Artificial intelligence in medical imaging practice in Africa: a qualitative content analysis study of radiographers’ perspectives

Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. Methods Th...

Full description

Saved in:
Bibliographic Details
Published inInsights into imaging Vol. 12; no. 1; p. 80
Main Authors Antwi, William Kwadwo, Akudjedu, Theophilus N., Botwe, Benard Ohene
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 16.06.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. Methods The study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness. Results A total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident. Conclusion Awareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended.
AbstractList Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. The study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness. A total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident. Awareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended.
PURPOSEStudies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. METHODSThe study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness. RESULTSA total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident. CONCLUSIONAwareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended.
Abstract Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. Methods The study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness. Results A total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident. Conclusion Awareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended.
Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. Methods The study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness. Results A total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident. Conclusion Awareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended.
ArticleNumber 80
Author Antwi, William Kwadwo
Akudjedu, Theophilus N.
Botwe, Benard Ohene
Author_xml – sequence: 1
  givenname: William Kwadwo
  orcidid: 0000-0002-6726-2342
  surname: Antwi
  fullname: Antwi, William Kwadwo
– sequence: 2
  givenname: Theophilus N.
  orcidid: 0000-0003-2423-6897
  surname: Akudjedu
  fullname: Akudjedu, Theophilus N.
– sequence: 3
  givenname: Benard Ohene
  orcidid: 0000-0002-0477-640X
  surname: Botwe
  fullname: Botwe, Benard Ohene
  email: Sirbenard13@gmail.com, bebotwe@ug.edu.gh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34132910$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVARLaU_wAJZYsMm4FcSmwXSqOJRqRIbWFse20k9ytipnVSarrrgJ_g9voQ7TSktCyxZtu8599j3-jxHBzFFj9BLSt5SKpt3hXImREUYrQglTFbXT9ARAKoSlNCDB_tDdFLKhsDgnHLJn6FDLiBbUXKEfqzyFLpggxlwiJMfhtD7aD0c8Na7YPfxrelD7PGYjZ3Cgq26DNh7bPDlbIYwmSlceWwTSMQJm2iGXQkFl2l2O5w6nI0Lqc9mvPC5_Lr5iUdYR2_3aeUFetqZofiTu_UYff_08dvpl-r86-ez09V5ZWtBpoqRrllboqxXtpHMtY45IqklrbdtJzlXgotWqYZyVUOhre1Uo1zjFHXMEMaP0dmi65LZ6DFDYXmnkwn6NpByrw20ww5eOyvYWinLrXGi7YRiDgKCMiZVq2QNWh8WrXFeQ6MslJ3N8Ej0MRLDhe7TlZaMNFK2IPDmTiCny9mXSW9DsfABJvo0F81qQVupRM2B-vof6ibNGXq8sGqYjQQWW1g2p1Ky7-4fQ4nee0YvntHgGX3rGX0NSa8elnGf8schQOALoQAUe5__3v0f2d_ttNFE
CitedBy_id crossref_primary_10_1371_journal_pdig_0000229
crossref_primary_10_3390_iot4020009
crossref_primary_10_1155_2023_4704342
crossref_primary_10_1002_jmrs_581
crossref_primary_10_1016_j_jmir_2022_11_016
crossref_primary_10_7759_cureus_38325
crossref_primary_10_1186_s13014_023_02351_z
crossref_primary_10_1093_bjrai_ubae008
crossref_primary_10_1186_s13244_021_01073_8
crossref_primary_10_1007_s12553_023_00786_8
crossref_primary_10_1016_j_jcpo_2023_100457
crossref_primary_10_1002_jmrs_678
crossref_primary_10_1016_j_cpet_2021_09_008
crossref_primary_10_1016_j_radi_2022_04_014
crossref_primary_10_1016_j_radi_2021_07_021
crossref_primary_10_1371_journal_pone_0290613
crossref_primary_10_1155_2022_7542606
crossref_primary_10_21834_e_bpj_v8i25_4872
crossref_primary_10_1016_j_jmir_2022_08_005
crossref_primary_10_56294_saludcyt2023510
crossref_primary_10_1016_j_ipha_2024_02_009
crossref_primary_10_1016_j_glmedi_2024_100113
crossref_primary_10_1155_2024_7001343
crossref_primary_10_1016_j_ijmedinf_2024_105342
crossref_primary_10_1177_20552076241230075
crossref_primary_10_1038_s41746_022_00700_y
crossref_primary_10_1515_psr_2022_0121
Cites_doi 10.1016/0147-1767(85)90062-8
10.1155/2018/4827875
10.1016/S2589-7500(20)30160-6
10.1259/bjr.20190840
10.2196/12856
10.1016/j.jmir.2019.11.140
10.1016/j.jacr.2017.09.044
10.4103/jfmpc.jfmpc_440_19
10.1186/s12913-018-3359-4
10.1002/jmrs.369
10.1016/j.acra.2020.09.014
10.1016/j.jacr.2018.12.043
10.1007/s12471-019-01311-1
10.17169/fqs-11.2.1450
10.7861/futurehosp.6-2-94
10.1177/1049732305276687
10.1038/s41568-018-0016-5
10.1186/s41747-018-0061-6
10.1007/s00330-019-06486-0
10.1016/j.radi.2021.01.008
10.1002/jmrs.460
10.1186/s13244-019-0738-2
10.1016/j.radi.2020.03.007
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7RV
7X7
7XB
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FYUFA
GHDGH
HCIFZ
K9.
KB0
M0S
NAPCQ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13244-021-01028-z
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals
PHMC-Proquest健康医学期刊库
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1869-4101
EndPage 80
ExternalDocumentID oai_doaj_org_article_dc42b99c3cad47f492d42b4122897985
10_1186_s13244_021_01028_z
34132910
Genre Journal Article
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GroupedDBID -A0
0R~
2JY
3V.
40G
53G
5VS
67Z
7RV
7X7
8AO
8FE
8FG
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
AAPBV
AAYZJ
ABDBF
ABUWG
ACACY
ACGFS
ACIHN
ADBBV
ADINQ
AEAQA
AFGXO
AFKRA
AFNRJ
AFPKN
AHBXF
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BCNDV
BENPR
BGLVJ
BKEYQ
BPHCQ
BVXVI
C24
C6C
CCPQU
DIK
EBS
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
M48
M~E
NAPCQ
O9I
OK1
P62
PIMPY
PQQKQ
PROAC
QOS
R9I
RNS
RPM
RSV
S27
SMD
SOJ
T13
TUS
U2A
UKHRP
WK8
ABEEZ
ACULB
ALIPV
EBLON
NPM
AAYXX
CITATION
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-20f6bc09ce9c682d7d2d081c07ec7f8339434799613953837cf969d6d91d2a023
IEDL.DBID RPM
ISSN 1869-4101
IngestDate Tue Oct 22 15:06:48 EDT 2024
Tue Sep 17 21:12:29 EDT 2024
Thu Jul 25 10:15:01 EDT 2024
Thu Oct 10 18:39:43 EDT 2024
Thu Nov 21 22:51:48 EST 2024
Wed Oct 16 00:42:51 EDT 2024
Sat Dec 16 12:09:31 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Radiography
Medical imaging
Qualitative study
Artificial intelligence
Online surveys
Africa
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-20f6bc09ce9c682d7d2d081c07ec7f8339434799613953837cf969d6d91d2a023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6726-2342
0000-0003-2423-6897
0000-0002-0477-640X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206887/
PMID 34132910
PQID 2541554168
PQPubID 2034747
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_dc42b99c3cad47f492d42b4122897985
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206887
proquest_miscellaneous_2541789453
proquest_journals_2541554168
crossref_primary_10_1186_s13244_021_01028_z
pubmed_primary_34132910
springer_journals_10_1186_s13244_021_01028_z
PublicationCentury 2000
PublicationDate 2021-06-16
PublicationDateYYYYMMDD 2021-06-16
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-16
  day: 16
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationTitle Insights into imaging
PublicationTitleAbbrev Insights Imaging
PublicationTitleAlternate Insights Imaging
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Hardy, Harvey (CR13) 2020; 93
Jansen (CR21) 2010; 11
CR18
CR17
Pearce, McLeod, Reinhart, Whyte, Deveny, Shearer (CR3) 2019; 210
Ongena, Haan, Yakar, Kwee (CR10) 2020; 30
Hsieh, Shannon (CR22) 2005; 15
CR14
Botwe, Schandorf, Inkoom, Faanu (CR30) 2020; 91
Lewis, Gandomkar, Brennan (CR4) 2019; 66
Hosny, Parmar, Quackenbush, Schwartz, Aerts (CR8) 2018; 18
Oren, Gersh, Bhatt (CR1) 2020; 2
Kyngäs, Elo, Pölkki, Kääriäinen, Kanste (CR19) 2011; 23
Pesapane, Codari, Sardanelli (CR9) 2018; 2
Lakhani, Prater, Hutson (CR11) 2018; 15
CR7
CR29
O’Cathain, Thomas (CR20) 2004; 4
Haan, Ongena, Hommes, Kwee, Yakar (CR15) 2019; 16
CR26
Davenport, Kalakota (CR24) 2019; 6
CR25
Abuzaid, Elshami, Tekin, Issa (CR16) 2020
Meskó, Hetényi, Győrffy (CR27) 2018; 18
Wagner (CR2) 2019; 90
Amisha, Pathania, Rathaur (CR6) 2019; 8
Lincoln, Guba (CR23) 1985
Botwe, Schandorf, Inkoom, Faanu (CR28) 2020; 51
Chan, Chen, Pham, Chang, Hsieh (CR5) 2018; 2018
Chaix, Bibault, Pienkowski (CR12) 2019; 5
Siegersma, Leiner, Chew, Appelman, Hofstra, Verjans (CR31) 2019; 27
HF Hsieh (1028_CR22) 2005; 15
1028_CR18
B Meskó (1028_CR27) 2018; 18
M Hardy (1028_CR13) 2020; 93
MM Abuzaid (1028_CR16) 2020
H Kyngäs (1028_CR19) 2011; 23
H Jansen (1028_CR21) 2010; 11
MP Amisha (1028_CR6) 2019; 8
YK Chan (1028_CR5) 2018; 2018
1028_CR7
1028_CR17
1028_CR14
JB Wagner (1028_CR2) 2019; 90
SJ Lewis (1028_CR4) 2019; 66
YP Ongena (1028_CR10) 2020; 30
A Hosny (1028_CR8) 2018; 18
1028_CR29
O Oren (1028_CR1) 2020; 2
A O’Cathain (1028_CR20) 2004; 4
C Pearce (1028_CR3) 2019; 210
B Botwe (1028_CR28) 2020; 51
F Pesapane (1028_CR9) 2018; 2
KR Siegersma (1028_CR31) 2019; 27
B Chaix (1028_CR12) 2019; 5
T Davenport (1028_CR24) 2019; 6
B Botwe (1028_CR30) 2020; 91
P Lakhani (1028_CR11) 2018; 15
SY Lincoln (1028_CR23) 1985
1028_CR26
M Haan (1028_CR15) 2019; 16
1028_CR25
References_xml – ident: CR18
– year: 1985
  ident: CR23
  publication-title: Naturalistic inquiry
  doi: 10.1016/0147-1767(85)90062-8
  contributor:
    fullname: Guba
– volume: 2018
  start-page: 4827875
  year: 2018
  ident: CR5
  article-title: Artificial Intelligence in Medical Applications
  publication-title: J Healthc Eng
  doi: 10.1155/2018/4827875
  contributor:
    fullname: Hsieh
– ident: CR14
– volume: 2
  start-page: e486
  issue: 9
  year: 2020
  end-page: e488
  ident: CR1
  article-title: Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30160-6
  contributor:
    fullname: Bhatt
– volume: 91
  start-page: 324
  issue: 4
  year: 2020
  end-page: 332
  ident: CR30
  article-title: Status of quality management systems in computed tomography facilities in Ghana
  publication-title: Radiol Technol
  contributor:
    fullname: Faanu
– volume: 90
  start-page: 489
  issue: 5
  year: 2019
  end-page: 501
  ident: CR2
  article-title: Artificial Intelligence in Medical Imaging
  publication-title: Radiol Technol
  contributor:
    fullname: Wagner
– volume: 93
  start-page: 20190840
  issue: 1108
  year: 2020
  ident: CR13
  article-title: Artificial intelligence in diagnostic imaging: impact on the radiography profession
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20190840
  contributor:
    fullname: Harvey
– volume: 5
  start-page: e12856
  year: 2019
  ident: CR12
  article-title: When Chatbots meet patients: one-year prospective study of conversations between patients with breast cancer and a Chatbot
  publication-title: JMIR Cancer
  doi: 10.2196/12856
  contributor:
    fullname: Pienkowski
– ident: CR29
– volume: 51
  start-page: 165
  issue: 1
  year: 2020
  end-page: 172
  ident: CR28
  article-title: An investigation into the infrastructure and management of computerized tomography units in Ghana
  publication-title: J Med Imaging Radiat Sci
  doi: 10.1016/j.jmir.2019.11.140
  contributor:
    fullname: Faanu
– ident: CR25
– volume: 15
  start-page: 350
  issue: 2
  year: 2018
  end-page: 359
  ident: CR11
  article-title: Machine learning in radiology: applications beyond image interpretation
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.09.044
  contributor:
    fullname: Hutson
– volume: 23
  start-page: 138
  issue: 2
  year: 2011
  end-page: 148
  ident: CR19
  article-title: The use of content analysis in Finnish nursing science research
  publication-title: Hoitotiede
  contributor:
    fullname: Kanste
– volume: 8
  start-page: 2328
  issue: 7
  year: 2019
  end-page: 2331
  ident: CR6
  article-title: Overview of artificial intelligence in medicine
  publication-title: J Family Med Prim Care
  doi: 10.4103/jfmpc.jfmpc_440_19
  contributor:
    fullname: Rathaur
– volume: 18
  start-page: 545
  year: 2018
  ident: CR27
  article-title: Will artificial intelligence solve the human resource crisis in healthcare?
  publication-title: BMC Health Serv Res
  doi: 10.1186/s12913-018-3359-4
  contributor:
    fullname: Győrffy
– volume: 66
  start-page: 292
  issue: 4
  year: 2019
  end-page: 295
  ident: CR4
  article-title: Artificial Intelligence in medical imaging practice: looking to the future
  publication-title: J Med Radiat Sci
  doi: 10.1002/jmrs.369
  contributor:
    fullname: Brennan
– ident: CR17
– volume: 210
  start-page: S38
  issue: 6
  year: 2019
  end-page: 40
  ident: CR3
  article-title: Artificial Intelligence and the clinical world: a view from the front line
  publication-title: Med J Aust
  contributor:
    fullname: Shearer
– year: 2020
  ident: CR16
  article-title: Assessment of the willingness of radiologists and radiographers to accept the integration of artificial intelligence into radiology practice
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2020.09.014
  contributor:
    fullname: Issa
– volume: 16
  start-page: 1416
  issue: 10
  year: 2019
  end-page: 1419
  ident: CR15
  article-title: A qualitative study to understand patient perspective on the use of artificial intelligence in radiology
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2018.12.043
  contributor:
    fullname: Yakar
– volume: 27
  start-page: 403
  year: 2019
  end-page: 413
  ident: CR31
  article-title: Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist
  publication-title: Neth Heart J
  doi: 10.1007/s12471-019-01311-1
  contributor:
    fullname: Verjans
– volume: 11
  start-page: 11
  issue: 2
  year: 2010
  ident: CR21
  article-title: The Logic of Qualitative Survey Research and its Position in the Field of Social Research Methods
  publication-title: Forum Qual Soc Res
  doi: 10.17169/fqs-11.2.1450
  contributor:
    fullname: Jansen
– volume: 6
  start-page: 94
  issue: 2
  year: 2019
  end-page: 98
  ident: CR24
  article-title: The potential for artificial intelligence in healthcare
  publication-title: Future Healthc J
  doi: 10.7861/futurehosp.6-2-94
  contributor:
    fullname: Kalakota
– ident: CR7
– volume: 15
  start-page: 1277
  issue: 9
  year: 2005
  end-page: 1288
  ident: CR22
  article-title: Three approaches to qualitative content analysis
  publication-title: Qual Health Res
  doi: 10.1177/1049732305276687
  contributor:
    fullname: Shannon
– volume: 4
  start-page: 1
  issue: 25
  year: 2004
  end-page: 7
  ident: CR20
  article-title: Any other comments? Open questions on questionnaires—a bane or bonus to research?
  publication-title: BMC Med Res Methodol
  contributor:
    fullname: Thomas
– ident: CR26
– volume: 18
  start-page: 500
  issue: 8
  year: 2018
  end-page: 510
  ident: CR8
  article-title: Artificial intelligence in radiology
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-018-0016-5
  contributor:
    fullname: Aerts
– volume: 2
  start-page: 35
  issue: 1
  year: 2018
  ident: CR9
  article-title: Artificial intelligence in medical imaging: threat or opportunity? radiologists again at the forefront of innovation in medicine
  publication-title: Eur Radiol Exp
  doi: 10.1186/s41747-018-0061-6
  contributor:
    fullname: Sardanelli
– volume: 30
  start-page: 1033
  issue: 2
  year: 2020
  end-page: 1040
  ident: CR10
  article-title: Patients' views on the implementation of artificial intelligence in radiology: development and validation of a standardized questionnaire
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06486-0
  contributor:
    fullname: Kwee
– volume: 4
  start-page: 1
  issue: 25
  year: 2004
  ident: 1028_CR20
  publication-title: BMC Med Res Methodol
  contributor:
    fullname: A O’Cathain
– volume: 16
  start-page: 1416
  issue: 10
  year: 2019
  ident: 1028_CR15
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2018.12.043
  contributor:
    fullname: M Haan
– ident: 1028_CR18
  doi: 10.1016/j.radi.2021.01.008
– volume: 18
  start-page: 545
  year: 2018
  ident: 1028_CR27
  publication-title: BMC Health Serv Res
  doi: 10.1186/s12913-018-3359-4
  contributor:
    fullname: B Meskó
– volume: 2018
  start-page: 4827875
  year: 2018
  ident: 1028_CR5
  publication-title: J Healthc Eng
  doi: 10.1155/2018/4827875
  contributor:
    fullname: YK Chan
– ident: 1028_CR26
– volume: 18
  start-page: 500
  issue: 8
  year: 2018
  ident: 1028_CR8
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-018-0016-5
  contributor:
    fullname: A Hosny
– volume: 90
  start-page: 489
  issue: 5
  year: 2019
  ident: 1028_CR2
  publication-title: Radiol Technol
  contributor:
    fullname: JB Wagner
– ident: 1028_CR17
  doi: 10.1002/jmrs.460
– volume: 2
  start-page: 35
  issue: 1
  year: 2018
  ident: 1028_CR9
  publication-title: Eur Radiol Exp
  doi: 10.1186/s41747-018-0061-6
  contributor:
    fullname: F Pesapane
– volume: 6
  start-page: 94
  issue: 2
  year: 2019
  ident: 1028_CR24
  publication-title: Future Healthc J
  doi: 10.7861/futurehosp.6-2-94
  contributor:
    fullname: T Davenport
– volume: 91
  start-page: 324
  issue: 4
  year: 2020
  ident: 1028_CR30
  publication-title: Radiol Technol
  contributor:
    fullname: B Botwe
– volume: 66
  start-page: 292
  issue: 4
  year: 2019
  ident: 1028_CR4
  publication-title: J Med Radiat Sci
  doi: 10.1002/jmrs.369
  contributor:
    fullname: SJ Lewis
– year: 2020
  ident: 1028_CR16
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2020.09.014
  contributor:
    fullname: MM Abuzaid
– volume: 27
  start-page: 403
  year: 2019
  ident: 1028_CR31
  publication-title: Neth Heart J
  doi: 10.1007/s12471-019-01311-1
  contributor:
    fullname: KR Siegersma
– ident: 1028_CR7
  doi: 10.1186/s13244-019-0738-2
– volume: 15
  start-page: 1277
  issue: 9
  year: 2005
  ident: 1028_CR22
  publication-title: Qual Health Res
  doi: 10.1177/1049732305276687
  contributor:
    fullname: HF Hsieh
– ident: 1028_CR14
  doi: 10.1016/j.radi.2020.03.007
– volume: 23
  start-page: 138
  issue: 2
  year: 2011
  ident: 1028_CR19
  publication-title: Hoitotiede
  contributor:
    fullname: H Kyngäs
– volume: 5
  start-page: e12856
  year: 2019
  ident: 1028_CR12
  publication-title: JMIR Cancer
  doi: 10.2196/12856
  contributor:
    fullname: B Chaix
– ident: 1028_CR25
– volume: 15
  start-page: 350
  issue: 2
  year: 2018
  ident: 1028_CR11
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.09.044
  contributor:
    fullname: P Lakhani
– volume: 11
  start-page: 11
  issue: 2
  year: 2010
  ident: 1028_CR21
  publication-title: Forum Qual Soc Res
  doi: 10.17169/fqs-11.2.1450
  contributor:
    fullname: H Jansen
– volume-title: Naturalistic inquiry
  year: 1985
  ident: 1028_CR23
  doi: 10.1016/0147-1767(85)90062-8
  contributor:
    fullname: SY Lincoln
– volume: 30
  start-page: 1033
  issue: 2
  year: 2020
  ident: 1028_CR10
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06486-0
  contributor:
    fullname: YP Ongena
– volume: 210
  start-page: S38
  issue: 6
  year: 2019
  ident: 1028_CR3
  publication-title: Med J Aust
  contributor:
    fullname: C Pearce
– volume: 8
  start-page: 2328
  issue: 7
  year: 2019
  ident: 1028_CR6
  publication-title: J Family Med Prim Care
  doi: 10.4103/jfmpc.jfmpc_440_19
  contributor:
    fullname: MP Amisha
– ident: 1028_CR29
– volume: 93
  start-page: 20190840
  issue: 1108
  year: 2020
  ident: 1028_CR13
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20190840
  contributor:
    fullname: M Hardy
– volume: 2
  start-page: e486
  issue: 9
  year: 2020
  ident: 1028_CR1
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30160-6
  contributor:
    fullname: O Oren
– volume: 51
  start-page: 165
  issue: 1
  year: 2020
  ident: 1028_CR28
  publication-title: J Med Imaging Radiat Sci
  doi: 10.1016/j.jmir.2019.11.140
  contributor:
    fullname: B Botwe
SSID ssj0000331383
Score 2.393124
Snippet Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed...
Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to...
PurposeStudies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed...
PURPOSEStudies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed...
Abstract Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 80
SubjectTerms Africa
Artificial intelligence
Content analysis
Diagnostic Radiology
Employment security
Equipment costs
Imaging
Internal Medicine
Interventional Radiology
Medical imaging
Medicine
Medicine & Public Health
Neuroradiology
New technology
Online surveys
Original
Original Article
Qualitative analysis
Qualitative research
Qualitative study
Radiation dosage
Radiography
Radiology
Training
Ultrasound
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxEB4hCkQTBUKS5SVHoiMWt2ufH3SAQCgSqUCis3b9UK5gD3FHQ0WRP5G_xy9hbO8ed0CUJuWuXYw8M57vkz2fAfYaoWSDZZZ6yxrKhXW0Vl7SIXPae8V9aWO_88VPcX7Ff1wPr-ee-op3wrI8cF64A2d51Whtma0dl4HryuEPXlbIFKRWWb10ME-m0h7MWIncq--SUeJggrSLcxpvJEQZNUUfFipREux_D2W-vSz56sQ0FaKzj_ChQ5DkKFu-Bku-XYeVi-6M_BP8jiNZF4KM5gQ38YPc5GMZMrpJjxORvkcqjuUXgw5JTXKjZVIEJ_EqO5pE6k68hCQ9WjIO5K52o6x3jQjy6fEPuX3p25xswNXZ6eXJOe3eWqAWMdsUkyWIxg609doKVTnpKodowQ6ktzIoxqKOnERyhIhxGFmtDVpoJ5wuXVVj4f8My-249V-BeNcE5KZBI73jzIbaWXQGG3ipg3YNL2C_X3dzmyU1TKIiSpjsJYNeMslL5qGA4-ia2cwoh51-YJCYLkjMv4KkgO3esabL0YlBahzBVClUAd9mw5hd8cikbv34Ps-RSvMhK-BLjoOZJbH-V4i2CpALEbJg6uJIO_qVFLyjaD7u7gV872Ppxay_L8Xm_1iKLVitUhIIWoptWJ7e3fsdxFXTZjel0DMbnSGc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRCXqrxTCjISN7C6iR0_ekGAWCqkcqJSb1ZiO7CHJsvu9tJTD_0T_D1-CeNHdllex8Q-OJkZzzcezzcAL1qhZItulnrLWsqFdbRRXtKaOe294r60od755JM4PuUfz-qzfOC2zNcqxz0xbtRusOGM_BADmeD6SqFez7_R0DUqZFdzC42bcKuspAytG9T0w_qMZcJYiRHYWCujxOESgy_OabiXEMjUFL3c8keRtv9vWPPPK5O_5U2jO5ruwW7GkeRNEvxduOH7e3D7JGfK78N1GEnsEGT2C-0mPpDzlJwhs_PYooiMlVJhLPUNOiINSeWWkRechAvtuCTSZAoTEllpydCRReNmifUaceSPq-9kvqneXD6A0-n7z--Oae64QC0itxWaTCdaO9HWaytU5aSrHGIGO5Heyk4xFtjkJIZIiBvrENvaTgvthNOlqxp0_w9hpx96_xiId22HEWqnMcjjzHaNsygMNvFSd9q1vICX438380SsYWJAooRJUjIoJROlZC4LeBtEs54ZSLHji2HxxWQbM87yqtXaMts4LjuuK4cveFlhUCm1qgs4GAVrsqUuzUavCni-HkYbC4mTpvfDRZojleY1K-BR0oP1SgIKqBBzFSC3NGRrqdsj_exr5PEO1Pm4xxfwatSlzbL-_Sv2__8VT-BOFdVb0FIcwM5qceGfIm5atc-icfwEW54Zog
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB5qBfFFrD-3tiWC4INGb5NsfggiVixFOJ886FvYTbL1wO61d1fQPvqXO0l2r56e4ONuwjJkZjbfRzLfADxrpFYNbrM0ON5QIZ2ntQ6KVtybELQIpYv1zuPP8ngiPp1UJ1swtDvqF3CxkdrFflKT-bdX3y9-vMOEf5sSXsvXC2RUQtB42SAqpGl6dQNuMsETYBr3cD_9mTkvszJnbMREBYbjUEez8TNre1WS9N-EQ_--TvnHmWraqo7uwp0eY5L3OSh2YCt09-DWuD9Fvw8_40hWjiDT3yQ58YGc5YMbMj1L7YvIUEUVx3JPoTekJrkUM2mGk3jZHU0idS9vQpJiLZm1ZF77aVbERoz5nJxf13UuHsDk6OOXD8e078VAHWK6JSZTKxs3Mi4YJzXzyjOPaMKNVHCq1ZxHnTmF5AkRZRVZr2uNNF56U3pWIzB4CNvdrAuPgQTftMhdW4P0T3DX1t6hW_goKNMa34gCXgyrbs-z5IZNVEVLm31k0Uc2-cheFXAYHbOaGeWy04vZ_NT22We9E6wxxnFXe6FaYZjHF6JkSDeV0VUBe4Nb7RCCFqlzBFul1AU8XQ1j9sUjlboLs8s8R2kjKl7AoxwFK0siPmCIxgpQa_GxZur6SDf9mhS-o6g-_v0LeDlE0rVZ_16K3f8w8wncZinCJS3lHmwv55dhH2HVsjlIufILn2EfIQ
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerLink
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BkRCXqtDShhbkSr1Ri03s-IMbVFQVUjm1Um9W4g_YQ7Or3e2lJw78if69_hLGdrLLQnvgmNiRrIzH855m5hngqBVKthhmqbespVxYRxvlJa2Z094r7ksb-53Pv4mzS_71qr5a9XGnYvchI5kO6uTVSnyYI23inMaKgiiDpujtU3iG4IHFOq6TvsUhHb-MlUi7hgaZBz9dC0JJq_8hgPlvneRfydIUg063YLMHj-RTtvZLeOK7V_D8vE-Pb8OvOJIlIcj4D61NfCDXOSNDxtfpXiIytEfFsXxZ0EfSkNxjmcTASaxixyWRptctIUmKlkwCmTVunKWuETze_7wj01XL5nwHLk-_XJyc0f6aBWoRri3QT4Jo7Uhbr61QlZOucggU7Eh6K4NiLErISeRFCBbrSGht0EI74XTpqgZj_mvY6Cad3wPiXRuQlgaNzI4zGxpn0Rhs5KUO2rW8gPfDfzfTrKZhEgtRwmQrGbSSSVYytwV8jqZZzoxK2OnFZPbd9I5lnOVVq7VltnFcBq4rhy94WSGTlFrVBRwMhjW9e84NsuKIo0qhCjhcDqNjxWxJ0_nJTZ4jleY1K2A374PlSmLorxBoFSDXdsjaUtdHuvGPJN4d9fLxYC_geNhLq2U9_ive_N_0fXhRpe0uaCkOYGMxu_FvETwt2nfJWX4DM5cWaA
  priority: 102
  providerName: Springer Nature
Title Artificial intelligence in medical imaging practice in Africa: a qualitative content analysis study of radiographers’ perspectives
URI https://link.springer.com/article/10.1186/s13244-021-01028-z
https://www.ncbi.nlm.nih.gov/pubmed/34132910
https://www.proquest.com/docview/2541554168
https://search.proquest.com/docview/2541789453
https://pubmed.ncbi.nlm.nih.gov/PMC8206887
https://doaj.org/article/dc42b99c3cad47f492d42b4122897985
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41Rap6QeVZQ4kWiRu4idfrfXBrQ0NBSqkQQblZ9u4aLBEnStJLTz3wJ_h7_BJm13aa8LhwGcW7ljLyzHjn8858C_Ai51LkuMyGVsd5yLg2YSatCJPYKGsls5F2_c6jC34-Zu8nyWQHkrYXxhft67w8rr5Nj6vyq6-tnE91r60T612OBo5zHIOj14GOoHIDovvXbxxHCLvaBhnJe0tEXIyFrhjBMajJ8Hof9tzbmyrXOLuxHnna_r_lmn-WTP62b-qXo-EB3G3ySHJS63sPdmx1H_ZGzU75A_juZmp2CFJu0G7iBZnWmzOknPojikjbKeXm6nODXpOM1O2WnhecuIJ2VIlkDYUJ8ay0ZFaQRWbKmvUa88ifNz_I_LZ7c_kQxsOzT4PzsDlxIdSYua0wZAqe677SVmkuqRGGGswZdF9YLQoZx45NTiBEwrwxcdhWF4orw42KDM1w-X8Eu9WssodArMkLRKiFQpDHYl1kRqNd4r4VqlAmZwG8bJ97Oq-JNVIPSCRPa4OlaLDUGyy9DuDUmWZ9pyPF9gOzxZe0cY3UaEZzpXSsM8NEwRQ1OMAiiqBSKJkEcNQaNm0idZkiQHYpVcRlAM_X0xhjbuMkq-zsqr5HSMWSOIDHtR-sNWn9KACx5SFbqm7PoFt7Hu_GjQN41frSrVr_fhRP_vuPnsI-9UHAw4gfwe5qcWWfYUq1yrvQYf23KMVEoJRD_H3n9Ozi8iNeDShzkg9wbPDh87s3Xf_hAuWIya4PPpRjevILaK4s0Q
link.rule.ids 230,315,728,781,785,865,886,2103,2222,12061,12770,21393,24323,27929,27930,31724,31725,33378,33379,33749,33750,38521,40906,41124,41125,41528,41975,42193,42194,42597,43315,43605,43810,43900,51581,52100,52238,52239,53796,53798,73750,74040,74307,74417
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVoJeeBcCBYzEDdLm4fWDC4JCtYVuubSoNyuxHbpCTZZ9XPbEgT_B3-OXMLaTXbY8DhwT52BnZjzf2DPfADwtmeAlutnY6ryMKdMmLoTlcT830lpBbapdvfPwiA1O6LvT_ml74DZt0yq7PdFv1KbR7ox8FwMZ5_pSJl6Ov8Sua5S7XW1baFyGDXSsSdKDjb0PHw_eLE9ZkjxPMQbrqmUE251i-EVp7DITHJ2aiBdrHskT9_8Jbf6eNHnh5tQ7pP3roLqlhDyUzzvzWbmjFxdYHv9_rTfgWotVyaugXDfhkq1vwZVhext_G765kcBAQUa_UHviAzkPF0BkdO7bIJGuGsuNhd5EL0hBQkmn5x4nLmkeF02KliaFeOZb0lRkUphRYNZGrPrj63cyXlWITu_Ayf7b471B3HZ1iDWiwxmaZcVKnUhtpWYiM9xkBnGJTrjVvBJ57hjrOIZhiE37Ln7WlWTSMCNTkxUIMbagVze1vQfEmrLCKLiSGEjSXFeF0SjuPLFcVtKUNIJnnWTVOJB3KB_0CKaCHijUA-X1QC0ieO2Ev_zSEW_7F83kk2rtWBlNs1JKnevCUF5RmRl8QdMMA1cuRT-C7U6kqt0NpmolzwieLIfRjt3lTFHbZh6-4ULSfh7B3aBpy5k4pJEhrouAr-ng2lTXR-rRmecKd_T86EcieN5p62paf_8V9_-9isdwdXA8PFSHB0fvH8Bm5o2JxSnbht5sMrcPEafNyketMf4EJiZA1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JbtRAEG1BIkVcEDsOARqJG7TGS7sXLohARmHJKEJEyq1l9wJziD2ZmVxy4sBP8Ht8CdWLZxi2o90-tF1VXfVcVa8QetoywVtws8TqqiWUaUMaYTmpKyOtFdQW2vc7H03Y4Ql9d1qfpvqnRSqrHM7EcFCbXvt_5CMAMt71FUyMXCqLOH4zfjk7J36ClM-0pnEaV9E2eMUcgNj2_sHk-OPqj0teVQXgsaFzRrDRAqAYpcRXKXhqNUEuN7xTIPH_W-T5ZwHlb1nU4JzGN9D1FFXiV1ENbqIrtruFdo5S3vw2-uZXIlcEnv5CwgkX-CymavD0LAwswkPflF-LU4Re4AbH5svAEo59eTtsCTeJ0AQHjlrcOzxvzDRyYENU-ePrdzxb93Iu7qCT8cGn14ckzV8gGuK4JRiQY63OpbZSM1EabkoDEYTOudXciary3HIcABNEkbVHutpJJg0zsjBlA8HAXbTV9Z29j7A1rQO86iRAPlpp1xgNwqhyy6WTpqUZejZ8dzWLNBsqwBPBVJSSAimpICV1maF9L5rVk54iO9zo559VsjhlNC1bKXWlG0O5o7I0cIMWJUBMLkWdob1BsCrZ7UKttSxDT1bLYHE-jdJ0tr-Iz3AhaV1l6F7Ug9VOfExQQgSWIb6hIRtb3Vzppl8Cq7cn0ocTP0PPB11ab-vfn2L3_2_xGO2AlagPbyfvH6BrZdB0Rgq2h7aW8wv7EAKqZfsoWcpP0X4iKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+medical+imaging+practice+in+Africa%3A+a+qualitative+content+analysis+study+of+radiographers%27+perspectives&rft.jtitle=Insights+into+imaging&rft.au=Antwi%2C+William+Kwadwo&rft.au=Akudjedu%2C+Theophilus+N&rft.au=Botwe%2C+Benard+Ohene&rft.date=2021-06-16&rft.issn=1869-4101&rft.eissn=1869-4101&rft.volume=12&rft.issue=1&rft.spage=80&rft.epage=80&rft_id=info:doi/10.1186%2Fs13244-021-01028-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-4101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-4101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-4101&client=summon