Detection technologies for RNA modifications

To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput...

Full description

Saved in:
Bibliographic Details
Published inExperimental & molecular medicine Vol. 54; no. 10; pp. 1601 - 1616
Main Authors Zhang, Yan, Lu, Liang, Li, Xiaoyu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome. RNA modifications: Comparing detection tools Improved methods for detecting chemical modifications of RNA will help to understand the epitranscriptome, the collection of RNA modifications in a cell. Chemical modifications to RNA molecules do not alter the sequence, but can nonetheless greatly affect RNA function. More than 170 RNA modifications have been discovered over the past 60 years and their effects are analogous to epigenetic modifications of DNA. Xiaoyu Li and co-workers at Zhejiang University School of Medicine in Hangzhou, China, reviewed existing tools for detecting RNA modifications. These tools, which are developed based on the inherent chemical properties of RNA modifications, vary in sensitivity, quantification, specificity and accuracy. The researchers also summarize the recent progress in nanopore direct RNA sequencing based detection technology and are optimistic that future advances will enable detection of different modifications simultaneously in the single molecules.
AbstractList To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.RNA modifications: Comparing detection toolsImproved methods for detecting chemical modifications of RNA will help to understand the epitranscriptome, the collection of RNA modifications in a cell. Chemical modifications to RNA molecules do not alter the sequence, but can nonetheless greatly affect RNA function. More than 170 RNA modifications have been discovered over the past 60 years and their effects are analogous to epigenetic modifications of DNA. Xiaoyu Li and co-workers at Zhejiang University School of Medicine in Hangzhou, China, reviewed existing tools for detecting RNA modifications. These tools, which are developed based on the inherent chemical properties of RNA modifications, vary in sensitivity, quantification, specificity and accuracy. The researchers also summarize the recent progress in nanopore direct RNA sequencing based detection technology and are optimistic that future advances will enable detection of different modifications simultaneously in the single molecules.
To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the 'epitranscriptome'. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.
To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome. RNA modifications: Comparing detection tools Improved methods for detecting chemical modifications of RNA will help to understand the epitranscriptome, the collection of RNA modifications in a cell. Chemical modifications to RNA molecules do not alter the sequence, but can nonetheless greatly affect RNA function. More than 170 RNA modifications have been discovered over the past 60 years and their effects are analogous to epigenetic modifications of DNA. Xiaoyu Li and co-workers at Zhejiang University School of Medicine in Hangzhou, China, reviewed existing tools for detecting RNA modifications. These tools, which are developed based on the inherent chemical properties of RNA modifications, vary in sensitivity, quantification, specificity and accuracy. The researchers also summarize the recent progress in nanopore direct RNA sequencing based detection technology and are optimistic that future advances will enable detection of different modifications simultaneously in the single molecules.
To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the ‘epitranscriptome’. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome. Improved methods for detecting chemical modifications of RNA will help to understand the epitranscriptome, the collection of RNA modifications in a cell. Chemical modifications to RNA molecules do not alter the sequence, but can nonetheless greatly affect RNA function. More than 170 RNA modifications have been discovered over the past 60 years and their effects are analogous to epigenetic modifications of DNA. Xiaoyu Li and co-workers at Zhejiang University School of Medicine in Hangzhou, China, reviewed existing tools for detecting RNA modifications. These tools, which are developed based on the inherent chemical properties of RNA modifications, vary in sensitivity, quantification, specificity and accuracy. The researchers also summarize the recent progress in nanopore direct RNA sequencing based detection technology and are optimistic that future advances will enable detection of different modifications simultaneously in the single molecules.
To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the 'epitranscriptome'. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the 'epitranscriptome'. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.
Author Li, Xiaoyu
Lu, Liang
Zhang, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine
– sequence: 2
  givenname: Liang
  surname: Lu
  fullname: Lu, Liang
  organization: Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Institute of Immunology, Zhejiang University School of Medicine
– sequence: 3
  givenname: Xiaoyu
  surname: Li
  fullname: Li, Xiaoyu
  email: xiaoyu_li@zju.edu.cn
  organization: Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36266445$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LAzEQhoMoflT_gAdZ8OLB1WSSzTYXodRPEAXRc9hmkzZlN6nJVvDfm1qt1YOnCeR5Z96Zdw9tOu80QocEnxFM--eRAJQ8xwA5xn0gOd5Au4AF5JwRurn23kF7MU4xhoKVbBvtUA6cM1bsotNL3WnVWe-yVCfON35sdcyMD9nTwyBrfW2NVdWCiPtoy1RN1AdftYderq-eh7f5_ePN3XBwn6uC4S5PpgAwjCpVEk4wN0LUYlRDAdQoTfvcQKkwV8wYIioiSgrAjal1oZTGBtMeulj2nc1Hra6Vdl2oGjkLtq3Cu_SVlb9_nJ3IsX-TgqfNSkgNTr4aBP8617GTrY1KN03ltJ9HmZiSMyqKxazjP-jUz4NL6yWKEsFYOlmijtYdrax8HzIBsARU8DEGbVYIwXKRllymJVNa8jMtuZjd_yNStvs8ddrKNv9L6VIa0xw31uHH9j-qD9g_p58
CitedBy_id crossref_primary_10_1007_s11033_025_10419_0
crossref_primary_10_3390_plants13070982
crossref_primary_10_1007_s10555_025_10254_6
crossref_primary_10_1098_rstb_2023_0381
crossref_primary_10_1186_s12870_024_05114_4
crossref_primary_10_1097_BS9_0000000000000206
crossref_primary_10_1093_bib_bbae688
crossref_primary_10_1186_s12870_024_05486_7
crossref_primary_10_1002_mco2_70135
crossref_primary_10_1093_hr_uhad284
crossref_primary_10_3390_cancers15041232
crossref_primary_10_1016_j_cclet_2023_108953
crossref_primary_10_1038_s41564_024_01638_5
crossref_primary_10_1016_j_ijbiomac_2025_140863
crossref_primary_10_3389_frnar_2024_1460913
crossref_primary_10_1038_s12276_022_00825_w
crossref_primary_10_1093_nar_gkae972
crossref_primary_10_1016_j_pharmthera_2024_108774
crossref_primary_10_1039_D4CB00215F
crossref_primary_10_1093_nar_gkad802
crossref_primary_10_1007_s40242_024_4165_7
crossref_primary_10_1038_s41596_024_00959_3
crossref_primary_10_3389_fimmu_2023_1286820
crossref_primary_10_3390_genes15080996
crossref_primary_10_1016_j_molcel_2024_12_014
crossref_primary_10_1002_bmb_21854
crossref_primary_10_3389_fimmu_2024_1512353
crossref_primary_10_1016_j_tips_2023_11_002
crossref_primary_10_1186_s11658_024_00564_y
crossref_primary_10_1371_journal_pone_0314655
crossref_primary_10_3233_JPD_230457
crossref_primary_10_1021_acs_analchem_4c05304
crossref_primary_10_1002_ijch_202300181
crossref_primary_10_1016_j_trac_2024_118112
crossref_primary_10_3390_v16060945
crossref_primary_10_1002_ibra_12183
crossref_primary_10_1007_s13320_024_0717_1
crossref_primary_10_1099_mgen_0_001327
crossref_primary_10_2174_0113892029288843240402042529
crossref_primary_10_1016_j_tcb_2024_10_001
crossref_primary_10_1360_TB_2024_0097
crossref_primary_10_1002_mas_21907
crossref_primary_10_1360_TB_2023_0800
crossref_primary_10_1038_s41580_023_00622_x
crossref_primary_10_3390_life14101230
crossref_primary_10_3390_mps7010007
crossref_primary_10_1152_ajpcell_00437_2022
crossref_primary_10_1016_j_celrep_2025_115471
crossref_primary_10_1038_s41467_024_48437_4
crossref_primary_10_1016_j_bmc_2025_118138
crossref_primary_10_1016_j_xplc_2024_101064
crossref_primary_10_1016_j_omtn_2024_102192
crossref_primary_10_1038_s12276_023_01038_5
crossref_primary_10_3389_fgene_2024_1408688
crossref_primary_10_1016_j_omtn_2024_102300
crossref_primary_10_1080_15476286_2024_2442856
crossref_primary_10_1016_j_jmb_2025_169099
crossref_primary_10_1021_acsinfecdis_4c00598
crossref_primary_10_1038_s12276_024_01186_2
crossref_primary_10_1002_1873_3468_15052
crossref_primary_10_1021_acs_analchem_4c01326
crossref_primary_10_3390_ijms25168823
crossref_primary_10_1186_s12943_024_02089_6
crossref_primary_10_3390_ijms242015161
crossref_primary_10_1016_j_preteyeres_2025_101335
crossref_primary_10_1089_ars_2023_0233
crossref_primary_10_1021_acschembio_3c00251
crossref_primary_10_1002_wrna_1790
Cites_doi 10.1093/nar/6.11.3443
10.1038/nature10165
10.1093/nar/gkaa113
10.1038/celldisc.2015.10
10.1016/j.molcel.2011.09.017
10.1016/S0959-4388(03)00062-X
10.4161/rna.7.2.11468
10.1038/s41422-019-0230-z
10.1101/2020.07.18.204362
10.1073/pnas.1817334116
10.1371/journal.pone.0110799
10.1042/EBC20200039
10.1093/nar/gkaa620
10.1038/nmeth.4110
10.1074/jbc.M114.593996
10.1007/978-1-4939-8808-2_20
10.1093/nar/gkaa1186
10.1080/15476286.2021.1978215
10.1093/nar/gkw810
10.1038/nmeth.4577
10.1038/s41598-018-30383-z
10.1038/nbt.2566
10.1261/rna.061549.117
10.1016/j.cell.2019.06.013
10.1038/s41467-020-19787-6
10.1038/s41467-019-13561-z
10.1038/s41576-020-00295-8
10.1371/journal.pgen.1001247
10.1074/jbc.M704572200
10.1261/rna.036806.112
10.1002/anie.201408362
10.1016/j.cell.2012.05.003
10.1016/j.molcel.2019.03.036
10.1038/352821a0
10.1038/s41592-019-0570-0
10.1128/jb.173.22.7213-7218.1991
10.1038/nature11112
10.1126/science.aac5253
10.1038/s41594-020-00526-w
10.1261/rna.361607
10.1038/s41587-022-01243-z
10.1016/j.tig.2021.09.001
10.1093/nar/26.7.1636
10.1093/nar/gkab1083
10.1126/sciadv.aax0250
10.1261/rna.2057810
10.1038/ng.872
10.1016/S0076-6879(07)25009-8
10.1073/pnas.202477199
10.1038/274087a0
10.1038/nature13802
10.1021/bi00190a008
10.1038/nmeth.3453
10.1038/nature24456
10.1002/wrna.1639
10.1038/nchembio.2040
10.1016/j.molcel.2017.10.019
10.1002/anie.201708276
10.1016/j.molcel.2021.07.036
10.1038/s41467-021-25105-5
10.1038/s41467-019-11375-7
10.1016/j.cbpa.2016.06.014
10.1038/nmeth.3508
10.1016/j.bbagrm.2018.11.009
10.1021/ja075520+
10.1111/mmi.12710
10.1038/s41586-020-2418-2
10.1039/D1CS00920F
10.1016/S0021-9258(19)50165-X
10.1016/j.molcel.2021.06.005
10.1038/nchembio.1836
10.1021/bi052579p
10.1093/nar/11.17.5903
10.1016/j.cbpa.2018.06.017
10.1016/j.omtn.2020.01.037
10.1038/nature16998
10.1007/s12013-013-9525-8
10.1002/anie.201700537
10.1038/cr.2017.55
10.1038/nmeth.3478
10.1002/anie.201810946
10.1126/science.aav0080
10.1007/978-1-4939-6807-7_3
10.1007/978-1-4939-0882-0_1
10.1016/0300-9084(96)88100-4
10.1016/j.molcel.2021.12.038
10.1093/nar/gkaa769
10.1038/nrm4040
10.1021/ja4105792
10.1038/nmeth.4294
10.1016/j.chembiol.2013.10.015
10.1261/rna.5070303
10.1016/bs.mie.2021.06.012
10.1371/journal.pone.0216709
10.15252/embj.201489282
10.1038/s41589-020-0525-x
10.1002/anie.201410647
10.1016/j.molcel.2019.03.040
10.1038/s41568-020-0253-2
10.1002/mas.21442
10.1093/nar/gkw200
10.1371/journal.pbio.1002557
10.1038/nchembio.1137
10.1016/S0076-6879(07)25003-7
10.1093/nar/gkp816
10.1021/bi00088a030
10.1038/s41467-019-11713-9
10.1186/s13059-020-02241-7
10.1016/S0968-0004(02)02109-6
10.1016/j.cell.2018.11.037
10.1038/s41598-019-40018-6
10.1002/anie.202007266
10.7554/eLife.49658
10.1038/mt.2008.200
10.1371/journal.pgen.1003602
10.1038/s41594-019-0218-x
10.1016/j.cell.2014.08.028
10.1016/j.molcel.2007.10.012
10.1002/anie.201710209
10.1038/s41556-019-0361-y
10.1261/rna.041178.113
10.1038/nchembio1212-1008a
10.1038/s41467-021-27393-3
10.1101/271916
10.1093/nar/23.24.5020
10.1038/278188a0
10.4161/15476286.2014.992280
10.1016/S0076-6879(09)68020-4
10.1080/10409238.2021.1887807
10.1016/j.bbagrm.2018.10.012
10.1038/s41587-021-00949-w
10.1101/gr.210666.116
10.1038/s41589-020-0526-9
10.1093/nar/gks144
10.1074/jbc.RA120.014226
10.1242/jcs.183723
10.1038/s41422-018-0040-8
10.1038/s41592-019-0550-4
10.1038/s41592-021-01280-7
10.1016/j.bbagrm.2018.10.008
10.1093/nar/gkw482
10.1038/s41587-021-01108-x
10.1126/science.286.5442.1146
10.1016/j.molcel.2018.06.001
10.1002/anie.201807942
10.1261/rna.056531.116
10.1016/j.celrep.2013.06.029
10.3390/genes10020084
10.1016/j.cell.2020.04.011
10.1093/nar/gkv1182
10.1073/pnas.1821754116
10.1093/nar/gkw1120
10.1021/jacs.7b13633
10.1016/j.molcel.2019.04.025
10.1261/rna.7110804
10.1038/nrg2915
10.1093/nar/gku390
10.1021/jacs.9b13406
10.1038/nrg.2016.169
10.1016/0300-9084(96)88118-1
10.1101/gr.124107.111
10.1016/j.ymeth.2016.03.019
10.1093/nar/gks1102
10.1016/j.molcel.2019.06.033
10.1039/C7CC07699A
10.1093/nar/gkw547
10.1093/nar/gks698
10.1093/nar/gkz736
10.1073/pnas.0914869107
10.1038/s41556-019-0319-0
10.1038/nbt.2122
10.1016/j.molcel.2021.11.003
10.1016/S0092-8674(02)00718-3
10.1016/j.cell.2018.10.030
10.1038/s41587-021-00915-6
10.1016/S1097-2765(03)00040-6
10.1093/nar/gku733
10.1039/C5SC02902C
10.1038/s41594-018-0030-z
10.1038/nmeth.1982
10.1101/gr.162537.113
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s12276-022-00821-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2092-6413
EndPage 1616
ExternalDocumentID PMC9636272
36266445
10_1038_s12276_022_00821_0
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation)
  grantid: LR22C060002
  funderid: https://doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 32171283
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: LR22C060002
– fundername: ;
  grantid: 32171283
GroupedDBID ---
0R~
29G
2WC
3V.
5-W
53G
5GY
7X7
87B
88E
8FE
8FH
8FI
8FJ
8JR
9ZL
AAJSJ
ABUWG
ACGFO
ACGFS
ACPRK
ACSMW
ACYCR
ADBBV
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
DIK
DU5
E3Z
EBLON
EBS
EF.
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
LK8
M1P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
TR2
UKHRP
W2D
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
AZQEC
COVID
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-2762202bac716106f99d9bd2523fce386f27c06c4ff19a1973226ffde5cce0f03
IEDL.DBID AAJSJ
ISSN 2092-6413
1226-3613
IngestDate Thu Aug 21 18:39:14 EDT 2025
Fri Jul 11 15:15:27 EDT 2025
Wed Aug 13 10:57:30 EDT 2025
Thu Apr 03 07:05:17 EDT 2025
Tue Jul 01 04:10:31 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Fri Feb 21 02:40:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-2762202bac716106f99d9bd2523fce386f27c06c4ff19a1973226ffde5cce0f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.nature.com/articles/s12276-022-00821-0
PMID 36266445
PQID 2731944474
PQPubID 2041975
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636272
proquest_miscellaneous_2727643950
proquest_journals_2731944474
pubmed_primary_36266445
crossref_primary_10_1038_s12276_022_00821_0
crossref_citationtrail_10_1038_s12276_022_00821_0
springer_journals_10_1038_s12276_022_00821_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: Seoul
PublicationTitle Experimental & molecular medicine
PublicationTitleAbbrev Exp Mol Med
PublicationTitleAlternate Exp Mol Med
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
References DavisDRStabilization of RNA stacking by pseudouridineNucleic Acids Res.199523502050261:CAS:528:DyaK28XlsVCktg%3D%3D855966030750810.1093/nar/23.24.5020
KarijolichJYuYTConverting nonsense codons into sense codons by targeted pseudouridylationNature20114743953981:CAS:528:DC%2BC3MXnsFOkt78%3D21677757338190810.1038/nature10165
CuiJLiuQSendincEShiYGregoryRINucleotide resolution profiling of m3C RNA modification by HAC-seqNucleic Acids Res.202149e271:CAS:528:DC%2BB3MXhvVGrtLvF3331382410.1093/nar/gkaa1186
WooHHChambersSKHuman ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cellsBiochim. Biophys. Acta Gene Regul. Mech.2019186235461:CAS:528:DC%2BC1cXitVaqt77N3034217610.1016/j.bbagrm.2018.10.008
JinGXuMZouMDuanSThe processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic reviewMol. Ther. Nucleic Acids20202013241:CAS:528:DC%2BB3cXhtFSksLzK32171170706819710.1016/j.omtn.2020.01.037
LiXBase-Resolution Mapping Reveals Distinct m(1)A Methylome in Nuclear- and Mitochondrial-Encoded TranscriptsMol. Cell2017689931005.e10091:CAS:528:DC%2BC2sXhslehsLvM29107537572268610.1016/j.molcel.2017.10.019
YangX5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C readerCell Res2017276066251:CAS:528:DC%2BC2sXmt1emtL4%3D28418038559420610.1038/cr.2017.55
KurataTRelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesisMol. Cell20218131603170.e31691:CAS:528:DC%2BB3MXhsVans77J3417418410.1016/j.molcel.2021.06.005
PengZComprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptomeNat. Biotechnol.2012302532601:CAS:528:DC%2BC38XitFaks7o%3D2232732410.1038/nbt.2122
HauenschildRThe reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependentNucleic Acids Res.201543995099641:CAS:528:DC%2BC28Xjt1Grsr4%3D263652424787781
ArnezJGSteitzTACrystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structureBiochemistry199433756075671:CAS:528:DyaK2cXkt12gurg%3D801162110.1021/bi00190a008
HeCTET2 chemically modifies tRNAs and regulates tRNA fragment levelsNat. Struct. Mol. Biol.20212862701:CAS:528:DC%2BB3cXisVSlu77E3323031910.1038/s41594-020-00526-w
ZhangZSystematic calibration of epitranscriptomic maps using a synthetic modification-free RNA libraryNat. Methods202118121312221:CAS:528:DC%2BB3MXitFGru7rI3459403410.1038/s41592-021-01280-7
FurlanMComputational methods for RNA modification detection from nanopore direct RNA sequencing dataRNA Biol.20211831401:CAS:528:DC%2BB3MXit1GgsbzN34559589867704110.1080/15476286.2021.1978215
HelmMMotorinYDetecting RNA modifications in the epitranscriptome: predict and validateNat. Rev. Genet.2017182752911:CAS:528:DC%2BC2sXivFWgtL0%3D2821663410.1038/nrg.2016.169
MarchandVAlkAniline-Seq: profiling of m(7) G and m(3) C RNA modifications at single nucleotide resolutionAngew. Chem. Int. Ed. Engl.20185716785167901:CAS:528:DC%2BC1cXit1OqtrjF3037096910.1002/anie.201810946
WulffBESakuraiMNishikuraKElucidating the inosinome: global approaches to adenosine-to-inosine RNA editingNat. Rev. Genet.20111281851:CAS:528:DC%2BC3MXmsVeltw%3D%3D2117377510.1038/nrg2915
Sas-ChenADynamic RNA acetylation revealed by quantitative cross-evolutionary mappingNature20205836386431:CAS:528:DC%2BB3cXhtF2ju7jN32555463813001410.1038/s41586-020-2418-2
ChenKHigh-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencingAngew. Chem. Int. Ed. Engl.201554158715901:CAS:528:DC%2BC2cXitVGls7rJ2549192210.1002/anie.201410647
ShuXA metabolic labeling method detects m(6)A transcriptome-wide at single base resolutionNat. Chem. Biol.2020168878951:CAS:528:DC%2BB3cXotVCjur0%3D3234150310.1038/s41589-020-0526-9
HarcourtEMEhrenschwenderTBatistaPJChangHYKoolETIdentification of a selective polymerase enables detection of N(6)-methyladenosine in RNAJ. Am. Chem. Soc.201313519079190821:CAS:528:DC%2BC3sXhvFegsbzJ24328136390580710.1021/ja4105792
ChenYSYangWLZhaoYLYangYGDynamic transcriptomic m(5) C and its regulatory role in RNA processingWiley Interdiscip. Rev. RNA202112e16391:CAS:528:DC%2BB3MXhvVGgsLrP3343832910.1002/wrna.1639
WernerSMachine learning of reverse transcription signatures of variegated polymerases allows mapping and discrimination of methylated purines in limited transcriptomesNucleic Acids Res.202048373437461:CAS:528:DC%2BB3cXisVKlurvM32095818714492110.1093/nar/gkaa113
KohCWQGohYTGohWSSAtlas of quantitative single-base-resolution N(6)-methyl-adenine methylomesNat. Commun.2019101:CAS:528:DC%2BC1MXitlynt7bE31822664690456110.1038/s41467-019-13561-z
BahnJHAccurate identification of A-to-I RNA editing in human by transcriptome sequencingGenome Res.2012221421501:CAS:528:DC%2BC38XlslOruw%3D%3D21960545324620110.1101/gr.124107.111
DaiQZhengGSchwartzMHClarkWCPanTSelective Enzymatic Demethylation of N(2),N(2) -Dimethylguanosine in RNA and Its Application in High-Throughput tRNA SequencingAngew. Chem. Int. Ed. Engl.201756501750201:CAS:528:DC%2BC2sXlsVahsb8%3D28371071549767710.1002/anie.201700537
AschenbrennerJMarxADirect and site-specific quantification of RNA 2’-O-methylation by PCR with an engineered DNA polymeraseNucleic Acids Res.201644349535021:CAS:528:DC%2BC28XhsFSisLfM27016740485699810.1093/nar/gkw200
FinetOTranscription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregationMol. Cell202182404419.e93479805710.1016/j.molcel.2021.11.003
LiXMaSYiCPseudouridine: the fifth RNA nucleotide with renewed interestsCurr. Opin. Chem. Biol.2016331081161:CAS:528:DC%2BC28XhsF2qt7nL2734815610.1016/j.cbpa.2016.06.014
WangYLEAD-m(6) A-seq for Locus-Specific Detection of N(6) -Methyladenosine and Quantification of Differential MethylationAngew. Chem. Int. Ed. Engl.2021608738801:CAS:528:DC%2BB3cXitlWnt77I3297091610.1002/anie.202007266
TegowskiMFlamandMNMeyerKD. scDART-seq reveals distinct m(6)A signatures and mRNA methylation heterogeneity in single cellsMol. Cell202282868878.e8101:CAS:528:DC%2BB38XhvFGrtLs%3D3508136510.1016/j.molcel.2021.12.038
KhoddamiVTranscriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolutionProc. Natl Acad. Sci.2019116678467891:CAS:528:DC%2BC1MXmsFeqsr8%3D30872485645272310.1073/pnas.1817334116
WangYXiaoYDongSYuQJiaGAntibody-free enzyme-assisted chemical approach for detection of N(6)-methyladenosineNat. Chem. Biol.2020168969031:CAS:528:DC%2BB3cXotVCjur8%3D3234150210.1038/s41589-020-0525-x
Garcia-CamposMADeciphering the “m(6)A code” via antibody-independent quantitative profilingCell2019178731747.e7161:CAS:528:DC%2BC1MXht1OjsrfE3125703210.1016/j.cell.2019.06.013
PuriPSystematic identification of tRNAome and its dynamics in Lactococcus lactisMol. Microbiol.2014939449561:CAS:528:DC%2BC2cXhsVCls7jO25040919415084610.1111/mmi.12710
SuzukiTSuzukiTA complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAsNucleic Acids Res.201442734673571:CAS:528:DC%2BC2cXhtVCjs7rM24831542406679710.1093/nar/gku390
LiuHAccurate detection of m(6)A RNA modifications in native RNA sequencesNat. Commun.20191031501426673400310.1038/s41467-019-11713-9
DominissiniDTopology of the human and mouse m6A RNA methylomes revealed by m6A-seqNature20124852012061:CAS:528:DC%2BC38XmvVequ7g%3D2257596010.1038/nature11112
HoernesTPNucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic codeNucleic Acids Res.2016448528621:CAS:528:DC%2BC28XhtF2ltLnN2657859810.1093/nar/gkv1182
MalbecLDynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translationCell Res.2019299279411:CAS:528:DC%2BC1MXhslOgtbnF31520064688951310.1038/s41422-019-0230-z
SeeburgPHHartnerJRegulation of ion channel/neurotransmitter receptor function by RNA editingCurr. Opin. Neurobiol.2003132792831:CAS:528:DC%2BD3sXlt1entL4%3D1285021110.1016/S0959-4388(03)00062-X
ImanishiMTsujiSSudaAFutakiSDetection of N(6)-methyladenosine based on the methyl-sensitivity of MazF RNA endonucleaseChem. Commun. (Camb.)20175312930129331:CAS:528:DC%2BC2sXhsl2ltbvJ10.1039/C7CC07699A
SharmaSA single N(1)-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymesSci. Rep.2018830093689608528410.1038/s41598-018-30383-z
KimDThe architecture of SARS-CoV-2 transcriptomeCell2020181914921 e9101:CAS:528:DC%2BB3cXotVCnt7k%3D32330414717950110.1016/j.cell.2020.04.011
KangBIIdentification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAsNucleic Acids Res.201745212421361:CAS:528:DC%2BC1cXivFynuro%3D2791373310.1093/nar/gkw1120
NewbyMIGreenbaumNLInvestigation of overhauser effects between pseudouridine and water protons in RNA helicesProc. Natl Acad. Sci. USA20029912697127021:CAS:528:DC%2BD38XnvFGhs70%3D1224234413052310.1073/pnas.202477199
QuHLMichotBBachellerieJPImproved methods for structure probing in large RNAs: a rapid ‘heterologous’ sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5’ terminal domain of eukaryotic 28S rRNANucleic Acids Res.198311590359201:CAS:528:DyaL3sXmtV2iu7Y%3D619348832632610.1093/nar/11.17.5903
XiaoYAn elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N(6) -methyladenosine modificationAngew. Chem. Int. Ed. Engl.20185715995160001:CAS:528:DC%2BC1cXitFeisbzO3034565110.1002/anie.201807942
LeeCKramerGGrahamDEApplingDRYeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferaseJ. Biol. Chem.200728227744277531:CAS:528:DC%2BD2sXhtVeju7jP1765209010.1074/jbc.M704572200
BakinAOfengandJFour newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of
L Ayadi (821_CR52) 2019; 1862
A Nagarajan (821_CR68) 2019; 1870
T Kurata (821_CR101) 2021; 81
D Incarnato (821_CR123) 2017; 45
M Sakurai (821_CR128) 2014; 24
H Shi (821_CR9) 2019; 74
A Castellanos-Rubio (821_CR90) 2019; 9
U Birkedal (821_CR142) 2015; 54
S Kellner (821_CR72) 2014; 42
CT Chan (821_CR44) 2010; 6
A Bakin (821_CR79) 1993; 32
D Herschlag (821_CR81) 2009; 468
K Thuring (821_CR73) 2016; 107
S Schurch (821_CR96) 2016; 35
H Grosjean (821_CR66) 2004; 265
BA Elliott (821_CR48) 2019; 10
T Suzuki (821_CR99) 2007; 425
D Arango (821_CR55) 2018; 175
C He (821_CR15) 2021; 28
X Li (821_CR42) 2017; 68
T Kiss (821_CR83) 2002; 109
K Miyauchi (821_CR108) 2013; 9
TM Carlile (821_CR134) 2014; 515
MC Owens (821_CR5) 2021; 81
821_CR141
Y Wang (821_CR168) 2021; 39
D Dominissini (821_CR59) 2018; 175
J Cui (821_CR149) 2021; 49
H Sun (821_CR159) 2021; 12
AE Cozen (821_CR117) 2015; 12
M Helm (821_CR45) 2014; 21
HL Qu (821_CR94) 1983; 11
T Suzuki (821_CR106) 2014; 42
LS Zhang (821_CR54) 2019; 74
H Grosjean (821_CR65) 2007; 425
B Datta (821_CR80) 1991; 352
Q Dai (821_CR120) 2017; 56
YS Ju (821_CR111) 2011; 43
K Jack (821_CR31) 2011; 44
S Hussain (821_CR160) 2013; 4
D Kim (821_CR181) 2020; 181
Q Dai (821_CR146) 2017; 14
M Saikia (821_CR43) 2010; 16
S Ito (821_CR57) 2014; 289
KD Meyer (821_CR162) 2019; 16
D Dominissini (821_CR151) 2012; 485
L Malbec (821_CR157) 2019; 29
J Stanley (821_CR61) 1978; 274
BE Wulff (821_CR22) 2011; 12
RW Schevitz (821_CR36) 1979; 278
M Jora (821_CR97) 2019; 1862
M Furlan (821_CR170) 2021; 18
P Jenjaroenpun (821_CR172) 2021; 49
Z Zhang (821_CR184) 2021; 18
821_CR1
A Leger (821_CR173) 2021; 12
G Zheng (821_CR118) 2015; 12
M Tegowski (821_CR163) 2022; 82
SD Knutson (821_CR164) 2020; 142
Y Yang (821_CR8) 2018; 28
BV Kumbhar (821_CR56) 2013; 66
P Ryvkin (821_CR115) 2013; 19
N Krogh (821_CR144) 2016; 44
AM Smith (821_CR176) 2019; 14
TH King (821_CR27) 2003; 11
EM Harcourt (821_CR89) 2013; 135
X Xiong (821_CR47) 2018; 45
Y Xiao (821_CR92) 2018; 57
C Peifer (821_CR46) 2013; 41
C Lee (821_CR78) 2007; 282
S Wang (821_CR91) 2016; 7
Z Lei (821_CR95) 2017; 56
821_CR124
G Nees (821_CR69) 2014; 1169
H Zhou (821_CR122) 2019; 16
S Delaunay (821_CR11) 2019; 21
HH Woo (821_CR76) 2019; 1862
X Li (821_CR153) 2016; 12
S Blanco (821_CR19) 2014; 33
O Finet (821_CR138) 2021; 82
D Dominissini (821_CR39) 2016; 530
J Aschenbrenner (821_CR125) 2018; 57
S Sharma (821_CR75) 2018; 8
H Shen (821_CR14) 2021; 296
WA Decatur (821_CR29) 2002; 27
Y Yoluc (821_CR70) 2021; 56
V Khoddami (821_CR131) 2019; 116
Y Wang (821_CR3) 2021; 50
K Kariko (821_CR33) 2008; 16
JH Bahn (821_CR112) 2012; 22
JP Ballesta (821_CR40) 1991; 173
Y Gao (821_CR179) 2021; 22
MI Newby (821_CR25) 2002; 99
P Puri (821_CR105) 2014; 93
S Lin (821_CR148) 2018; 71
G Keith (821_CR63) 1995; 77
ZW Dong (821_CR87) 2012; 40
D Mandal (821_CR107) 2010; 107
O Begik (821_CR169) 2021; 39
X Li (821_CR32) 2016; 33
T Waku (821_CR41) 2016; 129
TP Hoernes (821_CR50) 2016; 44
C Enroth (821_CR137) 2019; 47
RC Gupta (821_CR62) 1979; 6
BE Maden (821_CR82) 1995; 77
S Akichika (821_CR100) 2021; 658
M Safra (821_CR158) 2017; 551
PH Seeburg (821_CR21) 2003; 13
J Karijolich (821_CR24) 2015; 16
J Karijolich (821_CR35) 2011; 474
TP Hoernes (821_CR51) 2019; 10
GF Jia (821_CR67) 2012; 8
D Bar-Yaacov (821_CR74) 2016; 14
N Liu (821_CR85) 2013; 19
M Imanishi (821_CR165) 2017; 53
821_CR182
YK Wan (821_CR171) 2021; 38
AM Price (821_CR177) 2020; 11
G Jin (821_CR58) 2020; 20
L Pandolfini (821_CR53) 2019; 74
DE Eyler (821_CR34) 2019; 116
F Voigts-Hoffmann (821_CR38) 2007; 129
B Linder (821_CR155) 2015; 12
JE Jackman (821_CR77) 2003; 9
S Akichika (821_CR110) 2019; 363
KW Gaston (821_CR71) 2014; 11
R Guymon (821_CR104) 2007; 13
XH Liang (821_CR28) 2007; 28
A Baudin-Baillieu (821_CR30) 2009; 37
X Zhao (821_CR64) 2004; 10
WC Clark (821_CR119) 2016; 22
K Chen (821_CR156) 2015; 54
DR Davis (821_CR26) 1995; 23
M Helm (821_CR6) 2017; 18
I Barbieri (821_CR10) 2020; 20
X Yang (821_CR16) 2017; 27
DR Garalde (821_CR178) 2018; 15
YS Chen (821_CR12) 2021; 12
Z Peng (821_CR114) 2012; 30
JE Squires (821_CR129) 2012; 40
A Sas-Chen (821_CR139) 2020; 583
J Choi (821_CR49) 2018; 25
T Huang (821_CR132) 2019; 26
AF Lovejoy (821_CR135) 2014; 9
MA Garcia-Campos (821_CR166) 2019; 178
G Ramaswami (821_CR113) 2012; 9
V Marchand (821_CR150) 2020; 48
R Shanmugam (821_CR13) 2015; 1
X Shu (821_CR140) 2020; 16
MT Parker (821_CR174) 2020; 9
Y Wang (821_CR2) 2020; 64
S Werner (821_CR121) 2020; 48
T Hong (821_CR126) 2018; 140
C Legrand (821_CR133) 2017; 27
R Hauenschild (821_CR116) 2015; 43
X Chen (821_CR17) 2019; 21
KD Meyer (821_CR152) 2012; 149
B Delatte (821_CR154) 2016; 351
Y Wang (821_CR93) 2021; 60
Y Yang (821_CR18) 2019; 75
Y Zhu (821_CR145) 2017; 23
V Marchand (821_CR147) 2018; 57
CWQ Koh (821_CR183) 2019; 10
JD Bangs (821_CR102) 1992; 267
X Li (821_CR7) 2016; 14
BI Kang (821_CR109) 2017; 45
V Marchand (821_CR143) 2016; 44
Z Zhang (821_CR167) 2019; 5
PN Pratanwanich (821_CR180) 2021; 39
S Kellner (821_CR60) 2010; 7
J Aschenbrenner (821_CR88) 2016; 44
R Guymon (821_CR103) 2006; 45
X Li (821_CR86) 2015; 11
S Schwartz (821_CR136) 2014; 159
D Wiener (821_CR4) 2021; 22
AP Gerber (821_CR20) 1999; 286
M Helm (821_CR37) 1998; 26
S Edelheit (821_CR130) 2013; 9
BF Yuan (821_CR98) 2017; 1562
Y Wang (821_CR127) 2020; 16
JG Arnez (821_CR23) 1994; 33
H Liu (821_CR175) 2019; 10
YT Yu (821_CR84) 1997; 3
V Khoddami (821_CR161) 2013; 31
References_xml – reference: BlancoSAberrant methylation of tRNAs links cellular stress to neuro-developmental disordersEMBO J.201433202020391:CAS:528:DC%2BC2cXhvV2nsLnL25063673419577010.15252/embj.201489282
– reference: DattaBWeinerAMGenetic evidence for base pairing between U2 and U6 snRNA in mammalian mRNA splicingNature19913528218241:CAS:528:DyaK3MXlslKmsL4%3D183187910.1038/352821a0
– reference: SharmaSA single N(1)-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymesSci. Rep.2018830093689608528410.1038/s41598-018-30383-z
– reference: LiXXiongXYiCEpitranscriptome sequencing technologies: decoding RNA modificationsNat. Methods20161423312803262210.1038/nmeth.4110
– reference: ZhengGEfficient and quantitative high-throughput tRNA sequencingNat. Methods2015128358371:CAS:528:DC%2BC2MXht1entLbJ26214130462432610.1038/nmeth.3478
– reference: EdelheitSSchwartzSMumbachMRWurtzelOSorekRTranscriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAsPLoS Genet20139e10036021:CAS:528:DC%2BC3sXhtFGjsL3F23825970369483910.1371/journal.pgen.1003602
– reference: HarcourtEMEhrenschwenderTBatistaPJChangHYKoolETIdentification of a selective polymerase enables detection of N(6)-methyladenosine in RNAJ. Am. Chem. Soc.201313519079190821:CAS:528:DC%2BC3sXhvFegsbzJ24328136390580710.1021/ja4105792
– reference: YolucYInstrumental analysis of RNA modificationsCrit. Rev. Biochem. Mol. Biol.2021561782041:CAS:528:DC%2BB3MXkvFGjsr8%3D3361859810.1080/10409238.2021.1887807
– reference: DongZWRTL-P: a sensitive approach for detecting sites of 2’-O-methylation in RNA moleculesNucleic Acids Res.201240e1571:CAS:528:DC%2BC38Xhs1Wqt77M22833606348820910.1093/nar/gks698
– reference: ShuXA metabolic labeling method detects m(6)A transcriptome-wide at single base resolutionNat. Chem. Biol.2020168878951:CAS:528:DC%2BB3cXotVCjur0%3D3234150310.1038/s41589-020-0526-9
– reference: HoernesTPNucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic codeNucleic Acids Res.2016448528621:CAS:528:DC%2BC28XhtF2ltLnN2657859810.1093/nar/gkv1182
– reference: GuymonRPomerantzSCIsonJNCrainPFMcCloskeyJAPost-transcriptional modifications in the small subunit ribosomal RNA from Thermotoga maritima, including presence of a novel modified cytidineRNA2007133964031:CAS:528:DC%2BD2sXisFCks7Y%3D17255199180050810.1261/rna.361607
– reference: AkichikaSCap-specific terminal N (6)-methylation of RNA by an RNA polymerase II-associated methyltransferaseScience2019363eaav00801:CAS:528:DC%2BC1MXltVSmuw%3D%3D3046717810.1126/science.aav0080
– reference: ZhouHEvolution of a reverse transcriptase to map N(1)-methyladenosine in human messenger RNANat. Methods201916128112881:CAS:528:DC%2BC1MXhvVarsb3K31548705688468710.1038/s41592-019-0550-4
– reference: BarbieriIKouzaridesTRole of RNA modifications in cancerNat. Rev. Cancer2020203033221:CAS:528:DC%2BB3cXntlaqtbk%3D3230019510.1038/s41568-020-0253-2
– reference: SchwartzSTranscriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNACell20141591481621:CAS:528:DC%2BC2cXhs1Gmtb7O25219674418011810.1016/j.cell.2014.08.028
– reference: LiangXHLiuQFournierMJrRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activityMol. Cell2007289659771:CAS:528:DC%2BD1cXksFyisg%3D%3D1815889510.1016/j.molcel.2007.10.012
– reference: XiongXLiXYiCN(1)-methyladenosine methylome in messenger RNA and non-coding RNACurr. Opin. Chem. Biol.2018451791861:CAS:528:DC%2BC1cXht12lsbjO3000721310.1016/j.cbpa.2018.06.017
– reference: HelmMThe presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNANucleic Acids Res.199826163616431:CAS:528:DyaK1cXis1OjtLc%3D951253314747910.1093/nar/26.7.1636
– reference: ParkerMTNanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m(6)A modificationElife20209e496581:CAS:528:DC%2BB3cXhtlarsLzI31931956695999710.7554/eLife.49658
– reference: WulffBESakuraiMNishikuraKElucidating the inosinome: global approaches to adenosine-to-inosine RNA editingNat. Rev. Genet.20111281851:CAS:528:DC%2BC3MXmsVeltw%3D%3D2117377510.1038/nrg2915
– reference: ThuringKSchmidKKellerPHelmMAnalysis of RNA modifications by liquid chromatography-tandem mass spectrometryMethods201610748562702089110.1016/j.ymeth.2016.03.019
– reference: DominissiniDThe dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNANature20165304414461:CAS:528:DC%2BC28XisFKgsLc%3D26863196484201510.1038/nature16998
– reference: SuzukiTSuzukiTA complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAsNucleic Acids Res.201442734673571:CAS:528:DC%2BC2cXhtVCjs7rM24831542406679710.1093/nar/gku390
– reference: Bartoli, K. M., Schaening, C., Carlile, T. M. & Gilbert, W. V. Conserved Methyltransferase Spb1 Targets mRNAs for Regulated Modification with 2′-O-Methyl Ribose. Preprint at https://www.biorxiv.org/content/10.1101/271916v2 (2018).
– reference: FinetOTranscription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregationMol. Cell202182404419.e93479805710.1016/j.molcel.2021.11.003
– reference: SafraMThe m1A landscape on cytosolic and mitochondrial mRNA at single-base resolutionNature20175512512551:CAS:528:DC%2BC2sXhslajtr3F2907229710.1038/nature24456
– reference: Garcia-CamposMADeciphering the “m(6)A code” via antibody-independent quantitative profilingCell2019178731747.e7161:CAS:528:DC%2BC1MXht1OjsrfE3125703210.1016/j.cell.2019.06.013
– reference: DominissiniDTopology of the human and mouse m6A RNA methylomes revealed by m6A-seqNature20124852012061:CAS:528:DC%2BC38XmvVequ7g%3D2257596010.1038/nature11112
– reference: ShenHTET-mediated 5-methylcytosine oxidation in tRNA promotes translationJ. Biol. Chem.20212961000871:CAS:528:DC%2BB3MXjtlens7o%3D3319937510.1074/jbc.RA120.014226
– reference: LeeCKramerGGrahamDEApplingDRYeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferaseJ. Biol. Chem.200728227744277531:CAS:528:DC%2BD2sXhtVeju7jP1765209010.1074/jbc.M704572200
– reference: KarijolichJYuYTConverting nonsense codons into sense codons by targeted pseudouridylationNature20114743953981:CAS:528:DC%2BC3MXnsFOkt78%3D21677757338190810.1038/nature10165
– reference: NeesGKaufmannABauerSDetection of RNA modifications by HPLC analysis and competitive ELISAMethods Mol. Biol.201411693141:CAS:528:DC%2BC2MXotVahsbY%3D24957224712116410.1007/978-1-4939-0882-0_1
– reference: Bar-YaacovDMitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All VertebratesPLoS Biol.201614e100255727631568502522810.1371/journal.pbio.1002557
– reference: SaikiaMFuYPavon-EternodMHeCPanTGenome-wide analysis of N1-methyl-adenosine modification in human tRNAsRNA201016131713271:CAS:528:DC%2BC3cXosFCgt7w%3D20484468288568110.1261/rna.2057810
– reference: KissTSmall nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functionsCell20021091451481:CAS:528:DC%2BD38Xjt1ektLo%3D1200740010.1016/S0092-8674(02)00718-3
– reference: JoraMLobuePARossRLWilliamsBAddepalliBDetection of ribonucleoside modifications by liquid chromatography coupled with mass spectrometryBiochim. Biophys. Acta Gene Regul. Mech.201918622802901:CAS:528:DC%2BC1cXit1GgtL3L3041447010.1016/j.bbagrm.2018.10.012
– reference: LiXChemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptomeNat. Chem. Biol.2015115925971:CAS:528:DC%2BC2MXhtFeju7rM2607552110.1038/nchembio.1836
– reference: HongTPrecise Antibody-Independent m6A Identification via 4SedTTP-Involved and FTO-Assisted Strategy at Single-Nucleotide ResolutionJ. Am. Chem. Soc.2018140588658891:CAS:528:DC%2BC1cXjsF2gsrs%3D2948934710.1021/jacs.7b13633
– reference: GaraldeDRHighly parallel direct RNA sequencing on an array of nanoporesNat. Methods2018152012061:CAS:528:DC%2BC1cXovVCitg%3D%3D2933437910.1038/nmeth.4577
– reference: SunHm(6)Am-seq reveals the dynamic m(6)Am methylation in the human transcriptomeNat. Commun.2021121:CAS:528:DC%2BB3MXhvVSls7zF34362929834657110.1038/s41467-021-25105-5
– reference: KnutsonSDArthurRAJohnstonHRHeemstraJMSelective enrichment of A-to-I edited transcripts from cellular RNA using endonuclease VJ. Am. Chem. Soc.2020142524152511:CAS:528:DC%2BB3cXktlOntL0%3D32109061728635410.1021/jacs.9b13406
– reference: WangYLEAD-m(6) A-seq for Locus-Specific Detection of N(6) -Methyladenosine and Quantification of Differential MethylationAngew. Chem. Int. Ed. Engl.2021608738801:CAS:528:DC%2BB3cXitlWnt77I3297091610.1002/anie.202007266
– reference: NewbyMIGreenbaumNLInvestigation of overhauser effects between pseudouridine and water protons in RNA helicesProc. Natl Acad. Sci. USA20029912697127021:CAS:528:DC%2BD38XnvFGhs70%3D1224234413052310.1073/pnas.202477199
– reference: ZhangLSTranscriptome-wide Mapping of Internal N(7)-Methylguanosine Methylome in Mammalian mRNAMol. Cell20197413041316.e13081:CAS:528:DC%2BC1MXosVSgtbs%3D31031084658848310.1016/j.molcel.2019.03.036
– reference: KarijolichJYiCYuYTTranscriptome-wide dynamics of RNA pseudouridylationNat. Rev. Mol. Cell Biol.2015165815851:CAS:528:DC%2BC2MXhtlKntrnE26285676569466610.1038/nrm4040
– reference: GrosjeanHDroogmansLRooversMKeithGDetection of enzymatic activity of transfer RNA modification enzymes using radiolabeled tRNA substratesMethods Enzymol.2007425551011767307910.1016/S0076-6879(07)25003-7
– reference: CuiJLiuQSendincEShiYGregoryRINucleotide resolution profiling of m3C RNA modification by HAC-seqNucleic Acids Res.202149e271:CAS:528:DC%2BB3MXhvVGrtLvF3331382410.1093/nar/gkaa1186
– reference: XiaoYAn elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N(6) -methyladenosine modificationAngew. Chem. Int. Ed. Engl.20185715995160001:CAS:528:DC%2BC1cXitFeisbzO3034565110.1002/anie.201807942
– reference: YuYTShuMDSteitzJAA new method for detecting sites of 2’-O-methylation in RNA moleculesRNA199733243311:CAS:528:DyaK2sXhvVyktr0%3D90567691369484
– reference: LiXBase-Resolution Mapping Reveals Distinct m(1)A Methylome in Nuclear- and Mitochondrial-Encoded TranscriptsMol. Cell2017689931005.e10091:CAS:528:DC%2BC2sXhslehsLvM29107537572268610.1016/j.molcel.2017.10.019
– reference: DelatteBRNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosineScience20163512822851:CAS:528:DC%2BC28XlvVCjtQ%3D%3D2681638010.1126/science.aac5253
– reference: DecaturWAFournierMJrRNA modifications and ribosome functionTrends Biochem. Sci.2002273443511:CAS:528:DC%2BD38XltFahsbg%3D1211402310.1016/S0968-0004(02)02109-6
– reference: DavisDRStabilization of RNA stacking by pseudouridineNucleic Acids Res.199523502050261:CAS:528:DyaK28XlsVCktg%3D%3D855966030750810.1093/nar/23.24.5020
– reference: StanleyJVassilenkoSA different approach to RNA sequencingNature197827487891:CAS:528:DyaE1cXlvFalt78%3D66200210.1038/274087a0
– reference: KellnerSAbsolute and relative quantification of RNA modifications via biosynthetic isotopomersNucleic Acids Res201442e14225129236419138310.1093/nar/gku733
– reference: TegowskiMFlamandMNMeyerKD. scDART-seq reveals distinct m(6)A signatures and mRNA methylation heterogeneity in single cellsMol. Cell202282868878.e8101:CAS:528:DC%2BB38XhvFGrtLs%3D3508136510.1016/j.molcel.2021.12.038
– reference: MeyerKDDART-seq: an antibody-free method for global m(6)A detectionNat. Methods201916127512801:CAS:528:DC%2BC1MXhvVarsb3I31548708688468110.1038/s41592-019-0570-0
– reference: ZhangZSystematic calibration of epitranscriptomic maps using a synthetic modification-free RNA libraryNat. Methods202118121312221:CAS:528:DC%2BB3MXitFGru7rI3459403410.1038/s41592-021-01280-7
– reference: RamaswamiGAccurate identification of human Alu and non-Alu RNA editing sitesNat. Methods201295795811:CAS:528:DC%2BC38XkvF2js7Y%3D22484847366281110.1038/nmeth.1982
– reference: WernerSMachine learning of reverse transcription signatures of variegated polymerases allows mapping and discrimination of methylated purines in limited transcriptomesNucleic Acids Res.202048373437461:CAS:528:DC%2BB3cXisVKlurvM32095818714492110.1093/nar/gkaa113
– reference: HelmMAlfonzoJDPosttranscriptional RNA Modifications: playing metabolic games in a cell’s chemical LegolandChem. Biol.2014211741851:CAS:528:DC%2BC3sXhvFOgsLvK2431593410.1016/j.chembiol.2013.10.015
– reference: QuHLMichotBBachellerieJPImproved methods for structure probing in large RNAs: a rapid ‘heterologous’ sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5’ terminal domain of eukaryotic 28S rRNANucleic Acids Res.198311590359201:CAS:528:DyaL3sXmtV2iu7Y%3D619348832632610.1093/nar/11.17.5903
– reference: KingTHLiuBMcCullyRRFournierMJRibosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase centerMol. Cell2003114254351:CAS:528:DC%2BD3sXit1Wgs7Y%3D1262023010.1016/S1097-2765(03)00040-6
– reference: SchurchSCharacterization of nucleic acids by tandem mass spectrometry - The second decade (2004-2013): From DNA to RNA and modified sequencesMass Spectrom. Rev.2016354835232528846410.1002/mas.21442
– reference: RyvkinPHAMR: high-throughput annotation of modified ribonucleotidesRNA201319168416921:CAS:528:DC%2BC3sXhvVKjsLjF24149843388465310.1261/rna.036806.112
– reference: FurlanMComputational methods for RNA modification detection from nanopore direct RNA sequencing dataRNA Biol.20211831401:CAS:528:DC%2BB3MXit1GgsbzN34559589867704110.1080/15476286.2021.1978215
– reference: KeithGMobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatographyBiochimie1995771421441:CAS:528:DyaK2MXltFarsLo%3D759927110.1016/0300-9084(96)88118-1
– reference: DaiQNm-seq maps 2’-O-methylation sites in human mRNA with base precisionNat. Methods2017146956981:CAS:528:DC%2BC2sXnslKkt7g%3D28504680571242810.1038/nmeth.4294
– reference: AyadiLGalvaninAPichotFMarchandVMotorinYRNA ribose methylation (2’-O-methylation): Occurrence, biosynthesis and biological functionsBiochim. Biophys. Acta Gene Regul. Mech.201918622532691:CAS:528:DC%2BC1cXis1SrtrnP3057212310.1016/j.bbagrm.2018.11.009
– reference: LeiZYiCA Radiolabeling-Free, qPCR-Based Method for Locus-Specific Pseudouridine DetectionAngew. Chem. Int. Ed. Engl.20175614878148821:CAS:528:DC%2BC2sXhs1yjsb3N2896074710.1002/anie.201708276
– reference: LegrandCStatistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAsGenome Res.201727158915961:CAS:528:DC%2BC2sXhsVeqsLnF28684555558071710.1101/gr.210666.116
– reference: JackKrRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cellsMol. Cell2011446606661:CAS:528:DC%2BC3MXhsV2ku7nN22099312322287310.1016/j.molcel.2011.09.017
– reference: WienerDSchwartzSThe epitranscriptome beyond m(6)ANat. Rev. Genet.2021221191311:CAS:528:DC%2BB3cXitlCis7%2FK3318836110.1038/s41576-020-00295-8
– reference: GrosjeanHKeithGDroogmansLDetection and quantification of modified nucleotides in RNA using thin-layer chromatographyMethods Mol. Biol.20042653573911:CAS:528:DC%2BD2cXlvVGrsL4%3D15103084
– reference: GuymonRPomerantzSCCrainPFMcCloskeyJAInfluence of phylogeny on posttranscriptional modification of rRNA in thermophilic prokaryotes: the complete modification map of 16S rRNA of Thermus thermophilusBiochemistry200645488848991:CAS:528:DC%2BD28XivVChtLc%3D1660525610.1021/bi052579p
– reference: Sas-ChenADynamic RNA acetylation revealed by quantitative cross-evolutionary mappingNature20205836386431:CAS:528:DC%2BB3cXhtF2ju7jN32555463813001410.1038/s41586-020-2418-2
– reference: AschenbrennerJMarxADirect and site-specific quantification of RNA 2’-O-methylation by PCR with an engineered DNA polymeraseNucleic Acids Res.201644349535021:CAS:528:DC%2BC28XhsFSisLfM27016740485699810.1093/nar/gkw200
– reference: KellnerSBurhenneJHelmMDetection of RNA modificationsRNA Biol.201072372471:CAS:528:DC%2BC3cXhtlCqtrrI2022429310.4161/rna.7.2.11468
– reference: KohCWQGohYTGohWSSAtlas of quantitative single-base-resolution N(6)-methyl-adenine methylomesNat. Commun.2019101:CAS:528:DC%2BC1MXitlynt7bE31822664690456110.1038/s41467-019-13561-z
– reference: KangBIIdentification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAsNucleic Acids Res.201745212421361:CAS:528:DC%2BC1cXivFynuro%3D2791373310.1093/nar/gkw1120
– reference: SquiresJEWidespread occurrence of 5-methylcytosine in human coding and non-coding RNANucleic Acids Res.201240502350331:CAS:528:DC%2BC38XotlCmsLY%3D22344696336718510.1093/nar/gks144
– reference: CarlileTMPseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cellsNature20145151431461:CAS:528:DC%2BC2cXitFamsrvK25192136422464210.1038/nature13802
– reference: MeyerKDComprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codonsCell2012149163516461:CAS:528:DC%2BC38Xntlyrs7s%3D22608085338339610.1016/j.cell.2012.05.003
– reference: BallestaJPCundliffeESite-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactumJ. Bacteriol.1991173721372181:CAS:528:DyaK38Xjs1eqsQ%3D%3D165788420922710.1128/jb.173.22.7213-7218.1991
– reference: HeCTET2 chemically modifies tRNAs and regulates tRNA fragment levelsNat. Struct. Mol. Biol.20212862701:CAS:528:DC%2BB3cXisVSlu77E3323031910.1038/s41594-020-00526-w
– reference: BakinAOfengandJFour newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing techniqueBiochemistry199332975497621:CAS:528:DyaK3sXlsFaqtrk%3D837377810.1021/bi00088a030
– reference: HauenschildRThe reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependentNucleic Acids Res.201543995099641:CAS:528:DC%2BC28Xjt1Grsr4%3D263652424787781
– reference: OwensMCZhangCLiuKFRecent technical advances in the study of nucleic acid modificationsMol. Cell202181411641361:CAS:528:DC%2BB3MXhvFGlurvI34480848910965510.1016/j.molcel.2021.07.036
– reference: HelmMMotorinYDetecting RNA modifications in the epitranscriptome: predict and validateNat. Rev. Genet.2017182752911:CAS:528:DC%2BC2sXivFWgtL0%3D2821663410.1038/nrg.2016.169
– reference: NagarajanAJanostiakRWajapeyeeNDot Blot Analysis for Measuring Global N(6)-Methyladenosine Modification of RNAMethods Mol. Biol.201918702632711:CAS:528:DC%2BC1MXitV2jtr3M3053956210.1007/978-1-4939-8808-2_20
– reference: Castellanos-RubioAA novel RT-QPCR-based assay for the relative quantification of residue specific m6A RNA methylationSci. Rep.2019930862814641450610.1038/s41598-019-40018-6
– reference: ZhuYPirnieSPCarmichaelGGHigh-throughput and site-specific identification of 2’-O-methylation sites using ribose oxidation sequencing (RibOxi-seq)RNA201723130313141:CAS:528:DC%2BC2sXhvFOltr3F28495677551307410.1261/rna.061549.117
– reference: MarchandVHydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNANucleic Acids Res.202048e1101:CAS:528:DC%2BB3MXkt1Gmt78%3D32976574764173310.1093/nar/gkaa769
– reference: ChenX5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAsNat. Cell Biol.2019219789901:CAS:528:DC%2BC1MXhsVKnsbvK3135896910.1038/s41556-019-0361-y
– reference: DelaunaySFryeMRNA modifications regulating cell fate in cancerNat. Cell Biol.2019215525591:CAS:528:DC%2BC1MXptFSrsb4%3D3104877010.1038/s41556-019-0319-0
– reference: KhoddamiVTranscriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolutionProc. Natl Acad. Sci.2019116678467891:CAS:528:DC%2BC1MXmsFeqsr8%3D30872485645272310.1073/pnas.1817334116
– reference: KumbharBVKambleADSonawaneKDConformational preferences of modified nucleoside N(4)-acetylcytidine, ac4C occur at “wobble” 34th position in the anticodon loop of tRNACell Biochem. Biophys.2013667978161:CAS:528:DC%2BC3sXhtF2msL7F2340830810.1007/s12013-013-9525-8
– reference: SmithAMJainMMulroneyLGaraldeDRAkesonMReading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencingPLoS One201914e02167091:CAS:528:DC%2BC1MXhtV2jt7vF31095620652200410.1371/journal.pone.0216709
– reference: PandolfiniLMETTL1 Promotes let-7 MicroRNA Processing via m7G MethylationMol. Cell20197412781290.e12791:CAS:528:DC%2BC1MXosVSgtb0%3D31031083659100210.1016/j.molcel.2019.03.040
– reference: Hu, L. et al. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 1–10 (2022).
– reference: ChoiJ2’-O-methylation in mRNA disrupts tRNA decoding during translation elongationNat. Struct. Mol. Biol.2018252082161:CAS:528:DC%2BC1cXhtlOjsr%2FI29459784584000210.1038/s41594-018-0030-z
– reference: MarchandVBlanloeil-OilloFHelmMMotorinYIllumina-based RiboMethSeq approach for mapping of 2’-O-Me residues in RNANucleic Acids Res.201644e13527302133502749810.1093/nar/gkw547
– reference: WanYKHendraCPratanwanichPNGokeJBeyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal dataTrends Genet2021382462573471142510.1016/j.tig.2021.09.001
– reference: WangSN(6)-Methyladenine hinders RNA- and DNA-directed DNA synthesis: application in human rRNA methylation analysis of clinical specimensChem. Sci.20167144014461:CAS:528:DC%2BC2MXhvVChtr%2FN2991090210.1039/C5SC02902C
– reference: Baudin-BaillieuANucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracyNucleic Acids Res.200937766576771:CAS:528:DC%2BD1MXhsFyktr%2FK19820108279417610.1093/nar/gkp816
– reference: JinGXuMZouMDuanSThe processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic reviewMol. Ther. Nucleic Acids20202013241:CAS:528:DC%2BB3cXhtFSksLzK32171170706819710.1016/j.omtn.2020.01.037
– reference: PuriPSystematic identification of tRNAome and its dynamics in Lactococcus lactisMol. Microbiol.2014939449561:CAS:528:DC%2BC2cXhsVCls7jO25040919415084610.1111/mmi.12710
– reference: ShanmugamRCytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequencesCell Disco.20151150101:CAS:528:DC%2BC28XmtVSms7w%3D10.1038/celldisc.2015.10
– reference: MiyauchiKKimuraSSuzukiTA cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodificationNat. Chem. Biol.201391051111:CAS:528:DC%2BC38XhvVektLzJ2324225510.1038/nchembio.1137
– reference: GaoYQuantitative profiling of N(6)-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using nanopore direct RNA sequencingGenome Biol.2021221:CAS:528:DC%2BB3MXosVOqsA%3D%3D33413586779183110.1186/s13059-020-02241-7
– reference: WangYJiaGDetection methods of epitranscriptomic mark N6-methyladenosineEssays Biochem.2020649679791:CAS:528:DC%2BB3MXhvVCmsLg%3D3328495310.1042/EBC20200039
– reference: EnrothCDetection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencingNucleic Acids Res.201947e1261:CAS:528:DC%2BB3cXhtVGru7fJ31504776684734110.1093/nar/gkz736
– reference: LiXMaSYiCPseudouridine: the fifth RNA nucleotide with renewed interestsCurr. Opin. Chem. Biol.2016331081161:CAS:528:DC%2BC28XhsF2qt7nL2734815610.1016/j.cbpa.2016.06.014
– reference: GastonKWLimbachPAThe identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometryRNA Biol.201411156815852561640810.4161/15476286.2014.992280
– reference: MarchandVAlkAniline-Seq: profiling of m(7) G and m(3) C RNA modifications at single nucleotide resolutionAngew. Chem. Int. Ed. Engl.20185716785167901:CAS:528:DC%2BC1cXit1OqtrjF3037096910.1002/anie.201810946
– reference: WangYZhangXLiuHZhouXChemical methods and advanced sequencing technologies for deciphering mRNA modificationsChem. Soc. Rev.20215013481134971:CAS:528:DC%2BB3MXisFWhu77P3479205010.1039/D1CS00920F
– reference: ElliottBAModification of messenger RNA by 2’-O-methylation regulates gene expression in vivoNat. Commun.20191031363086666745710.1038/s41467-019-11375-7
– reference: SuzukiTIkeuchiYNomaASuzukiTSakaguchiYMass spectrometric identification and characterization of RNA-modifying enzymesMethods Enzymol.20074252112291:CAS:528:DC%2BD1cXhsVCisrk%3D1767308510.1016/S0076-6879(07)25009-8
– reference: LegerARNA modifications detection by comparative Nanopore direct RNA sequencingNat. Commun.2021121:CAS:528:DC%2BB3MXislars7bP34893601866494410.1038/s41467-021-27393-3
– reference: LinSMettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiationMol. Cell201871244255.e2451:CAS:528:DC%2BC1cXht1yit7vK29983320608658010.1016/j.molcel.2018.06.001
– reference: JackmanJEMontangeRKMalikHSPhizickyEMIdentification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9RNA200395745851:CAS:528:DC%2BD3sXjt12msrw%3D12702816137042310.1261/rna.5070303
– reference: KhoddamiVCairnsBRIdentification of direct targets and modified bases of RNA cytosine methyltransferasesNat. Biotechnol.2013314584641:CAS:528:DC%2BC3sXmt1SktLs%3D23604283379158710.1038/nbt.2566
– reference: IncarnatoDHigh-throughput single-base resolution mapping of RNA 2-O-methylated residuesNucleic Acids Res.201745143314411:CAS:528:DC%2BC1cXivFajs7o%3D2818032410.1093/nar/gkw810
– reference: YangX5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C readerCell Res2017276066251:CAS:528:DC%2BC2sXmt1emtL4%3D28418038559420610.1038/cr.2017.55
– reference: EylerDEPseudouridinylation of mRNA coding sequences alters translationProc. Natl Acad. Sci. USA201911623068230741:CAS:528:DC%2BC1MXitFGqsr%2FE31672910685933710.1073/pnas.1821754116
– reference: PeiferCYeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNANucleic Acids Res.201341115111631:CAS:528:DC%2BC3sXhtFyjtr4%3D2318076410.1093/nar/gks1102
– reference: YangYRNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decayMol. Cell2019751188-1202.e11111:CAS:528:DC%2BC1MXhsFGjs7fJ3139934510.1016/j.molcel.2019.06.033
– reference: HoernesTPEukaryotic Translation Elongation is Modulated by Single Natural Nucleotide Derivatives in the Coding Sequences of mRNAsGenes (Basel)201910841:CAS:528:DC%2BC1MXht1ajtL7L10.3390/genes10020084
– reference: BangsJDCrainPFHashizumeTMcCloskeyJABoothroydJCMass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosidesJ. Biol. Chem.1992267980598151:CAS:528:DyaK38XksVaru74%3D134960510.1016/S0021-9258(19)50165-X
– reference: JiaGFN6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO (vol 7, pg 885, 2011)Nat. Chem. Biol.201281008100810.1038/nchembio1212-1008a
– reference: PengZComprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptomeNat. Biotechnol.2012302532601:CAS:528:DC%2BC38XitFaks7o%3D2232732410.1038/nbt.2122
– reference: WangYXiaoYDongSYuQJiaGAntibody-free enzyme-assisted chemical approach for detection of N(6)-methyladenosineNat. Chem. Biol.2020168969031:CAS:528:DC%2BB3cXotVCjur8%3D3234150210.1038/s41589-020-0525-x
– reference: ArangoDAcetylation of Cytidine in mRNA Promotes Translation EfficiencyCell201817518721886.e18241:CAS:528:DC%2BC1cXit1Wlt77K30449621629523310.1016/j.cell.2018.10.030
– reference: AkichikaSSuzukiTSuzukiTMass spectrometric analysis of mRNA 5’ terminal modificationsMethods Enzymol.20216584074181:CAS:528:DC%2BB38Xls1Srt74%3D3451795610.1016/bs.mie.2021.06.012
– reference: LinderBSingle-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptomeNat. Methods2015127677721:CAS:528:DC%2BC2MXhtFWqur%2FE26121403448740910.1038/nmeth.3453
– reference: ChenYSYangWLZhaoYLYangYGDynamic transcriptomic m(5) C and its regulatory role in RNA processingWiley Interdiscip. Rev. RNA202112e16391:CAS:528:DC%2BB3MXhvVGgsLrP3343832910.1002/wrna.1639
– reference: KroghNProfiling of 2’-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneityNucleic Acids Res.201644788478951:CAS:528:DC%2BC28XhvVSlur7O27257078502748210.1093/nar/gkw482
– reference: JuYSExtensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individualsNat. Genet.2011437457521:CAS:528:DC%2BC3MXotlClt7c%3D2172531010.1038/ng.872
– reference: SeeburgPHHartnerJRegulation of ion channel/neurotransmitter receptor function by RNA editingCurr. Opin. Neurobiol.2003132792831:CAS:528:DC%2BD3sXlt1entL4%3D1285021110.1016/S0959-4388(03)00062-X
– reference: KarikoKIncorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stabilityMol. Ther.200816183318401:CAS:528:DC%2BD1cXht12ls7vK1879745310.1038/mt.2008.200
– reference: ZhaoXYuYTDetection and quantitation of RNA base modificationsRNA20041099610021:CAS:528:DC%2BD2cXks1Clsb4%3D15146083137059110.1261/rna.7110804
– reference: LiuNProbing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNARNA201319184818561:CAS:528:DC%2BC3sXhvVKjsLbI24141618388465610.1261/rna.041178.113
– reference: YuanBFLiquid chromatography-mass spectrometry for analysis of RNA adenosine methylationMethods Mol. Biol.2017156233421:CAS:528:DC%2BC1cXhtlaqu7zL2834945210.1007/978-1-4939-6807-7_3
– reference: DaiQZhengGSchwartzMHClarkWCPanTSelective Enzymatic Demethylation of N(2),N(2) -Dimethylguanosine in RNA and Its Application in High-Throughput tRNA SequencingAngew. Chem. Int. Ed. Engl.201756501750201:CAS:528:DC%2BC2sXlsVahsb8%3D28371071549767710.1002/anie.201700537
– reference: DominissiniDRechaviGN(4)-acetylation of Cytidine in mRNA by NAT10 Regulates Stability and TranslationCell2018175172517271:CAS:528:DC%2BC1cXisFWqtrjO3055078310.1016/j.cell.2018.11.037
– reference: ArnezJGSteitzTACrystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structureBiochemistry199433756075671:CAS:528:DyaK2cXkt12gurg%3D801162110.1021/bi00190a008
– reference: GerberAPKellerWAn adenosine deaminase that generates inosine at the wobble position of tRNAsScience1999286114611491:CAS:528:DyaK1MXnt1Kkt7g%3D1055005010.1126/science.286.5442.1146
– reference: BirkedalUProfiling of ribose methylations in RNA by high-throughput sequencingAngew. Chem. Int. Ed. Engl.2015544514551:CAS:528:DC%2BC2cXhvFKmtLnK25417815
– reference: Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res.50, D231–D235 (2022).
– reference: MandalDAgmatidine, a modified cytidine in the anticodon of archaeal tRNA(Ile), base pairs with adenosine but not with guanosineProc. Natl Acad. Sci. USA2010107287228771:CAS:528:DC%2BC3cXis1Clt78%3D20133752284032310.1073/pnas.0914869107
– reference: ItoSA single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiaeJ. Biol. Chem.201428926201262121:CAS:528:DC%2BC2cXhsFOqtrnL25086048417621110.1074/jbc.M114.593996
– reference: ZhangZSingle-base mapping of m(6)A by an antibody-independent methodSci. Adv.20195eaax02501:CAS:528:DC%2BB3cXhtlaku7%2FM31281898660922010.1126/sciadv.aax0250
– reference: YangYHsuPJChenYSYangYGDynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolismCell Res2018286166241:CAS:528:DC%2BC1cXht1ektb%2FO29789545599378610.1038/s41422-018-0040-8
– reference: KurataTRelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesisMol. Cell20218131603170.e31691:CAS:528:DC%2BB3MXhsVans77J3417418410.1016/j.molcel.2021.06.005
– reference: CozenAEARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragmentsNat. Methods2015128798841:CAS:528:DC%2BC2MXht12gtbvP26237225455311110.1038/nmeth.3508
– reference: HerschlagDBiophysical, chemical, and functional probes of RNA structure, interactions and folding: Part A. PrefaceMethods Enzymol.2009468xv1992592110.1016/S0076-6879(09)68020-4
– reference: SchevitzRWCrystal structure of a eukaryotic initiator tRNANature19792781881901:CAS:528:DyaE1MXltFyrsbs%3D36865610.1038/278188a0
– reference: ChanCTA quantitative systems approach reveals dynamic control of tRNA modifications during cellular stressPLoS Genet20106e10012471:CAS:528:DC%2BC3MXjtlWmtA%3D%3D21187895300298110.1371/journal.pgen.1001247
– reference: LiuHAccurate detection of m(6)A RNA modifications in native RNA sequencesNat. Commun.20191031501426673400310.1038/s41467-019-11713-9
– reference: WooHHChambersSKHuman ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cellsBiochim. Biophys. Acta Gene Regul. Mech.2019186235461:CAS:528:DC%2BC1cXitVaqt77N3034217610.1016/j.bbagrm.2018.10.008
– reference: MalbecLDynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translationCell Res.2019299279411:CAS:528:DC%2BC1MXhslOgtbnF31520064688951310.1038/s41422-019-0230-z
– reference: ClarkWCEvansMEDominissiniDZhengGPanTtRNA base methylation identification and quantification via high-throughput sequencingRNA201622177117841:CAS:528:DC%2BC28XitVCntLvI27613580506662910.1261/rna.056531.116
– reference: PratanwanichPNIdentification of differential RNA modifications from nanopore direct RNA sequencing with xPoreNat. Biotechnol.202139139414021:CAS:528:DC%2BB3MXhsF2gs7rP3428232510.1038/s41587-021-00949-w
– reference: BahnJHAccurate identification of A-to-I RNA editing in human by transcriptome sequencingGenome Res.2012221421501:CAS:528:DC%2BC38XlslOruw%3D%3D21960545324620110.1101/gr.124107.111
– reference: WangYZhaoYBollasAWangYAuKFNanopore sequencing technology, bioinformatics and applicationsNat. Biotechnol.202139134813651:CAS:528:DC%2BB3MXisVChu7bK34750572898825110.1038/s41587-021-01108-x
– reference: ShiHWeiJHeCWhere, when, and how: context-dependent functions of RNA methylation writers, readers, and erasersMol. Cell2019746406501:CAS:528:DC%2BC1MXpvVyktLk%3D31100245652735510.1016/j.molcel.2019.04.025
– reference: GuptaRCRanderathKRapid print-readout technique for sequencing of RNA’s containing modified nucleotidesNucleic Acids Res19796344334581:CAS:528:DyaE1MXlslWjtL8%3D38627332794710.1093/nar/6.11.3443
– reference: Voigts-HoffmannFA methyl group controls conformational equilibrium in human mitochondrial tRNA(Lys)J. Am. Chem. Soc.200712913382133831:CAS:528:DC%2BD2sXhtFKqtr7K1794164010.1021/ja075520+
– reference: LiXTranscriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylomeNat. Chem. Biol.2016123113161:CAS:528:DC%2BC28XitlCqt7w%3D2686341010.1038/nchembio.2040
– reference: HussainSNSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAsCell Rep.201342552611:CAS:528:DC%2BC3sXhtFCkt7%2FF23871666373005610.1016/j.celrep.2013.06.029
– reference: PriceAMDirect RNA sequencing reveals m(6)A modifications on adenovirus RNA are necessary for efficient splicingNat. Commun.2020111:CAS:528:DC%2BB3cXisV2gur%2FP33243990769199410.1038/s41467-020-19787-6
– reference: KimDThe architecture of SARS-CoV-2 transcriptomeCell2020181914921 e9101:CAS:528:DC%2BB3cXotVCnt7k%3D32330414717950110.1016/j.cell.2020.04.011
– reference: Miladi, M. et al. The landscape of SARS-CoV-2 RNA modifications. Preprint at https://www.biorxiv.org/content/10.1101/2020.07.18.204362v1 (2020).
– reference: WakuTNML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent mannerJ. Cell Sci.2016129238223931:CAS:528:DC%2BC28XhslaqtbvO27149924
– reference: HuangTChenWLiuJGuNZhangRGenome-wide identification of mRNA 5-methylcytosine in mammalsNat. Struct. Mol. Biol.2019263803881:CAS:528:DC%2BC1MXptFekuro%3D3106152410.1038/s41594-019-0218-x
– reference: AschenbrennerJEngineering of a DNA Polymerase for Direct m(6) A SequencingAngew. Chem. Int. Ed. Engl.2018574174211:CAS:528:DC%2BC2sXhvFegu7vJ2911574410.1002/anie.201710209
– reference: ChenKHigh-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencingAngew. Chem. Int. Ed. Engl.201554158715901:CAS:528:DC%2BC2cXitVGls7rJ2549192210.1002/anie.201410647
– reference: JenjaroenpunPDecoding the epitranscriptional landscape from native RNA sequencesNucleic Acids Res.202149e71:CAS:528:DC%2BB3MXhvVekur%2FP3271062210.1093/nar/gkaa620
– reference: BegikOQuantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencingNat. Biotechnol.202139127812911:CAS:528:DC%2BB3MXhtV2gsbvN3398654610.1038/s41587-021-00915-6
– reference: SakuraiMA biochemical landscape of A-to-I RNA editing in the human brain transcriptomeGenome Res.2014245225341:CAS:528:DC%2BC2cXkvVyqsLk%3D24407955394111610.1101/gr.162537.113
– reference: ImanishiMTsujiSSudaAFutakiSDetection of N(6)-methyladenosine based on the methyl-sensitivity of MazF RNA endonucleaseChem. Commun. (Camb.)20175312930129331:CAS:528:DC%2BC2sXhsl2ltbvJ10.1039/C7CC07699A
– reference: MadenBECorbettMEHeeneyPAPughKAjuhPMClassical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNABiochimie19957722291:CAS:528:DyaK2MXltFarsrg%3D759927310.1016/0300-9084(96)88100-4
– reference: LovejoyAFRiordanDPBrownPOTranscriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiaePLoS One20149e11079925353621421299310.1371/journal.pone.0110799
– volume: 3
  start-page: 324
  year: 1997
  ident: 821_CR84
  publication-title: RNA
– volume: 6
  start-page: 3443
  year: 1979
  ident: 821_CR62
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/6.11.3443
– volume: 474
  start-page: 395
  year: 2011
  ident: 821_CR35
  publication-title: Nature
  doi: 10.1038/nature10165
– volume: 48
  start-page: 3734
  year: 2020
  ident: 821_CR121
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa113
– volume: 1
  start-page: 15010
  year: 2015
  ident: 821_CR13
  publication-title: Cell Disco.
  doi: 10.1038/celldisc.2015.10
– volume: 44
  start-page: 660
  year: 2011
  ident: 821_CR31
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.09.017
– volume: 13
  start-page: 279
  year: 2003
  ident: 821_CR21
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(03)00062-X
– volume: 7
  start-page: 237
  year: 2010
  ident: 821_CR60
  publication-title: RNA Biol.
  doi: 10.4161/rna.7.2.11468
– volume: 29
  start-page: 927
  year: 2019
  ident: 821_CR157
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0230-z
– ident: 821_CR182
  doi: 10.1101/2020.07.18.204362
– volume: 116
  start-page: 6784
  year: 2019
  ident: 821_CR131
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1817334116
– volume: 9
  start-page: e110799
  year: 2014
  ident: 821_CR135
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0110799
– volume: 64
  start-page: 967
  year: 2020
  ident: 821_CR2
  publication-title: Essays Biochem.
  doi: 10.1042/EBC20200039
– volume: 49
  start-page: e7
  year: 2021
  ident: 821_CR172
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa620
– volume: 14
  start-page: 23
  year: 2016
  ident: 821_CR7
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4110
– volume: 289
  start-page: 26201
  year: 2014
  ident: 821_CR57
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.593996
– volume: 1870
  start-page: 263
  year: 2019
  ident: 821_CR68
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8808-2_20
– volume: 49
  start-page: e27
  year: 2021
  ident: 821_CR149
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1186
– volume: 18
  start-page: 31
  year: 2021
  ident: 821_CR170
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2021.1978215
– volume: 45
  start-page: 1433
  year: 2017
  ident: 821_CR123
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw810
– volume: 15
  start-page: 201
  year: 2018
  ident: 821_CR178
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4577
– volume: 8
  year: 2018
  ident: 821_CR75
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30383-z
– volume: 31
  start-page: 458
  year: 2013
  ident: 821_CR161
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2566
– volume: 265
  start-page: 357
  year: 2004
  ident: 821_CR66
  publication-title: Methods Mol. Biol.
– volume: 23
  start-page: 1303
  year: 2017
  ident: 821_CR145
  publication-title: RNA
  doi: 10.1261/rna.061549.117
– volume: 178
  start-page: 731
  year: 2019
  ident: 821_CR166
  publication-title: Cell
  doi: 10.1016/j.cell.2019.06.013
– volume: 11
  year: 2020
  ident: 821_CR177
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19787-6
– volume: 10
  year: 2019
  ident: 821_CR183
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13561-z
– volume: 22
  start-page: 119
  year: 2021
  ident: 821_CR4
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-00295-8
– volume: 6
  start-page: e1001247
  year: 2010
  ident: 821_CR44
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001247
– volume: 282
  start-page: 27744
  year: 2007
  ident: 821_CR78
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704572200
– volume: 19
  start-page: 1684
  year: 2013
  ident: 821_CR115
  publication-title: RNA
  doi: 10.1261/rna.036806.112
– volume: 54
  start-page: 451
  year: 2015
  ident: 821_CR142
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201408362
– volume: 149
  start-page: 1635
  year: 2012
  ident: 821_CR152
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.003
– volume: 74
  start-page: 1304
  year: 2019
  ident: 821_CR54
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.036
– volume: 352
  start-page: 821
  year: 1991
  ident: 821_CR80
  publication-title: Nature
  doi: 10.1038/352821a0
– volume: 16
  start-page: 1275
  year: 2019
  ident: 821_CR162
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0570-0
– volume: 173
  start-page: 7213
  year: 1991
  ident: 821_CR40
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.173.22.7213-7218.1991
– volume: 485
  start-page: 201
  year: 2012
  ident: 821_CR151
  publication-title: Nature
  doi: 10.1038/nature11112
– volume: 351
  start-page: 282
  year: 2016
  ident: 821_CR154
  publication-title: Science
  doi: 10.1126/science.aac5253
– volume: 28
  start-page: 62
  year: 2021
  ident: 821_CR15
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-00526-w
– volume: 13
  start-page: 396
  year: 2007
  ident: 821_CR104
  publication-title: RNA
  doi: 10.1261/rna.361607
– ident: 821_CR141
  doi: 10.1038/s41587-022-01243-z
– volume: 38
  start-page: 246
  year: 2021
  ident: 821_CR171
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2021.09.001
– volume: 26
  start-page: 1636
  year: 1998
  ident: 821_CR37
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.7.1636
– ident: 821_CR1
  doi: 10.1093/nar/gkab1083
– volume: 5
  start-page: eaax0250
  year: 2019
  ident: 821_CR167
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax0250
– volume: 16
  start-page: 1317
  year: 2010
  ident: 821_CR43
  publication-title: RNA
  doi: 10.1261/rna.2057810
– volume: 43
  start-page: 745
  year: 2011
  ident: 821_CR111
  publication-title: Nat. Genet.
  doi: 10.1038/ng.872
– volume: 425
  start-page: 211
  year: 2007
  ident: 821_CR99
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(07)25009-8
– volume: 99
  start-page: 12697
  year: 2002
  ident: 821_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.202477199
– volume: 274
  start-page: 87
  year: 1978
  ident: 821_CR61
  publication-title: Nature
  doi: 10.1038/274087a0
– volume: 515
  start-page: 143
  year: 2014
  ident: 821_CR134
  publication-title: Nature
  doi: 10.1038/nature13802
– volume: 33
  start-page: 7560
  year: 1994
  ident: 821_CR23
  publication-title: Biochemistry
  doi: 10.1021/bi00190a008
– volume: 12
  start-page: 767
  year: 2015
  ident: 821_CR155
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3453
– volume: 551
  start-page: 251
  year: 2017
  ident: 821_CR158
  publication-title: Nature
  doi: 10.1038/nature24456
– volume: 12
  start-page: e1639
  year: 2021
  ident: 821_CR12
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1639
– volume: 12
  start-page: 311
  year: 2016
  ident: 821_CR153
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2040
– volume: 68
  start-page: 993
  year: 2017
  ident: 821_CR42
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.10.019
– volume: 56
  start-page: 14878
  year: 2017
  ident: 821_CR95
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201708276
– volume: 81
  start-page: 4116
  year: 2021
  ident: 821_CR5
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.07.036
– volume: 12
  year: 2021
  ident: 821_CR159
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25105-5
– volume: 10
  year: 2019
  ident: 821_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11375-7
– volume: 33
  start-page: 108
  year: 2016
  ident: 821_CR32
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2016.06.014
– volume: 12
  start-page: 879
  year: 2015
  ident: 821_CR117
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3508
– volume: 1862
  start-page: 253
  year: 2019
  ident: 821_CR52
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2018.11.009
– volume: 129
  start-page: 13382
  year: 2007
  ident: 821_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075520+
– volume: 93
  start-page: 944
  year: 2014
  ident: 821_CR105
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12710
– volume: 583
  start-page: 638
  year: 2020
  ident: 821_CR139
  publication-title: Nature
  doi: 10.1038/s41586-020-2418-2
– volume: 50
  start-page: 13481
  year: 2021
  ident: 821_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00920F
– volume: 267
  start-page: 9805
  year: 1992
  ident: 821_CR102
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50165-X
– volume: 81
  start-page: 3160
  year: 2021
  ident: 821_CR101
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.06.005
– volume: 11
  start-page: 592
  year: 2015
  ident: 821_CR86
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1836
– volume: 45
  start-page: 4888
  year: 2006
  ident: 821_CR103
  publication-title: Biochemistry
  doi: 10.1021/bi052579p
– volume: 11
  start-page: 5903
  year: 1983
  ident: 821_CR94
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/11.17.5903
– volume: 45
  start-page: 179
  year: 2018
  ident: 821_CR47
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2018.06.017
– volume: 20
  start-page: 13
  year: 2020
  ident: 821_CR58
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2020.01.037
– volume: 530
  start-page: 441
  year: 2016
  ident: 821_CR39
  publication-title: Nature
  doi: 10.1038/nature16998
– volume: 66
  start-page: 797
  year: 2013
  ident: 821_CR56
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-013-9525-8
– volume: 56
  start-page: 5017
  year: 2017
  ident: 821_CR120
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201700537
– volume: 27
  start-page: 606
  year: 2017
  ident: 821_CR16
  publication-title: Cell Res
  doi: 10.1038/cr.2017.55
– volume: 12
  start-page: 835
  year: 2015
  ident: 821_CR118
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3478
– volume: 57
  start-page: 16785
  year: 2018
  ident: 821_CR147
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201810946
– volume: 363
  start-page: eaav0080
  year: 2019
  ident: 821_CR110
  publication-title: Science
  doi: 10.1126/science.aav0080
– volume: 1562
  start-page: 33
  year: 2017
  ident: 821_CR98
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6807-7_3
– volume: 1169
  start-page: 3
  year: 2014
  ident: 821_CR69
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-0882-0_1
– volume: 77
  start-page: 22
  year: 1995
  ident: 821_CR82
  publication-title: Biochimie
  doi: 10.1016/0300-9084(96)88100-4
– volume: 82
  start-page: 868
  year: 2022
  ident: 821_CR163
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.12.038
– volume: 48
  start-page: e110
  year: 2020
  ident: 821_CR150
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa769
– volume: 16
  start-page: 581
  year: 2015
  ident: 821_CR24
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4040
– volume: 135
  start-page: 19079
  year: 2013
  ident: 821_CR89
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4105792
– volume: 14
  start-page: 695
  year: 2017
  ident: 821_CR146
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4294
– volume: 21
  start-page: 174
  year: 2014
  ident: 821_CR45
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2013.10.015
– volume: 9
  start-page: 574
  year: 2003
  ident: 821_CR77
  publication-title: RNA
  doi: 10.1261/rna.5070303
– volume: 658
  start-page: 407
  year: 2021
  ident: 821_CR100
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2021.06.012
– volume: 14
  start-page: e0216709
  year: 2019
  ident: 821_CR176
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216709
– volume: 33
  start-page: 2020
  year: 2014
  ident: 821_CR19
  publication-title: EMBO J.
  doi: 10.15252/embj.201489282
– volume: 16
  start-page: 896
  year: 2020
  ident: 821_CR127
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0525-x
– volume: 54
  start-page: 1587
  year: 2015
  ident: 821_CR156
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201410647
– volume: 74
  start-page: 1278
  year: 2019
  ident: 821_CR53
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.040
– volume: 20
  start-page: 303
  year: 2020
  ident: 821_CR10
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-020-0253-2
– volume: 35
  start-page: 483
  year: 2016
  ident: 821_CR96
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.21442
– volume: 44
  start-page: 3495
  year: 2016
  ident: 821_CR88
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw200
– volume: 14
  start-page: e1002557
  year: 2016
  ident: 821_CR74
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002557
– volume: 9
  start-page: 105
  year: 2013
  ident: 821_CR108
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1137
– volume: 425
  start-page: 55
  year: 2007
  ident: 821_CR65
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(07)25003-7
– volume: 37
  start-page: 7665
  year: 2009
  ident: 821_CR30
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp816
– volume: 32
  start-page: 9754
  year: 1993
  ident: 821_CR79
  publication-title: Biochemistry
  doi: 10.1021/bi00088a030
– volume: 10
  year: 2019
  ident: 821_CR175
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11713-9
– volume: 22
  year: 2021
  ident: 821_CR179
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02241-7
– volume: 27
  start-page: 344
  year: 2002
  ident: 821_CR29
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(02)02109-6
– volume: 175
  start-page: 1725
  year: 2018
  ident: 821_CR59
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.037
– volume: 9
  year: 2019
  ident: 821_CR90
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40018-6
– volume: 60
  start-page: 873
  year: 2021
  ident: 821_CR93
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202007266
– volume: 9
  start-page: e49658
  year: 2020
  ident: 821_CR174
  publication-title: Elife
  doi: 10.7554/eLife.49658
– volume: 16
  start-page: 1833
  year: 2008
  ident: 821_CR33
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.200
– volume: 9
  start-page: e1003602
  year: 2013
  ident: 821_CR130
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003602
– volume: 26
  start-page: 380
  year: 2019
  ident: 821_CR132
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0218-x
– volume: 159
  start-page: 148
  year: 2014
  ident: 821_CR136
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.028
– volume: 28
  start-page: 965
  year: 2007
  ident: 821_CR28
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.10.012
– volume: 57
  start-page: 417
  year: 2018
  ident: 821_CR125
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201710209
– volume: 21
  start-page: 978
  year: 2019
  ident: 821_CR17
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0361-y
– volume: 19
  start-page: 1848
  year: 2013
  ident: 821_CR85
  publication-title: RNA
  doi: 10.1261/rna.041178.113
– volume: 8
  start-page: 1008
  year: 2012
  ident: 821_CR67
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio1212-1008a
– volume: 12
  year: 2021
  ident: 821_CR173
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27393-3
– ident: 821_CR124
  doi: 10.1101/271916
– volume: 23
  start-page: 5020
  year: 1995
  ident: 821_CR26
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/23.24.5020
– volume: 278
  start-page: 188
  year: 1979
  ident: 821_CR36
  publication-title: Nature
  doi: 10.1038/278188a0
– volume: 11
  start-page: 1568
  year: 2014
  ident: 821_CR71
  publication-title: RNA Biol.
  doi: 10.4161/15476286.2014.992280
– volume: 468
  start-page: xv
  year: 2009
  ident: 821_CR81
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(09)68020-4
– volume: 56
  start-page: 178
  year: 2021
  ident: 821_CR70
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2021.1887807
– volume: 1862
  start-page: 280
  year: 2019
  ident: 821_CR97
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2018.10.012
– volume: 39
  start-page: 1394
  year: 2021
  ident: 821_CR180
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00949-w
– volume: 27
  start-page: 1589
  year: 2017
  ident: 821_CR133
  publication-title: Genome Res.
  doi: 10.1101/gr.210666.116
– volume: 16
  start-page: 887
  year: 2020
  ident: 821_CR140
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0526-9
– volume: 40
  start-page: 5023
  year: 2012
  ident: 821_CR129
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks144
– volume: 296
  start-page: 100087
  year: 2021
  ident: 821_CR14
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA120.014226
– volume: 129
  start-page: 2382
  year: 2016
  ident: 821_CR41
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.183723
– volume: 28
  start-page: 616
  year: 2018
  ident: 821_CR8
  publication-title: Cell Res
  doi: 10.1038/s41422-018-0040-8
– volume: 16
  start-page: 1281
  year: 2019
  ident: 821_CR122
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0550-4
– volume: 18
  start-page: 1213
  year: 2021
  ident: 821_CR184
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01280-7
– volume: 1862
  start-page: 35
  year: 2019
  ident: 821_CR76
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2018.10.008
– volume: 44
  start-page: 7884
  year: 2016
  ident: 821_CR144
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw482
– volume: 39
  start-page: 1348
  year: 2021
  ident: 821_CR168
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01108-x
– volume: 286
  start-page: 1146
  year: 1999
  ident: 821_CR20
  publication-title: Science
  doi: 10.1126/science.286.5442.1146
– volume: 71
  start-page: 244
  year: 2018
  ident: 821_CR148
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.001
– volume: 57
  start-page: 15995
  year: 2018
  ident: 821_CR92
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201807942
– volume: 22
  start-page: 1771
  year: 2016
  ident: 821_CR119
  publication-title: RNA
  doi: 10.1261/rna.056531.116
– volume: 4
  start-page: 255
  year: 2013
  ident: 821_CR160
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.06.029
– volume: 10
  start-page: 84
  year: 2019
  ident: 821_CR51
  publication-title: Genes (Basel)
  doi: 10.3390/genes10020084
– volume: 181
  start-page: 914
  year: 2020
  ident: 821_CR181
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.011
– volume: 44
  start-page: 852
  year: 2016
  ident: 821_CR50
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1182
– volume: 116
  start-page: 23068
  year: 2019
  ident: 821_CR34
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1821754116
– volume: 45
  start-page: 2124
  year: 2017
  ident: 821_CR109
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1120
– volume: 140
  start-page: 5886
  year: 2018
  ident: 821_CR126
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13633
– volume: 74
  start-page: 640
  year: 2019
  ident: 821_CR9
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.04.025
– volume: 10
  start-page: 996
  year: 2004
  ident: 821_CR64
  publication-title: RNA
  doi: 10.1261/rna.7110804
– volume: 12
  start-page: 81
  year: 2011
  ident: 821_CR22
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2915
– volume: 42
  start-page: 7346
  year: 2014
  ident: 821_CR106
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku390
– volume: 142
  start-page: 5241
  year: 2020
  ident: 821_CR164
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13406
– volume: 18
  start-page: 275
  year: 2017
  ident: 821_CR6
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.169
– volume: 77
  start-page: 142
  year: 1995
  ident: 821_CR63
  publication-title: Biochimie
  doi: 10.1016/0300-9084(96)88118-1
– volume: 22
  start-page: 142
  year: 2012
  ident: 821_CR112
  publication-title: Genome Res.
  doi: 10.1101/gr.124107.111
– volume: 107
  start-page: 48
  year: 2016
  ident: 821_CR73
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.03.019
– volume: 41
  start-page: 1151
  year: 2013
  ident: 821_CR46
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1102
– volume: 75
  start-page: 1188
  year: 2019
  ident: 821_CR18
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.033
– volume: 53
  start-page: 12930
  year: 2017
  ident: 821_CR165
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C7CC07699A
– volume: 44
  start-page: e135
  year: 2016
  ident: 821_CR143
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw547
– volume: 40
  start-page: e157
  year: 2012
  ident: 821_CR87
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks698
– volume: 47
  start-page: e126
  year: 2019
  ident: 821_CR137
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz736
– volume: 107
  start-page: 2872
  year: 2010
  ident: 821_CR107
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0914869107
– volume: 21
  start-page: 552
  year: 2019
  ident: 821_CR11
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0319-0
– volume: 30
  start-page: 253
  year: 2012
  ident: 821_CR114
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2122
– volume: 82
  start-page: 404
  year: 2021
  ident: 821_CR138
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.11.003
– volume: 109
  start-page: 145
  year: 2002
  ident: 821_CR83
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00718-3
– volume: 43
  start-page: 9950
  year: 2015
  ident: 821_CR116
  publication-title: Nucleic Acids Res.
– volume: 175
  start-page: 1872
  year: 2018
  ident: 821_CR55
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.030
– volume: 39
  start-page: 1278
  year: 2021
  ident: 821_CR169
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00915-6
– volume: 11
  start-page: 425
  year: 2003
  ident: 821_CR27
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00040-6
– volume: 42
  start-page: e142
  year: 2014
  ident: 821_CR72
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku733
– volume: 7
  start-page: 1440
  year: 2016
  ident: 821_CR91
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02902C
– volume: 25
  start-page: 208
  year: 2018
  ident: 821_CR49
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0030-z
– volume: 9
  start-page: 579
  year: 2012
  ident: 821_CR113
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1982
– volume: 24
  start-page: 522
  year: 2014
  ident: 821_CR128
  publication-title: Genome Res.
  doi: 10.1101/gr.162537.113
SSID ssj0025474
Score 2.5738695
SecondaryResourceType review_article
Snippet To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1601
SubjectTerms 38
38/91
631/1647
631/208/514
Biomedical and Life Sciences
Biomedicine
Epigenetics
Gene expression
Gene Expression Regulation
Gene regulation
High-Throughput Nucleotide Sequencing - methods
Medical Biochemistry
Molecular Medicine
Next-generation sequencing
Nucleotide sequence
Review
Review Article
RNA - genetics
RNA - metabolism
RNA modification
Sequence Analysis, RNA
Stem Cells
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD54AfFF1HmpNyqILy6sTZO2e5KhjiG4B3Gwt5KmCQraqasP_ntP0nRjintt0rTJSc_5zqVfAC50jrhBB5qIUHDCpFAkl6EkjKPq40xrLizb5zAejNj9mI9dwG3qyiobnWgVdTGRJkbeQTOL_jZjCbt-_yDm1CiTXXVHaKzCuqEuM7s6Gc8dLs4sC3OIEINEaLfcTzNBlHameDEx5beUGCuILvWiYfqDNv8WTf7KnFqD1N-GLYck_V4t-h1YUeUutHoletFv3_6lb2s7bdB8FzYeXAq9Be1bVdnyq9KvmrA6ess-glf_cdjz3yaFqR6qA3l7MOrfPd0MiDsygUiEXhXBOVEa0FxI9IPQ29PdbtHNC4ruppYqSmNNExnEEoUQdkVoqHporHWhuJQq0EG0D2vlpFSH4CNQ0EJz1JZpynDElAmap2mh8iSI0WnzIGzWK5OOT9wca_Ga2bx2lGb1Gme4xpld4yzw4Gp2z3vNprG090kjhsx9WdNsvg88OJ814zdhEh2iVJMv0wdHQqTFcYiDWmqzxxn6HcSA3INkQZ6zDoZve7GlfHm2vNuoq2Ic2oN2I_n5a_0_i6PlsziGTWp2oa0PPIG16vNLnSLOqfIzu5l_AIuT9uA
  priority: 102
  providerName: ProQuest
Title Detection technologies for RNA modifications
URI https://link.springer.com/article/10.1038/s12276-022-00821-0
https://www.ncbi.nlm.nih.gov/pubmed/36266445
https://www.proquest.com/docview/2731944474
https://www.proquest.com/docview/2727643950
https://pubmed.ncbi.nlm.nih.gov/PMC9636272
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBuKLeLc6RwXxRYttlvTyWKciA4eog72VNE1QcJ247sF_70l6kXkDnwrNSZqckybfSU6-AByrFHGDcpXDPc4cKrh0UuEJhzIc-hhVinHD9jn0b0Z0MGbjJSD1WRgTtG8oLc0wXUeHnc88QgIdLkscPWuhC7wMbU3Vjn27HceDh0HjZjEa0Op4jNsLf8i5OAV9w5XfwyO_7JGaqed6HdYqzGjHZS03YEnmm7AVYwOmk3f7xDZRnGZ5fBNWbqvN8i04u5SFCbTK7aJeQEe_2EaYat8PY3syzXScULlktw2j66vH_o1TXY7gCARZhYNtIsQlKRfo8aBfp6Ioi9KMoGOphOyFviKBcH2B6vYi7mlSHuIrlUkmhHSV29uBVj7N5R7YCAkUVwzHxTCkWGJIOUnDMJNp4Pronlng1fpKRMUcri-weEnMDnYvTEodJ6jjxOg4cS04bfK8lrwZf0p3ajMk1T80SxBYeRGlaE0Ljppk7P16S4PncjrXMlgSYiqGReyWVms-p4l2EO0xC4IFezYCmll7MSV_fjIM2zgq-Vi0BWe15T-r9Xsr9v8nfgCrRPdKExnYgVbxNpeHiHCKtAvLwTjoVh0bnxdXw7t7fNv3-12zavABDqP4Vg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEXBC2U0AJBAi7Uaj7sJHuoqhWl2tJ2D6iV9mYcxxZINFvYVKh_qr-RZyfZ1VLRW6-JM4lnxjPzPJMx0TtbIm6wkWUqVoJxrQwrdawZFzB9glsrlO_2Oc5GZ_zLRExW6Lr_F8aVVfY20RvqaqrdHvkO3CzwNuc537v4xdypUS672h-h0arFkbn6A8g22z3ch3zfJ8nB59NPI9adKsA0opOGJVj-QPyl0oAKAER2MKgGZZUAkVlt0iKzSa6jTOM744GKXTebJLO2MkJrE9koBd17dB-ON3JgL58sAJ7gvutzjAdYCj_Z_aQTpcXODBdzV-6bMOd1AeGXHeGN6PZmkeY_mVrvAA-e0OMucg2Hrao9pRVTr9H6sAZqP78KP4S-ltRv0q_Rg5MuZb9O2_um8eVeddj02_hA5yGC5fDreBieTytXrdRuHD6jszth5nNarae1eUEhAhOrrIB1LgoOigVXSVkUlSnzKANIDCju-SV117_cHaPxU_o8elrIlscSPJaexzIK6OP8mYu2e8eto7d6MchuJc_kQu8Ceju_jTXoEiuqNtNLNwaUENkJkNhopTZ_nWv3g5hTBJQvyXM-wPX3Xr5T__ju-3zDNmYgHdB2L_nFZ_1_Fi9vn8Ubejg6PTmWx4fjo016lDiN9LWJW7Ta_L40rxBjNeVrr9ghfbvrlfQXpZoziA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9wwDLfYIaG9oA320Q1GJrG9jOjaNGl7D2i6cZxgsBNCQ-ItS9NETBo9tiua-Nf463DSD3QgeOO1Td3Gdmz_YtcB2LQ5xg02tFRFSlCulaG5jjTlAk2f4NYK5bt9TpK9E_79VJwuwHX7L4wrq2xtojfUxVS7PfI-ulnE25ynvG-bsoij0fjrxV_qTpBymdb2OI1aRQ7M1X-Eb7Pt_RHK-hNj492fO3u0OWGAaoxUKsrQFCD6z5VG2IDgyA4GxSAvGKIzq02cJZalOkw0fnM0UJHrbMMSawsjtDahDWOk-wwWU4eKerD4bXdydNzBPcF9D-gIH6Exes3ml50wzvozvJi64l9GnQ9GQD_vFu_FuvdLNu_kbb07HL-A5SaOJcNa8V7CgilXYHVYIoY_vyKfia8s9Vv2K7D0o0ngr8LWyFS--KskVbupj1idYOhMjidDcj4tXO1SvY34Ck6ehJ2voVdOS_MWCIYpVlmBtjrLOFLMuGJ5lhUmT8MEIWMAUcsvqZtu5u5QjT_SZ9XjTNY8lshj6XkswwC-dM9c1L08Hh291opBNut6Jm-1MICP3W1ckS7NokozvXRjkBLGeQJJvKml1r3ONf_BCFQEkM7Jsxvgun3P3yl_n_mu32gpEyQdwFYr-dvPengW7x6fxQYs4SqSh_uTg_fwnDmF9IWKa9Cr_l2adQy4qvxDo9kEfj31YroBh5k5Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+technologies+for+RNA+modifications&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Zhang%2C+Yan&rft.au=Lu%2C+Liang&rft.au=Li%2C+Xiaoyu&rft.date=2022-10-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1226-3613&rft.eissn=2092-6413&rft.volume=54&rft.issue=10&rft.spage=1601&rft.epage=1616&rft_id=info:doi/10.1038%2Fs12276-022-00821-0&rft_id=info%3Apmid%2F36266445&rft.externalDocID=PMC9636272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon