Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides
Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity. Fifty-four genotypes originating from nine geographical populations in Israel, and five standard wheats (three durum and two bread wheats) w...
Saved in:
Published in | Breeding Science Vol. 60; no. 4; pp. 426 - 435 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japanese Society of Breeding
2010
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1344-7610 1347-3735 1347-3735 |
DOI | 10.1270/jsbbs.60.426 |
Cover
Loading…
Abstract | Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity. Fifty-four genotypes originating from nine geographical populations in Israel, and five standard wheats (three durum and two bread wheats) were assessed for salinity tolerance using supported hydroponics. In this study, we summarize two key components that contribute to salinity tolerance: shoot growth in saline conditions relative to control conditions (relative dry weight); and Na+ accumulation in leaves of salinised plants. An additional third component (shoot growth under control conditions) has an indirect role but is important for salinity tolerance in an agricultural context. Variability in these three components was high. Some genotypes showed high overall relative dry weight, having the ability to maintain growth in moderately saline solution, a low-to-moderate Na+ accumulation, and high biomass production under control conditions. Genotypes from other populations had very high relative dry weight but grew very slowly, so were of limited agricultural relevance. Six selected genotypes possessing useful qualities for at least one of the tested components of salinity tolerance were re-analyzed, and a genotype from Gitit in the eastern Samaria steppes was identified as the most promising salt-tolerant line for further investigation. |
---|---|
AbstractList | Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity. Fifty-four genotypes originating from nine geographical populations in Israel, and five standard wheats (three durum and two bread wheats) were assessed for salinity tolerance using supported hydroponics. In this study, we summarize two key components that contribute to salinity tolerance: shoot growth in saline conditions relative to control conditions (relative dry weight); and Na+ accumulation in leaves of salinised plants. An additional third component (shoot growth under control conditions) has an indirect role but is important for salinity tolerance in an agricultural context. Variability in these three components was high. Some genotypes showed high overall relative dry weight, having the ability to maintain growth in moderately saline solution, a low-to-moderate Na+ accumulation, and high biomass production under control conditions. Genotypes from other populations had very high relative dry weight but grew very slowly, so were of limited agricultural relevance. Six selected genotypes possessing useful qualities for at least one of the tested components of salinity tolerance were re-analyzed, and a genotype from Gitit in the eastern Samaria steppes was identified as the most promising salt-tolerant line for further investigation. Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity. Fifty-four genotypes originating from nine geographical populations in Israel, and five standard wheats (three durum and two bread wheats) were assessed for salinity tolerance using supported hydroponics. In this study, we summarize two key components that contribute to salinity tolerance: shoot growth in saline conditions relative to control conditions (relative dry weight); and Na super(+) accumulation in leaves of salinised plants. An additional third component (shoot growth under control conditions) has an indirect role but is important for salinity tolerance in an agricultural context. Variability in these three components was high. Some genotypes showed high overall relative dry weight, having the ability to maintain growth in moderately saline solution, a low-to-moderate Na super(+) accumulation, and high biomass production under control conditions. Genotypes from other populations had very high relative dry weight but grew very slowly, so were of limited agricultural relevance. Six selected genotypes possessing useful qualities for at least one of the tested components of salinity tolerance were re-analyzed, and a genotype from Gitit in the eastern Samaria steppes was identified as the most promising salt-tolerant line for further investigation. |
Author | Langridge, Peter Nevo, Eviatar Tester, Mark Shavrukov, Yuri |
Author_xml | – sequence: 1 fullname: Shavrukov, Yuri organization: Australian Centre for Plant Functional Genomics, University of Adelaide – sequence: 1 fullname: Langridge, Peter organization: Australian Centre for Plant Functional Genomics, University of Adelaide – sequence: 1 fullname: Tester, Mark organization: Australian Centre for Plant Functional Genomics, University of Adelaide – sequence: 1 fullname: Nevo, Eviatar organization: Institute of Evolution, University of Haifa |
BookMark | eNp1kU1rGzEQhkVJoUnaW3-AoIdevK60q4_1MYR-QaCXlB6FPJq1ZbRSKmnr5t9XiUsogV5mBvS874h5L8hZTBEJecvZmveafTiU7basFVuLXr0g53wQuhv0IM8eZ9FpxdkrclHKgbFeMiHPSfnhHdIdRqweqPO_MBdf72maaLHBx4e5poDZRsAVLcn5Zab4G8JSfIrURkd3OR3rnvpIjz44ivOMmR73aOuK3mbfjJvEeUgAqW0rr8nLyYaCb_72S_L908fb6y_dzbfPX6-vbjqQgtWu1wDgcBq51rjVSnGpR9xwjW7SCkBtOWcjbCxKLZwTTG6E1DhMoMZBohouyfuT711OPxcs1cy-AIZgI6almI0UzVOxoZHvnpGHtOTYPme4UFprrtjYqP5EQU6lZJwM-GprO0PN1gfDmXmIwTzGYBQzLYYmWj0T3WU_23z_P_zqhB9KtTt8gm1uZwz4D3wqTfP0BnubDcbhD5mrphk |
CitedBy_id | crossref_primary_10_1111_jse_12124 crossref_primary_10_1146_annurev_phyto_080614_120254 crossref_primary_10_1080_07352689_2016_1245056 crossref_primary_10_17221_3260_CJGPB crossref_primary_10_1007_s10722_013_0037_6 crossref_primary_10_1007_s10681_014_1122_4 crossref_primary_10_1007_s10725_019_00519_w crossref_primary_10_1007_s11104_015_2391_y crossref_primary_10_1007_s11032_015_0229_1 crossref_primary_10_1007_s11105_013_0584_1 crossref_primary_10_1071_FP17049 crossref_primary_10_3390_genes8060156 crossref_primary_10_1007_s10646_014_1247_1 crossref_primary_10_1007_s10725_017_0337_5 crossref_primary_10_1186_s12870_020_02331_5 crossref_primary_10_4081_ija_2022_2096 crossref_primary_10_1007_s00122_018_3146_y crossref_primary_10_1007_s00344_022_10797_w crossref_primary_10_1007_s11032_016_0553_0 crossref_primary_10_1007_s13593_013_0178_1 crossref_primary_10_1016_j_cj_2024_01_005 crossref_primary_10_29133_yyutbd_802653 |
Cites_doi | 10.1071/AR99057 10.1007/BF00227318 10.1071/PP9920331 10.1104/pp.106.093476 10.1007/BF00221141 10.1023/A:1024553303144 10.1093/jxb/43.4.511 10.1073/pnas.072223799 10.1111/j.1365-3040.2009.02107.x 10.4081/eb.2009.e3 10.1093/jxb/38.2.254 10.1111/j.1439-0523.1993.tb00599.x 10.1104/pp.106.088864 10.1111/j.1365-3040.2007.01731.x 10.1270/jsbbs.59.671 10.1007/BF00223692 10.1007/BF00288856 10.1080/07929978.1999.10676751 10.1093/jxb/41.5.623 10.1071/FP04111 10.2135/cropsci1991.0011183X003100040030x 10.1111/j.1365-3040.2007.01726.x 10.1104/pp.106.086538 10.1007/s10681-008-9703-8 10.1007/978-3-662-07140-3 10.1534/genetics.105.041632 |
ContentType | Journal Article |
Copyright | 2010 by JAPANESE SOCIETY OF BREEDING Copyright Japan Science and Technology Agency 2010 |
Copyright_xml | – notice: 2010 by JAPANESE SOCIETY OF BREEDING – notice: Copyright Japan Science and Technology Agency 2010 |
DBID | AAYXX CITATION 7QO 8FD FR3 P64 RC3 |
DOI | 10.1270/jsbbs.60.426 |
DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1347-3735 |
EndPage | 435 |
ExternalDocumentID | 3155611381 10_1270_jsbbs_60_426 article_jsbbs_60_4_60_4_426_article_char_en |
GroupedDBID | 23N 2WC 5GY A8Z ABDBF ACIWK ACPRK ACUHS ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBD EBS ECGQY EJD ESX EYRJQ GX1 HYE JSF JSH KQ8 M48 N5S OK1 OVT QF4 QN7 RJT RNS RPM RZJ TKC TR2 XSB AAYXX CITATION 7QO 8FD FR3 P64 RC3 |
ID | FETCH-LOGICAL-c540t-27cccdef8177eb7661578e917edf76cc6b1108c9ae574dd4059457e3fc6835e63 |
ISSN | 1344-7610 1347-3735 |
IngestDate | Thu Jul 10 17:50:42 EDT 2025 Sun Jun 29 15:28:17 EDT 2025 Tue Jul 01 01:03:11 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Wed Sep 03 06:30:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c540t-27cccdef8177eb7661578e917edf76cc6b1108c9ae574dd4059457e3fc6835e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jsbbs/60/4/60_4_426/_article/-char/en |
PQID | 1467771608 |
PQPubID | 1966357 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_954615603 proquest_journals_1467771608 crossref_citationtrail_10_1270_jsbbs_60_426 crossref_primary_10_1270_jsbbs_60_426 jstage_primary_article_jsbbs_60_4_60_4_426_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-00-00 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – year: 2010 text: 2010-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Breeding Science |
PublicationTitleAlternate | Breeding Science |
PublicationYear | 2010 |
Publisher | Japanese Society of Breeding Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society of Breeding – name: Japan Science and Technology Agency |
References | Nevo, E. and G. Chen (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 33: 670–685. Nevo, E. (2009) Evolution in action across life at “Evolution Canyon”, Israel. Trends Evol. Biol. 1: 12–34. Shavrukov, Y., P. Langridge and M. Tester (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breed. Sci. 59: 671–678. Munns, R. and R.A. James (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253: 201–218. Nevo, E., T. Krugman and A. Beiles (1993) Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed. 110: 338–341. Xie, W. and E. Nevo (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164: 603–614. Aaronshon, A. (1910) Agricultural and botanical exploration in Palestine. Bulletin of U.S. Department of Agriculture Bureau of Plant Industry. Washington Government Printing Office, Washington. p. 63. Schachtman, D.P., R. Munns and M.I. Whitecross (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci. 31: 992–997. Gorham, J., A. Bristol, E.M. Young and R.G. Wyn Jones (1991) The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor. Appl. Genet. 82: 729–736. Huang, S., W. Spielmeyer, E.S. Lagudah, R.A. James, J.D. Platten, E.S. Dennis and R. Munns (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol. 142: 1718–1727. Gorham, J. (1990) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41: 623–627. Byrt, C.S., J.D. Platten, W. Spielmeyer, R.A. James, E.S. Lagudah, E.S. Dennis, M. Tester and R. Munns (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 143: 1918–1928. Dubcovsky, J., G. Santa-Maria, E. Epstein, M.C. Luo and J. Dvorak (1996) Mapping of the K/Na discrimination locus Kna1 in wheat. Theor. App. Genet. 92: 448–454. Schachtman, D.P., E.S. Lagudah and R. Munns (1992) The expressions of salt tolerance from Triticum tauschii in hexaploid wheat. Theor. Appl. Genet. 84: 714–719. Shavrukov, Y., J. Bowner, P. Langridge and M. Tester (2006) Screening for sodium exclusion in wheat and barley. In: Proceedings of the 13th Australian Society of Agronomy, Perth. http://www.regional.org.au/au/asa/2006/concurrent/environment/4581_shavrukoky.htm Dvorak, J., M.M. Noaman, S. Goyal and J. Gorham (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor. Appl. Genet. 98: 872–877. Schachtman, D.P. and R. Munns (1992) Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust. J. Plant Physiol. 19: 331–340. Gorham, J., C. Hardy, R.G. Wyn Jones, L.R. Joppa and C.N. Law (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74: 584–588. James, R.A., R.J. Davenport and R. Munns (2006) Physiological characterisation of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol. 142: 1537–1547. Nevo, E., A.B. Korol, A. Beiles and T. Fahima (2002) Evolution of Wild Emmer and Wheat Improvement. Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Springer-Verlag, Berlin, Germany, p. 364. Nevo, E., O. Fragman, A. Dafni and A. Beiles (1999) Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at “Evolution Canyon”, Lower Nahal Oren, Mount Carmel, Israel. Isr. J. Plant Sci. 47: 49–59. Lindsay, M.P., E.S. Lagudah, R.A. Hare and R. Munns (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct. Plant Biol. 83: 170–176. Dvorak, J. and E.D. Akhunov (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171: 323–332. Munns, R., R.A. Hore, R.A. James and G.J. Rebetzke (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res. 51: 69–74. Nevo, E., J. Gorham and A. Beiles (1992) Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: Salt tolerance resources for wheat improvement. J. Exp. Bot. 43: 511–518. Selezska, K., L. Brodsky and E. Nevo (2007) Adaptive growth rates of fungi from Aspergillus niger group in contrasting environments: the Dead Sea and “Evolution Canyon” I (Israel) under different osmostress. Mycologia Balcanica 4: 51–60. Nevo, E. (2004) Genomic diversity in nature and domestication. In: Henry, R. (ed.) Diversity and Evolution of Plants. Genotypic and Phenotypic Variation in Higher Plants. CAB International Publishing, Wallingford, UK, pp. 287–315. Huang, S., A. Sirikhachornkit, X. Su, J. Faris, B. Gill, R. Haselkorn and P. Gornicki (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99: 8133–8138. Genc, Y., G. McDonald and M. Tester (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. 30: 1486–1498. Peleg, Z., Y. Saranga, T. Krugman, S. Abbo, E. Nevo and T. Fahima (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ. 31: 39–49. Shah, S.H., J. Gorham, B.P. Forster and R.G. Wyn Jones (1987) Salt tolerance in the Triticeae: The contribution of the D genome to cation selectivity in hexaploid wheat. J. Exper. Bot. 38: 254–269. 22 23 26 27 28 29 (9) 1991; 82 (25) 1992; 84 30 31 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 (24) 1991; 31 20 21 |
References_xml | – reference: Peleg, Z., Y. Saranga, T. Krugman, S. Abbo, E. Nevo and T. Fahima (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ. 31: 39–49. – reference: Schachtman, D.P. and R. Munns (1992) Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust. J. Plant Physiol. 19: 331–340. – reference: Gorham, J. (1990) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41: 623–627. – reference: James, R.A., R.J. Davenport and R. Munns (2006) Physiological characterisation of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol. 142: 1537–1547. – reference: Nevo, E. (2004) Genomic diversity in nature and domestication. In: Henry, R. (ed.) Diversity and Evolution of Plants. Genotypic and Phenotypic Variation in Higher Plants. CAB International Publishing, Wallingford, UK, pp. 287–315. – reference: Nevo, E. (2009) Evolution in action across life at “Evolution Canyon”, Israel. Trends Evol. Biol. 1: 12–34. – reference: Shavrukov, Y., P. Langridge and M. Tester (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breed. Sci. 59: 671–678. – reference: Aaronshon, A. (1910) Agricultural and botanical exploration in Palestine. Bulletin of U.S. Department of Agriculture Bureau of Plant Industry. Washington Government Printing Office, Washington. p. 63. – reference: Dvorak, J., M.M. Noaman, S. Goyal and J. Gorham (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor. Appl. Genet. 98: 872–877. – reference: Shavrukov, Y., J. Bowner, P. Langridge and M. Tester (2006) Screening for sodium exclusion in wheat and barley. In: Proceedings of the 13th Australian Society of Agronomy, Perth. http://www.regional.org.au/au/asa/2006/concurrent/environment/4581_shavrukoky.htm – reference: Dvorak, J. and E.D. Akhunov (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171: 323–332. – reference: Gorham, J., C. Hardy, R.G. Wyn Jones, L.R. Joppa and C.N. Law (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74: 584–588. – reference: Schachtman, D.P., E.S. Lagudah and R. Munns (1992) The expressions of salt tolerance from Triticum tauschii in hexaploid wheat. Theor. Appl. Genet. 84: 714–719. – reference: Huang, S., A. Sirikhachornkit, X. Su, J. Faris, B. Gill, R. Haselkorn and P. Gornicki (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99: 8133–8138. – reference: Munns, R. and R.A. James (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253: 201–218. – reference: Nevo, E. and G. Chen (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 33: 670–685. – reference: Xie, W. and E. Nevo (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164: 603–614. – reference: Nevo, E., O. Fragman, A. Dafni and A. Beiles (1999) Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at “Evolution Canyon”, Lower Nahal Oren, Mount Carmel, Israel. Isr. J. Plant Sci. 47: 49–59. – reference: Lindsay, M.P., E.S. Lagudah, R.A. Hare and R. Munns (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct. Plant Biol. 83: 170–176. – reference: Gorham, J., A. Bristol, E.M. Young and R.G. Wyn Jones (1991) The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor. Appl. Genet. 82: 729–736. – reference: Schachtman, D.P., R. Munns and M.I. Whitecross (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci. 31: 992–997. – reference: Nevo, E., A.B. Korol, A. Beiles and T. Fahima (2002) Evolution of Wild Emmer and Wheat Improvement. Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Springer-Verlag, Berlin, Germany, p. 364. – reference: Byrt, C.S., J.D. Platten, W. Spielmeyer, R.A. James, E.S. Lagudah, E.S. Dennis, M. Tester and R. Munns (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 143: 1918–1928. – reference: Munns, R., R.A. Hore, R.A. James and G.J. Rebetzke (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res. 51: 69–74. – reference: Nevo, E., T. Krugman and A. Beiles (1993) Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed. 110: 338–341. – reference: Shah, S.H., J. Gorham, B.P. Forster and R.G. Wyn Jones (1987) Salt tolerance in the Triticeae: The contribution of the D genome to cation selectivity in hexaploid wheat. J. Exper. Bot. 38: 254–269. – reference: Nevo, E., J. Gorham and A. Beiles (1992) Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: Salt tolerance resources for wheat improvement. J. Exp. Bot. 43: 511–518. – reference: Genc, Y., G. McDonald and M. Tester (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. 30: 1486–1498. – reference: Dubcovsky, J., G. Santa-Maria, E. Epstein, M.C. Luo and J. Dvorak (1996) Mapping of the K/Na discrimination locus Kna1 in wheat. Theor. App. Genet. 92: 448–454. – reference: Huang, S., W. Spielmeyer, E.S. Lagudah, R.A. James, J.D. Platten, E.S. Dennis and R. Munns (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol. 142: 1718–1727. – reference: Selezska, K., L. Brodsky and E. Nevo (2007) Adaptive growth rates of fungi from Aspergillus niger group in contrasting environments: the Dead Sea and “Evolution Canyon” I (Israel) under different osmostress. Mycologia Balcanica 4: 51–60. – ident: 14 doi: 10.1071/AR99057 – ident: 16 – volume: 82 start-page: 729 issn: 0040-5752 issue: 6 year: 1991 ident: 9 doi: 10.1007/BF00227318 – ident: 26 doi: 10.1071/PP9920331 – ident: 2 doi: 10.1104/pp.106.093476 – volume: 84 start-page: 714 issn: 0040-5752 issue: 5/6 year: 1992 ident: 25 – ident: 4 doi: 10.1007/BF00221141 – ident: 15 doi: 10.1023/A:1024553303144 – ident: 18 doi: 10.1093/jxb/43.4.511 – ident: 10 doi: 10.1073/pnas.072223799 – ident: 22 doi: 10.1111/j.1365-3040.2009.02107.x – ident: 17 doi: 10.4081/eb.2009.e3 – ident: 28 doi: 10.1093/jxb/38.2.254 – ident: 19 doi: 10.1111/j.1439-0523.1993.tb00599.x – ident: 11 doi: 10.1104/pp.106.088864 – ident: 23 doi: 10.1111/j.1365-3040.2007.01731.x – ident: 30 doi: 10.1270/jsbbs.59.671 – ident: 3 doi: 10.1007/BF00223692 – ident: 1 – ident: 7 doi: 10.1007/BF00288856 – ident: 20 doi: 10.1080/07929978.1999.10676751 – ident: 8 doi: 10.1093/jxb/41.5.623 – ident: 13 doi: 10.1071/FP04111 – volume: 31 start-page: 992 issn: 0011-183X issue: 4 year: 1991 ident: 24 doi: 10.2135/cropsci1991.0011183X003100040030x – ident: 29 – ident: 6 doi: 10.1111/j.1365-3040.2007.01726.x – ident: 12 doi: 10.1104/pp.106.086538 – ident: 31 doi: 10.1007/s10681-008-9703-8 – ident: 21 doi: 10.1007/978-3-662-07140-3 – ident: 5 doi: 10.1534/genetics.105.041632 – ident: 27 |
SSID | ssj0025045 |
Score | 1.9807638 |
Snippet | Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity.... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 426 |
SubjectTerms | Genetic diversity growth rate Na+ exclusion salinity tolerance Triticum aestivum Triticum dicoccoides Triticum dicoccum wild emmer wheat |
Title | Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides |
URI | https://www.jstage.jst.go.jp/article/jsbbs/60/4/60_4_426/_article/-char/en https://www.proquest.com/docview/1467771608 https://www.proquest.com/docview/954615603 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Breeding Science, 2010, Vol.60(4), pp.426-435 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqhQMcEE9RWJAPcMq2bJvETrhVqMsKrcqlFb1Fie2ULiVBeRTEf-I_MmM73lQLCLhYle3EiufrPOx5EPIii6e5j_eDoIpHoyDnwAezOBylEs0DGUSx8fJdsPNV8G4drgeDHz2vpbbJxuL7L-NK_oeq0Ad0xSjZf6Cseyl0wG-gL7RAYWj_isYftlJhDWQMRPRk38OiTjHisUHVcqewdoYpn1jKbfvZU9_Erq07P-QNGOKNPvcAtVl6Ck-yva_IozUtdSkEeEgCZIQoYcX64CK4MuLPs6LUndh8TPdV-6ncax7fVlvn-ZMWG1fR_cA7eOmqhPQDiBZqr09z53sAUVr1Tymsp6qWHSDzrxgVftbVnYE30_GlPfbrB8GIM_u46vqQDZqkJh3PNjUILDaDHgMOTPz9NcEw5ehJeVlnWT1mp2M77TD_9uJ9cra6uEiW8_XycNTI-wmWEp34GOh_Y8r5BJno27XzKMJkcKG27-1H2DgLWPpVf-EDDejmJRgBm-uagFZvlnfJHWuX0JkB2T0yUMV9cnu2qWxuFvWA1Ag3auFGHdxomdMObtTB7YQasFEHNgpUoQZsdFtQBBvVYKMabCe0gxrtQe0hWZ3Nl2_OR7Zmx0iA7t-MplwIIVUeTThXGQftD0SCiidcyZwzIViGcSciTlXIAykDTBcUcuXngoEtoJj_iBwVZaEeE8oiJiMVKo6Xv0GYxUpOcxZyKcJM8TQbEq_bx0TYhPZYV2WXoGELu57oXU_YaQK7PiQv3ewvJpHLb-a9NiRxs-zfuzfLNDDZjWGIJHCkITnuyJhYPlGjcc0BLew0GhLqhoGL49VcWqiyrZM4DBjmNPCf_PkNT8kt476CZ4DH5KipWvUMtOIme66x-BP7jMHW |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide+genetic+diversity+of+salinity+tolerance%2C+sodium+exclusion+and+growth+in+wild+emmer+wheat%2C+Triticum+dicoccoides&rft.jtitle=Breeding+science&rft.au=Shavrukov%2C+Yuri&rft.au=Langridge%2C+Peter&rft.au=Tester%2C+Mark&rft.au=Nevo%2C+Eviatar&rft.date=2010&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1344-7610&rft.eissn=1347-3735&rft.volume=60&rft.issue=4&rft.spage=426&rft_id=info:doi/10.1270%2Fjsbbs.60.426&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3155611381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7610&client=summon |