Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems

Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9-SunTag system to engineer targeted gene activation and DN...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 729 - 11
Main Authors Papikian, Ashot, Liu, Wanlu, Gallego-Bartolomé, Javier, Jacobsen, Steven E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.02.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9-SunTag system to engineer targeted gene activation and DNA methylation in Arabidopsis . We demonstrate that a dCas9-SunTag system utilizing the transcriptional activator VP64 drives robust and specific activation of several loci, including protein coding genes and transposable elements, in diverse chromatin contexts. In addition, we present a CRISPR-based methylation targeting system for plants, utilizing a SunTag system with the catalytic domain of the Nicotiana tabacum DRM methyltransferase, which efficiently targets DNA methylation to specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter. These SunTag systems represent valuable tools for the site-specific manipulation of plant epigenomes. Few approaches for targeted manipulation of the epigenome are available in plants. Here, the authors adapt the dCas9-SunTag system to engineer targeted gene activation and site-specific manipulation of DNA methylation in Arabidopsis .
AbstractList Few approaches for targeted manipulation of the epigenome are available in plants. Here, the authors adapt the dCas9-SunTag system to engineer targeted gene activation and site-specific manipulation of DNA methylation in Arabidopsis.
Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9-SunTag system to engineer targeted gene activation and DNA methylation in Arabidopsis. We demonstrate that a dCas9-SunTag system utilizing the transcriptional activator VP64 drives robust and specific activation of several loci, including protein coding genes and transposable elements, in diverse chromatin contexts. In addition, we present a CRISPR-based methylation targeting system for plants, utilizing a SunTag system with the catalytic domain of the Nicotiana tabacum DRM methyltransferase, which efficiently targets DNA methylation to specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter. These SunTag systems represent valuable tools for the site-specific manipulation of plant epigenomes.
Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9-SunTag system to engineer targeted gene activation and DNA methylation in Arabidopsis . We demonstrate that a dCas9-SunTag system utilizing the transcriptional activator VP64 drives robust and specific activation of several loci, including protein coding genes and transposable elements, in diverse chromatin contexts. In addition, we present a CRISPR-based methylation targeting system for plants, utilizing a SunTag system with the catalytic domain of the Nicotiana tabacum DRM methyltransferase, which efficiently targets DNA methylation to specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter. These SunTag systems represent valuable tools for the site-specific manipulation of plant epigenomes. Few approaches for targeted manipulation of the epigenome are available in plants. Here, the authors adapt the dCas9-SunTag system to engineer targeted gene activation and site-specific manipulation of DNA methylation in Arabidopsis .
Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9-SunTag system to engineer targeted gene activation and DNA methylation in Arabidopsis . We demonstrate that a dCas9-SunTag system utilizing the transcriptional activator VP64 drives robust and specific activation of several loci, including protein coding genes and transposable elements, in diverse chromatin contexts. In addition, we present a CRISPR-based methylation targeting system for plants, utilizing a SunTag system with the catalytic domain of the Nicotiana tabacum DRM methyltransferase, which efficiently targets DNA methylation to specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter. These SunTag systems represent valuable tools for the site-specific manipulation of plant epigenomes.
Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9-SunTag system to engineer targeted gene activation and DNA methylation in Arabidopsis. We demonstrate that a dCas9-SunTag system utilizing the transcriptional activator VP64 drives robust and specific activation of several loci, including protein coding genes and transposable elements, in diverse chromatin contexts. In addition, we present a CRISPR-based methylation targeting system for plants, utilizing a SunTag system with the catalytic domain of the Nicotiana tabacum DRM methyltransferase, which efficiently targets DNA methylation to specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter. These SunTag systems represent valuable tools for the site-specific manipulation of plant epigenomes.Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9-SunTag system to engineer targeted gene activation and DNA methylation in Arabidopsis. We demonstrate that a dCas9-SunTag system utilizing the transcriptional activator VP64 drives robust and specific activation of several loci, including protein coding genes and transposable elements, in diverse chromatin contexts. In addition, we present a CRISPR-based methylation targeting system for plants, utilizing a SunTag system with the catalytic domain of the Nicotiana tabacum DRM methyltransferase, which efficiently targets DNA methylation to specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter. These SunTag systems represent valuable tools for the site-specific manipulation of plant epigenomes.
Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9-SunTag system to engineer targeted gene activation and DNA methylation in Arabidopsis. We demonstrate that a dCas9-SunTag system utilizing the transcriptional activator VP64 drives robust and specific activation of several loci, including protein coding genes and transposable elements, in diverse chromatin contexts. In addition, we present a CRISPR-based methylation targeting system for plants, utilizing a SunTag system with the catalytic domain of the Nicotiana tabacum DRM methyltransferase, which efficiently targets DNA methylation to specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter. These SunTag systems represent valuable tools for the site-specific manipulation of plant epigenomes.Few approaches for targeted manipulation of the epigenome are available in plants. Here, the authors adapt the dCas9-SunTag system to engineer targeted gene activation and site-specific manipulation of DNA methylation in Arabidopsis.
ArticleNumber 729
Author Gallego-Bartolomé, Javier
Jacobsen, Steven E.
Papikian, Ashot
Liu, Wanlu
Author_xml – sequence: 1
  givenname: Ashot
  surname: Papikian
  fullname: Papikian, Ashot
  organization: Department of Molecular, Cell, and Developmental Biology, University of California, Department of Human Genetics, David Geffen School of Medicine, University of California
– sequence: 2
  givenname: Wanlu
  surname: Liu
  fullname: Liu, Wanlu
  organization: Department of Molecular, Cell, and Developmental Biology, University of California, Molecular Biology Institute, University of California
– sequence: 3
  givenname: Javier
  surname: Gallego-Bartolomé
  fullname: Gallego-Bartolomé, Javier
  organization: Department of Molecular, Cell, and Developmental Biology, University of California
– sequence: 4
  givenname: Steven E.
  orcidid: 0000-0001-9483-138X
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
  email: jacobsen@ucla.edu
  organization: Department of Molecular, Cell, and Developmental Biology, University of California, Howard Hughes Medical Institute, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30760722$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUhVGVqknT_IEuKkvddOOWCwyPTaVo1MdIkVJl0jXCGLuMbJiCXSn_vmScpkkWYQOC75x7gfMaHYUYHEJvAX8ETOWnzIBxUWNQNZaC8lq8QCcEM6hBEHr0YH2MznLe4TKoAsnYK3RMseBYEHKCLrd-cnXeO-s7b6vRBL-fBzP5GKrYVefJNL6N--xzNUTrqzn70Ffrq832x1W9NllV2zlcm77KN3lyY36DXnZmyO7sbj5FP79-uV5_ry8uv23W5xe1XTE81aRRHDg4xgEwbxRjpG2VNMIoICBAKUudXDWdMLyTbSO4Amda3thWMLtq6CnaLL5tNDu9T3406UZH4_VhI6ZemzR5OzitOG-xNLbBpYx0TnWOUCY6SVa0o5wWr8-L135uRtdaF6Zkhkemj0-C_6X7-EdzKhjDqhh8uDNI8ffs8qRHn60bBhNcnLMmIClnQlFW0PdP0F2cUyhPVSihBDAgt9S7hx3dt_Lv3wpAFsCmmHNy3T0CWN_mQy_50CUf-pAPLYpIPhFZPx2-utzKD89L6SLNpU7oXfrf9jOqv4OWzTY
CitedBy_id crossref_primary_10_3389_fpls_2022_822022
crossref_primary_10_3390_ijms22084125
crossref_primary_10_1111_nph_17586
crossref_primary_10_1016_j_jmb_2024_168836
crossref_primary_10_3390_ijms24043442
crossref_primary_10_1017_qpb_2023_14
crossref_primary_10_3389_fbioe_2020_00692
crossref_primary_10_1016_j_plantsci_2022_111435
crossref_primary_10_3390_epigenomes5030017
crossref_primary_10_1016_j_pbi_2023_102432
crossref_primary_10_1111_tpj_70054
crossref_primary_10_3390_agronomy12040759
crossref_primary_10_3390_agronomy10101484
crossref_primary_10_3390_ijms25063271
crossref_primary_10_1007_s11427_021_2131_6
crossref_primary_10_3390_agriculture15010029
crossref_primary_10_1007_s00018_022_04324_z
crossref_primary_10_1016_j_copbio_2019_08_006
crossref_primary_10_3390_epigenomes4020009
crossref_primary_10_1073_pnas_2125016118
crossref_primary_10_3390_horticulturae10010057
crossref_primary_10_3390_ijms22105167
crossref_primary_10_1007_s42994_023_00133_5
crossref_primary_10_1079_PAVSNNR202116028
crossref_primary_10_1016_j_pbi_2022_102241
crossref_primary_10_1016_j_tibtech_2023_10_007
crossref_primary_10_1093_jxb_erad167
crossref_primary_10_1080_21645698_2023_2219111
crossref_primary_10_1111_pbi_14533
crossref_primary_10_1093_nar_gkad458
crossref_primary_10_1016_j_stress_2024_100650
crossref_primary_10_1016_j_bbrc_2023_02_080
crossref_primary_10_1016_j_pbi_2020_101989
crossref_primary_10_1016_j_pbi_2020_101980
crossref_primary_10_3390_ijms22168618
crossref_primary_10_1016_j_xplc_2021_100168
crossref_primary_10_3390_ijms222413524
crossref_primary_10_1093_plphys_kiac033
crossref_primary_10_1007_s10142_020_00756_7
crossref_primary_10_1093_jxb_erae240
crossref_primary_10_3390_ijms231810492
crossref_primary_10_1016_j_molp_2019_06_009
crossref_primary_10_1038_s41477_019_0461_5
crossref_primary_10_1016_j_plgene_2021_100327
crossref_primary_10_1016_j_molp_2020_11_002
crossref_primary_10_1038_s41580_020_00288_9
crossref_primary_10_1016_j_tig_2021_08_002
crossref_primary_10_3390_plants10071423
crossref_primary_10_3389_fbioe_2023_1272811
crossref_primary_10_1016_j_copbio_2022_102692
crossref_primary_10_1016_j_bbagen_2023_130544
crossref_primary_10_1146_annurev_arplant_053122_030653
crossref_primary_10_3389_fviro_2022_935933
crossref_primary_10_3389_fpls_2022_1040532
crossref_primary_10_1089_crispr_2020_0137
crossref_primary_10_1111_pbi_13864
crossref_primary_10_48130_opr_0024_0022
crossref_primary_10_1093_bfgp_elae017
crossref_primary_10_1038_s41477_021_00953_7
crossref_primary_10_1093_pcp_pcac124
crossref_primary_10_3389_fpls_2019_01155
crossref_primary_10_1016_j_copbio_2021_07_008
crossref_primary_10_1016_j_envint_2024_108737
crossref_primary_10_1007_s11627_021_10215_y
crossref_primary_10_1016_j_jplph_2020_153313
crossref_primary_10_3389_fpls_2023_1127532
crossref_primary_10_34133_2022_9863496
crossref_primary_10_1007_s13562_020_00606_4
crossref_primary_10_1038_s41438_020_0258_8
crossref_primary_10_1042_BST20210353
crossref_primary_10_1007_s10529_020_02950_w
crossref_primary_10_1007_s11816_023_00876_z
crossref_primary_10_1016_j_ijbiomac_2022_08_182
crossref_primary_10_3389_fgene_2022_900897
crossref_primary_10_1016_j_bbagen_2024_130620
crossref_primary_10_1093_jxb_erad175
crossref_primary_10_1002_bies_202000316
crossref_primary_10_1016_j_indcrop_2025_120605
crossref_primary_10_1021_acssynbio_2c00238
crossref_primary_10_1007_s11427_021_1974_7
crossref_primary_10_3389_fgeed_2023_1272678
crossref_primary_10_3389_fgene_2022_876987
crossref_primary_10_1007_s00344_024_11395_8
crossref_primary_10_1007_s13258_021_01189_7
crossref_primary_10_3389_fbioe_2023_1124131
crossref_primary_10_1016_j_jplph_2020_153332
crossref_primary_10_1016_j_tibtech_2024_02_007
crossref_primary_10_3390_ijms22020512
crossref_primary_10_1007_s42994_024_00184_2
crossref_primary_10_1146_annurev_arplant_080720_090632
crossref_primary_10_1093_plphys_kiae149
crossref_primary_10_1016_j_pbi_2022_102315
crossref_primary_10_3390_ijms24065608
crossref_primary_10_1007_s13237_024_00483_5
crossref_primary_10_3390_genes11070781
crossref_primary_10_3389_fgeed_2024_1401088
crossref_primary_10_1111_nph_17353
crossref_primary_10_1093_jxb_eraf015
crossref_primary_10_1093_jxb_erab337
crossref_primary_10_1016_j_tibtech_2020_11_012
crossref_primary_10_1007_s42994_024_00147_7
crossref_primary_10_1038_s41467_021_23346_y
crossref_primary_10_54112_bbasr_v2023i1_45
crossref_primary_10_1111_jipb_13063
crossref_primary_10_1007_s11248_021_00252_z
crossref_primary_10_1016_j_ecoenv_2020_110643
crossref_primary_10_3389_fpls_2023_1181039
crossref_primary_10_3390_ijms231912053
crossref_primary_10_1038_s41477_023_01364_6
crossref_primary_10_1007_s13237_024_00479_1
crossref_primary_10_1371_journal_pone_0222778
crossref_primary_10_1007_s11105_025_01545_x
crossref_primary_10_1016_j_xplc_2023_100558
crossref_primary_10_1038_s41467_022_35675_7
crossref_primary_10_3389_fpubh_2021_578134
crossref_primary_10_59717_j_xinn_life_2024_100050
crossref_primary_10_3390_cells11193045
crossref_primary_10_1080_10409238_2024_2320659
crossref_primary_10_3390_agronomy15010094
crossref_primary_10_1186_s12864_021_07596_0
crossref_primary_10_1016_j_pbi_2024_102552
crossref_primary_10_1016_j_tibs_2023_06_001
crossref_primary_10_1094_PHYTO_08_20_0322_IA
crossref_primary_10_1111_pbi_13834
crossref_primary_10_1111_nph_20347
crossref_primary_10_3390_cells8111386
crossref_primary_10_3390_plants12234020
crossref_primary_10_1089_crispr_2020_0064
crossref_primary_10_1111_nyas_14675
crossref_primary_10_1007_s11248_023_00371_9
crossref_primary_10_1007_s11033_023_08539_6
crossref_primary_10_1093_hr_uhac148
crossref_primary_10_1016_j_jare_2024_08_024
crossref_primary_10_1016_j_jgg_2024_09_008
crossref_primary_10_1111_nph_16529
crossref_primary_10_1016_j_pbi_2024_102569
crossref_primary_10_1038_s41477_025_01924_y
crossref_primary_10_1111_tpj_16586
crossref_primary_10_3390_plants11081033
crossref_primary_10_1371_journal_pbio_3000747
crossref_primary_10_1021_acs_jafc_2c01754
crossref_primary_10_1038_s41477_021_01008_7
crossref_primary_10_3389_fpls_2021_764999
crossref_primary_10_1016_j_csbj_2022_10_004
crossref_primary_10_1016_j_copbio_2022_102856
crossref_primary_10_3390_plants10102055
crossref_primary_10_1371_journal_pgen_1008983
crossref_primary_10_1016_j_xplc_2024_101220
crossref_primary_10_1038_s41580_025_00834_3
crossref_primary_10_1016_j_tplants_2022_01_009
crossref_primary_10_1111_pce_15220
crossref_primary_10_1002_adfm_202202585
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1016_j_xplc_2024_100823
crossref_primary_10_1007_s00299_021_02681_w
crossref_primary_10_1016_j_isci_2024_111479
crossref_primary_10_1038_s41580_024_00769_1
crossref_primary_10_1007_s13258_021_01199_5
crossref_primary_10_3390_ijms232415968
crossref_primary_10_1371_journal_pgen_1009034
crossref_primary_10_1139_gen_2024_0098
crossref_primary_10_1186_s13007_024_01234_y
crossref_primary_10_1038_s41477_023_01362_8
crossref_primary_10_1093_hr_uhab037
crossref_primary_10_1111_jipb_13023
crossref_primary_10_1007_s00438_021_01769_y
crossref_primary_10_1016_j_cj_2024_10_007
crossref_primary_10_1080_07352689_2021_1883826
crossref_primary_10_1098_rstb_2020_0123
crossref_primary_10_3390_ijms22105071
crossref_primary_10_1021_acsagscitech_1c00270
crossref_primary_10_3390_ijms23084416
crossref_primary_10_1007_s00299_023_03071_0
crossref_primary_10_3389_fpls_2020_606800
crossref_primary_10_51847_wv4pyDAtfP
crossref_primary_10_1111_pbi_14441
crossref_primary_10_1007_s11756_022_01142_3
crossref_primary_10_1007_s10142_025_01533_0
crossref_primary_10_3389_fbioe_2022_913728
crossref_primary_10_1016_j_molp_2024_07_009
crossref_primary_10_3389_fpls_2021_773656
crossref_primary_10_3389_fpls_2021_689937
crossref_primary_10_3389_fpls_2020_00509
crossref_primary_10_1016_j_bbagen_2024_130580
crossref_primary_10_3390_ijms22062887
crossref_primary_10_1016_j_semcdb_2019_04_012
crossref_primary_10_1007_s12033_022_00610_0
crossref_primary_10_1016_j_jgg_2024_01_006
crossref_primary_10_1007_s00425_022_04054_3
crossref_primary_10_3389_fgene_2022_900253
crossref_primary_10_1007_s11033_022_07773_8
crossref_primary_10_1016_j_tplants_2024_04_007
crossref_primary_10_1038_s41467_024_45771_5
crossref_primary_10_1016_j_cofs_2022_100843
crossref_primary_10_3390_ijms222312912
crossref_primary_10_1007_s40502_020_00521_9
crossref_primary_10_1007_s42994_019_00003_z
crossref_primary_10_1016_j_devcel_2024_10_023
crossref_primary_10_3390_ijms20122888
crossref_primary_10_1007_s00122_021_03984_y
crossref_primary_10_1016_j_ecoenv_2021_112612
crossref_primary_10_3390_biology10080766
crossref_primary_10_3390_epigenomes4040025
crossref_primary_10_1016_j_jare_2020_10_003
crossref_primary_10_1042_ETLS20210258
crossref_primary_10_1016_j_pbi_2022_102297
crossref_primary_10_3389_fpls_2025_1544744
crossref_primary_10_1093_nar_gkad306
crossref_primary_10_1021_jacs_0c06541
crossref_primary_10_1111_tpj_15107
crossref_primary_10_1093_jxb_erz408
crossref_primary_10_1038_s41576_021_00407_y
crossref_primary_10_1007_s00299_024_03346_0
crossref_primary_10_1016_j_copbio_2024_103146
crossref_primary_10_3389_fpls_2020_00056
crossref_primary_10_1093_plphys_kiac113
crossref_primary_10_1093_nar_gkac463
crossref_primary_10_1093_nar_gkac582
Cites_doi 10.1104/pp.15.00636
10.1093/nar/gkw159
10.1016/j.cell.2014.03.056
10.1016/j.cell.2014.09.029
10.1016/j.cell.2016.08.056
10.1038/nature12931
10.1023/A:1016013426923
10.1093/bioinformatics/btu638
10.1038/nrg2719
10.1105/tpc.105.040444
10.1016/j.cell.2014.11.052
10.1038/nbt.3658
10.1111/j.1365-313X.2005.02617.x
10.1016/j.cell.2014.09.039
10.1038/ng.2703
10.1038/nrg.2016.28
10.1126/science.277.5329.1100
10.1016/j.cell.2013.02.033
10.1074/jbc.M303892200
10.1146/annurev-arplant-043014-114633
10.1186/gb-2009-10-3-r25
10.1016/j.cell.2016.09.006
10.1038/nmeth.3580
10.1126/science.1258096
10.1186/gb-2008-9-9-r137
10.1093/nar/gku708
10.1038/nmeth.2019
10.1038/nbt.2675
10.1016/S1097-2765(05)00090-0
10.1073/pnas.1413053112
10.1046/j.1365-313x.1998.00343.x
10.1038/nrg3686
10.1038/nmeth.2600
10.1093/emboj/19.19.5194
10.1038/nmeth.2598
10.1016/j.cub.2003.11.052
10.1038/s41477-017-0046-0
10.1016/j.cell.2012.10.054
10.1038/nmeth.3312
10.1038/nsmb.2735
10.1016/j.molp.2017.11.010
10.1073/pnas.1716945115
10.1186/s13059-017-1306-z
10.1371/journal.pgen.1001175
10.1073/pnas.192412899
10.1126/science.1165313
10.1126/science.1225829
10.1105/tpc.110.078493
10.1038/srep39678
10.1186/1471-2164-14-774
10.1038/s41467-017-02708-5
10.1016/S0960-9822(00)00324-9
10.1242/bio.019067
10.1093/bioinformatics/btp120
10.1038/s41598-016-0028-x
10.1038/nature05917
10.1038/nature06745
10.1038/nature14136
10.1126/science.289.5479.617
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-08736-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Acceso a contenido Full Text - Doaj
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_966d08acb09448ee9fe2347f8253f363
PMC6374409
30760722
10_1038_s41467_019_08736_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-2b96161e461106b9442dd98a7a91217199c3e85bf7a6f8db7691ead6bcd74c5b3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:57 EDT 2025
Thu Aug 21 18:07:45 EDT 2025
Fri Jul 11 06:17:32 EDT 2025
Wed Aug 13 06:24:24 EDT 2025
Thu Apr 03 06:49:56 EDT 2025
Tue Jul 01 02:21:23 EDT 2025
Thu Apr 24 23:44:04 EDT 2025
Fri Feb 21 02:38:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-2b96161e461106b9442dd98a7a91217199c3e85bf7a6f8db7691ead6bcd74c5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9483-138X
OpenAccessLink https://www.nature.com/articles/s41467-019-08736-7
PMID 30760722
PQID 2179714124
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_966d08acb09448ee9fe2347f8253f363
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6374409
proquest_miscellaneous_2183647934
proquest_journals_2179714124
pubmed_primary_30760722
crossref_primary_10_1038_s41467_019_08736_7
crossref_citationtrail_10_1038_s41467_019_08736_7
springer_journals_10_1038_s41467_019_08736_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-13
PublicationDateYYYYMMDD 2019-02-13
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-13
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lowder (CR11) 2018; 11
Schindelin (CR50) 2012; 9
Liu (CR35) 2016; 167
Zalatan (CR9) 2015; 160
Tanenbaum, Gilbert, Qi, Weissman, Vale (CR15) 2014; 159
Cao (CR38) 2003; 13
Konermann (CR13) 2014; 517
CR31
Grimmer (CR4) 2014; 42
Zemach (CR22) 2013; 153
Perez-Pinera (CR7) 2013; 10
Stroud (CR21) 2013; 21
Zhang (CR57) 2008; 9
Vojta (CR32) 2016; 44
Langmead, Trapnell, Pop, Salzberg (CR56) 2009; 10
Barrell, Yongjin, Cooper, Conner (CR51) 2002; 70
Clough, Bent (CR49) 1998; 16
Cokus (CR59) 2008; 452
Chavez (CR14) 2015; 12
Marí-Ordóñez (CR27) 2013; 45
Galonska (CR41) 2018; 9
Tsai, Joung (CR45) 2016; 17
Kim, Kim (CR46) 2014; 15
Soppe (CR25) 2000; 6
Law, Jacobsen (CR20) 2010; 11
Johnson (CR3) 2014; 507
Teixeira (CR40) 2009; 323
Bond, Baulcombe (CR39) 2015; 112
Matzke, Kanno, Matzke (CR23) 2015; 66
Guan (CR30) 2002; 99
Amabile (CR36) 2016; 167
Gilbert (CR16) 2014; 159
Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (CR1) 2013; 152
Mette, Aufsatz, Van der Winden, Matzke, Matzke (CR2) 2000; 19
Xiong (CR33) 2017; 7
Jacobsen (CR42) 1997; 277
Anders, Pyl, Huber (CR55) 2015; 31
Keima (CR48) 2017; 7
Trapnell, Pachter, Salzberg (CR54) 2009; 25
Gallego-Bartolomé (CR18) 2018; 115
Zhong (CR24) 2014; 157
Earley (CR52) 2006; 45
Tittel-Elmer (CR29) 2010; 6
Morita (CR17) 2016; 34
Jinek (CR26) 2012; 337
McDonald (CR34) 2016; 5
Mali (CR6) 2013; 31
Lowder (CR10) 2015; 169
Huang (CR19) 2017; 18
Li (CR12) 2017; 3
Henderson, Jacobsen (CR47) 2007; 447
Maeder (CR8) 2013; 10
Jacobsen, Sakai, Finnegan, Cao, Meyerowitz (CR43) 2000; 10
Pecinka (CR28) 2010; 22
Kiani (CR44) 2015; 12
Guo (CR58) 2013; 14
Wada, Ohya, Yamaguchi, Koizumi, Sano (CR37) 2003; 278
Doudna, Charpentier (CR5) 2014; 346
Muller, Borghi, Kwiatkowska, Laufs, Simon (CR53) 2006; 18
FK Teixeira (8736_CR40) 2009; 323
H Kim (8736_CR46) 2014; 15
LG Lowder (8736_CR10) 2015; 169
T Xiong (8736_CR33) 2017; 7
JA Law (8736_CR20) 2010; 11
S Kiani (8736_CR44) 2015; 12
S Anders (8736_CR55) 2015; 31
LM Johnson (8736_CR3) 2014; 507
M Jinek (8736_CR26) 2012; 337
JG Zalatan (8736_CR9) 2015; 160
SJ Cokus (8736_CR59) 2008; 452
W Guo (8736_CR58) 2013; 14
SE Jacobsen (8736_CR43) 2000; 10
SJ Clough (8736_CR49) 1998; 16
JI McDonald (8736_CR34) 2016; 5
C Galonska (8736_CR41) 2018; 9
DM Bond (8736_CR39) 2015; 112
Z Li (8736_CR12) 2017; 3
J Gallego-Bartolomé (8736_CR18) 2018; 115
X Zhong (8736_CR24) 2014; 157
LG Lowder (8736_CR11) 2018; 11
LA Gilbert (8736_CR16) 2014; 159
A Chavez (8736_CR14) 2015; 12
A Pecinka (8736_CR28) 2010; 22
B Langmead (8736_CR56) 2009; 10
Y Wada (8736_CR37) 2003; 278
S Morita (8736_CR17) 2016; 34
8736_CR31
XS Liu (8736_CR35) 2016; 167
KW Earley (8736_CR52) 2006; 45
S Konermann (8736_CR13) 2014; 517
WJJ Soppe (8736_CR25) 2000; 6
X Cao (8736_CR38) 2003; 13
SQ Tsai (8736_CR45) 2016; 17
ML Maeder (8736_CR8) 2013; 10
MF Mette (8736_CR2) 2000; 19
ME Tanenbaum (8736_CR15) 2014; 159
M Tittel-Elmer (8736_CR29) 2010; 6
R Muller (8736_CR53) 2006; 18
A Vojta (8736_CR32) 2016; 44
P Mali (8736_CR6) 2013; 31
IR Henderson (8736_CR47) 2007; 447
Y Zhang (8736_CR57) 2008; 9
H Stroud (8736_CR21) 2013; 21
MA Matzke (8736_CR23) 2015; 66
A Amabile (8736_CR36) 2016; 167
MR Grimmer (8736_CR4) 2014; 42
A Zemach (8736_CR22) 2013; 153
JA Doudna (8736_CR5) 2014; 346
A Marí-Ordóñez (8736_CR27) 2013; 45
X Guan (8736_CR30) 2002; 99
T Keima (8736_CR48) 2017; 7
PJ Barrell (8736_CR51) 2002; 70
H Stroud (8736_CR1) 2013; 152
P Perez-Pinera (8736_CR7) 2013; 10
C Trapnell (8736_CR54) 2009; 25
SE Jacobsen (8736_CR42) 1997; 277
YH Huang (8736_CR19) 2017; 18
J Schindelin (8736_CR50) 2012; 9
References_xml – volume: 169
  start-page: 971
  year: 2015
  end-page: 985
  ident: CR10
  article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00636
– volume: 44
  start-page: 5615
  year: 2016
  end-page: 5628
  ident: CR32
  article-title: Repurposing the CRISPR-Cas9 system for targeted DNA methylation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw159
– volume: 157
  start-page: 1050
  year: 2014
  end-page: 1060
  ident: CR24
  article-title: Molecular mechanism of action of plant DRM de novo DNA methyltransferases
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.056
– volume: 159
  start-page: 647
  year: 2014
  end-page: 661
  ident: CR16
  article-title: Genome-scale CRISPR-mediated control of gene repression and activation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.029
– volume: 167
  start-page: 233
  year: 2016
  end-page: 247
  ident: CR35
  article-title: Editing DNA methylation in the mammalian genome
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.056
– volume: 507
  start-page: 124
  year: 2014
  end-page: 128
  ident: CR3
  article-title: SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation
  publication-title: Nature
  doi: 10.1038/nature12931
– volume: 70
  start-page: 61
  year: 2002
  end-page: 68
  ident: CR51
  article-title: Alternative selectable markers for potato transformation using minimal T-DNA vectors
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1023/A:1016013426923
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: CR55
  article-title: HTSeq-A Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 11
  start-page: 204
  year: 2010
  end-page: 220
  ident: CR20
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 18
  start-page: 1188
  year: 2006
  end-page: 1198
  ident: CR53
  article-title: Dynamic and compensatory responses of shoot and floral meristems to CLV3 signaling
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.040444
– volume: 160
  start-page: 339
  year: 2015
  end-page: 350
  ident: CR9
  article-title: Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.052
– volume: 34
  start-page: 1060
  year: 2016
  end-page: 1065
  ident: CR17
  article-title: Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3658
– volume: 45
  start-page: 616
  year: 2006
  end-page: 629
  ident: CR52
  article-title: Gateway-compatible vectors for plant functional genomics and proteomics
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02617.x
– volume: 159
  start-page: 635
  year: 2014
  end-page: 646
  ident: CR15
  article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.039
– volume: 45
  start-page: 1029
  year: 2013
  end-page: 1039
  ident: CR27
  article-title: Reconstructing silencing of an active plant retrotransposon
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2703
– volume: 17
  start-page: 300
  year: 2016
  end-page: 312
  ident: CR45
  article-title: Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.28
– volume: 277
  start-page: 1100
  year: 1997
  end-page: 1103
  ident: CR42
  article-title: Hypermethylated SUPERMAN epigenetic alleles in
  publication-title: Science
  doi: 10.1126/science.277.5329.1100
– volume: 153
  start-page: 193
  year: 2013
  end-page: 205
  ident: CR22
  article-title: The nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.033
– volume: 278
  start-page: 42386
  year: 2003
  end-page: 42393
  ident: CR37
  article-title: Preferential de novo methylation of cytosine residues in non-CpG sequences by a domains rearranged DNA methyltransferase from tobacco plants
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303892200
– volume: 66
  start-page: 243
  year: 2015
  end-page: 267
  ident: CR23
  article-title: RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043014-114633
– volume: 10
  year: 2009
  ident: CR56
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 167
  start-page: 219
  year: 2016
  end-page: 232
  ident: CR36
  article-title: Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.006
– volume: 12
  start-page: 1051
  year: 2015
  end-page: 1054
  ident: CR44
  article-title: Cas9 gRNA engineering for genome editing, activation and repression
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3580
– volume: 346
  start-page: 1258096
  year: 2014
  ident: CR5
  article-title: The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
  doi: 10.1126/science.1258096
– volume: 9
  year: 2008
  ident: CR57
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 42
  start-page: 10856
  year: 2014
  end-page: 10868
  ident: CR4
  article-title: Analysis of an artificial zinc finger epigenetic modulator: Widespread binding but limited regulation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku708
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: CR50
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 31
  start-page: 833
  year: 2013
  end-page: 838
  ident: CR6
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2675
– volume: 6
  start-page: 791
  year: 2000
  end-page: 802
  ident: CR25
  article-title: The late flowering phenotype of mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(05)00090-0
– volume: 112
  start-page: 917
  year: 2015
  end-page: 922
  ident: CR39
  article-title: Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1413053112
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  ident: CR49
  article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 15
  start-page: 321
  year: 2014
  end-page: 334
  ident: CR46
  article-title: A guide to genome engineering with programmable nucleases
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3686
– volume: 10
  start-page: 973
  year: 2013
  end-page: 976
  ident: CR7
  article-title: RNA-guided gene activation by CRISPR-Cas9–based transcription factors
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2600
– volume: 19
  start-page: 5194
  year: 2000
  end-page: 5201
  ident: CR2
  article-title: Transcriptional silencing and promoter methylation triggered by double-stranded RNA
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.19.5194
– volume: 10
  start-page: 977
  year: 2013
  end-page: 979
  ident: CR8
  article-title: CRISPR RNA–guided activation of endogenous human genes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2598
– volume: 13
  start-page: 2212
  year: 2003
  end-page: 2217
  ident: CR38
  article-title: Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.11.052
– volume: 3
  start-page: 930
  year: 2017
  end-page: 936
  ident: CR12
  article-title: A potent Cas9-derived gene activator for plant and mammalian cells
  publication-title: Nat. Plants
  doi: 10.1038/s41477-017-0046-0
– volume: 152
  start-page: 352
  year: 2013
  end-page: 364
  ident: CR1
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the methylome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.054
– volume: 12
  start-page: 326
  year: 2015
  end-page: 328
  ident: CR14
  article-title: Highly efficient Cas9-mediated transcriptional programming
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3312
– volume: 21
  start-page: 64
  year: 2013
  end-page: 72
  ident: CR21
  article-title: Non-CG methylation patterns shape the epigenetic landscape in
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2735
– volume: 11
  start-page: 245
  year: 2018
  end-page: 256
  ident: CR11
  article-title: Robust transcriptional activation in plants using multiplexed CRISPR-act2.0 and mTALE-act systems
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.11.010
– volume: 115
  start-page: E2125
  year: 2018
  end-page: E2134
  ident: CR18
  article-title: Targeted DNA demethylation of the genome using the human TET1 catalytic domain
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1716945115
– volume: 18
  year: 2017
  ident: CR19
  article-title: DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1306-z
– volume: 6
  start-page: 1
  year: 2010
  end-page: 11
  ident: CR29
  article-title: Stress-induced activation of heterochromatic transcription
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001175
– volume: 99
  start-page: 13296
  year: 2002
  end-page: 13301
  ident: CR30
  article-title: Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.192412899
– volume: 323
  start-page: 160
  year: 2009
  end-page: 164
  ident: CR40
  article-title: A role for RNAi in the selective correction of DNA methylation defects
  publication-title: Science
  doi: 10.1126/science.1165313
– volume: 337
  start-page: 816
  year: 2012
  end-page: 822
  ident: CR26
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 22
  start-page: 3118
  year: 2010
  end-page: 3129
  ident: CR28
  article-title: Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.078493
– volume: 7
  start-page: 1
  year: 2017
  end-page: 13
  ident: CR48
  article-title: Deficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in
  publication-title: Sci. Rep.
  doi: 10.1038/srep39678
– volume: 14
  year: 2013
  ident: CR58
  article-title: BS - Seeker2: a versatile aligning pipeline for bisulfite sequencing data
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-14-774
– volume: 9
  year: 2018
  ident: CR41
  article-title: Genome-wide tracking of dCas9-methyltransferase footprints
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02708-5
– volume: 10
  start-page: 179
  year: 2000
  end-page: 186
  ident: CR43
  article-title: Ectopic hypermethylation of flower-specific genes in Arabidopsis
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00324-9
– ident: CR31
– volume: 5
  start-page: 866
  year: 2016
  end-page: 874
  ident: CR34
  article-title: Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation
  publication-title: Biol. Open
  doi: 10.1242/bio.019067
– volume: 25
  start-page: 1105
  year: 2009
  end-page: 1111
  ident: CR54
  article-title: TopHat: discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 7
  start-page: 1
  year: 2017
  end-page: 14
  ident: CR33
  article-title: Targeted DNA methylation in human cells using engineered dCas9-methyltransferases
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0028-x
– volume: 447
  start-page: 418
  year: 2007
  end-page: 424
  ident: CR47
  article-title: Epigenetic inheritance in plants
  publication-title: Nature
  doi: 10.1038/nature05917
– volume: 452
  start-page: 215
  year: 2008
  end-page: 219
  ident: CR59
  article-title: Shotgun bisulphite sequencing of the genome reveals DNA methylation patterning
  publication-title: Nature
  doi: 10.1038/nature06745
– volume: 517
  start-page: 583
  year: 2014
  end-page: 588
  ident: CR13
  article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
  publication-title: Nature
  doi: 10.1038/nature14136
– volume: 18
  year: 2017
  ident: 8736_CR19
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1306-z
– volume: 13
  start-page: 2212
  year: 2003
  ident: 8736_CR38
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.11.052
– volume: 10
  start-page: 179
  year: 2000
  ident: 8736_CR43
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00324-9
– volume: 9
  start-page: 676
  year: 2012
  ident: 8736_CR50
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 152
  start-page: 352
  year: 2013
  ident: 8736_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.054
– volume: 25
  start-page: 1105
  year: 2009
  ident: 8736_CR54
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 17
  start-page: 300
  year: 2016
  ident: 8736_CR45
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.28
– volume: 18
  start-page: 1188
  year: 2006
  ident: 8736_CR53
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.040444
– volume: 19
  start-page: 5194
  year: 2000
  ident: 8736_CR2
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.19.5194
– volume: 159
  start-page: 647
  year: 2014
  ident: 8736_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.029
– volume: 278
  start-page: 42386
  year: 2003
  ident: 8736_CR37
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303892200
– volume: 447
  start-page: 418
  year: 2007
  ident: 8736_CR47
  publication-title: Nature
  doi: 10.1038/nature05917
– volume: 14
  year: 2013
  ident: 8736_CR58
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-14-774
– volume: 15
  start-page: 321
  year: 2014
  ident: 8736_CR46
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3686
– volume: 44
  start-page: 5615
  year: 2016
  ident: 8736_CR32
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw159
– volume: 34
  start-page: 1060
  year: 2016
  ident: 8736_CR17
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3658
– volume: 70
  start-page: 61
  year: 2002
  ident: 8736_CR51
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1023/A:1016013426923
– volume: 9
  year: 2008
  ident: 8736_CR57
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 10
  start-page: 973
  year: 2013
  ident: 8736_CR7
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2600
– volume: 115
  start-page: E2125
  year: 2018
  ident: 8736_CR18
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1716945115
– volume: 45
  start-page: 1029
  year: 2013
  ident: 8736_CR27
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2703
– volume: 3
  start-page: 930
  year: 2017
  ident: 8736_CR12
  publication-title: Nat. Plants
  doi: 10.1038/s41477-017-0046-0
– volume: 66
  start-page: 243
  year: 2015
  ident: 8736_CR23
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043014-114633
– volume: 169
  start-page: 971
  year: 2015
  ident: 8736_CR10
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00636
– volume: 517
  start-page: 583
  year: 2014
  ident: 8736_CR13
  publication-title: Nature
  doi: 10.1038/nature14136
– volume: 45
  start-page: 616
  year: 2006
  ident: 8736_CR52
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02617.x
– volume: 21
  start-page: 64
  year: 2013
  ident: 8736_CR21
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2735
– volume: 153
  start-page: 193
  year: 2013
  ident: 8736_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.033
– volume: 159
  start-page: 635
  year: 2014
  ident: 8736_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.039
– volume: 6
  start-page: 791
  year: 2000
  ident: 8736_CR25
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(05)00090-0
– volume: 277
  start-page: 1100
  year: 1997
  ident: 8736_CR42
  publication-title: Science
  doi: 10.1126/science.277.5329.1100
– volume: 12
  start-page: 326
  year: 2015
  ident: 8736_CR14
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3312
– volume: 112
  start-page: 917
  year: 2015
  ident: 8736_CR39
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1413053112
– volume: 7
  start-page: 1
  year: 2017
  ident: 8736_CR48
  publication-title: Sci. Rep.
  doi: 10.1038/srep39678
– volume: 10
  year: 2009
  ident: 8736_CR56
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 157
  start-page: 1050
  year: 2014
  ident: 8736_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.056
– volume: 167
  start-page: 233
  year: 2016
  ident: 8736_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.056
– volume: 11
  start-page: 245
  year: 2018
  ident: 8736_CR11
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.11.010
– ident: 8736_CR31
  doi: 10.1126/science.289.5479.617
– volume: 12
  start-page: 1051
  year: 2015
  ident: 8736_CR44
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3580
– volume: 16
  start-page: 735
  year: 1998
  ident: 8736_CR49
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 5
  start-page: 866
  year: 2016
  ident: 8736_CR34
  publication-title: Biol. Open
  doi: 10.1242/bio.019067
– volume: 22
  start-page: 3118
  year: 2010
  ident: 8736_CR28
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.078493
– volume: 42
  start-page: 10856
  year: 2014
  ident: 8736_CR4
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku708
– volume: 6
  start-page: 1
  year: 2010
  ident: 8736_CR29
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001175
– volume: 167
  start-page: 219
  year: 2016
  ident: 8736_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.006
– volume: 507
  start-page: 124
  year: 2014
  ident: 8736_CR3
  publication-title: Nature
  doi: 10.1038/nature12931
– volume: 7
  start-page: 1
  year: 2017
  ident: 8736_CR33
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0028-x
– volume: 9
  year: 2018
  ident: 8736_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02708-5
– volume: 31
  start-page: 166
  year: 2015
  ident: 8736_CR55
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 10
  start-page: 977
  year: 2013
  ident: 8736_CR8
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2598
– volume: 31
  start-page: 833
  year: 2013
  ident: 8736_CR6
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2675
– volume: 346
  start-page: 1258096
  year: 2014
  ident: 8736_CR5
  publication-title: Science
  doi: 10.1126/science.1258096
– volume: 323
  start-page: 160
  year: 2009
  ident: 8736_CR40
  publication-title: Science
  doi: 10.1126/science.1165313
– volume: 11
  start-page: 204
  year: 2010
  ident: 8736_CR20
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 160
  start-page: 339
  year: 2015
  ident: 8736_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.052
– volume: 452
  start-page: 215
  year: 2008
  ident: 8736_CR59
  publication-title: Nature
  doi: 10.1038/nature06745
– volume: 99
  start-page: 13296
  year: 2002
  ident: 8736_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.192412899
– volume: 337
  start-page: 816
  year: 2012
  ident: 8736_CR26
  publication-title: Science
  doi: 10.1126/science.1225829
SSID ssj0000391844
Score 2.647602
Snippet Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for...
Few approaches for targeted manipulation of the epigenome are available in plants. Here, the authors adapt the dCas9-SunTag system to engineer targeted gene...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 729
SubjectTerms 38/1
38/15
38/22
38/23
38/35
38/39
38/44
38/77
38/88
38/90
38/91
45/15
45/22
45/23
45/44
45/77
45/88
45/90
45/91
631/337/4041/3196
631/449/2491/2046
631/61/447/2311
Activation
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Binding Sites - genetics
Catalysis
Chromatin
Chromatin - genetics
Chromatin - metabolism
CRISPR
CRISPR-Cas Systems
Deoxyribonucleic acid
DNA
DNA Methylation
DNA methyltransferase
DRM protein
Epigenesis, Genetic
Gene Editing - methods
Gene Expression Regulation, Plant
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Humanities and Social Sciences
Loci
multidisciplinary
Phenotypes
Plants, Genetically Modified
Promoter Regions, Genetic - genetics
Proteins
Science
Science (multidisciplinary)
Transcription
Transcription Factors - genetics
Transcription Factors - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBYlUOhl6fa1btOiQm-7IrYl63FsQ0Na6IM8IDch2VI2UJxQJ4f99x3JTpq03d1Lr5YEw-cZzQwz-gahd4VPmYW8gZg09YRZy4iilYMshalSWOlcrJh--crHc_Z5USyORn2FnrCWHrgFbgDheJVKU1rIQxgcVd7llAkPmQ31lEeeT_B5R8lUvIOpgtSFda9kUioHDYt3Qhre7EhBOREnnigS9v8ryvy7WfKPiml0RKPH6KyLIPH7VvJz9MDVT9DDdqbkzVP0bQpBJAkPKEMTEA70FvsRXXjt4Zixq2q9aVYNBj-2wqHxfYmHk0_T7xMyNI3C0109M0vccjw3z9B89HE2HJNuagIpIfraktwqDmGcYxw8O7eAWl5VShphVAb5R6ZUSZ0srBeGe1lZwVUG6sRtWQlWFpY-R716XbsLhF0hPQfISyEdy6ywRUYlRHSKcpM6mSco2yOoy45SPEy2-KFjaZtK3aKuAXUdUdciQZeHM5uWUOPO3R_CjznsDGTY8QOoiO5URN-nIgnq73-r7iy00QCFElmYvZ2gt4dlsK1QMDG1W-_CHhno9RWFPS9aLThIQkNJU-SAgTjRjxNRT1fq1XXk7-Y0sDKqBF3tNem3WLdD8fJ_QPEKPcqjCeQko33U2_7cudcQVW3tm2hAvwArBhpV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUHiBlaT2PHjhGDVqiDxULeV9mbZibNdCSVLs3vg33fGcVIt0F5jW5rMw57xjL8h5F3ZZNxB3EBtljWUO8epZrWHKIXrSjrlfciYfvsuTs7510W5iBdufSyrHPfEsFHXXYV35IfgOmuZY6_kj-vfFLtGYXY1ttC4S-4hdBmWdMmFnO5YEP1ccR7fymRMHfY87AwZvtxRkgkqd86jANv_P1_z35LJv_Km4Tg6fkQeRj8y_TQI_jG549sn5P7QWfLPU_JjDmRTfEaJpUApglyMjbrSroFl1q3qbt2v-hROs1WK5e_LdHb6Zf7zlM5sr9P5tj2zy3RAeu6fkfPjo7PZCY29E2gFPtiGFk4LcOY8F3C-C6c5L-paKyutzoGVudYV86p0jbSiUbWTQuegVMJVteRV6dhzstd2rX9JUl-qRngPolOe5066MmcK_DrNhM28KhKSjxw0VQQWx_4Wv0xIcDNlBq4b4LoJXDcyIe-nNesBVuPW2Z9RMNNMhMQOH7rLpYkWZiBuqzNlKwcBKwcd040vGJcNhMCsYYIl5GAUq4l22ptrrUrI22kYLAzTJrb13RbnKATZ1wzmvBi0YKKEYWJTFsADuaMfO6TujrSri4DiLRhiM-qEfBg16Zqsm1nx6va_2CcPiqDcBc3ZAdnbXG79a_CaNu5NMI0rai8STA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba90wDBZdx2Avo901vQwP9raZJbHjy-MWVrrBLvS00DdjJ87pgZGU5pyH_fvKzmWcrRvsNZFByFIkRdIngNdFk3KHeQO1adpQ7hynmtUesxSuK-mU97Fi-uWrOL3gny-Lyx3Ip1mY2LQfIS3jZ3rqDnvX82jSaRi5UZIJKu_B_QDdHrS6FOX8XyUgnivOx_mYlKk7jm75oAjVf1d8-Web5G-10uiCTvbg0Rg7kvcDt_uw49vH8GDYJvnzCXxbYPhIw-hkaP8hAdhiWs5FugaPWbequ-t-1RP0YCsSWt6XpDz7tPh-Rkvba7LYtOd2SQZ05_4pXJx8PC9P6bgvgVYYd61p7rTAAM5zgT5dOM15XtdaWWl1hplHpnXFvCpcI61oVO2k0BkqknBVLXlVOPYMdtuu9S-A-EI1wnu8LuV55qQrMqYwltNM2NSrPIFskqCpRjDxsNPih4lFbabMIHWDUjdR6kYm8GY-cz1AafyT-kO4mJkywGDHB93N0oxqYTBXq1NlK4dJKke90o3PGZcNpr2sYYIlcDRdqxltszcoCi2zsHU7gVfza7SqUCqxre82gUYFYH3NkOb5oAUzJywUM2WOMpBb-rHF6vabdnUVkbsFC3iMOoG3kyb9Yuvvojj4P_JDeJhHZc9pxo5gd32z8ccYOa3dy2gqt81-EDI
  priority: 102
  providerName: Springer Nature
Title Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems
URI https://link.springer.com/article/10.1038/s41467-019-08736-7
https://www.ncbi.nlm.nih.gov/pubmed/30760722
https://www.proquest.com/docview/2179714124
https://www.proquest.com/docview/2183647934
https://pubmed.ncbi.nlm.nih.gov/PMC6374409
https://doaj.org/article/966d08acb09448ee9fe2347f8253f363
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9YLCXse9664IHe9u02Zasj4cx0tCsC7QrSQN5E5ItZ4Fid3EC63-_k2ynpMvGXmywTuY43fnufNLvEHqXFhE1kDdgHUUFpsZQLEluIUuhMuNGWOsrpucX7GxKR7N0toe6dketAOudqZ3rJzVdXn_89fP2Cxj85-bIuPhUU2_ukTuOIzhhmO-jQ_BM3BnqeRvu-y8zkZDQuEJzEtEYg-8m7Tma3a_Z8lUe0n9XHPrndsp7NVXvqoaP0aM2xgz7jVI8QXu2fIoeNF0nb5-h7xMIM7E7Yum2CYUOAKNr4hVWBUzTZpFXN_WiDsHTLUK3NX4eDsbfJpdjPNC1DCfr8krPwwYFun6OpsPTq8EZbvsq4AzisxVOjGQQ6FnKwPczIylN8lwKzbWMIUOJpcyIFakpuGaFyA1nMgaFYybLOc1SQ16gg7Iq7REKbSoKZi0sq7A0NtykMREQ80nCdGRFEqC4k6DKWtBx1_viWvniNxGqkboCqSsvdcUD9H4z56aB3Pgn9YlbmA2lg8v2D6rlXLXWpyCnyyOhMwPJLAX9k4VNCOUFpMekIIwE6LhbVtWpoAJRSB677twBersZButzJRVd2mrtaIQD4JcEaF42WrDhhLiiJ09ABnxLP7ZY3R4pFz88wjcjDrdRBuhDp0l3bP1dFK_-g83X6GHiNTzBMTlGB6vl2r6BsGplemifzzhcxfBrDx32-6PJCO4npxeXY3g6YIOe_2HR8zb1GwBfIC4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQguiDeBBYwEJ7A2iR0_DghBYdWyD9C2K_Vm7MQplVBSNq3Q_il-I2Mn6ao89rbXxEmczzOeGY_9DUIvsjJmFuIGYuK4JMxaRhQtHEQpTOXCSudCxvTwiA9P2KdpNt1Cv_qzMH5bZT8nhom6qHO_Rr4LrrMSia-V_Hbxg_iqUT672pfQaMVi3539hJCteTP6AOP7Mk33Pk4GQ9JVFSA5eCdLklrFwc1xjIPl41YxlhaFkkYYlcBHEqVy6mRmS2F4KQsruEoAbm7zQrA8sxTeewVdBcMbe40SU7Fe0_Fs65Kx7mxOTOVuw8JMFPuTQlJQTsSG_QtlAv7l2_69RfOPPG0wf3u30M3Ob8XvWkG7jbZcdQddaytZnt1Fn8cAE_HHNv3WI-xJNfrCYLgu4TFj50W9aOYNBus5x367_QwPjkfjL8dkYBqFx6tqYma4ZZZu7qGTS0H1Ptqu6so9RNhlsuTOgahIxxIrbJZQCX6kotzETqYRSnoEdd4Rmft6Gt91SKhTqVvUNaCuA-paROjV-plFS-NxYev3fmDWLT0Fd7hQn850p9Ea4sQilia3ECAzkGlVupQyUULITUvKaYR2-mHV3bzQ6HMpjtDz9W3QaJ-mMZWrV76N9KT-ikKbB60UrHtCfSJVpICB2JCPja5u3qnm3wJrOKeeC1JF6HUvSefd-j8Ujy7-i2fo-nByeKAPRkf7j9GNNAh6ShK6g7aXpyv3BDy2pX0a1ASjr5etl78BWPBOqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNYmsePHASHYsupSKFW3lfZm7MRZVkLJ0uwK9a_x6xg7yVbLo7deEydxPs_YM57xNwi9yMqYWfAbiInjkjBrGVG0cOClMJULK50LEdPPB3zvhH2cZtMt9Ks_C-PTKvs5MUzURZ37PfIBmM5KJL5W8qDs0iIOd0dvFz-IryDlI619OY1WRPbd2U9w35o3410Y65dpOvpwPNwjXYUBkoOlsiSpVRxMHsc4rILcKsbSolDSCKMS-GCiVE6dzGwpDC9lYQVXCUDPbV4IlmeWwnuvoKuCZonXMTEV6_0dz7wuGevO6cRUDhoWZqXYnxqSgnIiNtbCUDLgX3bu3-maf8Rsw1I4uoVudjYsftcK3W205ao76Fpb1fLsLvoyAZiIP8Lp05CwJ9joi4ThuoTHjJ0X9aKZNxhW0jn2qfczPDwaTw6PyNA0Ck9W1bGZ4ZZlurmHTi4F1ftou6or9xBhl8mSOwdiIx1LrLAAtASbUlFuYifTCCU9gjrvSM19bY3vOgTXqdQt6hpQ1wF1LSL0av3MoqX0uLD1ez8w65aejjtcqE9nutNuDT5jEUuTW3CWGci3Kl1KmSjB_aYl5TRCO_2w6m6OaPS5REfo-fo2aLcP2ZjK1SvfRnqCf0WhzYNWCtY9oT6oKlLAQGzIx0ZXN-9U82-BQZxTzwupIvS6l6Tzbv0fikcX_8UzdB00Un8aH-w_RjfSIOcpSegO2l6ertwTMN6W9mnQEoy-XrZa_gYmTVLf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site-specific+manipulation+of+Arabidopsis+loci+using+CRISPR-Cas9+SunTag+systems&rft.jtitle=Nature+communications&rft.au=Papikian%2C+Ashot&rft.au=Liu%2C+Wanlu&rft.au=Gallego-Bartolom%C3%A9%2C+Javier&rft.au=Jacobsen%2C+Steven+E&rft.date=2019-02-13&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=729&rft_id=info:doi/10.1038%2Fs41467-019-08736-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon