Towards reconstructing intelligible speech from the human auditory cortex
Auditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus from the population of evoked neural activity. Reconstructing speech from the human auditory cortex creates the possibility of a speech neuroprosthetic to establish a direct communication with...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 874 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.01.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-018-37359-z |
Cover
Loading…
Abstract | Auditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus from the population of evoked neural activity. Reconstructing speech from the human auditory cortex creates the possibility of a speech neuroprosthetic to establish a direct communication with the brain and has been shown to be possible in both overt and covert conditions. However, the low quality of the reconstructed speech has severely limited the utility of this method for brain-computer interface (BCI) applications. To advance the state-of-the-art in speech neuroprosthesis, we combined the recent advances in deep learning with the latest innovations in speech synthesis technologies to reconstruct closed-set intelligible speech from the human auditory cortex. We investigated the dependence of reconstruction accuracy on linear and nonlinear (deep neural network) regression methods and the acoustic representation that is used as the target of reconstruction, including auditory spectrogram and speech synthesis parameters. In addition, we compared the reconstruction accuracy from low and high neural frequency ranges. Our results show that a deep neural network model that directly estimates the parameters of a speech synthesizer from all neural frequencies achieves the highest subjective and objective scores on a digit recognition task, improving the intelligibility by 65% over the baseline method which used linear regression to reconstruct the auditory spectrogram. These results demonstrate the efficacy of deep learning and speech synthesis algorithms for designing the next generation of speech BCI systems, which not only can restore communications for paralyzed patients but also have the potential to transform human-computer interaction technologies. |
---|---|
AbstractList | Auditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus from the population of evoked neural activity. Reconstructing speech from the human auditory cortex creates the possibility of a speech neuroprosthetic to establish a direct communication with the brain and has been shown to be possible in both overt and covert conditions. However, the low quality of the reconstructed speech has severely limited the utility of this method for brain-computer interface (BCI) applications. To advance the state-of-the-art in speech neuroprosthesis, we combined the recent advances in deep learning with the latest innovations in speech synthesis technologies to reconstruct closed-set intelligible speech from the human auditory cortex. We investigated the dependence of reconstruction accuracy on linear and nonlinear (deep neural network) regression methods and the acoustic representation that is used as the target of reconstruction, including auditory spectrogram and speech synthesis parameters. In addition, we compared the reconstruction accuracy from low and high neural frequency ranges. Our results show that a deep neural network model that directly estimates the parameters of a speech synthesizer from all neural frequencies achieves the highest subjective and objective scores on a digit recognition task, improving the intelligibility by 65% over the baseline method which used linear regression to reconstruct the auditory spectrogram. These results demonstrate the efficacy of deep learning and speech synthesis algorithms for designing the next generation of speech BCI systems, which not only can restore communications for paralyzed patients but also have the potential to transform human-computer interaction technologies. Auditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus from the population of evoked neural activity. Reconstructing speech from the human auditory cortex creates the possibility of a speech neuroprosthetic to establish a direct communication with the brain and has been shown to be possible in both overt and covert conditions. However, the low quality of the reconstructed speech has severely limited the utility of this method for brain-computer interface (BCI) applications. To advance the state-of-the-art in speech neuroprosthesis, we combined the recent advances in deep learning with the latest innovations in speech synthesis technologies to reconstruct closed-set intelligible speech from the human auditory cortex. We investigated the dependence of reconstruction accuracy on linear and nonlinear (deep neural network) regression methods and the acoustic representation that is used as the target of reconstruction, including auditory spectrogram and speech synthesis parameters. In addition, we compared the reconstruction accuracy from low and high neural frequency ranges. Our results show that a deep neural network model that directly estimates the parameters of a speech synthesizer from all neural frequencies achieves the highest subjective and objective scores on a digit recognition task, improving the intelligibility by 65% over the baseline method which used linear regression to reconstruct the auditory spectrogram. These results demonstrate the efficacy of deep learning and speech synthesis algorithms for designing the next generation of speech BCI systems, which not only can restore communications for paralyzed patients but also have the potential to transform human-computer interaction technologies.Auditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus from the population of evoked neural activity. Reconstructing speech from the human auditory cortex creates the possibility of a speech neuroprosthetic to establish a direct communication with the brain and has been shown to be possible in both overt and covert conditions. However, the low quality of the reconstructed speech has severely limited the utility of this method for brain-computer interface (BCI) applications. To advance the state-of-the-art in speech neuroprosthesis, we combined the recent advances in deep learning with the latest innovations in speech synthesis technologies to reconstruct closed-set intelligible speech from the human auditory cortex. We investigated the dependence of reconstruction accuracy on linear and nonlinear (deep neural network) regression methods and the acoustic representation that is used as the target of reconstruction, including auditory spectrogram and speech synthesis parameters. In addition, we compared the reconstruction accuracy from low and high neural frequency ranges. Our results show that a deep neural network model that directly estimates the parameters of a speech synthesizer from all neural frequencies achieves the highest subjective and objective scores on a digit recognition task, improving the intelligibility by 65% over the baseline method which used linear regression to reconstruct the auditory spectrogram. These results demonstrate the efficacy of deep learning and speech synthesis algorithms for designing the next generation of speech BCI systems, which not only can restore communications for paralyzed patients but also have the potential to transform human-computer interaction technologies. |
ArticleNumber | 874 |
Author | Khalighinejad, Bahar Mesgarani, Nima Akbari, Hassan Mehta, Ashesh D. Herrero, Jose L. |
Author_xml | – sequence: 1 givenname: Hassan surname: Akbari fullname: Akbari, Hassan organization: Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Department of Electrical Engineering, Columbia University – sequence: 2 givenname: Bahar surname: Khalighinejad fullname: Khalighinejad, Bahar organization: Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Department of Electrical Engineering, Columbia University – sequence: 3 givenname: Jose L. orcidid: 0000-0001-5969-9678 surname: Herrero fullname: Herrero, Jose L. organization: Hofstra Northwell School of Medicine, The Feinstein Institute for Medical Research – sequence: 4 givenname: Ashesh D. surname: Mehta fullname: Mehta, Ashesh D. organization: Hofstra Northwell School of Medicine, The Feinstein Institute for Medical Research – sequence: 5 givenname: Nima surname: Mesgarani fullname: Mesgarani, Nima email: nima@ee.columbia.edu organization: Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Department of Electrical Engineering, Columbia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30696881$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFPHSEUhUljU631D3TRTNKNm6nAADNsmjRGWxMTN3ZNmDt33sPMwCswbfXXy-uz1rqQDSR853Au5y3Z88EjIe8Z_cRo050kwaTuasq6umkbqeu7V-SAUyFr3nC-9-S8T45SuqFlSa4F02_IfkOVVl3HDsjFdfhl45CqiBB8ynGB7Pyqcj7jNLmV6yes0gYR1tUYw1zlNVbrZba-ssvgcoi3FYSY8fc78nq0U8Kjh_2QfD8_uz79Vl9efb04_XJZgxQ017zjoAaquNSMgtLcDoLD0EvRo9Z00KOiYhw76FlrtUYABmzUre0HlAiiOSSfd76bpZ9xAPQ52slsopttvDXBOvP_jXdrswo_jWokU5QVg-MHgxh-LJiymV2CMq31GJZkOGu1ELTVvKAfn6E3YYm-jLeluFKF3Bp-eJroMcrfXy4A3wEQQ0oRx0eEUbNt0-zaNKVN86dNc1dE3TMRuGyzC9up3PSytNlJU3nHrzD-i_2C6h6ZS7ZZ |
CitedBy_id | crossref_primary_10_1109_TNSRE_2024_3421551 crossref_primary_10_1002_advs_202401379 crossref_primary_10_1109_JBHI_2024_3360151 crossref_primary_10_1089_ains_2024_0001 crossref_primary_10_1002_lom3_10478 crossref_primary_10_1016_j_bspc_2023_105761 crossref_primary_10_1038_s41598_022_27332_2 crossref_primary_10_1016_j_jneumeth_2023_110036 crossref_primary_10_1017_S0963180119000616 crossref_primary_10_1109_LSP_2023_3337727 crossref_primary_10_1073_pnas_2300255120 crossref_primary_10_3389_fnhum_2023_1124065 crossref_primary_10_1038_s41598_020_63303_1 crossref_primary_10_1016_j_neuri_2023_100126 crossref_primary_10_1073_pnas_1907759116 crossref_primary_10_1371_journal_pcbi_1012433 crossref_primary_10_1017_S0140525X19001328 crossref_primary_10_1212_WNL_0000000000210208 crossref_primary_10_1088_1741_2552_ac02dc crossref_primary_10_1109_JBHI_2023_3242262 crossref_primary_10_1038_s42003_024_06518_6 crossref_primary_10_1088_1741_2552_abc742 crossref_primary_10_3389_fnins_2019_00153 crossref_primary_10_1186_s42234_021_00076_6 crossref_primary_10_1177_23312165241227818 crossref_primary_10_1088_1741_2552_ace8be crossref_primary_10_1038_s42003_021_02341_5 crossref_primary_10_1002_eng2_13100 crossref_primary_10_1109_JBHI_2020_3037366 crossref_primary_10_3103_S1060992X21010057 crossref_primary_10_1038_s42256_020_00286_8 crossref_primary_10_1155_2022_7082043 crossref_primary_10_3390_electronics11071146 crossref_primary_10_1038_s42003_019_0707_9 crossref_primary_10_1088_1741_2552_acbe1d crossref_primary_10_3389_fnhum_2020_00130 crossref_primary_10_1093_cercor_bhac519 crossref_primary_10_1162_leon_a_01886 crossref_primary_10_1088_2057_1976_abf6ab crossref_primary_10_1016_j_neuroimage_2020_117282 crossref_primary_10_1088_1741_2552_ad593a crossref_primary_10_1109_TSMC_2020_3041382 crossref_primary_10_3389_fnins_2019_01267 crossref_primary_10_1097_WNP_0000000000000933 crossref_primary_10_1016_j_neubiorev_2019_11_002 crossref_primary_10_1088_1741_2552_ac33e9 crossref_primary_10_3389_fnhum_2023_1174720 crossref_primary_10_1088_1741_2552_ad663c crossref_primary_10_3389_fnins_2020_588448 crossref_primary_10_1088_1741_2552_abd460 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1038_s41583_024_00819_9 crossref_primary_10_1038_s41598_019_54280_1 crossref_primary_10_3390_electronics11213457 crossref_primary_10_1093_bib_bbaa355 crossref_primary_10_1088_1741_2552_ab2706 crossref_primary_10_1088_1741_2552_ad200e crossref_primary_10_1088_1741_2552_abf771 crossref_primary_10_3389_fnhum_2022_841035 crossref_primary_10_7554_eLife_48971 crossref_primary_10_1038_s41586_019_1119_1 crossref_primary_10_1016_j_neuron_2019_09_007 crossref_primary_10_1038_d41586_019_01328_x crossref_primary_10_1038_s42003_021_02578_0 crossref_primary_10_3389_fnins_2020_00123 crossref_primary_10_3390_app12031167 crossref_primary_10_1088_1741_2552_ace7f6 crossref_primary_10_1038_s42256_023_00714_5 crossref_primary_10_3389_fneur_2020_00351 crossref_primary_10_1080_21507740_2024_2328243 crossref_primary_10_1016_j_knosys_2023_110837 crossref_primary_10_1088_1741_2552_aca1e1 crossref_primary_10_1515_bams_2020_0013 crossref_primary_10_31470_2309_1797_2024_35_1_24_57 crossref_primary_10_1080_02643294_2023_2283239 crossref_primary_10_1016_j_cub_2021_05_035 crossref_primary_10_1371_journal_pbio_3002176 crossref_primary_10_3389_fnins_2020_00290 crossref_primary_10_1523_JNEUROSCI_2891_20_2021 crossref_primary_10_1016_j_neubiorev_2022_104783 crossref_primary_10_1038_s41587_019_0231_y crossref_primary_10_1038_s42256_019_0051_2 crossref_primary_10_1109_TNNLS_2022_3191677 crossref_primary_10_1038_s41598_024_62230_9 crossref_primary_10_7554_eLife_46015 crossref_primary_10_1088_1741_2552_adb88e crossref_primary_10_1250_ast_44_189 crossref_primary_10_1038_d41586_019_01181_y crossref_primary_10_1038_s41598_022_27361_x crossref_primary_10_1088_1741_2552_abbfef crossref_primary_10_1088_1741_2552_abb25e crossref_primary_10_1126_sciadv_aav6134 crossref_primary_10_3389_fnins_2021_699631 crossref_primary_10_1016_j_compbiomed_2022_105871 crossref_primary_10_1016_j_neucom_2018_10_080 crossref_primary_10_1080_0954898X_2023_2282576 crossref_primary_10_1109_RBME_2022_3210270 crossref_primary_10_1038_s41598_024_60277_2 crossref_primary_10_1093_cercor_bhac203 crossref_primary_10_1109_TBME_2021_3132861 |
Cites_doi | 10.1007/s10827-009-0196-9 10.1371/journal.pcbi.1000609 10.1093/cercor/bhh124 10.1162/jocn.1996.8.1.29 10.1126/science.2063199 10.1109/TASLP.2018.2795749 10.1126/science.1127647 10.1038/nrn3241 10.1080/01621459.1975.10480319 10.1109/MSP.2012.2205597 10.1038/nature14539 10.1016/j.neuron.2007.06.004 10.1016/j.cub.2015.08.030 10.1088/1741-2560/13/5/056004 10.1073/pnas.1318017111 10.1088/1741-2560/7/5/056007 10.1016/j.jneumeth.2011.04.037 10.1038/srep25803 10.1088/1741-2560/11/3/035015 10.1038/nn.3905 10.1097/01.wco.0000218233.60217.84 10.1109/18.119739 10.1073/pnas.1205381109 10.3389/fnins.2016.00429 10.1073/pnas.1617622114 10.1162/NECO_a_00089 10.1016/j.image.2016.05.018 10.3389/fnhum.2015.00097 10.1109/TASLP.2016.2585878 10.1098/rspb.1995.0204 10.1121/1.1945807 10.1523/JNEUROSCI.5249-08.2009 10.1016/S0167-6393(98)00085-5 10.1523/JNEUROSCI.19-18-08036.1999 10.1038/nature11020 10.1016/j.neuroimage.2005.03.013 10.1093/cercor/bhg087 10.1016/j.neuroimage.2010.06.010 10.3389/fneng.2014.00014 10.1162/neco.2006.18.7.1527 10.1126/scitranslmed.3007801 10.1016/S0079-6123(05)50034-7 10.1007/s13534-015-0175-1 10.1523/JNEUROSCI.3256-10.2011 10.3389/fnins.2015.00217 10.1587/transinf.2015EDP7457 10.1088/1741-2560/8/3/036004 10.1523/JNEUROSCI.2383-16.2017 10.1016/j.tics.2010.09.001 10.1088/1741-2560/13/5/056013 10.1152/jn.91128.2008 10.1371/journal.pcbi.1000579 10.1088/1741-2560/8/4/046028 10.1088/1741-2552/aa7ab4 10.1016/S1388-2457(00)00545-9 10.1152/jn.90954.2008 10.1016/S0079-6123(06)65031-0 10.1080/2326263X.2017.1330611 10.1088/1741-2560/3/1/R02 10.1109/TSA.2005.858055 10.1016/j.jneumeth.2017.01.022 10.1109/ICASSP.2017.7952275 10.1093/cercor/bht355 10.1109/ICCV.2015.123 10.1093/cercor/bhx277 10.1371/journal.pbio.1000610 10.1371/journal.pbio.1001251 10.3115/1075527.1075614 10.1109/ICASSP.2017.7952155 10.21437/Interspeech.2015-294 10.1109/EMBC.2016.7591004 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1038/s41598-018-37359-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC6351601 30696881 10_1038_s41598_018_37359_z |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD) grantid: DC014279; DC014279; DC014279; DC014279; DC014279 funderid: https://doi.org/10.13039/100000055 – fundername: NIMH NIH HHS grantid: R21 MH114166 – fundername: NIDCD NIH HHS grantid: R01 DC014279 – fundername: ; grantid: DC014279; DC014279; DC014279; DC014279; DC014279 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-282c6d0625910c692ad42cdb54be990d9f604ff8cb17a99ecc1c1f97abde5ec43 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:17:54 EDT 2025 Fri Jul 11 02:09:17 EDT 2025 Wed Aug 13 06:23:52 EDT 2025 Thu Jan 02 22:58:39 EST 2025 Tue Jul 01 00:58:28 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Fri Feb 21 02:38:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-282c6d0625910c692ad42cdb54be990d9f604ff8cb17a99ecc1c1f97abde5ec43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5969-9678 |
OpenAccessLink | https://www.proquest.com/docview/2172667941?pq-origsite=%requestingapplication% |
PMID | 30696881 |
PQID | 2172667941 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6351601 proquest_miscellaneous_2179440792 proquest_journals_2172667941 pubmed_primary_30696881 crossref_primary_10_1038_s41598_018_37359_z crossref_citationtrail_10_1038_s41598_018_37359_z springer_journals_10_1038_s41598_018_37359_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-29 |
PublicationDateYYYYMMDD | 2019-01-29 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Mugler (CR57) 2014; 11 Stanley, Li, Dan (CR4) 1999; 19 Papademetris (CR75) 2006; 2006 Herff, Schultz (CR8) 2016; 10 Destrieux, Fischl, Dale, Halgren (CR77) 2010; 53 CR39 CR38 CR35 CR79 Chi, Ru, Shamma (CR43) 2005; 118 Kawahara, Masuda-Katsuse, De Cheveigne (CR46) 1999; 27 McFarland, Sarnacki, Wolpaw (CR27) 2011; 199 Laureys (CR10) 2005; 150 Santoro (CR23) 2017; 114 CR31 CR74 Maas, Hannun, Ng (CR83) 2013; 30 CR71 David, Mesgarani, Fritz, Shamma (CR33) 2009; 29 Chakrabarti, Sandberg, Brumberg, Krusienski (CR7) 2015; 5 LeCun, Bengio, Hinton (CR28) 2015; 521 Pinto, Doukhan, DiCarlo, Cox (CR40) 2009; 5 Mesgarani, Slaney, Shamma (CR44) 2006; 14 Morise, Yokomori, Ozawa (CR45) 2016; 99 Salza, Foti, Nebbia, Oreglia (CR49) 1996; 82 Di Liberto, O’Sullivan, Lalor (CR17) 2015; 25 CR6 Canolty, Knight (CR53) 2010; 14 Edwards (CR37) 2009; 102 Hinton, Salakhutdinov (CR47) 2006; 313 CR48 Efron (CR63) 1975; 70 Blakely, Miller, Rao, Holmes, Ojemann (CR56) 2008; 2008 CR87 CR42 CR85 CR84 CR82 CR80 Leuthardt (CR14) 2011; 8 Khodagholy (CR72) 2015; 18 Tian, Poeppel (CR12) 2010; 1 Miller, Sorensen, Ojemann, Den Nijs (CR67) 2009; 5 Martin (CR16) 2014; 7 Moses, Mesgarani, Leonard, Chang (CR24) 2016; 13 Bialek, Rieke, de Ruyter van Steveninck, Warland (CR1) 1991; 252 Luo, Poeppel (CR65) 2007; 54 Lotte (CR58) 2015; 9 Morrell (CR62) 2006; 19 Martin (CR13) 2016; 6 Crone, Boatman, Gordon, Hao (CR36) 2001; 112 Sellers, Ryan, Hauser (CR11) 2014; 6 Koyama (CR64) 2010; 29 Herff (CR19) 2015; 9 Shenoy, Krauledat, Blankertz, Rao, Müller (CR73) 2006; 3 CR59 Abadi (CR81) 2016; 16 Ramirez (CR5) 2011; 31 Mesgarani, David, Fritz, Shamma (CR34) 2014; 111 Rieke, Bodnar, Bialek (CR2) 1995; 262 CR55 Jensen, Taal (CR51) 2016; 24 Hinton (CR60) 2006; 18 Mesgarani, Chang (CR20) 2012; 485 Fischl (CR76) 2004; 14 CR50 Muller, Hamilton, Edwards, Bouchard, Chang (CR86) 2016; 13 Vidaurre, Sannelli, Müller, Blankertz (CR26) 2011; 23 Bunzeck, Wuestenberg, Lutz, Heinze, Jancke (CR70) 2005; 26 Hajinoroozi, Mao, Jung, Lin, Huang (CR61) 2016; 47 Paninski, Pillow, Lewi (CR54) 2007; 165 Mesgarani, David, Fritz, Shamma (CR3) 2009; 102 Hinton (CR29) 2012; 29 Luo, Chen, Mesgarani (CR30) 2018; 26 Aleman (CR69) 2005; 15 Buzsáki, Anastassiou, Koch (CR52) 2012; 13 Yang, Shamma (CR78) 1992; 38 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR41) 2014; 15 CR66 CR21 Pei, Barbour, Leuthardt, Schalk (CR15) 2011; 8 Kellis (CR18) 2010; 7 Iljina (CR9) 2017; 4 Ding, Simon (CR22) 2012; 109 Khalighinejad, da Silva, Mesgarani (CR25) 2017; 37 O’Sullivan (CR32) 2017; 14 Zatorre, Halpern, Perry, Meyer, Evans (CR68) 1996; 8 37359_CR21 C Destrieux (37359_CR77) 2010; 53 N Ding (37359_CR22) 2012; 109 37359_CR66 GB Stanley (37359_CR4) 1999; 19 M Abadi (37359_CR81) 2016; 16 S Martin (37359_CR13) 2016; 6 RJ Zatorre (37359_CR68) 1996; 8 N Mesgarani (37359_CR20) 2012; 485 X Tian (37359_CR12) 2010; 1 N Mesgarani (37359_CR34) 2014; 111 S Chakrabarti (37359_CR7) 2015; 5 B Fischl (37359_CR76) 2004; 14 N Mesgarani (37359_CR3) 2009; 102 AL Maas (37359_CR83) 2013; 30 C Herff (37359_CR8) 2016; 10 G Hinton (37359_CR29) 2012; 29 J Jensen (37359_CR51) 2016; 24 A Aleman (37359_CR69) 2005; 15 M Hajinoroozi (37359_CR61) 2016; 47 EW Sellers (37359_CR11) 2014; 6 R Santoro (37359_CR23) 2017; 114 M Morise (37359_CR45) 2016; 99 37359_CR55 B Khalighinejad (37359_CR25) 2017; 37 37359_CR59 C Herff (37359_CR19) 2015; 9 S Kellis (37359_CR18) 2010; 7 37359_CR50 M Morrell (37359_CR62) 2006; 19 X Pei (37359_CR15) 2011; 8 H Kawahara (37359_CR46) 1999; 27 KJ Miller (37359_CR67) 2009; 5 F Lotte (37359_CR58) 2015; 9 F Rieke (37359_CR2) 1995; 262 37359_CR6 N Mesgarani (37359_CR44) 2006; 14 37359_CR87 37359_CR85 N Pinto (37359_CR40) 2009; 5 37359_CR42 L Paninski (37359_CR54) 2007; 165 37359_CR48 GE Hinton (37359_CR60) 2006; 18 37359_CR80 D Khodagholy (37359_CR72) 2015; 18 DADA Moses (37359_CR24) 2016; 13 Y LeCun (37359_CR28) 2015; 521 T Chi (37359_CR43) 2005; 118 S Martin (37359_CR16) 2014; 7 37359_CR84 G Buzsáki (37359_CR52) 2012; 13 37359_CR82 B Efron (37359_CR63) 1975; 70 P Shenoy (37359_CR73) 2006; 3 X Papademetris (37359_CR75) 2006; 2006 RT Canolty (37359_CR53) 2010; 14 PL Salza (37359_CR49) 1996; 82 37359_CR38 37359_CR39 X Yang (37359_CR78) 1992; 38 37359_CR74 37359_CR31 H Luo (37359_CR65) 2007; 54 L Muller (37359_CR86) 2016; 13 SVSV David (37359_CR33) 2009; 29 37359_CR35 N Bunzeck (37359_CR70) 2005; 26 37359_CR79 O Iljina (37359_CR9) 2017; 4 AD Ramirez (37359_CR5) 2011; 31 N Srivastava (37359_CR41) 2014; 15 S Laureys (37359_CR10) 2005; 150 E Edwards (37359_CR37) 2009; 102 GE Hinton (37359_CR47) 2006; 313 37359_CR71 W Bialek (37359_CR1) 1991; 252 EC Leuthardt (37359_CR14) 2011; 8 YY Luo (37359_CR30) 2018; 26 NE Crone (37359_CR36) 2001; 112 EM Mugler (37359_CR57) 2014; 11 GM Di Liberto (37359_CR17) 2015; 25 C Vidaurre (37359_CR26) 2011; 23 DJ McFarland (37359_CR27) 2011; 199 T Blakely (37359_CR56) 2008; 2008 S Koyama (37359_CR64) 2010; 29 J O’Sullivan (37359_CR32) 2017; 14 |
References_xml | – volume: 29 start-page: 73 year: 2010 end-page: 87 ident: CR64 article-title: Comparison of brain–computer interface decoding algorithms in open-loop and closed-loop control publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-009-0196-9 – volume: 5 start-page: e1000609 year: 2009 ident: CR67 article-title: Power-law scaling in the brain surface electric potential publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000609 – volume: 15 start-page: 221 year: 2005 end-page: 228 ident: CR69 article-title: The functional neuroanatomy of metrical stress evaluation of perceived and imagined spoken words publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh124 – volume: 8 start-page: 29 year: 1996 end-page: 46 ident: CR68 article-title: Hearing in the mind’s ear: a PET investigation of musical imagery and perception publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1996.8.1.29 – ident: CR74 – volume: 252 start-page: 1854 year: 1991 end-page: 1857 ident: CR1 article-title: Reading a neural code publication-title: Science (80-.). doi: 10.1126/science.2063199 – volume: 26 start-page: 787 year: 2018 end-page: 796 ident: CR30 article-title: Speaker-Independent Speech Separation With Deep AttractorNetwork publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2018.2795749 – ident: CR39 – ident: CR87 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR47 article-title: Reducing the dimensionality of data with neural networks publication-title: Science (80-.). doi: 10.1126/science.1127647 – volume: 13 start-page: 407 year: 2012 end-page: 420 ident: CR52 article-title: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3241 – volume: 70 start-page: 892 year: 1975 end-page: 898 ident: CR63 article-title: The efficiency of logistic regression compared to normal discriminant analysis publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1975.10480319 – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: CR29 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: Signal Process. Mag. IEEE doi: 10.1109/MSP.2012.2205597 – volume: 521 start-page: 436 year: 2015 ident: CR28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 54 start-page: 1001 year: 2007 end-page: 1010 ident: CR65 article-title: Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex publication-title: Neuron doi: 10.1016/j.neuron.2007.06.004 – volume: 25 start-page: 2457 year: 2015 end-page: 2465 ident: CR17 article-title: Low-Frequency Cortical Entrainment to Speech Reflects Phoneme-Level Processing publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.030 – volume: 13 start-page: 56004 year: 2016 ident: CR24 article-title: Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/5/056004 – ident: CR35 – ident: CR80 – volume: 111 start-page: 6792 year: 2014 end-page: 6797 ident: CR34 article-title: Mechanisms of noise robust representation of speech in primary auditory cortex publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1318017111 – ident: CR84 – volume: 7 start-page: 56007 year: 2010 ident: CR18 article-title: Decoding spoken words using local field potentials recorded from the cortical surface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/5/056007 – volume: 199 start-page: 103 year: 2011 end-page: 107 ident: CR27 article-title: Should the parameters of a BCI translation algorithm be continually adapted? publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.04.037 – volume: 6 year: 2016 ident: CR13 article-title: Word pair classification during imagined speech using direct brain recordings publication-title: Sci. Rep. doi: 10.1038/srep25803 – ident: CR42 – volume: 11 start-page: 35015 year: 2014 ident: CR57 article-title: Direct classification of all American English phonemes using signals from functional speech motor cortex publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035015 – ident: CR21 – ident: CR71 – volume: 18 start-page: 310 year: 2015 ident: CR72 article-title: NeuroGrid: recording action potentials from the surface of the brain publication-title: Nat. Neurosci. doi: 10.1038/nn.3905 – volume: 19 start-page: 164 year: 2006 end-page: 168 ident: CR62 article-title: Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures? publication-title: Curr. Opin. Neurol. doi: 10.1097/01.wco.0000218233.60217.84 – volume: 2006 start-page: 209 year: 2006 ident: CR75 article-title: BioImage Suite: An integrated medical image analysis suite: An update publication-title: Insight J. – volume: 38 start-page: 824 year: 1992 end-page: 839 ident: CR78 article-title: Auditory representations of acoustic signals publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.119739 – volume: 109 start-page: 11854 year: 2012 end-page: 11859 ident: CR22 article-title: Emergence of neural encoding of auditory objects while listening to competing speakers publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1205381109 – ident: CR50 – volume: 10 start-page: 429 year: 2016 ident: CR8 article-title: Automatic speech recognition from neural signals: a focused review publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00429 – volume: 114 start-page: 4799 year: 2017 end-page: 4804 ident: CR23 article-title: Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1617622114 – volume: 23 start-page: 791 year: 2011 end-page: 816 ident: CR26 article-title: Machine-learning-based coadaptive calibration for brain-computer interfaces publication-title: Neural Comput. doi: 10.1162/NECO_a_00089 – volume: 47 start-page: 549 year: 2016 end-page: 555 ident: CR61 article-title: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2016.05.018 – volume: 9 start-page: 97 year: 2015 ident: CR58 article-title: Electrocorticographic representations of segmental features in continuous speech publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00097 – ident: CR85 – volume: 24 start-page: 2009 year: 2016 end-page: 2022 ident: CR51 article-title: An Algorithm for Predicting the Intelligibility of Speech Masked by Modulated Noise Maskers publication-title: IEEE/ACM Trans. Audio, Speech Lang. Process. doi: 10.1109/TASLP.2016.2585878 – volume: 262 start-page: 259 year: 1995 end-page: 265 ident: CR2 article-title: Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents publication-title: Proc Biol Sci doi: 10.1098/rspb.1995.0204 – volume: 118 start-page: 887 year: 2005 end-page: 906 ident: CR43 article-title: Multiresolution spectrotemporal analysis of complex sounds publication-title: J Acoust Soc Am doi: 10.1121/1.1945807 – volume: 29 start-page: 3374 year: 2009 end-page: 3386 ident: CR33 article-title: Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5249-08.2009 – volume: 27 start-page: 187 year: 1999 end-page: 207 ident: CR46 article-title: Restructuring speech representations using a pitch-adaptive time–frequency smoothing and an instantaneous-frequency-based F0 extraction: Possible role of a repetitive structure in sounds1 publication-title: Speech Commun. doi: 10.1016/S0167-6393(98)00085-5 – volume: 19 start-page: 8036 year: 1999 end-page: 8042 ident: CR4 article-title: Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-18-08036.1999 – volume: 30 start-page: 3 year: 2013 ident: CR83 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: In Proc. icml – volume: 485 start-page: 233 year: 2012 end-page: 236 ident: CR20 article-title: Selective cortical representation of attended speaker in multi-talker speech perception publication-title: Nature doi: 10.1038/nature11020 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR41 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: CR66 – volume: 26 start-page: 1119 year: 2005 end-page: 1127 ident: CR70 article-title: Scanning silence: mental imagery of complex sounds publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.013 – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: CR76 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. cortex doi: 10.1093/cercor/bhg087 – volume: 53 start-page: 1 year: 2010 end-page: 15 ident: CR77 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 7 start-page: 14 year: 2014 ident: CR16 article-title: Decoding spectrotemporal features of overt and covert speech from the human cortex publication-title: Front. Neuroeng. doi: 10.3389/fneng.2014.00014 – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: CR60 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 6 start-page: 257re7 year: 2014 end-page: 257re7 ident: CR11 article-title: Noninvasive brain-computer interface enables communication after brainstem stroke publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007801 – volume: 150 start-page: 495 year: 2005 end-page: 611 ident: CR10 article-title: The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(05)50034-7 – volume: 5 start-page: 10 year: 2015 end-page: 21 ident: CR7 article-title: Progress in speech decoding from the electrocorticogram publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-015-0175-1 – ident: CR82 – volume: 31 start-page: 3828 year: 2011 end-page: 3842 ident: CR5 article-title: Incorporating naturalistic correlation structure improves spectrogram reconstruction from neuronal activity in the songbird auditory midbrain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3256-10.2011 – volume: 9 start-page: 217 year: 2015 ident: CR19 article-title: Brain-to-text: decoding spoken phrases from phone representations in the brain publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00217 – volume: 99 start-page: 1877 year: 2016 end-page: 1884 ident: CR45 article-title: WORLD: a vocoder-based high-quality speech synthesis system for real-time applications publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2015EDP7457 – volume: 8 start-page: 36004 year: 2011 ident: CR14 article-title: Using the electrocorticographic speech network to control a brain–computer interface in humans publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036004 – ident: CR6 – volume: 37 start-page: 2176 year: 2017 end-page: 2185 ident: CR25 article-title: Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2383-16.2017 – volume: 14 start-page: 506 year: 2010 end-page: 515 ident: CR53 article-title: The functional role of cross-frequency coupling publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.09.001 – volume: 1 start-page: 166 year: 2010 ident: CR12 article-title: Mental imagery of speech and movement implicates the dynamics of internal forward models publication-title: Front. Psychol. – ident: CR79 – volume: 82 start-page: 650 year: 1996 end-page: 656 ident: CR49 article-title: MOS and pair comparison combined methods for quality evaluation of text-to-speech systems publication-title: Acta Acust. united with Acust. – volume: 13 start-page: 56013 year: 2016 ident: CR86 article-title: Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/5/056013 – volume: 102 start-page: 3329 year: 2009 end-page: 3339 ident: CR3 article-title: Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex publication-title: J Neurophysiol doi: 10.1152/jn.91128.2008 – volume: 5 start-page: e1000579 year: 2009 ident: CR40 article-title: A high-throughput screening approach to discovering good forms of biologically inspired visual representation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000579 – ident: CR48 – volume: 2008 start-page: 4964 year: 2008 end-page: 7 ident: CR56 article-title: Localization and classification of phonemes using high spatial resolution electrocorticography (ECoG) grids publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – ident: CR38 – volume: 8 start-page: 46028 year: 2011 ident: CR15 article-title: Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/4/046028 – ident: CR31 – volume: 16 start-page: 265 year: 2016 end-page: 283 ident: CR81 article-title: TensorFlow: A System for Large-Scale Machine Learning publication-title: In OSDI – volume: 14 start-page: 56001 year: 2017 ident: CR32 article-title: Neural decoding of attentional selection in multi-speaker environments without access to clean sources publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa7ab4 – volume: 112 start-page: 565 year: 2001 end-page: 582 ident: CR36 article-title: Induced electrocorticographic gamma activity during auditory perception publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00545-9 – volume: 102 start-page: 377 year: 2009 end-page: 386 ident: CR37 article-title: Comparison of time–frequency responses and the event-related potential to auditory speech stimuli in human cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.90954.2008 – volume: 165 start-page: 493 year: 2007 end-page: 507 ident: CR54 article-title: Statistical models for neural encoding, decoding, and optimal stimulus design publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)65031-0 – volume: 4 start-page: 186 year: 2017 end-page: 199 ident: CR9 article-title: Neurolinguistic and machine-learning perspectives on direct speech BCIs for restoration of naturalistic communication publication-title: Brain-Computer Interfaces doi: 10.1080/2326263X.2017.1330611 – ident: CR55 – ident: CR59 – volume: 3 start-page: R13 year: 2006 ident: CR73 article-title: Towards adaptive classification for BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/1/R02 – volume: 14 start-page: 920 year: 2006 end-page: 930 ident: CR44 article-title: Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations publication-title: IEEE Trans. Audio. Speech. Lang. Processing doi: 10.1109/TSA.2005.858055 – volume: 26 start-page: 787 year: 2018 ident: 37359_CR30 publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2018.2795749 – volume: 24 start-page: 2009 year: 2016 ident: 37359_CR51 publication-title: IEEE/ACM Trans. Audio, Speech Lang. Process. doi: 10.1109/TASLP.2016.2585878 – ident: 37359_CR74 doi: 10.1016/j.jneumeth.2017.01.022 – volume: 82 start-page: 650 year: 1996 ident: 37359_CR49 publication-title: Acta Acust. united with Acust. – volume: 10 start-page: 429 year: 2016 ident: 37359_CR8 publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00429 – ident: 37359_CR87 doi: 10.1109/ICASSP.2017.7952275 – volume: 118 start-page: 887 year: 2005 ident: 37359_CR43 publication-title: J Acoust Soc Am doi: 10.1121/1.1945807 – ident: 37359_CR21 doi: 10.1093/cercor/bht355 – ident: 37359_CR38 – ident: 37359_CR82 doi: 10.1109/ICCV.2015.123 – volume: 521 start-page: 436 year: 2015 ident: 37359_CR28 publication-title: Nature doi: 10.1038/nature14539 – volume: 14 start-page: 11 year: 2004 ident: 37359_CR76 publication-title: Cereb. cortex doi: 10.1093/cercor/bhg087 – volume: 99 start-page: 1877 year: 2016 ident: 37359_CR45 publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2015EDP7457 – volume: 2008 start-page: 4964 year: 2008 ident: 37359_CR56 publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 15 start-page: 1929 year: 2014 ident: 37359_CR41 publication-title: J. Mach. Learn. Res. – ident: 37359_CR71 doi: 10.1093/cercor/bhx277 – volume: 8 start-page: 36004 year: 2011 ident: 37359_CR14 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036004 – volume: 4 start-page: 186 year: 2017 ident: 37359_CR9 publication-title: Brain-Computer Interfaces doi: 10.1080/2326263X.2017.1330611 – volume: 262 start-page: 259 year: 1995 ident: 37359_CR2 publication-title: Proc Biol Sci doi: 10.1098/rspb.1995.0204 – volume: 70 start-page: 892 year: 1975 ident: 37359_CR63 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1975.10480319 – volume: 14 start-page: 920 year: 2006 ident: 37359_CR44 publication-title: IEEE Trans. Audio. Speech. Lang. Processing doi: 10.1109/TSA.2005.858055 – volume: 37 start-page: 2176 year: 2017 ident: 37359_CR25 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2383-16.2017 – ident: 37359_CR66 doi: 10.1371/journal.pbio.1000610 – volume: 13 start-page: 56013 year: 2016 ident: 37359_CR86 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/5/056013 – volume: 13 start-page: 407 year: 2012 ident: 37359_CR52 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3241 – volume: 18 start-page: 1527 year: 2006 ident: 37359_CR60 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 199 start-page: 103 year: 2011 ident: 37359_CR27 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.04.037 – ident: 37359_CR6 doi: 10.1371/journal.pbio.1001251 – volume: 8 start-page: 29 year: 1996 ident: 37359_CR68 publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1996.8.1.29 – volume: 47 start-page: 549 year: 2016 ident: 37359_CR61 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2016.05.018 – volume: 3 start-page: R13 year: 2006 ident: 37359_CR73 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/1/R02 – volume: 14 start-page: 56001 year: 2017 ident: 37359_CR32 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa7ab4 – volume: 29 start-page: 3374 year: 2009 ident: 37359_CR33 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5249-08.2009 – volume: 1 start-page: 166 year: 2010 ident: 37359_CR12 publication-title: Front. Psychol. – volume: 5 start-page: 10 year: 2015 ident: 37359_CR7 publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-015-0175-1 – volume: 112 start-page: 565 year: 2001 ident: 37359_CR36 publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00545-9 – ident: 37359_CR79 – volume: 111 start-page: 6792 year: 2014 ident: 37359_CR34 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1318017111 – ident: 37359_CR50 – volume: 252 start-page: 1854 year: 1991 ident: 37359_CR1 publication-title: Science (80-.). doi: 10.1126/science.2063199 – volume: 485 start-page: 233 year: 2012 ident: 37359_CR20 publication-title: Nature doi: 10.1038/nature11020 – volume: 19 start-page: 164 year: 2006 ident: 37359_CR62 publication-title: Curr. Opin. Neurol. doi: 10.1097/01.wco.0000218233.60217.84 – volume: 114 start-page: 4799 year: 2017 ident: 37359_CR23 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1617622114 – volume: 23 start-page: 791 year: 2011 ident: 37359_CR26 publication-title: Neural Comput. doi: 10.1162/NECO_a_00089 – ident: 37359_CR85 – volume: 29 start-page: 82 year: 2012 ident: 37359_CR29 publication-title: Signal Process. Mag. IEEE doi: 10.1109/MSP.2012.2205597 – volume: 27 start-page: 187 year: 1999 ident: 37359_CR46 publication-title: Speech Commun. doi: 10.1016/S0167-6393(98)00085-5 – volume: 5 start-page: e1000579 year: 2009 ident: 37359_CR40 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000579 – volume: 26 start-page: 1119 year: 2005 ident: 37359_CR70 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.013 – ident: 37359_CR42 – volume: 102 start-page: 3329 year: 2009 ident: 37359_CR3 publication-title: J Neurophysiol doi: 10.1152/jn.91128.2008 – volume: 6 start-page: 257re7 year: 2014 ident: 37359_CR11 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007801 – volume: 9 start-page: 217 year: 2015 ident: 37359_CR19 publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00217 – volume: 102 start-page: 377 year: 2009 ident: 37359_CR37 publication-title: J. Neurophysiol. doi: 10.1152/jn.90954.2008 – volume: 29 start-page: 73 year: 2010 ident: 37359_CR64 publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-009-0196-9 – volume: 7 start-page: 14 year: 2014 ident: 37359_CR16 publication-title: Front. Neuroeng. doi: 10.3389/fneng.2014.00014 – volume: 19 start-page: 8036 year: 1999 ident: 37359_CR4 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-18-08036.1999 – volume: 165 start-page: 493 year: 2007 ident: 37359_CR54 publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)65031-0 – volume: 18 start-page: 310 year: 2015 ident: 37359_CR72 publication-title: Nat. Neurosci. doi: 10.1038/nn.3905 – ident: 37359_CR48 doi: 10.3115/1075527.1075614 – ident: 37359_CR80 – volume: 31 start-page: 3828 year: 2011 ident: 37359_CR5 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3256-10.2011 – ident: 37359_CR31 doi: 10.1109/ICASSP.2017.7952155 – volume: 14 start-page: 506 year: 2010 ident: 37359_CR53 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.09.001 – volume: 15 start-page: 221 year: 2005 ident: 37359_CR69 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh124 – ident: 37359_CR84 – volume: 16 start-page: 265 year: 2016 ident: 37359_CR81 publication-title: In OSDI – volume: 53 start-page: 1 year: 2010 ident: 37359_CR77 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 150 start-page: 495 year: 2005 ident: 37359_CR10 publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(05)50034-7 – volume: 8 start-page: 46028 year: 2011 ident: 37359_CR15 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/4/046028 – volume: 6 year: 2016 ident: 37359_CR13 publication-title: Sci. Rep. doi: 10.1038/srep25803 – volume: 109 start-page: 11854 year: 2012 ident: 37359_CR22 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1205381109 – volume: 313 start-page: 504 year: 2006 ident: 37359_CR47 publication-title: Science (80-.). doi: 10.1126/science.1127647 – volume: 54 start-page: 1001 year: 2007 ident: 37359_CR65 publication-title: Neuron doi: 10.1016/j.neuron.2007.06.004 – ident: 37359_CR39 – volume: 2006 start-page: 209 year: 2006 ident: 37359_CR75 publication-title: Insight J. – ident: 37359_CR55 doi: 10.21437/Interspeech.2015-294 – volume: 25 start-page: 2457 year: 2015 ident: 37359_CR17 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.030 – volume: 13 start-page: 56004 year: 2016 ident: 37359_CR24 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/5/056004 – volume: 9 start-page: 97 year: 2015 ident: 37359_CR58 publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00097 – volume: 7 start-page: 56007 year: 2010 ident: 37359_CR18 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/5/056007 – volume: 5 start-page: e1000609 year: 2009 ident: 37359_CR67 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000609 – volume: 30 start-page: 3 year: 2013 ident: 37359_CR83 publication-title: In Proc. icml – volume: 38 start-page: 824 year: 1992 ident: 37359_CR78 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.119739 – ident: 37359_CR35 – ident: 37359_CR59 doi: 10.1109/EMBC.2016.7591004 – volume: 11 start-page: 35015 year: 2014 ident: 37359_CR57 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035015 |
SSID | ssj0000529419 |
Score | 2.602789 |
Snippet | Auditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus from the population of evoked neural activity.... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 874 |
SubjectTerms | 631/378/116/2394 631/378/2619/2618 Brain Computer applications Cortex (auditory) Humanities and Social Sciences Implants multidisciplinary Neural networks Prosthetics Science Science (multidisciplinary) Speech Voice simulation |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR39YXEbxptGnTNDmIiCgq6MkFbyVNU11Yuqur4PrrnaTtyvo6J6HtTNL5hsx8H8B-KFWkeVrSkhtNMUJpKnUkqFIG42FoLM9dN_Ltnbjq8JuH5GEKWrmjxoDDX1M7pyfVeekdvT-PTvHAn9Qt4_J4iEHINYoxicclThT9mIZZjEypk3K4beB-zfUdKc5U0zvz-9LJ-PQDdP6snfx2gerj0uUiLDSAkpzVO2AJpmy1DHO1xORoBa7vfV3skPjMt2GLrR5Jt6Hi7OY9S4YDa80Tca0mBAEh8cJ9RLuGjf7LiBhXkPu-Cp3Li_vzK9rIJ1CDMOyVYjJlRBG6BIeFRqBPCh6ZIk94bjEGFaoUIS9LaXKWaqXQl8ywUqU6L2xiDY_XYKbqV3YDCNdaaKt5zmLOdamkjY1MHVUbTxKZFgGw1miZabjFncRFL_N33LHMakNnaOjMGzr7COBgvGZQM2v8O3u79UXWbpLMiWsJgX8UFsDeeBjPh7v00JXtv_k5imPWqqIA1mvXjR-H6ZISUuLqdMKp4wmOe3typOo-eQ5uxGkMc9kADlv3f73W31-x-f9XbME84jFXv0YjtQ0zuCfsDmKe13zXb-RPBjP_Fg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHgR39YXEbxpsGnTNDnKoqyCnhS8lTRNdUG64iq4--udpA9ZVwXPmZB0JsnMdGa-ATgOpYo0T0tacqMpaihNpY4EVcqgPgyN5bmrRr65Ff17fv2QPMxB1NbC-KR9D2npn-k2O-xshIrGFYMxiVciThSdzMOig253aXw90ev-q7jIFWeqqY8JY_nD1GkdNGNYzuZHfguSet1zuQorjdFIzuttrsGcrdZhqW4jOd6Aqzuf-zoi3rttEGGrRzJo4DYH-bMloxdrzRNx5SQEjT7im_MR7Yoyhq9jYlzS7ccm3F9e3PX6tGmRQA2aWm8UHSYjitA5MSw0Avle8MgUecJzi3qmUKUIeVlKk7NUK4XyYoaVKtV5YRNreLwFC9WwsjtAuNZCW81zFnOuSyVtbGTq4Nh4ksi0CIC1TMtMgx_u2lg8Zz6OHcusZnSGjM48o7NJACfdnJcaPeNP6v1WFllzk0aZa6AlBL4aLICjbhjvgAts6MoO3z2N4uiZqiiA7Vp03XLoEikhJc5Op4TaETh87emRavDkcbbRFmPorwZw2or_a1u_f8Xu_8j3YBltMJezRiO1Dwt4RuwB2jlv-aE_2J9Mu_oG priority: 102 providerName: Springer Nature |
Title | Towards reconstructing intelligible speech from the human auditory cortex |
URI | https://link.springer.com/article/10.1038/s41598-018-37359-z https://www.ncbi.nlm.nih.gov/pubmed/30696881 https://www.proquest.com/docview/2172667941 https://www.proquest.com/docview/2179440792 https://pubmed.ncbi.nlm.nih.gov/PMC6351601 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9RAcNAWwRfx22g9VvBNl2aTzWb3Sc6jpR60iLZwb2Gz2diDkjtNBdtf78xmL-Us9iWB7C7JzsxmvmcA3qfaZFaWLW-lsxw5lOXaZoob45Afps7LmrKRj0_U0ZmcL4pFNLj1Maxy808MP-pm5chGvk-NlJRC6hGf1j85dY0i72psoXEfdql0GSlf5aIcbSzkxZLCxFyZNNf7PfIryikTGk9WXhh-vc2PbgmZt2Ml_3GYBj50-BgeRQGSTQeMP4F7vnsKD4aWklfP4MtpiIPtWdB0Y3XY7gdbxtKby_rCs37tvTtnlFrCUABkoVEfs5Sgsfp1xRwF4P55DmeHB6ezIx7bJXCHYtclR-XJqSYlhUakTiEOGpm5pi5k7ZHnNKZVqWxb7WpRWmMQd8KJ1pS2bnzhncxfwE636vwrYNJaZb2VtciltK3RPne6pNJssih02SQgNkCrXKwlTi0tLqrg0851NQC6QkBXAdDVdQIfxjXroZLGnbP3Nrio4qnqqxsaSODdOIzngZwctvOr32GOkailmiyBlwPqxtehemSU1ri63ELqOIFqbW-PdMvzUHMb5TKBumsCHzfov_ms_-_i9d27eAMPUf6ieDWemT3YQZrwb1HGuawngZAnsDudzr_P8f754OTrN3w6U7NJsBvg9Vjqv1KZAXs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcUHkHChgJTmA1ThzHPqCqQKtd2q4Q2kq9uY7j0JWq7LYpgu2P4jd2nFe1VPTWc-zEnhl7vsm8AN6FUkWGpwUtuDUUNZSh0kSCKmVRH4bW8cxnI--PxfCAfztMDlfgb5cL48MquzuxvqjzmfX_yDd8IyUhUHrY5vyU-q5R3rvatdBoxGLXLX6jyVZ9Gn1F_r6Pop3tyZchbbsKUIvo5JyijWFFHnrcz0IrcKk5j2yeJTxzeDXnqhAhLwppM5YapXCLzLJCpSbLXeIsj_G9d2CVxwgVBrD6eXv8_Uf_V8f7zThTbXZOGMuNCjWkz2JjEs9ynCh6sawBr8Ha69GZ_7hoa823swYPWshKthoZewgrrnwEd5smlovHMJrUkbcVqW3rth5t-ZNM22Kf0-zEkWrunD0mPpmFIOQkdWtAYnxKyOxsQawP-f3zBA5uhZRPYVDOSvccCDdGGGd4xmLOTaGki61MfTE4niQyzQNgHdG0bauX-yYaJ7r2osdSN4TWSGhdE1pfBPChnzNvanfcOHq944Vuz3Glr6QugLf9YzyB3q1iSjf7VY9RHO1iFQXwrGFd_zk0yJSQEmenS0ztB_jq3stPyulxXeUbkSBDazmAjx37r5b1_128uHkXb-DecLK_p_dG492XcB_Rn4-Wo5FahwHKh3uFCOs8e92KNYGj2z5Jl_0TOzo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQL2g8myggJHgBNbGiePYhwohyqpLoeLQSnszjuPQlarstimC7afxdYydR7VU9Naz7cSeh2fG8wJ4HUuVGJ5XtOLWUJRQhkqTCKqURXkYW8cLn4389UDsHfHP02y6Bn_6XBgfVtnfieGiLufWv5GPfCMlIZB62KjqwiK-7Y7fL06p7yDlPa19O42WRPbd8heab83OZBdx_SZJxp8OP-7RrsMAtaipnFO0N6woY28DsNgK3HbJE1sWGS8cXtOlqkTMq0raguVGKTwus6xSuSlKlznLU_zuLbidpyg2kZfyaT6873gPGmeqy9OJUzlqUFb6fDYmkavTTNGLVVl4RcG9Gqf5j7M2yMDxJtzrlFfyoaW2-7Dm6gdwp21nuXwIk8MQg9uQYGV3lWnrH2TWlf2cFSeONAvn7DHxaS0ElU8SmgQS45ND5mdLYn3w7-9HcHQjgHwM6_W8dltAuDHCOMMLlnJuKiVdamXuy8LxLJN5GQHrgaZtV8fct9M40cGfnkrdAlojoHUAtL6I4O2wZtFW8bh29naPC91xdKMv6S-CV8Mw8qJ3sJjazX-GOYqjhaySCJ60qBt-h6aZElLi6nwFqcMEX-d7daSeHYd636gTMrSbI3jXo_9yW_8_xdPrT_ES7iL_6C-Tg_1nsIFqoA-bo4nahnUkD_ccVa3z4kWgaQLfb5qJ_gIWwz4K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+reconstructing+intelligible+speech+from+the+human+auditory+cortex&rft.jtitle=Scientific+reports&rft.au=Akbari+Hassan&rft.au=Khalighinejad+Bahar&rft.au=Herrero%2C+Jose+L&rft.au=Mehta%2C+Ashesh+D&rft.date=2019-01-29&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-018-37359-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |