Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides

Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity. Fifty-four genotypes originating from nine geographical populations in Israel, and five standard wheats (three durum and two bread wheats) w...

Full description

Saved in:
Bibliographic Details
Published inBreeding Science Vol. 60; no. 4; pp. 426 - 435
Main Authors Shavrukov, Yuri, Langridge, Peter, Tester, Mark, Nevo, Eviatar
Format Journal Article
LanguageEnglish
Published Tokyo Japanese Society of Breeding 2010
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1344-7610
1347-3735
1347-3735
DOI10.1270/jsbbs.60.426

Cover

Loading…
Abstract Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity. Fifty-four genotypes originating from nine geographical populations in Israel, and five standard wheats (three durum and two bread wheats) were assessed for salinity tolerance using supported hydroponics. In this study, we summarize two key components that contribute to salinity tolerance: shoot growth in saline conditions relative to control conditions (relative dry weight); and Na+ accumulation in leaves of salinised plants. An additional third component (shoot growth under control conditions) has an indirect role but is important for salinity tolerance in an agricultural context. Variability in these three components was high. Some genotypes showed high overall relative dry weight, having the ability to maintain growth in moderately saline solution, a low-to-moderate Na+ accumulation, and high biomass production under control conditions. Genotypes from other populations had very high relative dry weight but grew very slowly, so were of limited agricultural relevance. Six selected genotypes possessing useful qualities for at least one of the tested components of salinity tolerance were re-analyzed, and a genotype from Gitit in the eastern Samaria steppes was identified as the most promising salt-tolerant line for further investigation.
AbstractList Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity. Fifty-four genotypes originating from nine geographical populations in Israel, and five standard wheats (three durum and two bread wheats) were assessed for salinity tolerance using supported hydroponics. In this study, we summarize two key components that contribute to salinity tolerance: shoot growth in saline conditions relative to control conditions (relative dry weight); and Na+ accumulation in leaves of salinised plants. An additional third component (shoot growth under control conditions) has an indirect role but is important for salinity tolerance in an agricultural context. Variability in these three components was high. Some genotypes showed high overall relative dry weight, having the ability to maintain growth in moderately saline solution, a low-to-moderate Na+ accumulation, and high biomass production under control conditions. Genotypes from other populations had very high relative dry weight but grew very slowly, so were of limited agricultural relevance. Six selected genotypes possessing useful qualities for at least one of the tested components of salinity tolerance were re-analyzed, and a genotype from Gitit in the eastern Samaria steppes was identified as the most promising salt-tolerant line for further investigation.
Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity. Fifty-four genotypes originating from nine geographical populations in Israel, and five standard wheats (three durum and two bread wheats) were assessed for salinity tolerance using supported hydroponics. In this study, we summarize two key components that contribute to salinity tolerance: shoot growth in saline conditions relative to control conditions (relative dry weight); and Na super(+) accumulation in leaves of salinised plants. An additional third component (shoot growth under control conditions) has an indirect role but is important for salinity tolerance in an agricultural context. Variability in these three components was high. Some genotypes showed high overall relative dry weight, having the ability to maintain growth in moderately saline solution, a low-to-moderate Na super(+) accumulation, and high biomass production under control conditions. Genotypes from other populations had very high relative dry weight but grew very slowly, so were of limited agricultural relevance. Six selected genotypes possessing useful qualities for at least one of the tested components of salinity tolerance were re-analyzed, and a genotype from Gitit in the eastern Samaria steppes was identified as the most promising salt-tolerant line for further investigation.
Author Langridge, Peter
Nevo, Eviatar
Tester, Mark
Shavrukov, Yuri
Author_xml – sequence: 1
  fullname: Shavrukov, Yuri
  organization: Australian Centre for Plant Functional Genomics, University of Adelaide
– sequence: 1
  fullname: Langridge, Peter
  organization: Australian Centre for Plant Functional Genomics, University of Adelaide
– sequence: 1
  fullname: Tester, Mark
  organization: Australian Centre for Plant Functional Genomics, University of Adelaide
– sequence: 1
  fullname: Nevo, Eviatar
  organization: Institute of Evolution, University of Haifa
BookMark eNp1kU1rGzEQhkVJoUnaW3-AoIdevK60q4_1MYR-QaCXlB6FPJq1ZbRSKmnr5t9XiUsogV5mBvS874h5L8hZTBEJecvZmveafTiU7basFVuLXr0g53wQuhv0IM8eZ9FpxdkrclHKgbFeMiHPSfnhHdIdRqweqPO_MBdf72maaLHBx4e5poDZRsAVLcn5Zab4G8JSfIrURkd3OR3rnvpIjz44ivOMmR73aOuK3mbfjJvEeUgAqW0rr8nLyYaCb_72S_L908fb6y_dzbfPX6-vbjqQgtWu1wDgcBq51rjVSnGpR9xwjW7SCkBtOWcjbCxKLZwTTG6E1DhMoMZBohouyfuT711OPxcs1cy-AIZgI6almI0UzVOxoZHvnpGHtOTYPme4UFprrtjYqP5EQU6lZJwM-GprO0PN1gfDmXmIwTzGYBQzLYYmWj0T3WU_23z_P_zqhB9KtTt8gm1uZwz4D3wqTfP0BnubDcbhD5mrphk
CitedBy_id crossref_primary_10_1111_jse_12124
crossref_primary_10_1146_annurev_phyto_080614_120254
crossref_primary_10_1080_07352689_2016_1245056
crossref_primary_10_17221_3260_CJGPB
crossref_primary_10_1007_s10722_013_0037_6
crossref_primary_10_1007_s10681_014_1122_4
crossref_primary_10_1007_s10725_019_00519_w
crossref_primary_10_1007_s11104_015_2391_y
crossref_primary_10_1007_s11032_015_0229_1
crossref_primary_10_1007_s11105_013_0584_1
crossref_primary_10_1071_FP17049
crossref_primary_10_3390_genes8060156
crossref_primary_10_1007_s10646_014_1247_1
crossref_primary_10_1007_s10725_017_0337_5
crossref_primary_10_1186_s12870_020_02331_5
crossref_primary_10_4081_ija_2022_2096
crossref_primary_10_1007_s00122_018_3146_y
crossref_primary_10_1007_s00344_022_10797_w
crossref_primary_10_1007_s11032_016_0553_0
crossref_primary_10_1007_s13593_013_0178_1
crossref_primary_10_1016_j_cj_2024_01_005
crossref_primary_10_29133_yyutbd_802653
Cites_doi 10.1071/AR99057
10.1007/BF00227318
10.1071/PP9920331
10.1104/pp.106.093476
10.1007/BF00221141
10.1023/A:1024553303144
10.1093/jxb/43.4.511
10.1073/pnas.072223799
10.1111/j.1365-3040.2009.02107.x
10.4081/eb.2009.e3
10.1093/jxb/38.2.254
10.1111/j.1439-0523.1993.tb00599.x
10.1104/pp.106.088864
10.1111/j.1365-3040.2007.01731.x
10.1270/jsbbs.59.671
10.1007/BF00223692
10.1007/BF00288856
10.1080/07929978.1999.10676751
10.1093/jxb/41.5.623
10.1071/FP04111
10.2135/cropsci1991.0011183X003100040030x
10.1111/j.1365-3040.2007.01726.x
10.1104/pp.106.086538
10.1007/s10681-008-9703-8
10.1007/978-3-662-07140-3
10.1534/genetics.105.041632
ContentType Journal Article
Copyright 2010 by JAPANESE SOCIETY OF BREEDING
Copyright Japan Science and Technology Agency 2010
Copyright_xml – notice: 2010 by JAPANESE SOCIETY OF BREEDING
– notice: Copyright Japan Science and Technology Agency 2010
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
RC3
DOI 10.1270/jsbbs.60.426
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Genetics Abstracts
Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1347-3735
EndPage 435
ExternalDocumentID 3155611381
10_1270_jsbbs_60_426
article_jsbbs_60_4_60_4_426_article_char_en
GroupedDBID 23N
2WC
5GY
A8Z
ABDBF
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBD
EBS
ECGQY
EJD
ESX
EYRJQ
GX1
HYE
JSF
JSH
KQ8
M48
N5S
OK1
OVT
QF4
QN7
RJT
RNS
RPM
RZJ
TKC
TR2
XSB
AAYXX
CITATION
7QO
8FD
FR3
P64
RC3
ID FETCH-LOGICAL-c540t-27cccdef8177eb7661578e917edf76cc6b1108c9ae574dd4059457e3fc6835e63
ISSN 1344-7610
1347-3735
IngestDate Thu Jul 10 17:50:42 EDT 2025
Sun Jun 29 15:28:17 EDT 2025
Tue Jul 01 01:03:11 EDT 2025
Thu Apr 24 23:05:57 EDT 2025
Wed Sep 03 06:30:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c540t-27cccdef8177eb7661578e917edf76cc6b1108c9ae574dd4059457e3fc6835e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jsbbs/60/4/60_4_426/_article/-char/en
PQID 1467771608
PQPubID 1966357
PageCount 10
ParticipantIDs proquest_miscellaneous_954615603
proquest_journals_1467771608
crossref_citationtrail_10_1270_jsbbs_60_426
crossref_primary_10_1270_jsbbs_60_426
jstage_primary_article_jsbbs_60_4_60_4_426_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-00-00
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010-00-00
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Breeding Science
PublicationTitleAlternate Breeding Science
PublicationYear 2010
Publisher Japanese Society of Breeding
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society of Breeding
– name: Japan Science and Technology Agency
References Nevo, E. and G. Chen (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 33: 670–685.
Nevo, E. (2009) Evolution in action across life at “Evolution Canyon”, Israel. Trends Evol. Biol. 1: 12–34.
Shavrukov, Y., P. Langridge and M. Tester (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breed. Sci. 59: 671–678.
Munns, R. and R.A. James (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253: 201–218.
Nevo, E., T. Krugman and A. Beiles (1993) Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed. 110: 338–341.
Xie, W. and E. Nevo (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164: 603–614.
Aaronshon, A. (1910) Agricultural and botanical exploration in Palestine. Bulletin of U.S. Department of Agriculture Bureau of Plant Industry. Washington Government Printing Office, Washington. p. 63.
Schachtman, D.P., R. Munns and M.I. Whitecross (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci. 31: 992–997.
Gorham, J., A. Bristol, E.M. Young and R.G. Wyn Jones (1991) The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor. Appl. Genet. 82: 729–736.
Huang, S., W. Spielmeyer, E.S. Lagudah, R.A. James, J.D. Platten, E.S. Dennis and R. Munns (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol. 142: 1718–1727.
Gorham, J. (1990) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41: 623–627.
Byrt, C.S., J.D. Platten, W. Spielmeyer, R.A. James, E.S. Lagudah, E.S. Dennis, M. Tester and R. Munns (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 143: 1918–1928.
Dubcovsky, J., G. Santa-Maria, E. Epstein, M.C. Luo and J. Dvorak (1996) Mapping of the K/Na discrimination locus Kna1 in wheat. Theor. App. Genet. 92: 448–454.
Schachtman, D.P., E.S. Lagudah and R. Munns (1992) The expressions of salt tolerance from Triticum tauschii in hexaploid wheat. Theor. Appl. Genet. 84: 714–719.
Shavrukov, Y., J. Bowner, P. Langridge and M. Tester (2006) Screening for sodium exclusion in wheat and barley. In: Proceedings of the 13th Australian Society of Agronomy, Perth. http://www.regional.org.au/au/asa/2006/concurrent/environment/4581_shavrukoky.htm
Dvorak, J., M.M. Noaman, S. Goyal and J. Gorham (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor. Appl. Genet. 98: 872–877.
Schachtman, D.P. and R. Munns (1992) Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust. J. Plant Physiol. 19: 331–340.
Gorham, J., C. Hardy, R.G. Wyn Jones, L.R. Joppa and C.N. Law (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74: 584–588.
James, R.A., R.J. Davenport and R. Munns (2006) Physiological characterisation of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol. 142: 1537–1547.
Nevo, E., A.B. Korol, A. Beiles and T. Fahima (2002) Evolution of Wild Emmer and Wheat Improvement. Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Springer-Verlag, Berlin, Germany, p. 364.
Nevo, E., O. Fragman, A. Dafni and A. Beiles (1999) Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at “Evolution Canyon”, Lower Nahal Oren, Mount Carmel, Israel. Isr. J. Plant Sci. 47: 49–59.
Lindsay, M.P., E.S. Lagudah, R.A. Hare and R. Munns (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct. Plant Biol. 83: 170–176.
Dvorak, J. and E.D. Akhunov (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171: 323–332.
Munns, R., R.A. Hore, R.A. James and G.J. Rebetzke (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res. 51: 69–74.
Nevo, E., J. Gorham and A. Beiles (1992) Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: Salt tolerance resources for wheat improvement. J. Exp. Bot. 43: 511–518.
Selezska, K., L. Brodsky and E. Nevo (2007) Adaptive growth rates of fungi from Aspergillus niger group in contrasting environments: the Dead Sea and “Evolution Canyon” I (Israel) under different osmostress. Mycologia Balcanica 4: 51–60.
Nevo, E. (2004) Genomic diversity in nature and domestication. In: Henry, R. (ed.) Diversity and Evolution of Plants. Genotypic and Phenotypic Variation in Higher Plants. CAB International Publishing, Wallingford, UK, pp. 287–315.
Huang, S., A. Sirikhachornkit, X. Su, J. Faris, B. Gill, R. Haselkorn and P. Gornicki (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99: 8133–8138.
Genc, Y., G. McDonald and M. Tester (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. 30: 1486–1498.
Peleg, Z., Y. Saranga, T. Krugman, S. Abbo, E. Nevo and T. Fahima (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ. 31: 39–49.
Shah, S.H., J. Gorham, B.P. Forster and R.G. Wyn Jones (1987) Salt tolerance in the Triticeae: The contribution of the D genome to cation selectivity in hexaploid wheat. J. Exper. Bot. 38: 254–269.
22
23
26
27
28
29
(9) 1991; 82
(25) 1992; 84
30
31
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
(24) 1991; 31
20
21
References_xml – reference: Peleg, Z., Y. Saranga, T. Krugman, S. Abbo, E. Nevo and T. Fahima (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ. 31: 39–49.
– reference: Schachtman, D.P. and R. Munns (1992) Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust. J. Plant Physiol. 19: 331–340.
– reference: Gorham, J. (1990) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41: 623–627.
– reference: James, R.A., R.J. Davenport and R. Munns (2006) Physiological characterisation of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol. 142: 1537–1547.
– reference: Nevo, E. (2004) Genomic diversity in nature and domestication. In: Henry, R. (ed.) Diversity and Evolution of Plants. Genotypic and Phenotypic Variation in Higher Plants. CAB International Publishing, Wallingford, UK, pp. 287–315.
– reference: Nevo, E. (2009) Evolution in action across life at “Evolution Canyon”, Israel. Trends Evol. Biol. 1: 12–34.
– reference: Shavrukov, Y., P. Langridge and M. Tester (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breed. Sci. 59: 671–678.
– reference: Aaronshon, A. (1910) Agricultural and botanical exploration in Palestine. Bulletin of U.S. Department of Agriculture Bureau of Plant Industry. Washington Government Printing Office, Washington. p. 63.
– reference: Dvorak, J., M.M. Noaman, S. Goyal and J. Gorham (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor. Appl. Genet. 98: 872–877.
– reference: Shavrukov, Y., J. Bowner, P. Langridge and M. Tester (2006) Screening for sodium exclusion in wheat and barley. In: Proceedings of the 13th Australian Society of Agronomy, Perth. http://www.regional.org.au/au/asa/2006/concurrent/environment/4581_shavrukoky.htm
– reference: Dvorak, J. and E.D. Akhunov (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171: 323–332.
– reference: Gorham, J., C. Hardy, R.G. Wyn Jones, L.R. Joppa and C.N. Law (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74: 584–588.
– reference: Schachtman, D.P., E.S. Lagudah and R. Munns (1992) The expressions of salt tolerance from Triticum tauschii in hexaploid wheat. Theor. Appl. Genet. 84: 714–719.
– reference: Huang, S., A. Sirikhachornkit, X. Su, J. Faris, B. Gill, R. Haselkorn and P. Gornicki (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99: 8133–8138.
– reference: Munns, R. and R.A. James (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253: 201–218.
– reference: Nevo, E. and G. Chen (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 33: 670–685.
– reference: Xie, W. and E. Nevo (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164: 603–614.
– reference: Nevo, E., O. Fragman, A. Dafni and A. Beiles (1999) Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at “Evolution Canyon”, Lower Nahal Oren, Mount Carmel, Israel. Isr. J. Plant Sci. 47: 49–59.
– reference: Lindsay, M.P., E.S. Lagudah, R.A. Hare and R. Munns (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct. Plant Biol. 83: 170–176.
– reference: Gorham, J., A. Bristol, E.M. Young and R.G. Wyn Jones (1991) The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor. Appl. Genet. 82: 729–736.
– reference: Schachtman, D.P., R. Munns and M.I. Whitecross (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci. 31: 992–997.
– reference: Nevo, E., A.B. Korol, A. Beiles and T. Fahima (2002) Evolution of Wild Emmer and Wheat Improvement. Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Springer-Verlag, Berlin, Germany, p. 364.
– reference: Byrt, C.S., J.D. Platten, W. Spielmeyer, R.A. James, E.S. Lagudah, E.S. Dennis, M. Tester and R. Munns (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 143: 1918–1928.
– reference: Munns, R., R.A. Hore, R.A. James and G.J. Rebetzke (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res. 51: 69–74.
– reference: Nevo, E., T. Krugman and A. Beiles (1993) Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed. 110: 338–341.
– reference: Shah, S.H., J. Gorham, B.P. Forster and R.G. Wyn Jones (1987) Salt tolerance in the Triticeae: The contribution of the D genome to cation selectivity in hexaploid wheat. J. Exper. Bot. 38: 254–269.
– reference: Nevo, E., J. Gorham and A. Beiles (1992) Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: Salt tolerance resources for wheat improvement. J. Exp. Bot. 43: 511–518.
– reference: Genc, Y., G. McDonald and M. Tester (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. 30: 1486–1498.
– reference: Dubcovsky, J., G. Santa-Maria, E. Epstein, M.C. Luo and J. Dvorak (1996) Mapping of the K/Na discrimination locus Kna1 in wheat. Theor. App. Genet. 92: 448–454.
– reference: Huang, S., W. Spielmeyer, E.S. Lagudah, R.A. James, J.D. Platten, E.S. Dennis and R. Munns (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol. 142: 1718–1727.
– reference: Selezska, K., L. Brodsky and E. Nevo (2007) Adaptive growth rates of fungi from Aspergillus niger group in contrasting environments: the Dead Sea and “Evolution Canyon” I (Israel) under different osmostress. Mycologia Balcanica 4: 51–60.
– ident: 14
  doi: 10.1071/AR99057
– ident: 16
– volume: 82
  start-page: 729
  issn: 0040-5752
  issue: 6
  year: 1991
  ident: 9
  doi: 10.1007/BF00227318
– ident: 26
  doi: 10.1071/PP9920331
– ident: 2
  doi: 10.1104/pp.106.093476
– volume: 84
  start-page: 714
  issn: 0040-5752
  issue: 5/6
  year: 1992
  ident: 25
– ident: 4
  doi: 10.1007/BF00221141
– ident: 15
  doi: 10.1023/A:1024553303144
– ident: 18
  doi: 10.1093/jxb/43.4.511
– ident: 10
  doi: 10.1073/pnas.072223799
– ident: 22
  doi: 10.1111/j.1365-3040.2009.02107.x
– ident: 17
  doi: 10.4081/eb.2009.e3
– ident: 28
  doi: 10.1093/jxb/38.2.254
– ident: 19
  doi: 10.1111/j.1439-0523.1993.tb00599.x
– ident: 11
  doi: 10.1104/pp.106.088864
– ident: 23
  doi: 10.1111/j.1365-3040.2007.01731.x
– ident: 30
  doi: 10.1270/jsbbs.59.671
– ident: 3
  doi: 10.1007/BF00223692
– ident: 1
– ident: 7
  doi: 10.1007/BF00288856
– ident: 20
  doi: 10.1080/07929978.1999.10676751
– ident: 8
  doi: 10.1093/jxb/41.5.623
– ident: 13
  doi: 10.1071/FP04111
– volume: 31
  start-page: 992
  issn: 0011-183X
  issue: 4
  year: 1991
  ident: 24
  doi: 10.2135/cropsci1991.0011183X003100040030x
– ident: 29
– ident: 6
  doi: 10.1111/j.1365-3040.2007.01726.x
– ident: 12
  doi: 10.1104/pp.106.086538
– ident: 31
  doi: 10.1007/s10681-008-9703-8
– ident: 21
  doi: 10.1007/978-3-662-07140-3
– ident: 5
  doi: 10.1534/genetics.105.041632
– ident: 27
SSID ssj0025045
Score 1.9807638
Snippet Wild emmer (Triticum dicoccoides) is a progenitor of tetraploid wheat and currently grows in environments subject to abiotic stresses, including high salinity....
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 426
SubjectTerms Genetic diversity
growth rate
Na+ exclusion
salinity tolerance
Triticum aestivum
Triticum dicoccoides
Triticum dicoccum
wild emmer wheat
Title Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides
URI https://www.jstage.jst.go.jp/article/jsbbs/60/4/60_4_426/_article/-char/en
https://www.proquest.com/docview/1467771608
https://www.proquest.com/docview/954615603
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Breeding Science, 2010, Vol.60(4), pp.426-435
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqhQMcEE9RWJAPcMq2bJvETrhVqMsKrcqlFb1Fie2ULiVBeRTEf-I_MmM73lQLCLhYle3EiufrPOx5EPIii6e5j_eDoIpHoyDnwAezOBylEs0DGUSx8fJdsPNV8G4drgeDHz2vpbbJxuL7L-NK_oeq0Ad0xSjZf6Cseyl0wG-gL7RAYWj_isYftlJhDWQMRPRk38OiTjHisUHVcqewdoYpn1jKbfvZU9_Erq07P-QNGOKNPvcAtVl6Ck-yva_IozUtdSkEeEgCZIQoYcX64CK4MuLPs6LUndh8TPdV-6ncax7fVlvn-ZMWG1fR_cA7eOmqhPQDiBZqr09z53sAUVr1Tymsp6qWHSDzrxgVftbVnYE30_GlPfbrB8GIM_u46vqQDZqkJh3PNjUILDaDHgMOTPz9NcEw5ehJeVlnWT1mp2M77TD_9uJ9cra6uEiW8_XycNTI-wmWEp34GOh_Y8r5BJno27XzKMJkcKG27-1H2DgLWPpVf-EDDejmJRgBm-uagFZvlnfJHWuX0JkB2T0yUMV9cnu2qWxuFvWA1Ag3auFGHdxomdMObtTB7YQasFEHNgpUoQZsdFtQBBvVYKMabCe0gxrtQe0hWZ3Nl2_OR7Zmx0iA7t-MplwIIVUeTThXGQftD0SCiidcyZwzIViGcSciTlXIAykDTBcUcuXngoEtoJj_iBwVZaEeE8oiJiMVKo6Xv0GYxUpOcxZyKcJM8TQbEq_bx0TYhPZYV2WXoGELu57oXU_YaQK7PiQv3ewvJpHLb-a9NiRxs-zfuzfLNDDZjWGIJHCkITnuyJhYPlGjcc0BLew0GhLqhoGL49VcWqiyrZM4DBjmNPCf_PkNT8kt476CZ4DH5KipWvUMtOIme66x-BP7jMHW
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide+genetic+diversity+of+salinity+tolerance%2C+sodium+exclusion+and+growth+in+wild+emmer+wheat%2C+Triticum+dicoccoides&rft.jtitle=Breeding+science&rft.au=Shavrukov%2C+Yuri&rft.au=Langridge%2C+Peter&rft.au=Tester%2C+Mark&rft.au=Nevo%2C+Eviatar&rft.date=2010&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1344-7610&rft.eissn=1347-3735&rft.volume=60&rft.issue=4&rft.spage=426&rft_id=info:doi/10.1270%2Fjsbbs.60.426&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3155611381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7610&client=summon