: 10.1038/nature22366
  contributor:
    fullname: Huttlin
– volume: 9
  start-page: 37
  year: 1991
  end-page: 55
  ident: CR49
  article-title: Distribution and complementarity of hydropathy in mutisunit proteins
  publication-title: Proteins: Struct., Funct., Bioinforma.
  doi: 10.1002/prot.340090106
  contributor:
    fullname: Burnett
– volume: 286
  start-page: 509
  year: 1999
  end-page: 512
  ident: CR52
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
  contributor:
    fullname: Albert
– volume: 372
  start-page: 774
  year: 2007
  end-page: 797
  ident: CR55
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
  contributor:
    fullname: Henrick
– volume: 38
  start-page: 1
  year: 2008
  end-page: 17
  ident: CR2
  article-title: Computational prediction of protein–protein interactions
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-007-0069-2
  contributor:
    fullname: Enright
– volume: 33
  start-page: 3036
  year: 2017
  end-page: 3042
  ident: CR30
  article-title: DeepSite: protein-binding site predictor using 3D-convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx350
  contributor:
    fullname: Jiménez
– ident: CR27
– volume: 159
  start-page: 1212
  year: 2014
  end-page: 1226
  ident: CR14
  article-title: A proteome-scale map of the human interactome network
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.050
  contributor:
    fullname: Rolland
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: CR43
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
  contributor:
    fullname: Jumper
– volume: 13
  start-page: 1
  year: 2022
  end-page: 15
  ident: CR6
  article-title: Proteomic characterization of the Toxoplasma gondii cytokinesis machinery portrays an expanded hierarchy of its assembly and function
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32151-0
  contributor:
    fullname: Gubbels
– volume: 11
  start-page: 1
  year: 2020
  end-page: 19
  ident: CR5
  article-title: Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy
  publication-title: Nat. Commun.
  contributor:
    fullname: Couturier
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR13
  article-title: Identification of lncRNA functions in lung cancer based on associated protein-protein interaction modules
  publication-title: Sci. Rep.
  contributor:
    fullname: Wu
– volume: 22
  start-page: 198
  year: 2020
  end-page: 208
  ident: CR20
  article-title: Conjoint feature representation of GO and protein sequence for PPI prediction based on an inception RNN attention network
  publication-title: Mol. Ther.-Nucleic Acids
  doi: 10.1016/j.omtn.2020.08.025
  contributor:
    fullname: Cheng
– volume: 65
  start-page: 40
  year: 2006
  end-page: 48
  ident: CR28
  article-title: Prediction of continuous B-cell epitopes in an antigen using recurrent neural network
  publication-title: Proteins: Struct., Funct., Bioinforma.
  doi: 10.1002/prot.21078
  contributor:
    fullname: Raghava
– ident: CR44
– volume: 12
  start-page: 1
  year: 2021
  end-page: 14
  ident: CR29
  article-title: Structure-based protein function prediction using graph convolutional networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23303-9
  contributor:
    fullname: Gligorijević
– volume: 19
  start-page: 355
  year: 2007
  end-page: 369
  ident: CR34
  article-title: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.46
  contributor:
    fullname: Saerens
– volume: 17
  start-page: 578
  year: 2021
  end-page: 584
  ident: CR7
  article-title: A hierarchy of protein patterns robustly decodes cell shape information
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01164-9
  contributor:
    fullname: Wigbers
– volume: 6
  start-page: e4750
  year: 2018
  ident: CR31
  article-title: EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation
  publication-title: PeerJ
  doi: 10.7717/peerj.4750
  contributor:
    fullname: Amidi
– ident: CR17
– volume: 100
  start-page: 4372
  year: 2003
  end-page: 4376
  ident: CR33
  article-title: Assessing experimentally derived interactions in a small world
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0735871100
  contributor:
    fullname: Roth
– volume: 52
  start-page: 1214
  year: 2009
  end-page: 1218
  ident: CR46
  article-title: Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 (MRP1/ABCC1)
  publication-title: J. medicinal Chem.
  doi: 10.1021/jm801389m
  contributor:
    fullname: Gattass
– volume: 5
  start-page: 1
  year: 2022
  end-page: 15
  ident: CR12
  article-title: Degron masking outlines degronons, co-degrading functional modules in the proteome
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-022-03391-z
  contributor:
    fullname: Tompa
– volume: 18
  start-page: 39
  year: 1953
  end-page: 43
  ident: CR50
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289026
  contributor:
    fullname: Katz
– volume: 13
  start-page: 1
  year: 2022
  end-page: 19
  ident: CR10
  article-title: Visual timing-tuned responses in human association cortices and response dynamics in early visual cortex
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31675-9
  contributor:
    fullname: Harvey
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR22
  article-title: Network-based prediction of protein interactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09177-y
  contributor:
    fullname: Kov´acs
– volume: 2
  start-page: 134
  year: 2020
  end-page: 140
  ident: CR40
  article-title: Predicting drug–protein interaction using quasi-visual question answering system
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0152-y
  contributor:
    fullname: Yang
– ident: CR59
– volume: 592
  start-page: 86
  year: 2021
  end-page: 92
  ident: CR9
  article-title: Survey of spiking in the mouse visual system reveals functional hierarchy
  publication-title: Nature
  doi: 10.1038/s41586-020-03171-x
  contributor:
    fullname: Siegle
– ident: CR41
– ident: CR62
– ident: CR24
– volume: 22
  start-page: 198
  year: 2020
  ident: 36736_CR20
  publication-title: Mol. Ther.-Nucleic Acids
  doi: 10.1016/j.omtn.2020.08.025
  contributor:
    fullname: L Zhao
– volume: 5
  start-page: 738
  year: 2004
  ident: 36736_CR3
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1080
  contributor:
    fullname: KJ Hope
– volume: 163
  start-page: 712
  year: 2015
  ident: 36736_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.053
  contributor:
    fullname: MY Hein
– volume: 17
  start-page: 578
  year: 2021
  ident: 36736_CR7
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01164-9
  contributor:
    fullname: MC Wigbers
– volume: 137
  start-page: 104772
  year: 2021
  ident: 36736_CR23
  publication-title: Computers Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104772
  contributor:
    fullname: E Nasiri
– volume: 13
  start-page: 1
  year: 2022
  ident: 36736_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31675-9
  contributor:
    fullname: E Hendrikx
– ident: 36736_CR59
  doi: 10.1007/978-1-59745-535-0_4
– ident: 36736_CR57
  doi: 10.1007/s11263-019-01228-7
– ident: 36736_CR62
  doi: 10.48550/arXiv.1903.03894
– volume: 9
  start-page: 37
  year: 1991
  ident: 36736_CR49
  publication-title: Proteins: Struct., Funct., Bioinforma.
  doi: 10.1002/prot.340090106
  contributor:
    fullname: AP Korn
– volume: 47
  start-page: D607
  year: 2019
  ident: 36736_CR38
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gky1131
  contributor:
    fullname: D Szklarczyk
– ident: 36736_CR36
  doi: 10.48550/arXiv.1609.02907
– ident: 36736_CR41
  doi: 10.1007/978-3-319-22053-6_75
– volume: 6
  start-page: e4750
  year: 2018
  ident: 36736_CR31
  publication-title: PeerJ
  doi: 10.7717/peerj.4750
  contributor:
    fullname: A Amidi
– volume: 5
  start-page: 1
  year: 2022
  ident: 36736_CR12
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-022-03391-z
  contributor:
    fullname: M Guharoy
– volume: 33
  start-page: 3036
  year: 2017
  ident: 36736_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx350
  contributor:
    fullname: J Jiménez
– volume: 596
  start-page: 583
  year: 2021
  ident: 36736_CR43
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
  contributor:
    fullname: J Jumper
– volume: 17
  start-page: 1664
  year: 2014
  ident: 36736_CR8
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3859
  contributor:
    fullname: TSY Ho
– volume: 10
  start-page: 1
  year: 2019
  ident: 36736_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09177-y
  contributor:
    fullname: IA Kov´acs
– volume: 24
  start-page: 707
  year: 2016
  ident: 36736_CR1
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.214
  contributor:
    fullname: I Petta
– ident: 36736_CR24
  doi: 10.48550/arXiv.2105.06709
– ident: 36736_CR53
– volume: 545
  start-page: 505
  year: 2017
  ident: 36736_CR16
  publication-title: Nature
  doi: 10.1038/nature22366
  contributor:
    fullname: EL Huttlin
– volume: 19
  start-page: 355
  year: 2007
  ident: 36736_CR34
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.46
  contributor:
    fullname: F Fouss
– volume: 52
  start-page: 1214
  year: 2009
  ident: 36736_CR46
  publication-title: J. medicinal Chem.
  doi: 10.1021/jm801389m
  contributor:
    fullname: J Fernandes
– volume: 286
  start-page: 509
  year: 1999
  ident: 36736_CR52
  publication-title: Science
  doi: 10.1126/science.286.5439.509
  contributor:
    fullname: AL Barabási
– ident: 36736_CR37
  doi: 10.48550/arXiv.1810.00826
– volume: 592
  start-page: 86
  year: 2021
  ident: 36736_CR9
  publication-title: Nature
  doi: 10.1038/s41586-020-03171-x
  contributor:
    fullname: JH Siegle
– volume: 3
  start-page: 717
  year: 1994
  ident: 36736_CR48
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560030501
  contributor:
    fullname: L Young
– volume: 18
  start-page: 39
  year: 1953
  ident: 36736_CR50
  publication-title: Psychometrika
  doi: 10.1007/BF02289026
  contributor:
    fullname: L Katz
– volume: 9
  start-page: 1134
  year: 2012
  ident: 36736_CR42
  publication-title: Nat. methods
  doi: 10.1038/nmeth.2259
  contributor:
    fullname: Y Park
– volume: 34
  start-page: 660
  year: 2018
  ident: 36736_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx624
  contributor:
    fullname: M Kulmanov
– ident: 36736_CR45
  doi: 10.48550/arXiv.1710.10777
– volume: 159
  start-page: 1212
  year: 2014
  ident: 36736_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.050
  contributor:
    fullname: T Rolland
– volume: 372
  start-page: 774
  year: 2007
  ident: 36736_CR55
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
  contributor:
    fullname: E Krissinel
– ident: 36736_CR58
  doi: 10.48550/arXiv.1904.05003
– volume: 586
  start-page: 378
  year: 2020
  ident: 36736_CR11
  publication-title: Nature
  doi: 10.1038/s41586-020-2782-y
  contributor:
    fullname: Y Zhang
– volume: 32
  start-page: D129
  year: 2004
  ident: 36736_CR56
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkh028
  contributor:
    fullname: CT Porter
– ident: 36736_CR35
– ident: 36736_CR4
  doi: 10.1038/s41591-022-01819-x
– volume: 38
  start-page: 1
  year: 2008
  ident: 36736_CR2
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-007-0069-2
  contributor:
    fullname: L Skrabanek
– ident: 36736_CR44
– volume: 35
  start-page: i305
  year: 2019
  ident: 36736_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz328
  contributor:
    fullname: M Chen
– ident: 36736_CR54
  doi: 10.1109/ISDA.2011.6121636
– volume: 13
  start-page: 1
  year: 2022
  ident: 36736_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32151-0
  contributor:
    fullname: K Engelberg
– ident: 36736_CR39
  doi: 10.48550/arXiv.1904.08082
– volume: 28
  start-page: 235
  year: 2000
  ident: 36736_CR60
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
  contributor:
    fullname: HM Berman
– ident: 36736_CR32
  doi: 10.1038/s41592-022-01490-7
– volume: 65
  start-page: 40
  year: 2006
  ident: 36736_CR28
  publication-title: Proteins: Struct., Funct., Bioinforma.
  doi: 10.1002/prot.21078
  contributor:
    fullname: S Saha
– volume: 39
  start-page: 331
  year: 2000
  ident: 36736_CR47
  publication-title: Proteins: Struct., Funct., Bioinforma.
  doi: 10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A
  contributor:
    fullname: Z Hu
– volume: 11
  start-page: 1
  year: 2020
  ident: 36736_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
  contributor:
    fullname: CP Couturier
– ident: 36736_CR61
– volume: 12
  start-page: 1
  year: 2021
  ident: 36736_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23303-9
  contributor:
    fullname: V Gligorijević
– ident: 36736_CR27
– volume: 71
  start-page: 623
  year: 2009
  ident: 36736_CR51
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00335-8
  contributor:
    fullname: T Zhou
– volume: 6
  start-page: 1
  year: 2016
  ident: 36736_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0001-8
  contributor:
    fullname: CH Wu
– volume: 17
  start-page: 3094
  year: 1997
  ident: 36736_CR18
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.17.6.3094
  contributor:
    fullname: A Aronheim
– volume: 12
  start-page: 1
  year: 2021
  ident: 36736_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27396-0
  contributor:
    fullname: N Renaud
– volume: 2
  start-page: 134
  year: 2020
  ident: 36736_CR40
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0152-y
  contributor:
    fullname: S Zheng
– ident: 36736_CR17
  doi: 10.1007/978-1-60327-064-9_27
– volume: 100
  start-page: 4372
  year: 2003
  ident: 36736_CR33
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0735871100
  contributor:
    fullname: DS Goldberg
– volume: 79
  start-page: 145
  year: 2010
  ident: 36736_CR19
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.07.035
  contributor:
    fullname: JF Su
SSID ssj0000391844
Score 2.5832803
Snippet Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated...
Abstract Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost...
Despite recent progress, machine learning methods remain inadequate in modeling the natural protein-protein interaction (PPI) hierarchy for PPI prediction....
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1093
SubjectTerms 119/118
631/114/1305
631/114/2784
Active sites
Amino Acid Sequence
Computer applications
Deep Learning
Humanities and Social Sciences
Humans
Machine learning
Model accuracy
Modelling
multidisciplinary
Predictions
Protein interaction
Protein Interaction Mapping - methods
Protein Interaction Maps
Proteins
Proteins - metabolism
Science
Science (multidisciplinary)
Sequences
Software
Structure-function relationships
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsUwEB1EENyIb-uLCu602DRJky5cqCgXQVcK7kKah16QKnpduPMf_EO_xEnae_X6wI270oSSnkkmZ0jmDMC2IcZheFzjSuNlxrSXWS3RGTqriSul1yQqMZ2dl71LdnrFrz6V-gp3wlp54Ba4PWIw4iaeacs4c1xW0gdNL8-ddpaXNnrfvPoUTEUfTCsMXViXJZNTuffIok_ALSqj4S5TRsZ2oijY_xPL_H5Z8suJadyITmZhpmOQ6UE78jmYcM08TLU1JZ8XYL_XDznFscTJbRr1qNOuNMR1igw1jcoM_ebt5bV7SoNkxEOb4LAIlyfHF0e9rKuRkBnkWoOssFYjFrbwhNha-FI7IawxNcZVCBR3ghhChPemEMjMgto6UsKcGlfY3NSULsFkc9e4FUg5EdLkvpLceWYJRXx17lxeFqy2mokEdoZ4qftWCkPFI2wqVYuuQnRVRFeRBA4DpKOeQcY6vkDjqs646i_jJrA-NIjq1tajKoSoZPBMNIGtUTOuinDUoRt39xT6yEB28GcTWG7tNxoJLSXDyVEmIMYsOzbU8ZamfxOVtzE4RA-I39wdzoGPYf0Oxep_QLEG06HSfcym5-swOXh4chvIhwb1Zpz67yavCDI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6aDYVcQvp2khYXemvNWpZsKYcQmpJlKTSU0oW9CVmPZKF4N7ubQ275D_mH-SUZyVoH93UzlrClmdHoGz2-AfigibYYHtc40soqY8qJrBboDK1RxFbCKRKYmL6dV-MJ-zotp3HBbRWPVW58YnDUZq79Gvmw4PxIeHukJ4urzGeN8rurMYXGFmwXGCkUA9g-PTv__qNbZfH854KxeFsmp2K4YsE34FSVUX-mKSO9GSkQ9_8Nbf55aPK3ndMwIY32YDciyfRzq_pn8MQ2z-Fpm1vy5gUcj2f-bnFIdfIrDbzUaUwRcZEiUk0DQ8Osub-9i0-pp45YthcdXsJkdPbzyziLuRIyjZhrnRXGKFdaUzhCTM1dpSznRusa4yuHoMxyognhzumCI0LzrOsIDXOqbWFyXVP6CgbNvLFvIC0JFzp3R6K0jhlCFeottzavClYbxXgCHzfykouWEkOGrWwqZCtdidKVQbqSJHDqRdrV9HTW4cV8eSHj6JBEU3Q0jinDSmaxdcJ54jbsEP68rEwChxuFyDjGVvLRIhJ43xXj6PBbHqqx82tfR3jQg51N4HWrv64ltBIMjaNKgPc022tqv6SZXQYGbgwS0RPiNz9tbOCxWf8Wxf7_e3EAOz6XfbgvXx7CYL28tm8R8azrd9GsHwAnrgD0
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hENJeEM8lvBQkbhCIYyd2DwgBAlVI7GkrcbMcP9hKVbpbigQ3_gP_kF_C2EmKypYbtyhxEns8M_5G9nwDcKCJthgel2hpeZEw5URSCnSG1ihiC-EUCUxMt7-Kbo_d3OV3c9CWO2oE-DAztPP1pHqjwfHTv-czNPjTOmVcnDywYO64-iTUH1NKMBpayDwxlz_K18D94JlpBwMa1uTOzH51an0KNP6zsOf_Ryg_7aOG5el6GZYaXBmf14qwAnO2WoXFutLk8xqcdvs-0zgUPhnEgaU6bgpG3MeIW-PA19Cv3l5em6vYE0mM6rSHdehdX_2-7CZN5YREIwIbJ5kxyuXWZI4QU3JXKMu50brEaMshRLOcaEK4czrjiNc8BzsCxZRqm5lUl5RuwHw1rOwmxDnhQqeuI3LrmCFU4Sym1qZFxkqjGI_gsJWX_FsTZMiwsU2FrKUrUboySFeSCC68SCctPbl1uDEc3cvGViTRFN2OY8qwnFnsnXCexg0HhD_PCxPBTjshslUYmXHeEd5f0Qj2J4_RVvwGiKrs8NG3ER4C4WAj-FnP36QntBAMlaOIgE_N7FRXp59U_T-BjxtDRvSL-M2jVgc-uvW1KLa-QxTb8CPzyutz7PMdmB-PHu0uoqRxuRdU_x0UgA_R
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EEbyIb-uLCt602DRpEg8edFEWQU8K3kKahy5IV3Q9ePM_-A_9JU7S7kp9HLyVJm0nM5nkS5P5BmDPEONweVyhp5U8Y9rLrJI4GDqriePSaxKZmC6veP-GXdyWty1NToiF6ezfU3n4zKIr48yS0XAEKcOVzkyYg0Oahh7vTf6nBKZzyVgbF_P7o525J1L0_4Yrfx6P_LZHGqee8wWYbzFjetIYeRGmXL0Es00WyddlOO4PQhRxTGrykEYG6rRNBnGXIiZNIxfDoP54e2-v0kAS8dSENKzAzfnZda-ftVkRMoPoapQV1mpfOlt4QmwlPNdOCGtMhSspj_DLCWIIEd6bQiAWC_zqCAJzalxhc1NRugrT9bB265CWREiT-yNZOs8soRotlDuX84JVVjORwP5YX-qxIb9QcdOaStVoV6F2VdSuIgmcBpVOagbi6ngD7alaP1DEUBxSPNOWlcyhdNIHijZsEH685DaBrbFBVOtNz6oQ4kiGsYgmsDspRj8Imxu6dsOXUEcGeIONTWCtsd9EEsolw87BExAdy3ZE7ZbUg_vItY3LQRzz8J0H4z7wJdbfqtj4X_VNmAtZ7GOkfLkF06OnF7eNWGdU7cRO_gkkxfhm
  priority: 102
  providerName: Springer Nature
Title Hierarchical graph learning for protein–protein interaction
URI https://link.springer.com/article/10.1038/s41467-023-36736-1
https://www.ncbi.nlm.nih.gov/pubmed/36841846
https://www.proquest.com/docview/2779807303
https://search.proquest.com/docview/2780081439
https://pubmed.ncbi.nlm.nih.gov/PMC9968329
https://doaj.org/article/1c3301f4ad454e5898f4072f5eaed56d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RUhcEG8MJTISN3Dj9T5z4JBGDVGkVBVQKbeVvY82UutUaXrg1v_Qf8gvYXZtB8LjwsW27JU8ntfOeme-AXhniHG4PK7Q0rjIWOlVVil0hs6WxAnlSxKRmGbHYnLKpnM-3wHe1cLEpH1TLQ7qi8uDenEecyuvLk2_yxPrn8xGGKOjIg76u7CLCvrLEj26XzrAVQtrC2RyqvrXLLoDnJ0yGtKYstAehgrFcJzYmo8ibP_fYs0_UyZ_2zeN09H4ETxs48h02ND7GHZc_QTuN50lvz2Fj5NFqCyOjU4u0ohKnbYNIs5SjFPTiM-wqL_f3rVXaQCOWDVlDs_gdHz0dTTJ2k4JmcGIa50V1paeO1t4QmwlvSidlNaYCldXHkMyJ4khRHpvConxWcBcx8Awp8YVNjcVpc9hr17W7iWknEhlcj9Q3HlmCS1RarlzuShYZUsmE3jf8UtfNYAYOm5kU6UbRmtktI6M1iSBw8DSzcgAZh1vLFdnuhWpJoaim_GstIwzh9QpH2Db8IPw5VzYBPY7gejWwq51IeVABf9EE3i7eYy2ETY8ytotb8IYFUIe_NgEXjTy21DSyT8BuSXZLVK3n6A6RvztVv0S-NDpwE-y_s2KV__9otfwIDS5j4X0fB_21qsb9wZDoXXVQwOYSzyq8ace3BsOp1-meD48Oj75jHdHYtSLPxnwOGOqFw3lB4AhEEY
link.rule.ids 230,315,730,783,787,867,888,2109,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,41134,42203,43324,43614,43819,51590,53806,53808,74081,74371,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIgQXVF4lUCBI3CBqHDuxe0BVi1iWvk6t1Jvl-NGuVGXL7vbAjf_AP-wv6Yzj3Wp59BbFVmLPjMefH_MNwAfLrMflcYsjrW4KYYIqWoXO0DvDfKOCYZGJ6fCoGZ6IvdP6NG24TdO1yrlPjI7ajS3tkW9WUm4pske-ffmjoKxRdLqaUmjcg_uC40RDkeKDb4s9FmI_V0KkWJmSq82piJ4BJ6qC042mgi3NR5G2_19Y8-8rk3-cm8bpaLAGjxOOzHd6xT-BFd89hQd9Zsmfz-DzcESRxTHRyUUeWanzlCDiLEecmkd-hlF3_et3esqJOGLShzk8h5PB1-MvwyJlSigsIq5ZUTlnQu1dFRhzrQyN8VI6a1tcXQWEZF4yy5gMwVYS8RlxriMwLLn1lStty_kLWO3GnX8Jec2ksmXYUrUPwjFuUGul92VTidYZITP4OJeXvuwJMXQ8yOZK99LVKF0dpatZBrsk0kVNIrOOL8aTM53GhmaWo5sJwjhRC4-tU4Fo27BD-PO6cRlszBWi0wib6lt7yOD9ohjHBh14mM6Pr6iOIsiDnc1gvdffoiW8UQKNo8lALml2qanLJd3oPPJv4xIR_SB-89PcBm6b9X9RvLq7F-_g4fD48EAffD_afw2PKKt9jJyvN2B1NrnybxD7zNq30cBvABORAn8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RUCsuqPQBoZQGiRuNNo6d2BwQaoHVlpc4FGlvluMHrISysLsceuM_9B_2lzB2vIu2r1sUW4k9Ho8_2zPfAOxooi1uj2ucaWWVMeVEVgs0htYoYivhFAlMTOcXVe-KnfTLfvR_Gke3yqlNDIbaDLU_I-8UnO8Jr4-046JbxOVR9-DuPvMZpPxNa0yn8QKWOMOFDnWb9_nsvMUzoQvGYtxMTkVnzIKVwEUro967KSNza1Og8P8b7vzTffK3O9SwNHVfw0rElOmXVglWYcE2b-Blm2Xyx1vY7w18lHFIenKbBobqNCaLuE4Rs6aBq2HQ_Hr8GZ9STyIxakMe3sFV9_j7YS-LWRMyjehrkhXGKFdaUzhCTM1dpSznRusad1oO4ZnlRBPCndMFR6zm-dcRJOZU28Lkuqb0PSw2w8auQ1oSLnTu9kRpHTOEKhzB3Nq8KlhtFOMJ7E7lJe9acgwZLrWpkK10JUpXBulKksBXL9JZTU9sHV4MR9cyzhNJNEWT45gyrGQWWyecp3DDDuHPy8oksDkdEBln21g-60YC27NinCf-8kM1dvjg6wgPf7CzCay14zdrCa0EQ-WoEuBzIzvX1PmSZnATuLhxu4g2Eb_5eaoDz836tyg2_t-LT_AKdVuefbs4_QDLPsF9CKIvN2FxMnqwHxEGTeqtoN9PLFgGtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+graph+learning+for+protein%E2%80%93protein+interaction&rft.jtitle=Nature+communications&rft.au=Ziqi+Gao&rft.au=Chenran+Jiang&rft.au=Jiawen+Zhang&rft.au=Xiaosen+Jiang&rft.date=2023-02-25&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41467-023-36736-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1c3301f4ad454e5898f4072f5eaed56d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon