Detection technologies for RNA modifications
To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput...
Saved in:
Published in | Experimental & molecular medicine Vol. 54; no. 10; pp. 1601 - 1616 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.
RNA modifications: Comparing detection tools
Improved methods for detecting chemical modifications of RNA will help to understand the epitranscriptome, the collection of RNA modifications in a cell. Chemical modifications to RNA molecules do not alter the sequence, but can nonetheless greatly affect RNA function. More than 170 RNA modifications have been discovered over the past 60 years and their effects are analogous to epigenetic modifications of DNA. Xiaoyu Li and co-workers at Zhejiang University School of Medicine in Hangzhou, China, reviewed existing tools for detecting RNA modifications. These tools, which are developed based on the inherent chemical properties of RNA modifications, vary in sensitivity, quantification, specificity and accuracy. The researchers also summarize the recent progress in nanopore direct RNA sequencing based detection technology and are optimistic that future advances will enable detection of different modifications simultaneously in the single molecules. |
---|---|
AbstractList | To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.RNA modifications: Comparing detection toolsImproved methods for detecting chemical modifications of RNA will help to understand the epitranscriptome, the collection of RNA modifications in a cell. Chemical modifications to RNA molecules do not alter the sequence, but can nonetheless greatly affect RNA function. More than 170 RNA modifications have been discovered over the past 60 years and their effects are analogous to epigenetic modifications of DNA. Xiaoyu Li and co-workers at Zhejiang University School of Medicine in Hangzhou, China, reviewed existing tools for detecting RNA modifications. These tools, which are developed based on the inherent chemical properties of RNA modifications, vary in sensitivity, quantification, specificity and accuracy. The researchers also summarize the recent progress in nanopore direct RNA sequencing based detection technology and are optimistic that future advances will enable detection of different modifications simultaneously in the single molecules. To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the 'epitranscriptome'. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome. To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome. RNA modifications: Comparing detection tools Improved methods for detecting chemical modifications of RNA will help to understand the epitranscriptome, the collection of RNA modifications in a cell. Chemical modifications to RNA molecules do not alter the sequence, but can nonetheless greatly affect RNA function. More than 170 RNA modifications have been discovered over the past 60 years and their effects are analogous to epigenetic modifications of DNA. Xiaoyu Li and co-workers at Zhejiang University School of Medicine in Hangzhou, China, reviewed existing tools for detecting RNA modifications. These tools, which are developed based on the inherent chemical properties of RNA modifications, vary in sensitivity, quantification, specificity and accuracy. The researchers also summarize the recent progress in nanopore direct RNA sequencing based detection technology and are optimistic that future advances will enable detection of different modifications simultaneously in the single molecules. To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome. Improved methods for detecting chemical modifications of RNA will help to understand the epitranscriptome, the collection of RNA modifications in a cell. Chemical modifications to RNA molecules do not alter the sequence, but can nonetheless greatly affect RNA function. More than 170 RNA modifications have been discovered over the past 60 years and their effects are analogous to epigenetic modifications of DNA. Xiaoyu Li and co-workers at Zhejiang University School of Medicine in Hangzhou, China, reviewed existing tools for detecting RNA modifications. These tools, which are developed based on the inherent chemical properties of RNA modifications, vary in sensitivity, quantification, specificity and accuracy. The researchers also summarize the recent progress in nanopore direct RNA sequencing based detection technology and are optimistic that future advances will enable detection of different modifications simultaneously in the single molecules. To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the 'epitranscriptome'. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the 'epitranscriptome'. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome. |
Author | Li, Xiaoyu Lu, Liang Zhang, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine – sequence: 2 givenname: Liang surname: Lu fullname: Lu, Liang organization: Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Institute of Immunology, Zhejiang University School of Medicine – sequence: 3 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu email: xiaoyu_li@zju.edu.cn organization: Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36266445$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LAzEQhoMoflT_gAdZ8OLB1WSSzTYXodRPEAXRc9hmkzZlN6nJVvDfm1qt1YOnCeR5Z96Zdw9tOu80QocEnxFM--eRAJQ8xwA5xn0gOd5Au4AF5JwRurn23kF7MU4xhoKVbBvtUA6cM1bsotNL3WnVWe-yVCfON35sdcyMD9nTwyBrfW2NVdWCiPtoy1RN1AdftYderq-eh7f5_ePN3XBwn6uC4S5PpgAwjCpVEk4wN0LUYlRDAdQoTfvcQKkwV8wYIioiSgrAjal1oZTGBtMeulj2nc1Hra6Vdl2oGjkLtq3Cu_SVlb9_nJ3IsX-TgqfNSkgNTr4aBP8617GTrY1KN03ltJ9HmZiSMyqKxazjP-jUz4NL6yWKEsFYOlmijtYdrax8HzIBsARU8DEGbVYIwXKRllymJVNa8jMtuZjd_yNStvs8ddrKNv9L6VIa0xw31uHH9j-qD9g_p58 |
CitedBy_id | crossref_primary_10_1007_s11033_025_10419_0 crossref_primary_10_3390_plants13070982 crossref_primary_10_1007_s10555_025_10254_6 crossref_primary_10_1098_rstb_2023_0381 crossref_primary_10_1186_s12870_024_05114_4 crossref_primary_10_1097_BS9_0000000000000206 crossref_primary_10_1093_bib_bbae688 crossref_primary_10_1186_s12870_024_05486_7 crossref_primary_10_1002_mco2_70135 crossref_primary_10_1093_hr_uhad284 crossref_primary_10_3390_cancers15041232 crossref_primary_10_1016_j_cclet_2023_108953 crossref_primary_10_1038_s41564_024_01638_5 crossref_primary_10_1016_j_ijbiomac_2025_140863 crossref_primary_10_3389_frnar_2024_1460913 crossref_primary_10_1038_s12276_022_00825_w crossref_primary_10_1093_nar_gkae972 crossref_primary_10_1016_j_pharmthera_2024_108774 crossref_primary_10_1039_D4CB00215F crossref_primary_10_1093_nar_gkad802 crossref_primary_10_1007_s40242_024_4165_7 crossref_primary_10_1038_s41596_024_00959_3 crossref_primary_10_3389_fimmu_2023_1286820 crossref_primary_10_3390_genes15080996 crossref_primary_10_1016_j_molcel_2024_12_014 crossref_primary_10_1002_bmb_21854 crossref_primary_10_3389_fimmu_2024_1512353 crossref_primary_10_1016_j_tips_2023_11_002 crossref_primary_10_1186_s11658_024_00564_y crossref_primary_10_1371_journal_pone_0314655 crossref_primary_10_3233_JPD_230457 crossref_primary_10_1021_acs_analchem_4c05304 crossref_primary_10_1002_ijch_202300181 crossref_primary_10_1016_j_trac_2024_118112 crossref_primary_10_3390_v16060945 crossref_primary_10_1002_ibra_12183 crossref_primary_10_1007_s13320_024_0717_1 crossref_primary_10_1099_mgen_0_001327 crossref_primary_10_2174_0113892029288843240402042529 crossref_primary_10_1016_j_tcb_2024_10_001 crossref_primary_10_1360_TB_2024_0097 crossref_primary_10_1002_mas_21907 crossref_primary_10_1360_TB_2023_0800 crossref_primary_10_1038_s41580_023_00622_x crossref_primary_10_3390_life14101230 crossref_primary_10_3390_mps7010007 crossref_primary_10_1152_ajpcell_00437_2022 crossref_primary_10_1016_j_celrep_2025_115471 crossref_primary_10_1038_s41467_024_48437_4 crossref_primary_10_1016_j_bmc_2025_118138 crossref_primary_10_1016_j_xplc_2024_101064 crossref_primary_10_1016_j_omtn_2024_102192 crossref_primary_10_1038_s12276_023_01038_5 crossref_primary_10_3389_fgene_2024_1408688 crossref_primary_10_1016_j_omtn_2024_102300 crossref_primary_10_1080_15476286_2024_2442856 crossref_primary_10_1016_j_jmb_2025_169099 crossref_primary_10_1021_acsinfecdis_4c00598 crossref_primary_10_1038_s12276_024_01186_2 crossref_primary_10_1002_1873_3468_15052 crossref_primary_10_1021_acs_analchem_4c01326 crossref_primary_10_3390_ijms25168823 crossref_primary_10_1186_s12943_024_02089_6 crossref_primary_10_3390_ijms242015161 crossref_primary_10_1016_j_preteyeres_2025_101335 crossref_primary_10_1089_ars_2023_0233 crossref_primary_10_1021_acschembio_3c00251 crossref_primary_10_1002_wrna_1790 |
Cites_doi | 10.1093/nar/6.11.3443 10.1038/nature10165 10.1093/nar/gkaa113 10.1038/celldisc.2015.10 10.1016/j.molcel.2011.09.017 10.1016/S0959-4388(03)00062-X 10.4161/rna.7.2.11468 10.1038/s41422-019-0230-z 10.1101/2020.07.18.204362 10.1073/pnas.1817334116 10.1371/journal.pone.0110799 10.1042/EBC20200039 10.1093/nar/gkaa620 10.1038/nmeth.4110 10.1074/jbc.M114.593996 10.1007/978-1-4939-8808-2_20 10.1093/nar/gkaa1186 10.1080/15476286.2021.1978215 10.1093/nar/gkw810 10.1038/nmeth.4577 10.1038/s41598-018-30383-z 10.1038/nbt.2566 10.1261/rna.061549.117 10.1016/j.cell.2019.06.013 10.1038/s41467-020-19787-6 10.1038/s41467-019-13561-z 10.1038/s41576-020-00295-8 10.1371/journal.pgen.1001247 10.1074/jbc.M704572200 10.1261/rna.036806.112 10.1002/anie.201408362 10.1016/j.cell.2012.05.003 10.1016/j.molcel.2019.03.036 10.1038/352821a0 10.1038/s41592-019-0570-0 10.1128/jb.173.22.7213-7218.1991 10.1038/nature11112 10.1126/science.aac5253 10.1038/s41594-020-00526-w 10.1261/rna.361607 10.1038/s41587-022-01243-z 10.1016/j.tig.2021.09.001 10.1093/nar/26.7.1636 10.1093/nar/gkab1083 10.1126/sciadv.aax0250 10.1261/rna.2057810 10.1038/ng.872 10.1016/S0076-6879(07)25009-8 10.1073/pnas.202477199 10.1038/274087a0 10.1038/nature13802 10.1021/bi00190a008 10.1038/nmeth.3453 10.1038/nature24456 10.1002/wrna.1639 10.1038/nchembio.2040 10.1016/j.molcel.2017.10.019 10.1002/anie.201708276 10.1016/j.molcel.2021.07.036 10.1038/s41467-021-25105-5 10.1038/s41467-019-11375-7 10.1016/j.cbpa.2016.06.014 10.1038/nmeth.3508 10.1016/j.bbagrm.2018.11.009 10.1021/ja075520+ 10.1111/mmi.12710 10.1038/s41586-020-2418-2 10.1039/D1CS00920F 10.1016/S0021-9258(19)50165-X 10.1016/j.molcel.2021.06.005 10.1038/nchembio.1836 10.1021/bi052579p 10.1093/nar/11.17.5903 10.1016/j.cbpa.2018.06.017 10.1016/j.omtn.2020.01.037 10.1038/nature16998 10.1007/s12013-013-9525-8 10.1002/anie.201700537 10.1038/cr.2017.55 10.1038/nmeth.3478 10.1002/anie.201810946 10.1126/science.aav0080 10.1007/978-1-4939-6807-7_3 10.1007/978-1-4939-0882-0_1 10.1016/0300-9084(96)88100-4 10.1016/j.molcel.2021.12.038 10.1093/nar/gkaa769 10.1038/nrm4040 10.1021/ja4105792 10.1038/nmeth.4294 10.1016/j.chembiol.2013.10.015 10.1261/rna.5070303 10.1016/bs.mie.2021.06.012 10.1371/journal.pone.0216709 10.15252/embj.201489282 10.1038/s41589-020-0525-x 10.1002/anie.201410647 10.1016/j.molcel.2019.03.040 10.1038/s41568-020-0253-2 10.1002/mas.21442 10.1093/nar/gkw200 10.1371/journal.pbio.1002557 10.1038/nchembio.1137 10.1016/S0076-6879(07)25003-7 10.1093/nar/gkp816 10.1021/bi00088a030 10.1038/s41467-019-11713-9 10.1186/s13059-020-02241-7 10.1016/S0968-0004(02)02109-6 10.1016/j.cell.2018.11.037 10.1038/s41598-019-40018-6 10.1002/anie.202007266 10.7554/eLife.49658 10.1038/mt.2008.200 10.1371/journal.pgen.1003602 10.1038/s41594-019-0218-x 10.1016/j.cell.2014.08.028 10.1016/j.molcel.2007.10.012 10.1002/anie.201710209 10.1038/s41556-019-0361-y 10.1261/rna.041178.113 10.1038/nchembio1212-1008a 10.1038/s41467-021-27393-3 10.1101/271916 10.1093/nar/23.24.5020 10.1038/278188a0 10.4161/15476286.2014.992280 10.1016/S0076-6879(09)68020-4 10.1080/10409238.2021.1887807 10.1016/j.bbagrm.2018.10.012 10.1038/s41587-021-00949-w 10.1101/gr.210666.116 10.1038/s41589-020-0526-9 10.1093/nar/gks144 10.1074/jbc.RA120.014226 10.1242/jcs.183723 10.1038/s41422-018-0040-8 10.1038/s41592-019-0550-4 10.1038/s41592-021-01280-7 10.1016/j.bbagrm.2018.10.008 10.1093/nar/gkw482 10.1038/s41587-021-01108-x 10.1126/science.286.5442.1146 10.1016/j.molcel.2018.06.001 10.1002/anie.201807942 10.1261/rna.056531.116 10.1016/j.celrep.2013.06.029 10.3390/genes10020084 10.1016/j.cell.2020.04.011 10.1093/nar/gkv1182 10.1073/pnas.1821754116 10.1093/nar/gkw1120 10.1021/jacs.7b13633 10.1016/j.molcel.2019.04.025 10.1261/rna.7110804 10.1038/nrg2915 10.1093/nar/gku390 10.1021/jacs.9b13406 10.1038/nrg.2016.169 10.1016/0300-9084(96)88118-1 10.1101/gr.124107.111 10.1016/j.ymeth.2016.03.019 10.1093/nar/gks1102 10.1016/j.molcel.2019.06.033 10.1039/C7CC07699A 10.1093/nar/gkw547 10.1093/nar/gks698 10.1093/nar/gkz736 10.1073/pnas.0914869107 10.1038/s41556-019-0319-0 10.1038/nbt.2122 10.1016/j.molcel.2021.11.003 10.1016/S0092-8674(02)00718-3 10.1016/j.cell.2018.10.030 10.1038/s41587-021-00915-6 10.1016/S1097-2765(03)00040-6 10.1093/nar/gku733 10.1039/C5SC02902C 10.1038/s41594-018-0030-z 10.1038/nmeth.1982 10.1101/gr.162537.113 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s12276-022-00821-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2092-6413 |
EndPage | 1616 |
ExternalDocumentID | PMC9636272 36266445 10_1038_s12276_022_00821_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation) grantid: LR22C060002 funderid: https://doi.org/10.13039/501100004731 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 32171283 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: LR22C060002 – fundername: ; grantid: 32171283 |
GroupedDBID | --- 0R~ 29G 2WC 3V. 5-W 53G 5GY 7X7 87B 88E 8FE 8FH 8FI 8FJ 8JR 9ZL AAJSJ ABUWG ACGFO ACGFS ACPRK ACSMW ACYCR ADBBV AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI C1A C6C CCPQU DIK DU5 E3Z EBLON EBS EF. EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE LK8 M1P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT TR2 UKHRP W2D XSB AASML AAYXX CITATION OVT PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD AZQEC COVID DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c540t-2762202bac716106f99d9bd2523fce386f27c06c4ff19a1973226ffde5cce0f03 |
IEDL.DBID | AAJSJ |
ISSN | 2092-6413 1226-3613 |
IngestDate | Thu Aug 21 18:39:14 EDT 2025 Fri Jul 11 15:15:27 EDT 2025 Wed Aug 13 10:57:30 EDT 2025 Thu Apr 03 07:05:17 EDT 2025 Tue Jul 01 04:10:31 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Fri Feb 21 02:40:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-2762202bac716106f99d9bd2523fce386f27c06c4ff19a1973226ffde5cce0f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s12276-022-00821-0 |
PMID | 36266445 |
PQID | 2731944474 |
PQPubID | 2041975 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636272 proquest_miscellaneous_2727643950 proquest_journals_2731944474 pubmed_primary_36266445 crossref_primary_10_1038_s12276_022_00821_0 crossref_citationtrail_10_1038_s12276_022_00821_0 springer_journals_10_1038_s12276_022_00821_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: Seoul |
PublicationTitle | Experimental & molecular medicine |
PublicationTitleAbbrev | Exp Mol Med |
PublicationTitleAlternate | Exp Mol Med |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V |
References | DavisDRStabilization of RNA stacking by pseudouridineNucleic Acids Res.199523502050261:CAS:528:DyaK28XlsVCktg%3D%3D855966030750810.1093/nar/23.24.5020 KarijolichJYuYTConverting nonsense codons into sense codons by targeted pseudouridylationNature20114743953981:CAS:528:DC%2BC3MXnsFOkt78%3D21677757338190810.1038/nature10165 CuiJLiuQSendincEShiYGregoryRINucleotide resolution profiling of m3C RNA modification by HAC-seqNucleic Acids Res.202149e271:CAS:528:DC%2BB3MXhvVGrtLvF3331382410.1093/nar/gkaa1186 WooHHChambersSKHuman ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cellsBiochim. Biophys. Acta Gene Regul. Mech.2019186235461:CAS:528:DC%2BC1cXitVaqt77N3034217610.1016/j.bbagrm.2018.10.008 JinGXuMZouMDuanSThe processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic reviewMol. Ther. Nucleic Acids20202013241:CAS:528:DC%2BB3cXhtFSksLzK32171170706819710.1016/j.omtn.2020.01.037 LiXBase-Resolution Mapping Reveals Distinct m(1)A Methylome in Nuclear- and Mitochondrial-Encoded TranscriptsMol. Cell2017689931005.e10091:CAS:528:DC%2BC2sXhslehsLvM29107537572268610.1016/j.molcel.2017.10.019 YangX5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C readerCell Res2017276066251:CAS:528:DC%2BC2sXmt1emtL4%3D28418038559420610.1038/cr.2017.55 KurataTRelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesisMol. Cell20218131603170.e31691:CAS:528:DC%2BB3MXhsVans77J3417418410.1016/j.molcel.2021.06.005 PengZComprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptomeNat. Biotechnol.2012302532601:CAS:528:DC%2BC38XitFaks7o%3D2232732410.1038/nbt.2122 HauenschildRThe reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependentNucleic Acids Res.201543995099641:CAS:528:DC%2BC28Xjt1Grsr4%3D263652424787781 ArnezJGSteitzTACrystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structureBiochemistry199433756075671:CAS:528:DyaK2cXkt12gurg%3D801162110.1021/bi00190a008 HeCTET2 chemically modifies tRNAs and regulates tRNA fragment levelsNat. Struct. Mol. Biol.20212862701:CAS:528:DC%2BB3cXisVSlu77E3323031910.1038/s41594-020-00526-w ZhangZSystematic calibration of epitranscriptomic maps using a synthetic modification-free RNA libraryNat. Methods202118121312221:CAS:528:DC%2BB3MXitFGru7rI3459403410.1038/s41592-021-01280-7 FurlanMComputational methods for RNA modification detection from nanopore direct RNA sequencing dataRNA Biol.20211831401:CAS:528:DC%2BB3MXit1GgsbzN34559589867704110.1080/15476286.2021.1978215 HelmMMotorinYDetecting RNA modifications in the epitranscriptome: predict and validateNat. Rev. Genet.2017182752911:CAS:528:DC%2BC2sXivFWgtL0%3D2821663410.1038/nrg.2016.169 MarchandVAlkAniline-Seq: profiling of m(7) G and m(3) C RNA modifications at single nucleotide resolutionAngew. Chem. Int. Ed. Engl.20185716785167901:CAS:528:DC%2BC1cXit1OqtrjF3037096910.1002/anie.201810946 WulffBESakuraiMNishikuraKElucidating the inosinome: global approaches to adenosine-to-inosine RNA editingNat. Rev. Genet.20111281851:CAS:528:DC%2BC3MXmsVeltw%3D%3D2117377510.1038/nrg2915 Sas-ChenADynamic RNA acetylation revealed by quantitative cross-evolutionary mappingNature20205836386431:CAS:528:DC%2BB3cXhtF2ju7jN32555463813001410.1038/s41586-020-2418-2 ChenKHigh-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencingAngew. Chem. Int. Ed. Engl.201554158715901:CAS:528:DC%2BC2cXitVGls7rJ2549192210.1002/anie.201410647 ShuXA metabolic labeling method detects m(6)A transcriptome-wide at single base resolutionNat. Chem. Biol.2020168878951:CAS:528:DC%2BB3cXotVCjur0%3D3234150310.1038/s41589-020-0526-9 HarcourtEMEhrenschwenderTBatistaPJChangHYKoolETIdentification of a selective polymerase enables detection of N(6)-methyladenosine in RNAJ. Am. Chem. Soc.201313519079190821:CAS:528:DC%2BC3sXhvFegsbzJ24328136390580710.1021/ja4105792 ChenYSYangWLZhaoYLYangYGDynamic transcriptomic m(5) C and its regulatory role in RNA processingWiley Interdiscip. Rev. RNA202112e16391:CAS:528:DC%2BB3MXhvVGgsLrP3343832910.1002/wrna.1639 WernerSMachine learning of reverse transcription signatures of variegated polymerases allows mapping and discrimination of methylated purines in limited transcriptomesNucleic Acids Res.202048373437461:CAS:528:DC%2BB3cXisVKlurvM32095818714492110.1093/nar/gkaa113 KohCWQGohYTGohWSSAtlas of quantitative single-base-resolution N(6)-methyl-adenine methylomesNat. Commun.2019101:CAS:528:DC%2BC1MXitlynt7bE31822664690456110.1038/s41467-019-13561-z BahnJHAccurate identification of A-to-I RNA editing in human by transcriptome sequencingGenome Res.2012221421501:CAS:528:DC%2BC38XlslOruw%3D%3D21960545324620110.1101/gr.124107.111 DaiQZhengGSchwartzMHClarkWCPanTSelective Enzymatic Demethylation of N(2),N(2) -Dimethylguanosine in RNA and Its Application in High-Throughput tRNA SequencingAngew. Chem. Int. Ed. Engl.201756501750201:CAS:528:DC%2BC2sXlsVahsb8%3D28371071549767710.1002/anie.201700537 AschenbrennerJMarxADirect and site-specific quantification of RNA 2’-O-methylation by PCR with an engineered DNA polymeraseNucleic Acids Res.201644349535021:CAS:528:DC%2BC28XhsFSisLfM27016740485699810.1093/nar/gkw200 FinetOTranscription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregationMol. Cell202182404419.e93479805710.1016/j.molcel.2021.11.003 LiXMaSYiCPseudouridine: the fifth RNA nucleotide with renewed interestsCurr. Opin. Chem. Biol.2016331081161:CAS:528:DC%2BC28XhsF2qt7nL2734815610.1016/j.cbpa.2016.06.014 WangYLEAD-m(6) A-seq for Locus-Specific Detection of N(6) -Methyladenosine and Quantification of Differential MethylationAngew. Chem. Int. Ed. Engl.2021608738801:CAS:528:DC%2BB3cXitlWnt77I3297091610.1002/anie.202007266 TegowskiMFlamandMNMeyerKD. scDART-seq reveals distinct m(6)A signatures and mRNA methylation heterogeneity in single cellsMol. Cell202282868878.e8101:CAS:528:DC%2BB38XhvFGrtLs%3D3508136510.1016/j.molcel.2021.12.038 KhoddamiVTranscriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolutionProc. Natl Acad. Sci.2019116678467891:CAS:528:DC%2BC1MXmsFeqsr8%3D30872485645272310.1073/pnas.1817334116 WangYXiaoYDongSYuQJiaGAntibody-free enzyme-assisted chemical approach for detection of N(6)-methyladenosineNat. Chem. Biol.2020168969031:CAS:528:DC%2BB3cXotVCjur8%3D3234150210.1038/s41589-020-0525-x Garcia-CamposMADeciphering the “m(6)A code” via antibody-independent quantitative profilingCell2019178731747.e7161:CAS:528:DC%2BC1MXht1OjsrfE3125703210.1016/j.cell.2019.06.013 PuriPSystematic identification of tRNAome and its dynamics in Lactococcus lactisMol. Microbiol.2014939449561:CAS:528:DC%2BC2cXhsVCls7jO25040919415084610.1111/mmi.12710 SuzukiTSuzukiTA complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAsNucleic Acids Res.201442734673571:CAS:528:DC%2BC2cXhtVCjs7rM24831542406679710.1093/nar/gku390 LiuHAccurate detection of m(6)A RNA modifications in native RNA sequencesNat. Commun.20191031501426673400310.1038/s41467-019-11713-9 DominissiniDTopology of the human and mouse m6A RNA methylomes revealed by m6A-seqNature20124852012061:CAS:528:DC%2BC38XmvVequ7g%3D2257596010.1038/nature11112 HoernesTPNucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic codeNucleic Acids Res.2016448528621:CAS:528:DC%2BC28XhtF2ltLnN2657859810.1093/nar/gkv1182 MalbecLDynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translationCell Res.2019299279411:CAS:528:DC%2BC1MXhslOgtbnF31520064688951310.1038/s41422-019-0230-z SeeburgPHHartnerJRegulation of ion channel/neurotransmitter receptor function by RNA editingCurr. Opin. Neurobiol.2003132792831:CAS:528:DC%2BD3sXlt1entL4%3D1285021110.1016/S0959-4388(03)00062-X ImanishiMTsujiSSudaAFutakiSDetection of N(6)-methyladenosine based on the methyl-sensitivity of MazF RNA endonucleaseChem. Commun. (Camb.)20175312930129331:CAS:528:DC%2BC2sXhsl2ltbvJ10.1039/C7CC07699A SharmaSA single N(1)-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymesSci. Rep.2018830093689608528410.1038/s41598-018-30383-z KimDThe architecture of SARS-CoV-2 transcriptomeCell2020181914921 e9101:CAS:528:DC%2BB3cXotVCnt7k%3D32330414717950110.1016/j.cell.2020.04.011 KangBIIdentification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAsNucleic Acids Res.201745212421361:CAS:528:DC%2BC1cXivFynuro%3D2791373310.1093/nar/gkw1120 NewbyMIGreenbaumNLInvestigation of overhauser effects between pseudouridine and water protons in RNA helicesProc. Natl Acad. Sci. USA20029912697127021:CAS:528:DC%2BD38XnvFGhs70%3D1224234413052310.1073/pnas.202477199 QuHLMichotBBachellerieJPImproved methods for structure probing in large RNAs: a rapid ‘heterologous’ sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5’ terminal domain of eukaryotic 28S rRNANucleic Acids Res.198311590359201:CAS:528:DyaL3sXmtV2iu7Y%3D619348832632610.1093/nar/11.17.5903 XiaoYAn elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N(6) -methyladenosine modificationAngew. Chem. Int. Ed. Engl.20185715995160001:CAS:528:DC%2BC1cXitFeisbzO3034565110.1002/anie.201807942 LeeCKramerGGrahamDEApplingDRYeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferaseJ. Biol. Chem.200728227744277531:CAS:528:DC%2BD2sXhtVeju7jP1765209010.1074/jbc.M704572200 BakinAOfengandJFour newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of L Ayadi (821_CR52) 2019; 1862 A Nagarajan (821_CR68) 2019; 1870 T Kurata (821_CR101) 2021; 81 D Incarnato (821_CR123) 2017; 45 M Sakurai (821_CR128) 2014; 24 H Shi (821_CR9) 2019; 74 A Castellanos-Rubio (821_CR90) 2019; 9 U Birkedal (821_CR142) 2015; 54 S Kellner (821_CR72) 2014; 42 CT Chan (821_CR44) 2010; 6 A Bakin (821_CR79) 1993; 32 D Herschlag (821_CR81) 2009; 468 K Thuring (821_CR73) 2016; 107 S Schurch (821_CR96) 2016; 35 H Grosjean (821_CR66) 2004; 265 BA Elliott (821_CR48) 2019; 10 T Suzuki (821_CR99) 2007; 425 D Arango (821_CR55) 2018; 175 C He (821_CR15) 2021; 28 X Li (821_CR42) 2017; 68 T Kiss (821_CR83) 2002; 109 K Miyauchi (821_CR108) 2013; 9 TM Carlile (821_CR134) 2014; 515 MC Owens (821_CR5) 2021; 81 821_CR141 Y Wang (821_CR168) 2021; 39 D Dominissini (821_CR59) 2018; 175 J Cui (821_CR149) 2021; 49 H Sun (821_CR159) 2021; 12 AE Cozen (821_CR117) 2015; 12 M Helm (821_CR45) 2014; 21 HL Qu (821_CR94) 1983; 11 T Suzuki (821_CR106) 2014; 42 LS Zhang (821_CR54) 2019; 74 H Grosjean (821_CR65) 2007; 425 B Datta (821_CR80) 1991; 352 Q Dai (821_CR120) 2017; 56 YS Ju (821_CR111) 2011; 43 K Jack (821_CR31) 2011; 44 S Hussain (821_CR160) 2013; 4 D Kim (821_CR181) 2020; 181 Q Dai (821_CR146) 2017; 14 M Saikia (821_CR43) 2010; 16 S Ito (821_CR57) 2014; 289 KD Meyer (821_CR162) 2019; 16 D Dominissini (821_CR151) 2012; 485 L Malbec (821_CR157) 2019; 29 J Stanley (821_CR61) 1978; 274 BE Wulff (821_CR22) 2011; 12 RW Schevitz (821_CR36) 1979; 278 M Jora (821_CR97) 2019; 1862 M Furlan (821_CR170) 2021; 18 P Jenjaroenpun (821_CR172) 2021; 49 Z Zhang (821_CR184) 2021; 18 821_CR1 A Leger (821_CR173) 2021; 12 G Zheng (821_CR118) 2015; 12 M Tegowski (821_CR163) 2022; 82 SD Knutson (821_CR164) 2020; 142 Y Yang (821_CR8) 2018; 28 BV Kumbhar (821_CR56) 2013; 66 P Ryvkin (821_CR115) 2013; 19 N Krogh (821_CR144) 2016; 44 AM Smith (821_CR176) 2019; 14 TH King (821_CR27) 2003; 11 EM Harcourt (821_CR89) 2013; 135 X Xiong (821_CR47) 2018; 45 Y Xiao (821_CR92) 2018; 57 C Peifer (821_CR46) 2013; 41 C Lee (821_CR78) 2007; 282 S Wang (821_CR91) 2016; 7 Z Lei (821_CR95) 2017; 56 821_CR124 G Nees (821_CR69) 2014; 1169 H Zhou (821_CR122) 2019; 16 S Delaunay (821_CR11) 2019; 21 HH Woo (821_CR76) 2019; 1862 X Li (821_CR153) 2016; 12 S Blanco (821_CR19) 2014; 33 O Finet (821_CR138) 2021; 82 D Dominissini (821_CR39) 2016; 530 J Aschenbrenner (821_CR125) 2018; 57 S Sharma (821_CR75) 2018; 8 H Shen (821_CR14) 2021; 296 WA Decatur (821_CR29) 2002; 27 Y Yoluc (821_CR70) 2021; 56 V Khoddami (821_CR131) 2019; 116 Y Wang (821_CR3) 2021; 50 K Kariko (821_CR33) 2008; 16 JH Bahn (821_CR112) 2012; 22 JP Ballesta (821_CR40) 1991; 173 Y Gao (821_CR179) 2021; 22 MI Newby (821_CR25) 2002; 99 P Puri (821_CR105) 2014; 93 S Lin (821_CR148) 2018; 71 G Keith (821_CR63) 1995; 77 ZW Dong (821_CR87) 2012; 40 D Mandal (821_CR107) 2010; 107 O Begik (821_CR169) 2021; 39 X Li (821_CR32) 2016; 33 T Waku (821_CR41) 2016; 129 TP Hoernes (821_CR50) 2016; 44 C Enroth (821_CR137) 2019; 47 RC Gupta (821_CR62) 1979; 6 BE Maden (821_CR82) 1995; 77 S Akichika (821_CR100) 2021; 658 M Safra (821_CR158) 2017; 551 PH Seeburg (821_CR21) 2003; 13 J Karijolich (821_CR24) 2015; 16 J Karijolich (821_CR35) 2011; 474 TP Hoernes (821_CR51) 2019; 10 GF Jia (821_CR67) 2012; 8 D Bar-Yaacov (821_CR74) 2016; 14 N Liu (821_CR85) 2013; 19 M Imanishi (821_CR165) 2017; 53 821_CR182 YK Wan (821_CR171) 2021; 38 AM Price (821_CR177) 2020; 11 G Jin (821_CR58) 2020; 20 L Pandolfini (821_CR53) 2019; 74 DE Eyler (821_CR34) 2019; 116 F Voigts-Hoffmann (821_CR38) 2007; 129 B Linder (821_CR155) 2015; 12 JE Jackman (821_CR77) 2003; 9 S Akichika (821_CR110) 2019; 363 KW Gaston (821_CR71) 2014; 11 R Guymon (821_CR104) 2007; 13 XH Liang (821_CR28) 2007; 28 A Baudin-Baillieu (821_CR30) 2009; 37 X Zhao (821_CR64) 2004; 10 WC Clark (821_CR119) 2016; 22 K Chen (821_CR156) 2015; 54 DR Davis (821_CR26) 1995; 23 M Helm (821_CR6) 2017; 18 I Barbieri (821_CR10) 2020; 20 X Yang (821_CR16) 2017; 27 DR Garalde (821_CR178) 2018; 15 YS Chen (821_CR12) 2021; 12 Z Peng (821_CR114) 2012; 30 JE Squires (821_CR129) 2012; 40 A Sas-Chen (821_CR139) 2020; 583 J Choi (821_CR49) 2018; 25 T Huang (821_CR132) 2019; 26 AF Lovejoy (821_CR135) 2014; 9 MA Garcia-Campos (821_CR166) 2019; 178 G Ramaswami (821_CR113) 2012; 9 V Marchand (821_CR150) 2020; 48 R Shanmugam (821_CR13) 2015; 1 X Shu (821_CR140) 2020; 16 MT Parker (821_CR174) 2020; 9 Y Wang (821_CR2) 2020; 64 S Werner (821_CR121) 2020; 48 T Hong (821_CR126) 2018; 140 C Legrand (821_CR133) 2017; 27 R Hauenschild (821_CR116) 2015; 43 X Chen (821_CR17) 2019; 21 KD Meyer (821_CR152) 2012; 149 B Delatte (821_CR154) 2016; 351 Y Wang (821_CR93) 2021; 60 Y Yang (821_CR18) 2019; 75 Y Zhu (821_CR145) 2017; 23 V Marchand (821_CR147) 2018; 57 CWQ Koh (821_CR183) 2019; 10 JD Bangs (821_CR102) 1992; 267 X Li (821_CR7) 2016; 14 BI Kang (821_CR109) 2017; 45 V Marchand (821_CR143) 2016; 44 Z Zhang (821_CR167) 2019; 5 PN Pratanwanich (821_CR180) 2021; 39 S Kellner (821_CR60) 2010; 7 J Aschenbrenner (821_CR88) 2016; 44 R Guymon (821_CR103) 2006; 45 X Li (821_CR86) 2015; 11 S Schwartz (821_CR136) 2014; 159 D Wiener (821_CR4) 2021; 22 AP Gerber (821_CR20) 1999; 286 M Helm (821_CR37) 1998; 26 S Edelheit (821_CR130) 2013; 9 BF Yuan (821_CR98) 2017; 1562 Y Wang (821_CR127) 2020; 16 JG Arnez (821_CR23) 1994; 33 H Liu (821_CR175) 2019; 10 YT Yu (821_CR84) 1997; 3 V Khoddami (821_CR161) 2013; 31 |
References_xml | – reference: BlancoSAberrant methylation of tRNAs links cellular stress to neuro-developmental disordersEMBO J.201433202020391:CAS:528:DC%2BC2cXhvV2nsLnL25063673419577010.15252/embj.201489282 – reference: DattaBWeinerAMGenetic evidence for base pairing between U2 and U6 snRNA in mammalian mRNA splicingNature19913528218241:CAS:528:DyaK3MXlslKmsL4%3D183187910.1038/352821a0 – reference: SharmaSA single N(1)-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymesSci. Rep.2018830093689608528410.1038/s41598-018-30383-z – reference: LiXXiongXYiCEpitranscriptome sequencing technologies: decoding RNA modificationsNat. Methods20161423312803262210.1038/nmeth.4110 – reference: ZhengGEfficient and quantitative high-throughput tRNA sequencingNat. Methods2015128358371:CAS:528:DC%2BC2MXht1entLbJ26214130462432610.1038/nmeth.3478 – reference: EdelheitSSchwartzSMumbachMRWurtzelOSorekRTranscriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAsPLoS Genet20139e10036021:CAS:528:DC%2BC3sXhtFGjsL3F23825970369483910.1371/journal.pgen.1003602 – reference: HarcourtEMEhrenschwenderTBatistaPJChangHYKoolETIdentification of a selective polymerase enables detection of N(6)-methyladenosine in RNAJ. Am. Chem. Soc.201313519079190821:CAS:528:DC%2BC3sXhvFegsbzJ24328136390580710.1021/ja4105792 – reference: YolucYInstrumental analysis of RNA modificationsCrit. Rev. Biochem. Mol. Biol.2021561782041:CAS:528:DC%2BB3MXkvFGjsr8%3D3361859810.1080/10409238.2021.1887807 – reference: DongZWRTL-P: a sensitive approach for detecting sites of 2’-O-methylation in RNA moleculesNucleic Acids Res.201240e1571:CAS:528:DC%2BC38Xhs1Wqt77M22833606348820910.1093/nar/gks698 – reference: ShuXA metabolic labeling method detects m(6)A transcriptome-wide at single base resolutionNat. Chem. Biol.2020168878951:CAS:528:DC%2BB3cXotVCjur0%3D3234150310.1038/s41589-020-0526-9 – reference: HoernesTPNucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic codeNucleic Acids Res.2016448528621:CAS:528:DC%2BC28XhtF2ltLnN2657859810.1093/nar/gkv1182 – reference: GuymonRPomerantzSCIsonJNCrainPFMcCloskeyJAPost-transcriptional modifications in the small subunit ribosomal RNA from Thermotoga maritima, including presence of a novel modified cytidineRNA2007133964031:CAS:528:DC%2BD2sXisFCks7Y%3D17255199180050810.1261/rna.361607 – reference: AkichikaSCap-specific terminal N (6)-methylation of RNA by an RNA polymerase II-associated methyltransferaseScience2019363eaav00801:CAS:528:DC%2BC1MXltVSmuw%3D%3D3046717810.1126/science.aav0080 – reference: ZhouHEvolution of a reverse transcriptase to map N(1)-methyladenosine in human messenger RNANat. Methods201916128112881:CAS:528:DC%2BC1MXhvVarsb3K31548705688468710.1038/s41592-019-0550-4 – reference: BarbieriIKouzaridesTRole of RNA modifications in cancerNat. Rev. Cancer2020203033221:CAS:528:DC%2BB3cXntlaqtbk%3D3230019510.1038/s41568-020-0253-2 – reference: SchwartzSTranscriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNACell20141591481621:CAS:528:DC%2BC2cXhs1Gmtb7O25219674418011810.1016/j.cell.2014.08.028 – reference: LiangXHLiuQFournierMJrRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activityMol. Cell2007289659771:CAS:528:DC%2BD1cXksFyisg%3D%3D1815889510.1016/j.molcel.2007.10.012 – reference: XiongXLiXYiCN(1)-methyladenosine methylome in messenger RNA and non-coding RNACurr. Opin. Chem. Biol.2018451791861:CAS:528:DC%2BC1cXht12lsbjO3000721310.1016/j.cbpa.2018.06.017 – reference: HelmMThe presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNANucleic Acids Res.199826163616431:CAS:528:DyaK1cXis1OjtLc%3D951253314747910.1093/nar/26.7.1636 – reference: ParkerMTNanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m(6)A modificationElife20209e496581:CAS:528:DC%2BB3cXhtlarsLzI31931956695999710.7554/eLife.49658 – reference: WulffBESakuraiMNishikuraKElucidating the inosinome: global approaches to adenosine-to-inosine RNA editingNat. Rev. Genet.20111281851:CAS:528:DC%2BC3MXmsVeltw%3D%3D2117377510.1038/nrg2915 – reference: ThuringKSchmidKKellerPHelmMAnalysis of RNA modifications by liquid chromatography-tandem mass spectrometryMethods201610748562702089110.1016/j.ymeth.2016.03.019 – reference: DominissiniDThe dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNANature20165304414461:CAS:528:DC%2BC28XisFKgsLc%3D26863196484201510.1038/nature16998 – reference: SuzukiTSuzukiTA complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAsNucleic Acids Res.201442734673571:CAS:528:DC%2BC2cXhtVCjs7rM24831542406679710.1093/nar/gku390 – reference: Bartoli, K. M., Schaening, C., Carlile, T. M. & Gilbert, W. V. Conserved Methyltransferase Spb1 Targets mRNAs for Regulated Modification with 2′-O-Methyl Ribose. Preprint at https://www.biorxiv.org/content/10.1101/271916v2 (2018). – reference: FinetOTranscription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregationMol. Cell202182404419.e93479805710.1016/j.molcel.2021.11.003 – reference: SafraMThe m1A landscape on cytosolic and mitochondrial mRNA at single-base resolutionNature20175512512551:CAS:528:DC%2BC2sXhslajtr3F2907229710.1038/nature24456 – reference: Garcia-CamposMADeciphering the “m(6)A code” via antibody-independent quantitative profilingCell2019178731747.e7161:CAS:528:DC%2BC1MXht1OjsrfE3125703210.1016/j.cell.2019.06.013 – reference: DominissiniDTopology of the human and mouse m6A RNA methylomes revealed by m6A-seqNature20124852012061:CAS:528:DC%2BC38XmvVequ7g%3D2257596010.1038/nature11112 – reference: ShenHTET-mediated 5-methylcytosine oxidation in tRNA promotes translationJ. Biol. Chem.20212961000871:CAS:528:DC%2BB3MXjtlens7o%3D3319937510.1074/jbc.RA120.014226 – reference: LeeCKramerGGrahamDEApplingDRYeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferaseJ. Biol. Chem.200728227744277531:CAS:528:DC%2BD2sXhtVeju7jP1765209010.1074/jbc.M704572200 – reference: KarijolichJYuYTConverting nonsense codons into sense codons by targeted pseudouridylationNature20114743953981:CAS:528:DC%2BC3MXnsFOkt78%3D21677757338190810.1038/nature10165 – reference: NeesGKaufmannABauerSDetection of RNA modifications by HPLC analysis and competitive ELISAMethods Mol. Biol.201411693141:CAS:528:DC%2BC2MXotVahsbY%3D24957224712116410.1007/978-1-4939-0882-0_1 – reference: Bar-YaacovDMitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All VertebratesPLoS Biol.201614e100255727631568502522810.1371/journal.pbio.1002557 – reference: SaikiaMFuYPavon-EternodMHeCPanTGenome-wide analysis of N1-methyl-adenosine modification in human tRNAsRNA201016131713271:CAS:528:DC%2BC3cXosFCgt7w%3D20484468288568110.1261/rna.2057810 – reference: KissTSmall nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functionsCell20021091451481:CAS:528:DC%2BD38Xjt1ektLo%3D1200740010.1016/S0092-8674(02)00718-3 – reference: JoraMLobuePARossRLWilliamsBAddepalliBDetection of ribonucleoside modifications by liquid chromatography coupled with mass spectrometryBiochim. Biophys. Acta Gene Regul. Mech.201918622802901:CAS:528:DC%2BC1cXit1GgtL3L3041447010.1016/j.bbagrm.2018.10.012 – reference: LiXChemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptomeNat. Chem. Biol.2015115925971:CAS:528:DC%2BC2MXhtFeju7rM2607552110.1038/nchembio.1836 – reference: HongTPrecise Antibody-Independent m6A Identification via 4SedTTP-Involved and FTO-Assisted Strategy at Single-Nucleotide ResolutionJ. Am. Chem. Soc.2018140588658891:CAS:528:DC%2BC1cXjsF2gsrs%3D2948934710.1021/jacs.7b13633 – reference: GaraldeDRHighly parallel direct RNA sequencing on an array of nanoporesNat. Methods2018152012061:CAS:528:DC%2BC1cXovVCitg%3D%3D2933437910.1038/nmeth.4577 – reference: SunHm(6)Am-seq reveals the dynamic m(6)Am methylation in the human transcriptomeNat. Commun.2021121:CAS:528:DC%2BB3MXhvVSls7zF34362929834657110.1038/s41467-021-25105-5 – reference: KnutsonSDArthurRAJohnstonHRHeemstraJMSelective enrichment of A-to-I edited transcripts from cellular RNA using endonuclease VJ. Am. Chem. Soc.2020142524152511:CAS:528:DC%2BB3cXktlOntL0%3D32109061728635410.1021/jacs.9b13406 – reference: WangYLEAD-m(6) A-seq for Locus-Specific Detection of N(6) -Methyladenosine and Quantification of Differential MethylationAngew. Chem. Int. Ed. Engl.2021608738801:CAS:528:DC%2BB3cXitlWnt77I3297091610.1002/anie.202007266 – reference: NewbyMIGreenbaumNLInvestigation of overhauser effects between pseudouridine and water protons in RNA helicesProc. Natl Acad. Sci. USA20029912697127021:CAS:528:DC%2BD38XnvFGhs70%3D1224234413052310.1073/pnas.202477199 – reference: ZhangLSTranscriptome-wide Mapping of Internal N(7)-Methylguanosine Methylome in Mammalian mRNAMol. Cell20197413041316.e13081:CAS:528:DC%2BC1MXosVSgtbs%3D31031084658848310.1016/j.molcel.2019.03.036 – reference: KarijolichJYiCYuYTTranscriptome-wide dynamics of RNA pseudouridylationNat. Rev. Mol. Cell Biol.2015165815851:CAS:528:DC%2BC2MXhtlKntrnE26285676569466610.1038/nrm4040 – reference: GrosjeanHDroogmansLRooversMKeithGDetection of enzymatic activity of transfer RNA modification enzymes using radiolabeled tRNA substratesMethods Enzymol.2007425551011767307910.1016/S0076-6879(07)25003-7 – reference: CuiJLiuQSendincEShiYGregoryRINucleotide resolution profiling of m3C RNA modification by HAC-seqNucleic Acids Res.202149e271:CAS:528:DC%2BB3MXhvVGrtLvF3331382410.1093/nar/gkaa1186 – reference: XiaoYAn elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N(6) -methyladenosine modificationAngew. Chem. Int. Ed. Engl.20185715995160001:CAS:528:DC%2BC1cXitFeisbzO3034565110.1002/anie.201807942 – reference: YuYTShuMDSteitzJAA new method for detecting sites of 2’-O-methylation in RNA moleculesRNA199733243311:CAS:528:DyaK2sXhvVyktr0%3D90567691369484 – reference: LiXBase-Resolution Mapping Reveals Distinct m(1)A Methylome in Nuclear- and Mitochondrial-Encoded TranscriptsMol. Cell2017689931005.e10091:CAS:528:DC%2BC2sXhslehsLvM29107537572268610.1016/j.molcel.2017.10.019 – reference: DelatteBRNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosineScience20163512822851:CAS:528:DC%2BC28XlvVCjtQ%3D%3D2681638010.1126/science.aac5253 – reference: DecaturWAFournierMJrRNA modifications and ribosome functionTrends Biochem. Sci.2002273443511:CAS:528:DC%2BD38XltFahsbg%3D1211402310.1016/S0968-0004(02)02109-6 – reference: DavisDRStabilization of RNA stacking by pseudouridineNucleic Acids Res.199523502050261:CAS:528:DyaK28XlsVCktg%3D%3D855966030750810.1093/nar/23.24.5020 – reference: StanleyJVassilenkoSA different approach to RNA sequencingNature197827487891:CAS:528:DyaE1cXlvFalt78%3D66200210.1038/274087a0 – reference: KellnerSAbsolute and relative quantification of RNA modifications via biosynthetic isotopomersNucleic Acids Res201442e14225129236419138310.1093/nar/gku733 – reference: TegowskiMFlamandMNMeyerKD. scDART-seq reveals distinct m(6)A signatures and mRNA methylation heterogeneity in single cellsMol. Cell202282868878.e8101:CAS:528:DC%2BB38XhvFGrtLs%3D3508136510.1016/j.molcel.2021.12.038 – reference: MeyerKDDART-seq: an antibody-free method for global m(6)A detectionNat. Methods201916127512801:CAS:528:DC%2BC1MXhvVarsb3I31548708688468110.1038/s41592-019-0570-0 – reference: ZhangZSystematic calibration of epitranscriptomic maps using a synthetic modification-free RNA libraryNat. Methods202118121312221:CAS:528:DC%2BB3MXitFGru7rI3459403410.1038/s41592-021-01280-7 – reference: RamaswamiGAccurate identification of human Alu and non-Alu RNA editing sitesNat. Methods201295795811:CAS:528:DC%2BC38XkvF2js7Y%3D22484847366281110.1038/nmeth.1982 – reference: WernerSMachine learning of reverse transcription signatures of variegated polymerases allows mapping and discrimination of methylated purines in limited transcriptomesNucleic Acids Res.202048373437461:CAS:528:DC%2BB3cXisVKlurvM32095818714492110.1093/nar/gkaa113 – reference: HelmMAlfonzoJDPosttranscriptional RNA Modifications: playing metabolic games in a cell’s chemical LegolandChem. Biol.2014211741851:CAS:528:DC%2BC3sXhvFOgsLvK2431593410.1016/j.chembiol.2013.10.015 – reference: QuHLMichotBBachellerieJPImproved methods for structure probing in large RNAs: a rapid ‘heterologous’ sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5’ terminal domain of eukaryotic 28S rRNANucleic Acids Res.198311590359201:CAS:528:DyaL3sXmtV2iu7Y%3D619348832632610.1093/nar/11.17.5903 – reference: KingTHLiuBMcCullyRRFournierMJRibosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase centerMol. Cell2003114254351:CAS:528:DC%2BD3sXit1Wgs7Y%3D1262023010.1016/S1097-2765(03)00040-6 – reference: SchurchSCharacterization of nucleic acids by tandem mass spectrometry - The second decade (2004-2013): From DNA to RNA and modified sequencesMass Spectrom. Rev.2016354835232528846410.1002/mas.21442 – reference: RyvkinPHAMR: high-throughput annotation of modified ribonucleotidesRNA201319168416921:CAS:528:DC%2BC3sXhvVKjsLjF24149843388465310.1261/rna.036806.112 – reference: FurlanMComputational methods for RNA modification detection from nanopore direct RNA sequencing dataRNA Biol.20211831401:CAS:528:DC%2BB3MXit1GgsbzN34559589867704110.1080/15476286.2021.1978215 – reference: KeithGMobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatographyBiochimie1995771421441:CAS:528:DyaK2MXltFarsLo%3D759927110.1016/0300-9084(96)88118-1 – reference: DaiQNm-seq maps 2’-O-methylation sites in human mRNA with base precisionNat. Methods2017146956981:CAS:528:DC%2BC2sXnslKkt7g%3D28504680571242810.1038/nmeth.4294 – reference: AyadiLGalvaninAPichotFMarchandVMotorinYRNA ribose methylation (2’-O-methylation): Occurrence, biosynthesis and biological functionsBiochim. Biophys. Acta Gene Regul. Mech.201918622532691:CAS:528:DC%2BC1cXis1SrtrnP3057212310.1016/j.bbagrm.2018.11.009 – reference: LeiZYiCA Radiolabeling-Free, qPCR-Based Method for Locus-Specific Pseudouridine DetectionAngew. Chem. Int. Ed. Engl.20175614878148821:CAS:528:DC%2BC2sXhs1yjsb3N2896074710.1002/anie.201708276 – reference: LegrandCStatistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAsGenome Res.201727158915961:CAS:528:DC%2BC2sXhsVeqsLnF28684555558071710.1101/gr.210666.116 – reference: JackKrRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cellsMol. Cell2011446606661:CAS:528:DC%2BC3MXhsV2ku7nN22099312322287310.1016/j.molcel.2011.09.017 – reference: WienerDSchwartzSThe epitranscriptome beyond m(6)ANat. Rev. Genet.2021221191311:CAS:528:DC%2BB3cXitlCis7%2FK3318836110.1038/s41576-020-00295-8 – reference: GrosjeanHKeithGDroogmansLDetection and quantification of modified nucleotides in RNA using thin-layer chromatographyMethods Mol. Biol.20042653573911:CAS:528:DC%2BD2cXlvVGrsL4%3D15103084 – reference: GuymonRPomerantzSCCrainPFMcCloskeyJAInfluence of phylogeny on posttranscriptional modification of rRNA in thermophilic prokaryotes: the complete modification map of 16S rRNA of Thermus thermophilusBiochemistry200645488848991:CAS:528:DC%2BD28XivVChtLc%3D1660525610.1021/bi052579p – reference: Sas-ChenADynamic RNA acetylation revealed by quantitative cross-evolutionary mappingNature20205836386431:CAS:528:DC%2BB3cXhtF2ju7jN32555463813001410.1038/s41586-020-2418-2 – reference: AschenbrennerJMarxADirect and site-specific quantification of RNA 2’-O-methylation by PCR with an engineered DNA polymeraseNucleic Acids Res.201644349535021:CAS:528:DC%2BC28XhsFSisLfM27016740485699810.1093/nar/gkw200 – reference: KellnerSBurhenneJHelmMDetection of RNA modificationsRNA Biol.201072372471:CAS:528:DC%2BC3cXhtlCqtrrI2022429310.4161/rna.7.2.11468 – reference: KohCWQGohYTGohWSSAtlas of quantitative single-base-resolution N(6)-methyl-adenine methylomesNat. Commun.2019101:CAS:528:DC%2BC1MXitlynt7bE31822664690456110.1038/s41467-019-13561-z – reference: KangBIIdentification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAsNucleic Acids Res.201745212421361:CAS:528:DC%2BC1cXivFynuro%3D2791373310.1093/nar/gkw1120 – reference: SquiresJEWidespread occurrence of 5-methylcytosine in human coding and non-coding RNANucleic Acids Res.201240502350331:CAS:528:DC%2BC38XotlCmsLY%3D22344696336718510.1093/nar/gks144 – reference: CarlileTMPseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cellsNature20145151431461:CAS:528:DC%2BC2cXitFamsrvK25192136422464210.1038/nature13802 – reference: MeyerKDComprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codonsCell2012149163516461:CAS:528:DC%2BC38Xntlyrs7s%3D22608085338339610.1016/j.cell.2012.05.003 – reference: BallestaJPCundliffeESite-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactumJ. Bacteriol.1991173721372181:CAS:528:DyaK38Xjs1eqsQ%3D%3D165788420922710.1128/jb.173.22.7213-7218.1991 – reference: HeCTET2 chemically modifies tRNAs and regulates tRNA fragment levelsNat. Struct. Mol. Biol.20212862701:CAS:528:DC%2BB3cXisVSlu77E3323031910.1038/s41594-020-00526-w – reference: BakinAOfengandJFour newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing techniqueBiochemistry199332975497621:CAS:528:DyaK3sXlsFaqtrk%3D837377810.1021/bi00088a030 – reference: HauenschildRThe reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependentNucleic Acids Res.201543995099641:CAS:528:DC%2BC28Xjt1Grsr4%3D263652424787781 – reference: OwensMCZhangCLiuKFRecent technical advances in the study of nucleic acid modificationsMol. Cell202181411641361:CAS:528:DC%2BB3MXhvFGlurvI34480848910965510.1016/j.molcel.2021.07.036 – reference: HelmMMotorinYDetecting RNA modifications in the epitranscriptome: predict and validateNat. Rev. Genet.2017182752911:CAS:528:DC%2BC2sXivFWgtL0%3D2821663410.1038/nrg.2016.169 – reference: NagarajanAJanostiakRWajapeyeeNDot Blot Analysis for Measuring Global N(6)-Methyladenosine Modification of RNAMethods Mol. Biol.201918702632711:CAS:528:DC%2BC1MXitV2jtr3M3053956210.1007/978-1-4939-8808-2_20 – reference: Castellanos-RubioAA novel RT-QPCR-based assay for the relative quantification of residue specific m6A RNA methylationSci. Rep.2019930862814641450610.1038/s41598-019-40018-6 – reference: ZhuYPirnieSPCarmichaelGGHigh-throughput and site-specific identification of 2’-O-methylation sites using ribose oxidation sequencing (RibOxi-seq)RNA201723130313141:CAS:528:DC%2BC2sXhvFOltr3F28495677551307410.1261/rna.061549.117 – reference: MarchandVHydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNANucleic Acids Res.202048e1101:CAS:528:DC%2BB3MXkt1Gmt78%3D32976574764173310.1093/nar/gkaa769 – reference: ChenX5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAsNat. Cell Biol.2019219789901:CAS:528:DC%2BC1MXhsVKnsbvK3135896910.1038/s41556-019-0361-y – reference: DelaunaySFryeMRNA modifications regulating cell fate in cancerNat. Cell Biol.2019215525591:CAS:528:DC%2BC1MXptFSrsb4%3D3104877010.1038/s41556-019-0319-0 – reference: KhoddamiVTranscriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolutionProc. Natl Acad. Sci.2019116678467891:CAS:528:DC%2BC1MXmsFeqsr8%3D30872485645272310.1073/pnas.1817334116 – reference: KumbharBVKambleADSonawaneKDConformational preferences of modified nucleoside N(4)-acetylcytidine, ac4C occur at “wobble” 34th position in the anticodon loop of tRNACell Biochem. Biophys.2013667978161:CAS:528:DC%2BC3sXhtF2msL7F2340830810.1007/s12013-013-9525-8 – reference: SmithAMJainMMulroneyLGaraldeDRAkesonMReading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencingPLoS One201914e02167091:CAS:528:DC%2BC1MXhtV2jt7vF31095620652200410.1371/journal.pone.0216709 – reference: PandolfiniLMETTL1 Promotes let-7 MicroRNA Processing via m7G MethylationMol. Cell20197412781290.e12791:CAS:528:DC%2BC1MXosVSgtb0%3D31031083659100210.1016/j.molcel.2019.03.040 – reference: Hu, L. et al. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 1–10 (2022). – reference: ChoiJ2’-O-methylation in mRNA disrupts tRNA decoding during translation elongationNat. Struct. Mol. Biol.2018252082161:CAS:528:DC%2BC1cXhtlOjsr%2FI29459784584000210.1038/s41594-018-0030-z – reference: MarchandVBlanloeil-OilloFHelmMMotorinYIllumina-based RiboMethSeq approach for mapping of 2’-O-Me residues in RNANucleic Acids Res.201644e13527302133502749810.1093/nar/gkw547 – reference: WanYKHendraCPratanwanichPNGokeJBeyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal dataTrends Genet2021382462573471142510.1016/j.tig.2021.09.001 – reference: WangSN(6)-Methyladenine hinders RNA- and DNA-directed DNA synthesis: application in human rRNA methylation analysis of clinical specimensChem. Sci.20167144014461:CAS:528:DC%2BC2MXhvVChtr%2FN2991090210.1039/C5SC02902C – reference: Baudin-BaillieuANucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracyNucleic Acids Res.200937766576771:CAS:528:DC%2BD1MXhsFyktr%2FK19820108279417610.1093/nar/gkp816 – reference: JinGXuMZouMDuanSThe processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic reviewMol. Ther. Nucleic Acids20202013241:CAS:528:DC%2BB3cXhtFSksLzK32171170706819710.1016/j.omtn.2020.01.037 – reference: PuriPSystematic identification of tRNAome and its dynamics in Lactococcus lactisMol. Microbiol.2014939449561:CAS:528:DC%2BC2cXhsVCls7jO25040919415084610.1111/mmi.12710 – reference: ShanmugamRCytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequencesCell Disco.20151150101:CAS:528:DC%2BC28XmtVSms7w%3D10.1038/celldisc.2015.10 – reference: MiyauchiKKimuraSSuzukiTA cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodificationNat. Chem. Biol.201391051111:CAS:528:DC%2BC38XhvVektLzJ2324225510.1038/nchembio.1137 – reference: GaoYQuantitative profiling of N(6)-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using nanopore direct RNA sequencingGenome Biol.2021221:CAS:528:DC%2BB3MXosVOqsA%3D%3D33413586779183110.1186/s13059-020-02241-7 – reference: WangYJiaGDetection methods of epitranscriptomic mark N6-methyladenosineEssays Biochem.2020649679791:CAS:528:DC%2BB3MXhvVCmsLg%3D3328495310.1042/EBC20200039 – reference: EnrothCDetection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencingNucleic Acids Res.201947e1261:CAS:528:DC%2BB3cXhtVGru7fJ31504776684734110.1093/nar/gkz736 – reference: LiXMaSYiCPseudouridine: the fifth RNA nucleotide with renewed interestsCurr. Opin. Chem. Biol.2016331081161:CAS:528:DC%2BC28XhsF2qt7nL2734815610.1016/j.cbpa.2016.06.014 – reference: GastonKWLimbachPAThe identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometryRNA Biol.201411156815852561640810.4161/15476286.2014.992280 – reference: MarchandVAlkAniline-Seq: profiling of m(7) G and m(3) C RNA modifications at single nucleotide resolutionAngew. Chem. Int. Ed. Engl.20185716785167901:CAS:528:DC%2BC1cXit1OqtrjF3037096910.1002/anie.201810946 – reference: WangYZhangXLiuHZhouXChemical methods and advanced sequencing technologies for deciphering mRNA modificationsChem. Soc. Rev.20215013481134971:CAS:528:DC%2BB3MXisFWhu77P3479205010.1039/D1CS00920F – reference: ElliottBAModification of messenger RNA by 2’-O-methylation regulates gene expression in vivoNat. Commun.20191031363086666745710.1038/s41467-019-11375-7 – reference: SuzukiTIkeuchiYNomaASuzukiTSakaguchiYMass spectrometric identification and characterization of RNA-modifying enzymesMethods Enzymol.20074252112291:CAS:528:DC%2BD1cXhsVCisrk%3D1767308510.1016/S0076-6879(07)25009-8 – reference: LegerARNA modifications detection by comparative Nanopore direct RNA sequencingNat. Commun.2021121:CAS:528:DC%2BB3MXislars7bP34893601866494410.1038/s41467-021-27393-3 – reference: LinSMettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiationMol. Cell201871244255.e2451:CAS:528:DC%2BC1cXht1yit7vK29983320608658010.1016/j.molcel.2018.06.001 – reference: JackmanJEMontangeRKMalikHSPhizickyEMIdentification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9RNA200395745851:CAS:528:DC%2BD3sXjt12msrw%3D12702816137042310.1261/rna.5070303 – reference: KhoddamiVCairnsBRIdentification of direct targets and modified bases of RNA cytosine methyltransferasesNat. Biotechnol.2013314584641:CAS:528:DC%2BC3sXmt1SktLs%3D23604283379158710.1038/nbt.2566 – reference: IncarnatoDHigh-throughput single-base resolution mapping of RNA 2-O-methylated residuesNucleic Acids Res.201745143314411:CAS:528:DC%2BC1cXivFajs7o%3D2818032410.1093/nar/gkw810 – reference: YangX5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C readerCell Res2017276066251:CAS:528:DC%2BC2sXmt1emtL4%3D28418038559420610.1038/cr.2017.55 – reference: EylerDEPseudouridinylation of mRNA coding sequences alters translationProc. Natl Acad. Sci. USA201911623068230741:CAS:528:DC%2BC1MXitFGqsr%2FE31672910685933710.1073/pnas.1821754116 – reference: PeiferCYeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNANucleic Acids Res.201341115111631:CAS:528:DC%2BC3sXhtFyjtr4%3D2318076410.1093/nar/gks1102 – reference: YangYRNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decayMol. Cell2019751188-1202.e11111:CAS:528:DC%2BC1MXhsFGjs7fJ3139934510.1016/j.molcel.2019.06.033 – reference: HoernesTPEukaryotic Translation Elongation is Modulated by Single Natural Nucleotide Derivatives in the Coding Sequences of mRNAsGenes (Basel)201910841:CAS:528:DC%2BC1MXht1ajtL7L10.3390/genes10020084 – reference: BangsJDCrainPFHashizumeTMcCloskeyJABoothroydJCMass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosidesJ. Biol. Chem.1992267980598151:CAS:528:DyaK38XksVaru74%3D134960510.1016/S0021-9258(19)50165-X – reference: JiaGFN6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO (vol 7, pg 885, 2011)Nat. Chem. Biol.201281008100810.1038/nchembio1212-1008a – reference: PengZComprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptomeNat. Biotechnol.2012302532601:CAS:528:DC%2BC38XitFaks7o%3D2232732410.1038/nbt.2122 – reference: WangYXiaoYDongSYuQJiaGAntibody-free enzyme-assisted chemical approach for detection of N(6)-methyladenosineNat. Chem. Biol.2020168969031:CAS:528:DC%2BB3cXotVCjur8%3D3234150210.1038/s41589-020-0525-x – reference: ArangoDAcetylation of Cytidine in mRNA Promotes Translation EfficiencyCell201817518721886.e18241:CAS:528:DC%2BC1cXit1Wlt77K30449621629523310.1016/j.cell.2018.10.030 – reference: AkichikaSSuzukiTSuzukiTMass spectrometric analysis of mRNA 5’ terminal modificationsMethods Enzymol.20216584074181:CAS:528:DC%2BB38Xls1Srt74%3D3451795610.1016/bs.mie.2021.06.012 – reference: LinderBSingle-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptomeNat. Methods2015127677721:CAS:528:DC%2BC2MXhtFWqur%2FE26121403448740910.1038/nmeth.3453 – reference: ChenYSYangWLZhaoYLYangYGDynamic transcriptomic m(5) C and its regulatory role in RNA processingWiley Interdiscip. Rev. RNA202112e16391:CAS:528:DC%2BB3MXhvVGgsLrP3343832910.1002/wrna.1639 – reference: KroghNProfiling of 2’-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneityNucleic Acids Res.201644788478951:CAS:528:DC%2BC28XhvVSlur7O27257078502748210.1093/nar/gkw482 – reference: JuYSExtensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individualsNat. Genet.2011437457521:CAS:528:DC%2BC3MXotlClt7c%3D2172531010.1038/ng.872 – reference: SeeburgPHHartnerJRegulation of ion channel/neurotransmitter receptor function by RNA editingCurr. Opin. Neurobiol.2003132792831:CAS:528:DC%2BD3sXlt1entL4%3D1285021110.1016/S0959-4388(03)00062-X – reference: KarikoKIncorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stabilityMol. Ther.200816183318401:CAS:528:DC%2BD1cXht12ls7vK1879745310.1038/mt.2008.200 – reference: ZhaoXYuYTDetection and quantitation of RNA base modificationsRNA20041099610021:CAS:528:DC%2BD2cXks1Clsb4%3D15146083137059110.1261/rna.7110804 – reference: LiuNProbing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNARNA201319184818561:CAS:528:DC%2BC3sXhvVKjsLbI24141618388465610.1261/rna.041178.113 – reference: YuanBFLiquid chromatography-mass spectrometry for analysis of RNA adenosine methylationMethods Mol. Biol.2017156233421:CAS:528:DC%2BC1cXhtlaqu7zL2834945210.1007/978-1-4939-6807-7_3 – reference: DaiQZhengGSchwartzMHClarkWCPanTSelective Enzymatic Demethylation of N(2),N(2) -Dimethylguanosine in RNA and Its Application in High-Throughput tRNA SequencingAngew. Chem. Int. Ed. Engl.201756501750201:CAS:528:DC%2BC2sXlsVahsb8%3D28371071549767710.1002/anie.201700537 – reference: DominissiniDRechaviGN(4)-acetylation of Cytidine in mRNA by NAT10 Regulates Stability and TranslationCell2018175172517271:CAS:528:DC%2BC1cXisFWqtrjO3055078310.1016/j.cell.2018.11.037 – reference: ArnezJGSteitzTACrystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structureBiochemistry199433756075671:CAS:528:DyaK2cXkt12gurg%3D801162110.1021/bi00190a008 – reference: GerberAPKellerWAn adenosine deaminase that generates inosine at the wobble position of tRNAsScience1999286114611491:CAS:528:DyaK1MXnt1Kkt7g%3D1055005010.1126/science.286.5442.1146 – reference: BirkedalUProfiling of ribose methylations in RNA by high-throughput sequencingAngew. Chem. Int. Ed. Engl.2015544514551:CAS:528:DC%2BC2cXhvFKmtLnK25417815 – reference: Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res.50, D231–D235 (2022). – reference: MandalDAgmatidine, a modified cytidine in the anticodon of archaeal tRNA(Ile), base pairs with adenosine but not with guanosineProc. Natl Acad. Sci. USA2010107287228771:CAS:528:DC%2BC3cXis1Clt78%3D20133752284032310.1073/pnas.0914869107 – reference: ItoSA single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiaeJ. Biol. Chem.201428926201262121:CAS:528:DC%2BC2cXhsFOqtrnL25086048417621110.1074/jbc.M114.593996 – reference: ZhangZSingle-base mapping of m(6)A by an antibody-independent methodSci. Adv.20195eaax02501:CAS:528:DC%2BB3cXhtlaku7%2FM31281898660922010.1126/sciadv.aax0250 – reference: YangYHsuPJChenYSYangYGDynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolismCell Res2018286166241:CAS:528:DC%2BC1cXht1ektb%2FO29789545599378610.1038/s41422-018-0040-8 – reference: KurataTRelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesisMol. Cell20218131603170.e31691:CAS:528:DC%2BB3MXhsVans77J3417418410.1016/j.molcel.2021.06.005 – reference: CozenAEARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragmentsNat. Methods2015128798841:CAS:528:DC%2BC2MXht12gtbvP26237225455311110.1038/nmeth.3508 – reference: HerschlagDBiophysical, chemical, and functional probes of RNA structure, interactions and folding: Part A. PrefaceMethods Enzymol.2009468xv1992592110.1016/S0076-6879(09)68020-4 – reference: SchevitzRWCrystal structure of a eukaryotic initiator tRNANature19792781881901:CAS:528:DyaE1MXltFyrsbs%3D36865610.1038/278188a0 – reference: ChanCTA quantitative systems approach reveals dynamic control of tRNA modifications during cellular stressPLoS Genet20106e10012471:CAS:528:DC%2BC3MXjtlWmtA%3D%3D21187895300298110.1371/journal.pgen.1001247 – reference: LiuHAccurate detection of m(6)A RNA modifications in native RNA sequencesNat. Commun.20191031501426673400310.1038/s41467-019-11713-9 – reference: WooHHChambersSKHuman ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cellsBiochim. Biophys. Acta Gene Regul. Mech.2019186235461:CAS:528:DC%2BC1cXitVaqt77N3034217610.1016/j.bbagrm.2018.10.008 – reference: MalbecLDynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translationCell Res.2019299279411:CAS:528:DC%2BC1MXhslOgtbnF31520064688951310.1038/s41422-019-0230-z – reference: ClarkWCEvansMEDominissiniDZhengGPanTtRNA base methylation identification and quantification via high-throughput sequencingRNA201622177117841:CAS:528:DC%2BC28XitVCntLvI27613580506662910.1261/rna.056531.116 – reference: PratanwanichPNIdentification of differential RNA modifications from nanopore direct RNA sequencing with xPoreNat. Biotechnol.202139139414021:CAS:528:DC%2BB3MXhsF2gs7rP3428232510.1038/s41587-021-00949-w – reference: BahnJHAccurate identification of A-to-I RNA editing in human by transcriptome sequencingGenome Res.2012221421501:CAS:528:DC%2BC38XlslOruw%3D%3D21960545324620110.1101/gr.124107.111 – reference: WangYZhaoYBollasAWangYAuKFNanopore sequencing technology, bioinformatics and applicationsNat. Biotechnol.202139134813651:CAS:528:DC%2BB3MXisVChu7bK34750572898825110.1038/s41587-021-01108-x – reference: ShiHWeiJHeCWhere, when, and how: context-dependent functions of RNA methylation writers, readers, and erasersMol. Cell2019746406501:CAS:528:DC%2BC1MXpvVyktLk%3D31100245652735510.1016/j.molcel.2019.04.025 – reference: GuptaRCRanderathKRapid print-readout technique for sequencing of RNA’s containing modified nucleotidesNucleic Acids Res19796344334581:CAS:528:DyaE1MXlslWjtL8%3D38627332794710.1093/nar/6.11.3443 – reference: Voigts-HoffmannFA methyl group controls conformational equilibrium in human mitochondrial tRNA(Lys)J. Am. Chem. Soc.200712913382133831:CAS:528:DC%2BD2sXhtFKqtr7K1794164010.1021/ja075520+ – reference: LiXTranscriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylomeNat. Chem. Biol.2016123113161:CAS:528:DC%2BC28XitlCqt7w%3D2686341010.1038/nchembio.2040 – reference: HussainSNSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAsCell Rep.201342552611:CAS:528:DC%2BC3sXhtFCkt7%2FF23871666373005610.1016/j.celrep.2013.06.029 – reference: PriceAMDirect RNA sequencing reveals m(6)A modifications on adenovirus RNA are necessary for efficient splicingNat. Commun.2020111:CAS:528:DC%2BB3cXisV2gur%2FP33243990769199410.1038/s41467-020-19787-6 – reference: KimDThe architecture of SARS-CoV-2 transcriptomeCell2020181914921 e9101:CAS:528:DC%2BB3cXotVCnt7k%3D32330414717950110.1016/j.cell.2020.04.011 – reference: Miladi, M. et al. The landscape of SARS-CoV-2 RNA modifications. Preprint at https://www.biorxiv.org/content/10.1101/2020.07.18.204362v1 (2020). – reference: WakuTNML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent mannerJ. Cell Sci.2016129238223931:CAS:528:DC%2BC28XhslaqtbvO27149924 – reference: HuangTChenWLiuJGuNZhangRGenome-wide identification of mRNA 5-methylcytosine in mammalsNat. Struct. Mol. Biol.2019263803881:CAS:528:DC%2BC1MXptFekuro%3D3106152410.1038/s41594-019-0218-x – reference: AschenbrennerJEngineering of a DNA Polymerase for Direct m(6) A SequencingAngew. Chem. Int. Ed. Engl.2018574174211:CAS:528:DC%2BC2sXhvFegu7vJ2911574410.1002/anie.201710209 – reference: ChenKHigh-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencingAngew. Chem. Int. Ed. Engl.201554158715901:CAS:528:DC%2BC2cXitVGls7rJ2549192210.1002/anie.201410647 – reference: JenjaroenpunPDecoding the epitranscriptional landscape from native RNA sequencesNucleic Acids Res.202149e71:CAS:528:DC%2BB3MXhvVekur%2FP3271062210.1093/nar/gkaa620 – reference: BegikOQuantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencingNat. Biotechnol.202139127812911:CAS:528:DC%2BB3MXhtV2gsbvN3398654610.1038/s41587-021-00915-6 – reference: SakuraiMA biochemical landscape of A-to-I RNA editing in the human brain transcriptomeGenome Res.2014245225341:CAS:528:DC%2BC2cXkvVyqsLk%3D24407955394111610.1101/gr.162537.113 – reference: ImanishiMTsujiSSudaAFutakiSDetection of N(6)-methyladenosine based on the methyl-sensitivity of MazF RNA endonucleaseChem. Commun. (Camb.)20175312930129331:CAS:528:DC%2BC2sXhsl2ltbvJ10.1039/C7CC07699A – reference: MadenBECorbettMEHeeneyPAPughKAjuhPMClassical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNABiochimie19957722291:CAS:528:DyaK2MXltFarsrg%3D759927310.1016/0300-9084(96)88100-4 – reference: LovejoyAFRiordanDPBrownPOTranscriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiaePLoS One20149e11079925353621421299310.1371/journal.pone.0110799 – volume: 3 start-page: 324 year: 1997 ident: 821_CR84 publication-title: RNA – volume: 6 start-page: 3443 year: 1979 ident: 821_CR62 publication-title: Nucleic Acids Res doi: 10.1093/nar/6.11.3443 – volume: 474 start-page: 395 year: 2011 ident: 821_CR35 publication-title: Nature doi: 10.1038/nature10165 – volume: 48 start-page: 3734 year: 2020 ident: 821_CR121 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa113 – volume: 1 start-page: 15010 year: 2015 ident: 821_CR13 publication-title: Cell Disco. doi: 10.1038/celldisc.2015.10 – volume: 44 start-page: 660 year: 2011 ident: 821_CR31 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.09.017 – volume: 13 start-page: 279 year: 2003 ident: 821_CR21 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(03)00062-X – volume: 7 start-page: 237 year: 2010 ident: 821_CR60 publication-title: RNA Biol. doi: 10.4161/rna.7.2.11468 – volume: 29 start-page: 927 year: 2019 ident: 821_CR157 publication-title: Cell Res. doi: 10.1038/s41422-019-0230-z – ident: 821_CR182 doi: 10.1101/2020.07.18.204362 – volume: 116 start-page: 6784 year: 2019 ident: 821_CR131 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1817334116 – volume: 9 start-page: e110799 year: 2014 ident: 821_CR135 publication-title: PLoS One doi: 10.1371/journal.pone.0110799 – volume: 64 start-page: 967 year: 2020 ident: 821_CR2 publication-title: Essays Biochem. doi: 10.1042/EBC20200039 – volume: 49 start-page: e7 year: 2021 ident: 821_CR172 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa620 – volume: 14 start-page: 23 year: 2016 ident: 821_CR7 publication-title: Nat. Methods doi: 10.1038/nmeth.4110 – volume: 289 start-page: 26201 year: 2014 ident: 821_CR57 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.593996 – volume: 1870 start-page: 263 year: 2019 ident: 821_CR68 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-8808-2_20 – volume: 49 start-page: e27 year: 2021 ident: 821_CR149 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1186 – volume: 18 start-page: 31 year: 2021 ident: 821_CR170 publication-title: RNA Biol. doi: 10.1080/15476286.2021.1978215 – volume: 45 start-page: 1433 year: 2017 ident: 821_CR123 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw810 – volume: 15 start-page: 201 year: 2018 ident: 821_CR178 publication-title: Nat. Methods doi: 10.1038/nmeth.4577 – volume: 8 year: 2018 ident: 821_CR75 publication-title: Sci. Rep. doi: 10.1038/s41598-018-30383-z – volume: 31 start-page: 458 year: 2013 ident: 821_CR161 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2566 – volume: 265 start-page: 357 year: 2004 ident: 821_CR66 publication-title: Methods Mol. Biol. – volume: 23 start-page: 1303 year: 2017 ident: 821_CR145 publication-title: RNA doi: 10.1261/rna.061549.117 – volume: 178 start-page: 731 year: 2019 ident: 821_CR166 publication-title: Cell doi: 10.1016/j.cell.2019.06.013 – volume: 11 year: 2020 ident: 821_CR177 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19787-6 – volume: 10 year: 2019 ident: 821_CR183 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13561-z – volume: 22 start-page: 119 year: 2021 ident: 821_CR4 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-00295-8 – volume: 6 start-page: e1001247 year: 2010 ident: 821_CR44 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001247 – volume: 282 start-page: 27744 year: 2007 ident: 821_CR78 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704572200 – volume: 19 start-page: 1684 year: 2013 ident: 821_CR115 publication-title: RNA doi: 10.1261/rna.036806.112 – volume: 54 start-page: 451 year: 2015 ident: 821_CR142 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201408362 – volume: 149 start-page: 1635 year: 2012 ident: 821_CR152 publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 74 start-page: 1304 year: 2019 ident: 821_CR54 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.03.036 – volume: 352 start-page: 821 year: 1991 ident: 821_CR80 publication-title: Nature doi: 10.1038/352821a0 – volume: 16 start-page: 1275 year: 2019 ident: 821_CR162 publication-title: Nat. Methods doi: 10.1038/s41592-019-0570-0 – volume: 173 start-page: 7213 year: 1991 ident: 821_CR40 publication-title: J. Bacteriol. doi: 10.1128/jb.173.22.7213-7218.1991 – volume: 485 start-page: 201 year: 2012 ident: 821_CR151 publication-title: Nature doi: 10.1038/nature11112 – volume: 351 start-page: 282 year: 2016 ident: 821_CR154 publication-title: Science doi: 10.1126/science.aac5253 – volume: 28 start-page: 62 year: 2021 ident: 821_CR15 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-00526-w – volume: 13 start-page: 396 year: 2007 ident: 821_CR104 publication-title: RNA doi: 10.1261/rna.361607 – ident: 821_CR141 doi: 10.1038/s41587-022-01243-z – volume: 38 start-page: 246 year: 2021 ident: 821_CR171 publication-title: Trends Genet doi: 10.1016/j.tig.2021.09.001 – volume: 26 start-page: 1636 year: 1998 ident: 821_CR37 publication-title: Nucleic Acids Res. doi: 10.1093/nar/26.7.1636 – ident: 821_CR1 doi: 10.1093/nar/gkab1083 – volume: 5 start-page: eaax0250 year: 2019 ident: 821_CR167 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax0250 – volume: 16 start-page: 1317 year: 2010 ident: 821_CR43 publication-title: RNA doi: 10.1261/rna.2057810 – volume: 43 start-page: 745 year: 2011 ident: 821_CR111 publication-title: Nat. Genet. doi: 10.1038/ng.872 – volume: 425 start-page: 211 year: 2007 ident: 821_CR99 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(07)25009-8 – volume: 99 start-page: 12697 year: 2002 ident: 821_CR25 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.202477199 – volume: 274 start-page: 87 year: 1978 ident: 821_CR61 publication-title: Nature doi: 10.1038/274087a0 – volume: 515 start-page: 143 year: 2014 ident: 821_CR134 publication-title: Nature doi: 10.1038/nature13802 – volume: 33 start-page: 7560 year: 1994 ident: 821_CR23 publication-title: Biochemistry doi: 10.1021/bi00190a008 – volume: 12 start-page: 767 year: 2015 ident: 821_CR155 publication-title: Nat. Methods doi: 10.1038/nmeth.3453 – volume: 551 start-page: 251 year: 2017 ident: 821_CR158 publication-title: Nature doi: 10.1038/nature24456 – volume: 12 start-page: e1639 year: 2021 ident: 821_CR12 publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1639 – volume: 12 start-page: 311 year: 2016 ident: 821_CR153 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2040 – volume: 68 start-page: 993 year: 2017 ident: 821_CR42 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.10.019 – volume: 56 start-page: 14878 year: 2017 ident: 821_CR95 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201708276 – volume: 81 start-page: 4116 year: 2021 ident: 821_CR5 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.07.036 – volume: 12 year: 2021 ident: 821_CR159 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25105-5 – volume: 10 year: 2019 ident: 821_CR48 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11375-7 – volume: 33 start-page: 108 year: 2016 ident: 821_CR32 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2016.06.014 – volume: 12 start-page: 879 year: 2015 ident: 821_CR117 publication-title: Nat. Methods doi: 10.1038/nmeth.3508 – volume: 1862 start-page: 253 year: 2019 ident: 821_CR52 publication-title: Biochim. Biophys. Acta Gene Regul. Mech. doi: 10.1016/j.bbagrm.2018.11.009 – volume: 129 start-page: 13382 year: 2007 ident: 821_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075520+ – volume: 93 start-page: 944 year: 2014 ident: 821_CR105 publication-title: Mol. Microbiol. doi: 10.1111/mmi.12710 – volume: 583 start-page: 638 year: 2020 ident: 821_CR139 publication-title: Nature doi: 10.1038/s41586-020-2418-2 – volume: 50 start-page: 13481 year: 2021 ident: 821_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00920F – volume: 267 start-page: 9805 year: 1992 ident: 821_CR102 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50165-X – volume: 81 start-page: 3160 year: 2021 ident: 821_CR101 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.06.005 – volume: 11 start-page: 592 year: 2015 ident: 821_CR86 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1836 – volume: 45 start-page: 4888 year: 2006 ident: 821_CR103 publication-title: Biochemistry doi: 10.1021/bi052579p – volume: 11 start-page: 5903 year: 1983 ident: 821_CR94 publication-title: Nucleic Acids Res. doi: 10.1093/nar/11.17.5903 – volume: 45 start-page: 179 year: 2018 ident: 821_CR47 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2018.06.017 – volume: 20 start-page: 13 year: 2020 ident: 821_CR58 publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2020.01.037 – volume: 530 start-page: 441 year: 2016 ident: 821_CR39 publication-title: Nature doi: 10.1038/nature16998 – volume: 66 start-page: 797 year: 2013 ident: 821_CR56 publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-013-9525-8 – volume: 56 start-page: 5017 year: 2017 ident: 821_CR120 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201700537 – volume: 27 start-page: 606 year: 2017 ident: 821_CR16 publication-title: Cell Res doi: 10.1038/cr.2017.55 – volume: 12 start-page: 835 year: 2015 ident: 821_CR118 publication-title: Nat. Methods doi: 10.1038/nmeth.3478 – volume: 57 start-page: 16785 year: 2018 ident: 821_CR147 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201810946 – volume: 363 start-page: eaav0080 year: 2019 ident: 821_CR110 publication-title: Science doi: 10.1126/science.aav0080 – volume: 1562 start-page: 33 year: 2017 ident: 821_CR98 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6807-7_3 – volume: 1169 start-page: 3 year: 2014 ident: 821_CR69 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-0882-0_1 – volume: 77 start-page: 22 year: 1995 ident: 821_CR82 publication-title: Biochimie doi: 10.1016/0300-9084(96)88100-4 – volume: 82 start-page: 868 year: 2022 ident: 821_CR163 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.12.038 – volume: 48 start-page: e110 year: 2020 ident: 821_CR150 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa769 – volume: 16 start-page: 581 year: 2015 ident: 821_CR24 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4040 – volume: 135 start-page: 19079 year: 2013 ident: 821_CR89 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4105792 – volume: 14 start-page: 695 year: 2017 ident: 821_CR146 publication-title: Nat. Methods doi: 10.1038/nmeth.4294 – volume: 21 start-page: 174 year: 2014 ident: 821_CR45 publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2013.10.015 – volume: 9 start-page: 574 year: 2003 ident: 821_CR77 publication-title: RNA doi: 10.1261/rna.5070303 – volume: 658 start-page: 407 year: 2021 ident: 821_CR100 publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2021.06.012 – volume: 14 start-page: e0216709 year: 2019 ident: 821_CR176 publication-title: PLoS One doi: 10.1371/journal.pone.0216709 – volume: 33 start-page: 2020 year: 2014 ident: 821_CR19 publication-title: EMBO J. doi: 10.15252/embj.201489282 – volume: 16 start-page: 896 year: 2020 ident: 821_CR127 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0525-x – volume: 54 start-page: 1587 year: 2015 ident: 821_CR156 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201410647 – volume: 74 start-page: 1278 year: 2019 ident: 821_CR53 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.03.040 – volume: 20 start-page: 303 year: 2020 ident: 821_CR10 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-0253-2 – volume: 35 start-page: 483 year: 2016 ident: 821_CR96 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21442 – volume: 44 start-page: 3495 year: 2016 ident: 821_CR88 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw200 – volume: 14 start-page: e1002557 year: 2016 ident: 821_CR74 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002557 – volume: 9 start-page: 105 year: 2013 ident: 821_CR108 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1137 – volume: 425 start-page: 55 year: 2007 ident: 821_CR65 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(07)25003-7 – volume: 37 start-page: 7665 year: 2009 ident: 821_CR30 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp816 – volume: 32 start-page: 9754 year: 1993 ident: 821_CR79 publication-title: Biochemistry doi: 10.1021/bi00088a030 – volume: 10 year: 2019 ident: 821_CR175 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11713-9 – volume: 22 year: 2021 ident: 821_CR179 publication-title: Genome Biol. doi: 10.1186/s13059-020-02241-7 – volume: 27 start-page: 344 year: 2002 ident: 821_CR29 publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(02)02109-6 – volume: 175 start-page: 1725 year: 2018 ident: 821_CR59 publication-title: Cell doi: 10.1016/j.cell.2018.11.037 – volume: 9 year: 2019 ident: 821_CR90 publication-title: Sci. Rep. doi: 10.1038/s41598-019-40018-6 – volume: 60 start-page: 873 year: 2021 ident: 821_CR93 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202007266 – volume: 9 start-page: e49658 year: 2020 ident: 821_CR174 publication-title: Elife doi: 10.7554/eLife.49658 – volume: 16 start-page: 1833 year: 2008 ident: 821_CR33 publication-title: Mol. Ther. doi: 10.1038/mt.2008.200 – volume: 9 start-page: e1003602 year: 2013 ident: 821_CR130 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003602 – volume: 26 start-page: 380 year: 2019 ident: 821_CR132 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0218-x – volume: 159 start-page: 148 year: 2014 ident: 821_CR136 publication-title: Cell doi: 10.1016/j.cell.2014.08.028 – volume: 28 start-page: 965 year: 2007 ident: 821_CR28 publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.10.012 – volume: 57 start-page: 417 year: 2018 ident: 821_CR125 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201710209 – volume: 21 start-page: 978 year: 2019 ident: 821_CR17 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0361-y – volume: 19 start-page: 1848 year: 2013 ident: 821_CR85 publication-title: RNA doi: 10.1261/rna.041178.113 – volume: 8 start-page: 1008 year: 2012 ident: 821_CR67 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio1212-1008a – volume: 12 year: 2021 ident: 821_CR173 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27393-3 – ident: 821_CR124 doi: 10.1101/271916 – volume: 23 start-page: 5020 year: 1995 ident: 821_CR26 publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.24.5020 – volume: 278 start-page: 188 year: 1979 ident: 821_CR36 publication-title: Nature doi: 10.1038/278188a0 – volume: 11 start-page: 1568 year: 2014 ident: 821_CR71 publication-title: RNA Biol. doi: 10.4161/15476286.2014.992280 – volume: 468 start-page: xv year: 2009 ident: 821_CR81 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(09)68020-4 – volume: 56 start-page: 178 year: 2021 ident: 821_CR70 publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2021.1887807 – volume: 1862 start-page: 280 year: 2019 ident: 821_CR97 publication-title: Biochim. Biophys. Acta Gene Regul. Mech. doi: 10.1016/j.bbagrm.2018.10.012 – volume: 39 start-page: 1394 year: 2021 ident: 821_CR180 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00949-w – volume: 27 start-page: 1589 year: 2017 ident: 821_CR133 publication-title: Genome Res. doi: 10.1101/gr.210666.116 – volume: 16 start-page: 887 year: 2020 ident: 821_CR140 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0526-9 – volume: 40 start-page: 5023 year: 2012 ident: 821_CR129 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks144 – volume: 296 start-page: 100087 year: 2021 ident: 821_CR14 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.014226 – volume: 129 start-page: 2382 year: 2016 ident: 821_CR41 publication-title: J. Cell Sci. doi: 10.1242/jcs.183723 – volume: 28 start-page: 616 year: 2018 ident: 821_CR8 publication-title: Cell Res doi: 10.1038/s41422-018-0040-8 – volume: 16 start-page: 1281 year: 2019 ident: 821_CR122 publication-title: Nat. Methods doi: 10.1038/s41592-019-0550-4 – volume: 18 start-page: 1213 year: 2021 ident: 821_CR184 publication-title: Nat. Methods doi: 10.1038/s41592-021-01280-7 – volume: 1862 start-page: 35 year: 2019 ident: 821_CR76 publication-title: Biochim. Biophys. Acta Gene Regul. Mech. doi: 10.1016/j.bbagrm.2018.10.008 – volume: 44 start-page: 7884 year: 2016 ident: 821_CR144 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw482 – volume: 39 start-page: 1348 year: 2021 ident: 821_CR168 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01108-x – volume: 286 start-page: 1146 year: 1999 ident: 821_CR20 publication-title: Science doi: 10.1126/science.286.5442.1146 – volume: 71 start-page: 244 year: 2018 ident: 821_CR148 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.001 – volume: 57 start-page: 15995 year: 2018 ident: 821_CR92 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201807942 – volume: 22 start-page: 1771 year: 2016 ident: 821_CR119 publication-title: RNA doi: 10.1261/rna.056531.116 – volume: 4 start-page: 255 year: 2013 ident: 821_CR160 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.06.029 – volume: 10 start-page: 84 year: 2019 ident: 821_CR51 publication-title: Genes (Basel) doi: 10.3390/genes10020084 – volume: 181 start-page: 914 year: 2020 ident: 821_CR181 publication-title: Cell doi: 10.1016/j.cell.2020.04.011 – volume: 44 start-page: 852 year: 2016 ident: 821_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1182 – volume: 116 start-page: 23068 year: 2019 ident: 821_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821754116 – volume: 45 start-page: 2124 year: 2017 ident: 821_CR109 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1120 – volume: 140 start-page: 5886 year: 2018 ident: 821_CR126 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13633 – volume: 74 start-page: 640 year: 2019 ident: 821_CR9 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.04.025 – volume: 10 start-page: 996 year: 2004 ident: 821_CR64 publication-title: RNA doi: 10.1261/rna.7110804 – volume: 12 start-page: 81 year: 2011 ident: 821_CR22 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2915 – volume: 42 start-page: 7346 year: 2014 ident: 821_CR106 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku390 – volume: 142 start-page: 5241 year: 2020 ident: 821_CR164 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13406 – volume: 18 start-page: 275 year: 2017 ident: 821_CR6 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.169 – volume: 77 start-page: 142 year: 1995 ident: 821_CR63 publication-title: Biochimie doi: 10.1016/0300-9084(96)88118-1 – volume: 22 start-page: 142 year: 2012 ident: 821_CR112 publication-title: Genome Res. doi: 10.1101/gr.124107.111 – volume: 107 start-page: 48 year: 2016 ident: 821_CR73 publication-title: Methods doi: 10.1016/j.ymeth.2016.03.019 – volume: 41 start-page: 1151 year: 2013 ident: 821_CR46 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1102 – volume: 75 start-page: 1188 year: 2019 ident: 821_CR18 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.033 – volume: 53 start-page: 12930 year: 2017 ident: 821_CR165 publication-title: Chem. Commun. (Camb.) doi: 10.1039/C7CC07699A – volume: 44 start-page: e135 year: 2016 ident: 821_CR143 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw547 – volume: 40 start-page: e157 year: 2012 ident: 821_CR87 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks698 – volume: 47 start-page: e126 year: 2019 ident: 821_CR137 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz736 – volume: 107 start-page: 2872 year: 2010 ident: 821_CR107 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0914869107 – volume: 21 start-page: 552 year: 2019 ident: 821_CR11 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0319-0 – volume: 30 start-page: 253 year: 2012 ident: 821_CR114 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2122 – volume: 82 start-page: 404 year: 2021 ident: 821_CR138 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.11.003 – volume: 109 start-page: 145 year: 2002 ident: 821_CR83 publication-title: Cell doi: 10.1016/S0092-8674(02)00718-3 – volume: 43 start-page: 9950 year: 2015 ident: 821_CR116 publication-title: Nucleic Acids Res. – volume: 175 start-page: 1872 year: 2018 ident: 821_CR55 publication-title: Cell doi: 10.1016/j.cell.2018.10.030 – volume: 39 start-page: 1278 year: 2021 ident: 821_CR169 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00915-6 – volume: 11 start-page: 425 year: 2003 ident: 821_CR27 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00040-6 – volume: 42 start-page: e142 year: 2014 ident: 821_CR72 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku733 – volume: 7 start-page: 1440 year: 2016 ident: 821_CR91 publication-title: Chem. Sci. doi: 10.1039/C5SC02902C – volume: 25 start-page: 208 year: 2018 ident: 821_CR49 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0030-z – volume: 9 start-page: 579 year: 2012 ident: 821_CR113 publication-title: Nat. Methods doi: 10.1038/nmeth.1982 – volume: 24 start-page: 522 year: 2014 ident: 821_CR128 publication-title: Genome Res. doi: 10.1101/gr.162537.113 |
SSID | ssj0025474 |
Score | 2.5738695 |
SecondaryResourceType | review_article |
Snippet | To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1601 |
SubjectTerms | 38 38/91 631/1647 631/208/514 Biomedical and Life Sciences Biomedicine Epigenetics Gene expression Gene Expression Regulation Gene regulation High-Throughput Nucleotide Sequencing - methods Medical Biochemistry Molecular Medicine Next-generation sequencing Nucleotide sequence Review Review Article RNA - genetics RNA - metabolism RNA modification Sequence Analysis, RNA Stem Cells |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD54AfFF1HmpNyqILy6sTZO2e5KhjiG4B3Gwt5KmCQraqasP_ntP0nRjintt0rTJSc_5zqVfAC50jrhBB5qIUHDCpFAkl6EkjKPq40xrLizb5zAejNj9mI9dwG3qyiobnWgVdTGRJkbeQTOL_jZjCbt-_yDm1CiTXXVHaKzCuqEuM7s6Gc8dLs4sC3OIEINEaLfcTzNBlHameDEx5beUGCuILvWiYfqDNv8WTf7KnFqD1N-GLYck_V4t-h1YUeUutHoletFv3_6lb2s7bdB8FzYeXAq9Be1bVdnyq9KvmrA6ess-glf_cdjz3yaFqR6qA3l7MOrfPd0MiDsygUiEXhXBOVEa0FxI9IPQ29PdbtHNC4ruppYqSmNNExnEEoUQdkVoqHporHWhuJQq0EG0D2vlpFSH4CNQ0EJz1JZpynDElAmap2mh8iSI0WnzIGzWK5OOT9wca_Ga2bx2lGb1Gme4xpld4yzw4Gp2z3vNprG090kjhsx9WdNsvg88OJ814zdhEh2iVJMv0wdHQqTFcYiDWmqzxxn6HcSA3INkQZ6zDoZve7GlfHm2vNuoq2Ic2oN2I_n5a_0_i6PlsziGTWp2oa0PPIG16vNLnSLOqfIzu5l_AIuT9uA priority: 102 providerName: ProQuest |
Title | Detection technologies for RNA modifications |
URI | https://link.springer.com/article/10.1038/s12276-022-00821-0 https://www.ncbi.nlm.nih.gov/pubmed/36266445 https://www.proquest.com/docview/2731944474 https://www.proquest.com/docview/2727643950 https://pubmed.ncbi.nlm.nih.gov/PMC9636272 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBuKLeLc6RwXxRYttlvTyWKciA4eog72VNE1QcJ247sF_70l6kXkDnwrNSZqckybfSU6-AByrFHGDcpXDPc4cKrh0UuEJhzIc-hhVinHD9jn0b0Z0MGbjJSD1WRgTtG8oLc0wXUeHnc88QgIdLkscPWuhC7wMbU3Vjn27HceDh0HjZjEa0Op4jNsLf8i5OAV9w5XfwyO_7JGaqed6HdYqzGjHZS03YEnmm7AVYwOmk3f7xDZRnGZ5fBNWbqvN8i04u5SFCbTK7aJeQEe_2EaYat8PY3syzXScULlktw2j66vH_o1TXY7gCARZhYNtIsQlKRfo8aBfp6Ioi9KMoGOphOyFviKBcH2B6vYi7mlSHuIrlUkmhHSV29uBVj7N5R7YCAkUVwzHxTCkWGJIOUnDMJNp4Pronlng1fpKRMUcri-weEnMDnYvTEodJ6jjxOg4cS04bfK8lrwZf0p3ajMk1T80SxBYeRGlaE0Ljppk7P16S4PncjrXMlgSYiqGReyWVms-p4l2EO0xC4IFezYCmll7MSV_fjIM2zgq-Vi0BWe15T-r9Xsr9v8nfgCrRPdKExnYgVbxNpeHiHCKtAvLwTjoVh0bnxdXw7t7fNv3-12zavABDqP4Vg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEXBC2U0AJBAi7Uaj7sJHuoqhWl2tJ2D6iV9mYcxxZINFvYVKh_qr-RZyfZ1VLRW6-JM4lnxjPzPJMx0TtbIm6wkWUqVoJxrQwrdawZFzB9glsrlO_2Oc5GZ_zLRExW6Lr_F8aVVfY20RvqaqrdHvkO3CzwNuc537v4xdypUS672h-h0arFkbn6A8g22z3ch3zfJ8nB59NPI9adKsA0opOGJVj-QPyl0oAKAER2MKgGZZUAkVlt0iKzSa6jTOM744GKXTebJLO2MkJrE9koBd17dB-ON3JgL58sAJ7gvutzjAdYCj_Z_aQTpcXODBdzV-6bMOd1AeGXHeGN6PZmkeY_mVrvAA-e0OMucg2Hrao9pRVTr9H6sAZqP78KP4S-ltRv0q_Rg5MuZb9O2_um8eVeddj02_hA5yGC5fDreBieTytXrdRuHD6jszth5nNarae1eUEhAhOrrIB1LgoOigVXSVkUlSnzKANIDCju-SV117_cHaPxU_o8elrIlscSPJaexzIK6OP8mYu2e8eto7d6MchuJc_kQu8Ceju_jTXoEiuqNtNLNwaUENkJkNhopTZ_nWv3g5hTBJQvyXM-wPX3Xr5T__ju-3zDNmYgHdB2L_nFZ_1_Fi9vn8Ubejg6PTmWx4fjo016lDiN9LWJW7Ta_L40rxBjNeVrr9ghfbvrlfQXpZoziA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9wwDLfYIaG9oA320Q1GJrG9jOjaNGl7D2i6cZxgsBNCQ-ItS9NETBo9tiua-Nf463DSD3QgeOO1Td3Gdmz_YtcB2LQ5xg02tFRFSlCulaG5jjTlAk2f4NYK5bt9TpK9E_79VJwuwHX7L4wrq2xtojfUxVS7PfI-ulnE25ynvG-bsoij0fjrxV_qTpBymdb2OI1aRQ7M1X-Eb7Pt_RHK-hNj492fO3u0OWGAaoxUKsrQFCD6z5VG2IDgyA4GxSAvGKIzq02cJZalOkw0fnM0UJHrbMMSawsjtDahDWOk-wwWU4eKerD4bXdydNzBPcF9D-gIH6Exes3ml50wzvozvJi64l9GnQ9GQD_vFu_FuvdLNu_kbb07HL-A5SaOJcNa8V7CgilXYHVYIoY_vyKfia8s9Vv2K7D0o0ngr8LWyFS--KskVbupj1idYOhMjidDcj4tXO1SvY34Ck6ehJ2voVdOS_MWCIYpVlmBtjrLOFLMuGJ5lhUmT8MEIWMAUcsvqZtu5u5QjT_SZ9XjTNY8lshj6XkswwC-dM9c1L08Hh291opBNut6Jm-1MICP3W1ckS7NokozvXRjkBLGeQJJvKml1r3ONf_BCFQEkM7Jsxvgun3P3yl_n_mu32gpEyQdwFYr-dvPengW7x6fxQYs4SqSh_uTg_fwnDmF9IWKa9Cr_l2adQy4qvxDo9kEfj31YroBh5k5Iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+technologies+for+RNA+modifications&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Zhang%2C+Yan&rft.au=Lu%2C+Liang&rft.au=Li%2C+Xiaoyu&rft.date=2022-10-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1226-3613&rft.eissn=2092-6413&rft.volume=54&rft.issue=10&rft.spage=1601&rft.epage=1616&rft_id=info:doi/10.1038%2Fs12276-022-00821-0&rft_id=info%3Apmid%2F36266445&rft.externalDocID=PMC9636272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon |