Artificial intelligence in medical imaging practice in Africa: a qualitative content analysis study of radiographers’ perspectives
Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. Methods Th...
Saved in:
Published in | Insights into imaging Vol. 12; no. 1; p. 80 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
16.06.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa.
Methods
The study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness.
Results
A total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident.
Conclusion
Awareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended. |
---|---|
AbstractList | Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa.
The study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness.
A total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident.
Awareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended. PURPOSEStudies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. METHODSThe study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness. RESULTSA total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident. CONCLUSIONAwareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended. Abstract Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. Methods The study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness. Results A total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident. Conclusion Awareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended. Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to qualitatively explore the perception of radiographers relating to the integration of AI in medical imaging practice in Africa. Methods The study employed a qualitative design using an open-ended online instrument administered between March and August 2020. Participants consisted of radiographers working within Africa during the time of the study. Data obtained were analysed using qualitative content analysis. Six themes of concerns were generated: expectant tool; career insecurity; cost of new technology, equipment preservation and data insecurity; service delivery quality; need for expanding AI awareness. Results A total of 475 valid responses were obtained. Participants demonstrated a positive outlook about AI in relation to clinical quality improvement, competent diagnosis, radiation dose reduction and improvement in research. They however expressed concerns relating to the implementation of this technology, including job security and loss of core professional radiographer skills and roles. In addition, concerns regarding AI equipment maintenance, lack of awareness about AI and education and training opportunities were evident. Conclusion Awareness of the importance of AI in medical imaging practice was acknowledged; however, concerns relating to job security, data protection must be given critical attention for successful implementation of these advanced technologies in medical imaging in Africa. Inclusion of AI modules in the training of future radiographers is highly recommended. |
ArticleNumber | 80 |
Author | Antwi, William Kwadwo Akudjedu, Theophilus N. Botwe, Benard Ohene |
Author_xml | – sequence: 1 givenname: William Kwadwo orcidid: 0000-0002-6726-2342 surname: Antwi fullname: Antwi, William Kwadwo – sequence: 2 givenname: Theophilus N. orcidid: 0000-0003-2423-6897 surname: Akudjedu fullname: Akudjedu, Theophilus N. – sequence: 3 givenname: Benard Ohene orcidid: 0000-0002-0477-640X surname: Botwe fullname: Botwe, Benard Ohene email: Sirbenard13@gmail.com, bebotwe@ug.edu.gh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34132910$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUtVARLaU_wAJZYsMm4FcSmwXSqOJRqRIbWFse20k9ytipnVSarrrgJ_g9voQ7TSktCyxZtu8599j3-jxHBzFFj9BLSt5SKpt3hXImREUYrQglTFbXT9ARAKoSlNCDB_tDdFLKhsDgnHLJn6FDLiBbUXKEfqzyFLpggxlwiJMfhtD7aD0c8Na7YPfxrelD7PGYjZ3Cgq26DNh7bPDlbIYwmSlceWwTSMQJm2iGXQkFl2l2O5w6nI0Lqc9mvPC5_Lr5iUdYR2_3aeUFetqZofiTu_UYff_08dvpl-r86-ez09V5ZWtBpoqRrllboqxXtpHMtY45IqklrbdtJzlXgotWqYZyVUOhre1Uo1zjFHXMEMaP0dmi65LZ6DFDYXmnkwn6NpByrw20ww5eOyvYWinLrXGi7YRiDgKCMiZVq2QNWh8WrXFeQ6MslJ3N8Ej0MRLDhe7TlZaMNFK2IPDmTiCny9mXSW9DsfABJvo0F81qQVupRM2B-vof6ibNGXq8sGqYjQQWW1g2p1Ky7-4fQ4nee0YvntHgGX3rGX0NSa8elnGf8schQOALoQAUe5__3v0f2d_ttNFE |
CitedBy_id | crossref_primary_10_1371_journal_pdig_0000229 crossref_primary_10_3390_iot4020009 crossref_primary_10_1155_2023_4704342 crossref_primary_10_1002_jmrs_581 crossref_primary_10_1016_j_jmir_2022_11_016 crossref_primary_10_7759_cureus_38325 crossref_primary_10_1186_s13014_023_02351_z crossref_primary_10_1093_bjrai_ubae008 crossref_primary_10_1186_s13244_021_01073_8 crossref_primary_10_1007_s12553_023_00786_8 crossref_primary_10_1016_j_jcpo_2023_100457 crossref_primary_10_1002_jmrs_678 crossref_primary_10_1016_j_cpet_2021_09_008 crossref_primary_10_1016_j_radi_2022_04_014 crossref_primary_10_1016_j_radi_2021_07_021 crossref_primary_10_1371_journal_pone_0290613 crossref_primary_10_1155_2022_7542606 crossref_primary_10_21834_e_bpj_v8i25_4872 crossref_primary_10_1016_j_jmir_2022_08_005 crossref_primary_10_56294_saludcyt2023510 crossref_primary_10_1016_j_ipha_2024_02_009 crossref_primary_10_1016_j_glmedi_2024_100113 crossref_primary_10_1155_2024_7001343 crossref_primary_10_1016_j_ijmedinf_2024_105342 crossref_primary_10_1177_20552076241230075 crossref_primary_10_1038_s41746_022_00700_y crossref_primary_10_1515_psr_2022_0121 |
Cites_doi | 10.1016/0147-1767(85)90062-8 10.1155/2018/4827875 10.1016/S2589-7500(20)30160-6 10.1259/bjr.20190840 10.2196/12856 10.1016/j.jmir.2019.11.140 10.1016/j.jacr.2017.09.044 10.4103/jfmpc.jfmpc_440_19 10.1186/s12913-018-3359-4 10.1002/jmrs.369 10.1016/j.acra.2020.09.014 10.1016/j.jacr.2018.12.043 10.1007/s12471-019-01311-1 10.17169/fqs-11.2.1450 10.7861/futurehosp.6-2-94 10.1177/1049732305276687 10.1038/s41568-018-0016-5 10.1186/s41747-018-0061-6 10.1007/s00330-019-06486-0 10.1016/j.radi.2021.01.008 10.1002/jmrs.460 10.1186/s13244-019-0738-2 10.1016/j.radi.2020.03.007 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7RV 7X7 7XB 8AO 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FYUFA GHDGH HCIFZ K9. KB0 M0S NAPCQ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13244-021-01028-z |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals PHMC-Proquest健康医学期刊库 ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Nursing & Allied Health Premium ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1869-4101 |
EndPage | 80 |
ExternalDocumentID | oai_doaj_org_article_dc42b99c3cad47f492d42b4122897985 10_1186_s13244_021_01028_z 34132910 |
Genre | Journal Article |
GeographicLocations | Africa |
GeographicLocations_xml | – name: Africa |
GroupedDBID | -A0 0R~ 2JY 3V. 40G 53G 5VS 67Z 7RV 7X7 8AO 8FE 8FG 8FI 8FJ AAFWJ AAJSJ AAKKN AAPBV AAYZJ ABDBF ABUWG ACACY ACGFS ACIHN ADBBV ADINQ AEAQA AFGXO AFKRA AFNRJ AFPKN AHBXF AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BCNDV BENPR BGLVJ BKEYQ BPHCQ BVXVI C24 C6C CCPQU DIK EBS ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE KQ8 M48 M~E NAPCQ O9I OK1 P62 PIMPY PQQKQ PROAC QOS R9I RNS RPM RSV S27 SMD SOJ T13 TUS U2A UKHRP WK8 ABEEZ ACULB ALIPV EBLON NPM AAYXX CITATION 7XB 8FK AZQEC COVID DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c540t-20f6bc09ce9c682d7d2d081c07ec7f8339434799613953837cf969d6d91d2a023 |
IEDL.DBID | RPM |
ISSN | 1869-4101 |
IngestDate | Tue Oct 22 15:06:48 EDT 2024 Tue Sep 17 21:12:29 EDT 2024 Thu Jul 25 10:15:01 EDT 2024 Thu Oct 10 18:39:43 EDT 2024 Thu Nov 21 22:51:48 EST 2024 Wed Oct 16 00:42:51 EDT 2024 Sat Dec 16 12:09:31 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Radiography Medical imaging Qualitative study Artificial intelligence Online surveys Africa |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-20f6bc09ce9c682d7d2d081c07ec7f8339434799613953837cf969d6d91d2a023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6726-2342 0000-0003-2423-6897 0000-0002-0477-640X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206887/ |
PMID | 34132910 |
PQID | 2541554168 |
PQPubID | 2034747 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc42b99c3cad47f492d42b4122897985 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206887 proquest_miscellaneous_2541789453 proquest_journals_2541554168 crossref_primary_10_1186_s13244_021_01028_z pubmed_primary_34132910 springer_journals_10_1186_s13244_021_01028_z |
PublicationCentury | 2000 |
PublicationDate | 2021-06-16 |
PublicationDateYYYYMMDD | 2021-06-16 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Germany – name: Heidelberg |
PublicationTitle | Insights into imaging |
PublicationTitleAbbrev | Insights Imaging |
PublicationTitleAlternate | Insights Imaging |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | Hardy, Harvey (CR13) 2020; 93 Jansen (CR21) 2010; 11 CR18 CR17 Pearce, McLeod, Reinhart, Whyte, Deveny, Shearer (CR3) 2019; 210 Ongena, Haan, Yakar, Kwee (CR10) 2020; 30 Hsieh, Shannon (CR22) 2005; 15 CR14 Botwe, Schandorf, Inkoom, Faanu (CR30) 2020; 91 Lewis, Gandomkar, Brennan (CR4) 2019; 66 Hosny, Parmar, Quackenbush, Schwartz, Aerts (CR8) 2018; 18 Oren, Gersh, Bhatt (CR1) 2020; 2 Kyngäs, Elo, Pölkki, Kääriäinen, Kanste (CR19) 2011; 23 Pesapane, Codari, Sardanelli (CR9) 2018; 2 Lakhani, Prater, Hutson (CR11) 2018; 15 CR7 CR29 O’Cathain, Thomas (CR20) 2004; 4 Haan, Ongena, Hommes, Kwee, Yakar (CR15) 2019; 16 CR26 Davenport, Kalakota (CR24) 2019; 6 CR25 Abuzaid, Elshami, Tekin, Issa (CR16) 2020 Meskó, Hetényi, Győrffy (CR27) 2018; 18 Wagner (CR2) 2019; 90 Amisha, Pathania, Rathaur (CR6) 2019; 8 Lincoln, Guba (CR23) 1985 Botwe, Schandorf, Inkoom, Faanu (CR28) 2020; 51 Chan, Chen, Pham, Chang, Hsieh (CR5) 2018; 2018 Chaix, Bibault, Pienkowski (CR12) 2019; 5 Siegersma, Leiner, Chew, Appelman, Hofstra, Verjans (CR31) 2019; 27 HF Hsieh (1028_CR22) 2005; 15 1028_CR18 B Meskó (1028_CR27) 2018; 18 M Hardy (1028_CR13) 2020; 93 MM Abuzaid (1028_CR16) 2020 H Kyngäs (1028_CR19) 2011; 23 H Jansen (1028_CR21) 2010; 11 MP Amisha (1028_CR6) 2019; 8 YK Chan (1028_CR5) 2018; 2018 1028_CR7 1028_CR17 1028_CR14 JB Wagner (1028_CR2) 2019; 90 SJ Lewis (1028_CR4) 2019; 66 YP Ongena (1028_CR10) 2020; 30 A Hosny (1028_CR8) 2018; 18 1028_CR29 O Oren (1028_CR1) 2020; 2 A O’Cathain (1028_CR20) 2004; 4 C Pearce (1028_CR3) 2019; 210 B Botwe (1028_CR28) 2020; 51 F Pesapane (1028_CR9) 2018; 2 KR Siegersma (1028_CR31) 2019; 27 B Chaix (1028_CR12) 2019; 5 T Davenport (1028_CR24) 2019; 6 B Botwe (1028_CR30) 2020; 91 P Lakhani (1028_CR11) 2018; 15 SY Lincoln (1028_CR23) 1985 1028_CR26 M Haan (1028_CR15) 2019; 16 1028_CR25 |
References_xml | – ident: CR18 – year: 1985 ident: CR23 publication-title: Naturalistic inquiry doi: 10.1016/0147-1767(85)90062-8 contributor: fullname: Guba – volume: 2018 start-page: 4827875 year: 2018 ident: CR5 article-title: Artificial Intelligence in Medical Applications publication-title: J Healthc Eng doi: 10.1155/2018/4827875 contributor: fullname: Hsieh – ident: CR14 – volume: 2 start-page: e486 issue: 9 year: 2020 end-page: e488 ident: CR1 article-title: Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30160-6 contributor: fullname: Bhatt – volume: 91 start-page: 324 issue: 4 year: 2020 end-page: 332 ident: CR30 article-title: Status of quality management systems in computed tomography facilities in Ghana publication-title: Radiol Technol contributor: fullname: Faanu – volume: 90 start-page: 489 issue: 5 year: 2019 end-page: 501 ident: CR2 article-title: Artificial Intelligence in Medical Imaging publication-title: Radiol Technol contributor: fullname: Wagner – volume: 93 start-page: 20190840 issue: 1108 year: 2020 ident: CR13 article-title: Artificial intelligence in diagnostic imaging: impact on the radiography profession publication-title: Br J Radiol doi: 10.1259/bjr.20190840 contributor: fullname: Harvey – volume: 5 start-page: e12856 year: 2019 ident: CR12 article-title: When Chatbots meet patients: one-year prospective study of conversations between patients with breast cancer and a Chatbot publication-title: JMIR Cancer doi: 10.2196/12856 contributor: fullname: Pienkowski – ident: CR29 – volume: 51 start-page: 165 issue: 1 year: 2020 end-page: 172 ident: CR28 article-title: An investigation into the infrastructure and management of computerized tomography units in Ghana publication-title: J Med Imaging Radiat Sci doi: 10.1016/j.jmir.2019.11.140 contributor: fullname: Faanu – ident: CR25 – volume: 15 start-page: 350 issue: 2 year: 2018 end-page: 359 ident: CR11 article-title: Machine learning in radiology: applications beyond image interpretation publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2017.09.044 contributor: fullname: Hutson – volume: 23 start-page: 138 issue: 2 year: 2011 end-page: 148 ident: CR19 article-title: The use of content analysis in Finnish nursing science research publication-title: Hoitotiede contributor: fullname: Kanste – volume: 8 start-page: 2328 issue: 7 year: 2019 end-page: 2331 ident: CR6 article-title: Overview of artificial intelligence in medicine publication-title: J Family Med Prim Care doi: 10.4103/jfmpc.jfmpc_440_19 contributor: fullname: Rathaur – volume: 18 start-page: 545 year: 2018 ident: CR27 article-title: Will artificial intelligence solve the human resource crisis in healthcare? publication-title: BMC Health Serv Res doi: 10.1186/s12913-018-3359-4 contributor: fullname: Győrffy – volume: 66 start-page: 292 issue: 4 year: 2019 end-page: 295 ident: CR4 article-title: Artificial Intelligence in medical imaging practice: looking to the future publication-title: J Med Radiat Sci doi: 10.1002/jmrs.369 contributor: fullname: Brennan – ident: CR17 – volume: 210 start-page: S38 issue: 6 year: 2019 end-page: 40 ident: CR3 article-title: Artificial Intelligence and the clinical world: a view from the front line publication-title: Med J Aust contributor: fullname: Shearer – year: 2020 ident: CR16 article-title: Assessment of the willingness of radiologists and radiographers to accept the integration of artificial intelligence into radiology practice publication-title: Acad Radiol doi: 10.1016/j.acra.2020.09.014 contributor: fullname: Issa – volume: 16 start-page: 1416 issue: 10 year: 2019 end-page: 1419 ident: CR15 article-title: A qualitative study to understand patient perspective on the use of artificial intelligence in radiology publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2018.12.043 contributor: fullname: Yakar – volume: 27 start-page: 403 year: 2019 end-page: 413 ident: CR31 article-title: Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist publication-title: Neth Heart J doi: 10.1007/s12471-019-01311-1 contributor: fullname: Verjans – volume: 11 start-page: 11 issue: 2 year: 2010 ident: CR21 article-title: The Logic of Qualitative Survey Research and its Position in the Field of Social Research Methods publication-title: Forum Qual Soc Res doi: 10.17169/fqs-11.2.1450 contributor: fullname: Jansen – volume: 6 start-page: 94 issue: 2 year: 2019 end-page: 98 ident: CR24 article-title: The potential for artificial intelligence in healthcare publication-title: Future Healthc J doi: 10.7861/futurehosp.6-2-94 contributor: fullname: Kalakota – ident: CR7 – volume: 15 start-page: 1277 issue: 9 year: 2005 end-page: 1288 ident: CR22 article-title: Three approaches to qualitative content analysis publication-title: Qual Health Res doi: 10.1177/1049732305276687 contributor: fullname: Shannon – volume: 4 start-page: 1 issue: 25 year: 2004 end-page: 7 ident: CR20 article-title: Any other comments? Open questions on questionnaires—a bane or bonus to research? publication-title: BMC Med Res Methodol contributor: fullname: Thomas – ident: CR26 – volume: 18 start-page: 500 issue: 8 year: 2018 end-page: 510 ident: CR8 article-title: Artificial intelligence in radiology publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0016-5 contributor: fullname: Aerts – volume: 2 start-page: 35 issue: 1 year: 2018 ident: CR9 article-title: Artificial intelligence in medical imaging: threat or opportunity? radiologists again at the forefront of innovation in medicine publication-title: Eur Radiol Exp doi: 10.1186/s41747-018-0061-6 contributor: fullname: Sardanelli – volume: 30 start-page: 1033 issue: 2 year: 2020 end-page: 1040 ident: CR10 article-title: Patients' views on the implementation of artificial intelligence in radiology: development and validation of a standardized questionnaire publication-title: Eur Radiol doi: 10.1007/s00330-019-06486-0 contributor: fullname: Kwee – volume: 4 start-page: 1 issue: 25 year: 2004 ident: 1028_CR20 publication-title: BMC Med Res Methodol contributor: fullname: A O’Cathain – volume: 16 start-page: 1416 issue: 10 year: 2019 ident: 1028_CR15 publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2018.12.043 contributor: fullname: M Haan – ident: 1028_CR18 doi: 10.1016/j.radi.2021.01.008 – volume: 18 start-page: 545 year: 2018 ident: 1028_CR27 publication-title: BMC Health Serv Res doi: 10.1186/s12913-018-3359-4 contributor: fullname: B Meskó – volume: 2018 start-page: 4827875 year: 2018 ident: 1028_CR5 publication-title: J Healthc Eng doi: 10.1155/2018/4827875 contributor: fullname: YK Chan – ident: 1028_CR26 – volume: 18 start-page: 500 issue: 8 year: 2018 ident: 1028_CR8 publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0016-5 contributor: fullname: A Hosny – volume: 90 start-page: 489 issue: 5 year: 2019 ident: 1028_CR2 publication-title: Radiol Technol contributor: fullname: JB Wagner – ident: 1028_CR17 doi: 10.1002/jmrs.460 – volume: 2 start-page: 35 issue: 1 year: 2018 ident: 1028_CR9 publication-title: Eur Radiol Exp doi: 10.1186/s41747-018-0061-6 contributor: fullname: F Pesapane – volume: 6 start-page: 94 issue: 2 year: 2019 ident: 1028_CR24 publication-title: Future Healthc J doi: 10.7861/futurehosp.6-2-94 contributor: fullname: T Davenport – volume: 91 start-page: 324 issue: 4 year: 2020 ident: 1028_CR30 publication-title: Radiol Technol contributor: fullname: B Botwe – volume: 66 start-page: 292 issue: 4 year: 2019 ident: 1028_CR4 publication-title: J Med Radiat Sci doi: 10.1002/jmrs.369 contributor: fullname: SJ Lewis – year: 2020 ident: 1028_CR16 publication-title: Acad Radiol doi: 10.1016/j.acra.2020.09.014 contributor: fullname: MM Abuzaid – volume: 27 start-page: 403 year: 2019 ident: 1028_CR31 publication-title: Neth Heart J doi: 10.1007/s12471-019-01311-1 contributor: fullname: KR Siegersma – ident: 1028_CR7 doi: 10.1186/s13244-019-0738-2 – volume: 15 start-page: 1277 issue: 9 year: 2005 ident: 1028_CR22 publication-title: Qual Health Res doi: 10.1177/1049732305276687 contributor: fullname: HF Hsieh – ident: 1028_CR14 doi: 10.1016/j.radi.2020.03.007 – volume: 23 start-page: 138 issue: 2 year: 2011 ident: 1028_CR19 publication-title: Hoitotiede contributor: fullname: H Kyngäs – volume: 5 start-page: e12856 year: 2019 ident: 1028_CR12 publication-title: JMIR Cancer doi: 10.2196/12856 contributor: fullname: B Chaix – ident: 1028_CR25 – volume: 15 start-page: 350 issue: 2 year: 2018 ident: 1028_CR11 publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2017.09.044 contributor: fullname: P Lakhani – volume: 11 start-page: 11 issue: 2 year: 2010 ident: 1028_CR21 publication-title: Forum Qual Soc Res doi: 10.17169/fqs-11.2.1450 contributor: fullname: H Jansen – volume-title: Naturalistic inquiry year: 1985 ident: 1028_CR23 doi: 10.1016/0147-1767(85)90062-8 contributor: fullname: SY Lincoln – volume: 30 start-page: 1033 issue: 2 year: 2020 ident: 1028_CR10 publication-title: Eur Radiol doi: 10.1007/s00330-019-06486-0 contributor: fullname: YP Ongena – volume: 210 start-page: S38 issue: 6 year: 2019 ident: 1028_CR3 publication-title: Med J Aust contributor: fullname: C Pearce – volume: 8 start-page: 2328 issue: 7 year: 2019 ident: 1028_CR6 publication-title: J Family Med Prim Care doi: 10.4103/jfmpc.jfmpc_440_19 contributor: fullname: MP Amisha – ident: 1028_CR29 – volume: 93 start-page: 20190840 issue: 1108 year: 2020 ident: 1028_CR13 publication-title: Br J Radiol doi: 10.1259/bjr.20190840 contributor: fullname: M Hardy – volume: 2 start-page: e486 issue: 9 year: 2020 ident: 1028_CR1 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30160-6 contributor: fullname: O Oren – volume: 51 start-page: 165 issue: 1 year: 2020 ident: 1028_CR28 publication-title: J Med Imaging Radiat Sci doi: 10.1016/j.jmir.2019.11.140 contributor: fullname: B Botwe |
SSID | ssj0000331383 |
Score | 2.393124 |
Snippet | Purpose
Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed... Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed to... PurposeStudies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed... PURPOSEStudies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This study aimed... Abstract Purpose Studies have documented the clinical potentials of artificial intelligence (AI) in medical imaging practice to improving patient care. This... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 80 |
SubjectTerms | Africa Artificial intelligence Content analysis Diagnostic Radiology Employment security Equipment costs Imaging Internal Medicine Interventional Radiology Medical imaging Medicine Medicine & Public Health Neuroradiology New technology Online surveys Original Original Article Qualitative analysis Qualitative research Qualitative study Radiation dosage Radiography Radiology Training Ultrasound |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxEB4hCkQTBUKS5SVHoiMWt2ufH3SAQCgSqUCis3b9UK5gD3FHQ0WRP5G_xy9hbO8ed0CUJuWuXYw8M57vkz2fAfYaoWSDZZZ6yxrKhXW0Vl7SIXPae8V9aWO_88VPcX7Ff1wPr-ee-op3wrI8cF64A2d51Whtma0dl4HryuEPXlbIFKRWWb10ME-m0h7MWIncq--SUeJggrSLcxpvJEQZNUUfFipREux_D2W-vSz56sQ0FaKzj_ChQ5DkKFu-Bku-XYeVi-6M_BP8jiNZF4KM5gQ38YPc5GMZMrpJjxORvkcqjuUXgw5JTXKjZVIEJ_EqO5pE6k68hCQ9WjIO5K52o6x3jQjy6fEPuX3p25xswNXZ6eXJOe3eWqAWMdsUkyWIxg609doKVTnpKodowQ6ktzIoxqKOnERyhIhxGFmtDVpoJ5wuXVVj4f8My-249V-BeNcE5KZBI73jzIbaWXQGG3ipg3YNL2C_X3dzmyU1TKIiSpjsJYNeMslL5qGA4-ia2cwoh51-YJCYLkjMv4KkgO3esabL0YlBahzBVClUAd9mw5hd8cikbv34Ps-RSvMhK-BLjoOZJbH-V4i2CpALEbJg6uJIO_qVFLyjaD7u7gV872Ppxay_L8Xm_1iKLVitUhIIWoptWJ7e3fsdxFXTZjel0DMbnSGc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRCXqrxTCjISN7C6iR0_ekGAWCqkcqJSb1ZiO7CHJsvu9tJTD_0T_D1-CeNHdllex8Q-OJkZzzcezzcAL1qhZItulnrLWsqFdbRRXtKaOe294r60od755JM4PuUfz-qzfOC2zNcqxz0xbtRusOGM_BADmeD6SqFez7_R0DUqZFdzC42bcKuspAytG9T0w_qMZcJYiRHYWCujxOESgy_OabiXEMjUFL3c8keRtv9vWPPPK5O_5U2jO5ruwW7GkeRNEvxduOH7e3D7JGfK78N1GEnsEGT2C-0mPpDzlJwhs_PYooiMlVJhLPUNOiINSeWWkRechAvtuCTSZAoTEllpydCRReNmifUaceSPq-9kvqneXD6A0-n7z--Oae64QC0itxWaTCdaO9HWaytU5aSrHGIGO5Heyk4xFtjkJIZIiBvrENvaTgvthNOlqxp0_w9hpx96_xiId22HEWqnMcjjzHaNsygMNvFSd9q1vICX438380SsYWJAooRJUjIoJROlZC4LeBtEs54ZSLHji2HxxWQbM87yqtXaMts4LjuuK4cveFlhUCm1qgs4GAVrsqUuzUavCni-HkYbC4mTpvfDRZojleY1K-BR0oP1SgIKqBBzFSC3NGRrqdsj_exr5PEO1Pm4xxfwatSlzbL-_Sv2__8VT-BOFdVb0FIcwM5qceGfIm5atc-icfwEW54Zog priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB5qBfFFrD-3tiWC4INGb5NsfggiVixFOJ886FvYTbL1wO61d1fQPvqXO0l2r56e4ONuwjJkZjbfRzLfADxrpFYNbrM0ON5QIZ2ntQ6KVtybELQIpYv1zuPP8ngiPp1UJ1swtDvqF3CxkdrFflKT-bdX3y9-vMOEf5sSXsvXC2RUQtB42SAqpGl6dQNuMsETYBr3cD_9mTkvszJnbMREBYbjUEez8TNre1WS9N-EQ_--TvnHmWraqo7uwp0eY5L3OSh2YCt09-DWuD9Fvw8_40hWjiDT3yQ58YGc5YMbMj1L7YvIUEUVx3JPoTekJrkUM2mGk3jZHU0idS9vQpJiLZm1ZF77aVbERoz5nJxf13UuHsDk6OOXD8e078VAHWK6JSZTKxs3Mi4YJzXzyjOPaMKNVHCq1ZxHnTmF5AkRZRVZr2uNNF56U3pWIzB4CNvdrAuPgQTftMhdW4P0T3DX1t6hW_goKNMa34gCXgyrbs-z5IZNVEVLm31k0Uc2-cheFXAYHbOaGeWy04vZ_NT22We9E6wxxnFXe6FaYZjHF6JkSDeV0VUBe4Nb7RCCFqlzBFul1AU8XQ1j9sUjlboLs8s8R2kjKl7AoxwFK0siPmCIxgpQa_GxZur6SDf9mhS-o6g-_v0LeDlE0rVZ_16K3f8w8wncZinCJS3lHmwv55dhH2HVsjlIufILn2EfIQ priority: 102 providerName: Scholars Portal – databaseName: SpringerLink dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BkRCXqtDShhbkSr1Ri03s-IMbVFQVUjm1Um9W4g_YQ7Or3e2lJw78if69_hLGdrLLQnvgmNiRrIzH855m5hngqBVKthhmqbespVxYRxvlJa2Z094r7ksb-53Pv4mzS_71qr5a9XGnYvchI5kO6uTVSnyYI23inMaKgiiDpujtU3iG4IHFOq6TvsUhHb-MlUi7hgaZBz9dC0JJq_8hgPlvneRfydIUg063YLMHj-RTtvZLeOK7V_D8vE-Pb8OvOJIlIcj4D61NfCDXOSNDxtfpXiIytEfFsXxZ0EfSkNxjmcTASaxixyWRptctIUmKlkwCmTVunKWuETze_7wj01XL5nwHLk-_XJyc0f6aBWoRri3QT4Jo7Uhbr61QlZOucggU7Eh6K4NiLErISeRFCBbrSGht0EI74XTpqgZj_mvY6Cad3wPiXRuQlgaNzI4zGxpn0Rhs5KUO2rW8gPfDfzfTrKZhEgtRwmQrGbSSSVYytwV8jqZZzoxK2OnFZPbd9I5lnOVVq7VltnFcBq4rhy94WSGTlFrVBRwMhjW9e84NsuKIo0qhCjhcDqNjxWxJ0_nJTZ4jleY1K2A374PlSmLorxBoFSDXdsjaUtdHuvGPJN4d9fLxYC_geNhLq2U9_ive_N_0fXhRpe0uaCkOYGMxu_FvETwt2nfJWX4DM5cWaA priority: 102 providerName: Springer Nature |
Title | Artificial intelligence in medical imaging practice in Africa: a qualitative content analysis study of radiographers’ perspectives |
URI | https://link.springer.com/article/10.1186/s13244-021-01028-z https://www.ncbi.nlm.nih.gov/pubmed/34132910 https://www.proquest.com/docview/2541554168 https://search.proquest.com/docview/2541789453 https://pubmed.ncbi.nlm.nih.gov/PMC8206887 https://doaj.org/article/dc42b99c3cad47f492d42b4122897985 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41Rap6QeVZQ4kWiRu4idfrfXBrQ0NBSqkQQblZ9u4aLBEnStJLTz3wJ_h7_BJm13aa8LhwGcW7ljLyzHjn8858C_Ai51LkuMyGVsd5yLg2YSatCJPYKGsls5F2_c6jC34-Zu8nyWQHkrYXxhft67w8rr5Nj6vyq6-tnE91r60T612OBo5zHIOj14GOoHIDovvXbxxHCLvaBhnJe0tEXIyFrhjBMajJ8Hof9tzbmyrXOLuxHnna_r_lmn-WTP62b-qXo-EB3G3ySHJS63sPdmx1H_ZGzU75A_juZmp2CFJu0G7iBZnWmzOknPojikjbKeXm6nODXpOM1O2WnhecuIJ2VIlkDYUJ8ay0ZFaQRWbKmvUa88ifNz_I_LZ7c_kQxsOzT4PzsDlxIdSYua0wZAqe677SVmkuqRGGGswZdF9YLQoZx45NTiBEwrwxcdhWF4orw42KDM1w-X8Eu9WssodArMkLRKiFQpDHYl1kRqNd4r4VqlAmZwG8bJ97Oq-JNVIPSCRPa4OlaLDUGyy9DuDUmWZ9pyPF9gOzxZe0cY3UaEZzpXSsM8NEwRQ1OMAiiqBSKJkEcNQaNm0idZkiQHYpVcRlAM_X0xhjbuMkq-zsqr5HSMWSOIDHtR-sNWn9KACx5SFbqm7PoFt7Hu_GjQN41frSrVr_fhRP_vuPnsI-9UHAw4gfwe5qcWWfYUq1yrvQYf23KMVEoJRD_H3n9Ozi8iNeDShzkg9wbPDh87s3Xf_hAuWIya4PPpRjevILaK4s0Q |
link.rule.ids | 230,315,728,781,785,865,886,2103,2222,12061,12770,21393,24323,27929,27930,31724,31725,33378,33379,33749,33750,38521,40906,41124,41125,41528,41975,42193,42194,42597,43315,43605,43810,43900,51581,52100,52238,52239,53796,53798,73750,74040,74307,74417 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVoJeeBcCBYzEDdLm4fWDC4JCtYVuubSoNyuxHbpCTZZ9XPbEgT_B3-OXMLaTXbY8DhwT52BnZjzf2DPfADwtmeAlutnY6ryMKdMmLoTlcT830lpBbapdvfPwiA1O6LvT_ml74DZt0yq7PdFv1KbR7ox8FwMZ5_pSJl6Ov8Sua5S7XW1baFyGDXSsSdKDjb0PHw_eLE9ZkjxPMQbrqmUE251i-EVp7DITHJ2aiBdrHskT9_8Jbf6eNHnh5tQ7pP3roLqlhDyUzzvzWbmjFxdYHv9_rTfgWotVyaugXDfhkq1vwZVhext_G765kcBAQUa_UHviAzkPF0BkdO7bIJGuGsuNhd5EL0hBQkmn5x4nLmkeF02KliaFeOZb0lRkUphRYNZGrPrj63cyXlWITu_Ayf7b471B3HZ1iDWiwxmaZcVKnUhtpWYiM9xkBnGJTrjVvBJ57hjrOIZhiE37Ln7WlWTSMCNTkxUIMbagVze1vQfEmrLCKLiSGEjSXFeF0SjuPLFcVtKUNIJnnWTVOJB3KB_0CKaCHijUA-X1QC0ieO2Ev_zSEW_7F83kk2rtWBlNs1JKnevCUF5RmRl8QdMMA1cuRT-C7U6kqt0NpmolzwieLIfRjt3lTFHbZh6-4ULSfh7B3aBpy5k4pJEhrouAr-ng2lTXR-rRmecKd_T86EcieN5p62paf_8V9_-9isdwdXA8PFSHB0fvH8Bm5o2JxSnbht5sMrcPEafNyketMf4EJiZA1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JbtRAEG1BIkVcEDsOARqJG7TGS7sXLohARmHJKEJEyq1l9wJziD2ZmVxy4sBP8Ht8CdWLZxi2o90-tF1VXfVcVa8QetoywVtws8TqqiWUaUMaYTmpKyOtFdQW2vc7H03Y4Ql9d1qfpvqnRSqrHM7EcFCbXvt_5CMAMt71FUyMXCqLOH4zfjk7J36ClM-0pnEaV9E2eMUcgNj2_sHk-OPqj0teVQXgsaFzRrDRAqAYpcRXKXhqNUEuN7xTIPH_W-T5ZwHlb1nU4JzGN9D1FFXiV1ENbqIrtruFdo5S3vw2-uZXIlcEnv5CwgkX-CymavD0LAwswkPflF-LU4Re4AbH5svAEo59eTtsCTeJ0AQHjlrcOzxvzDRyYENU-ePrdzxb93Iu7qCT8cGn14ckzV8gGuK4JRiQY63OpbZSM1EabkoDEYTOudXciary3HIcABNEkbVHutpJJg0zsjBlA8HAXbTV9Z29j7A1rQO86iRAPlpp1xgNwqhyy6WTpqUZejZ8dzWLNBsqwBPBVJSSAimpICV1maF9L5rVk54iO9zo559VsjhlNC1bKXWlG0O5o7I0cIMWJUBMLkWdob1BsCrZ7UKttSxDT1bLYHE-jdJ0tr-Iz3AhaV1l6F7Ug9VOfExQQgSWIb6hIRtb3Vzppl8Cq7cn0ocTP0PPB11ab-vfn2L3_2_xGO2AlagPbyfvH6BrZdB0Rgq2h7aW8wv7EAKqZfsoWcpP0X4iKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+medical+imaging+practice+in+Africa%3A+a+qualitative+content+analysis+study+of+radiographers%27+perspectives&rft.jtitle=Insights+into+imaging&rft.au=Antwi%2C+William+Kwadwo&rft.au=Akudjedu%2C+Theophilus+N&rft.au=Botwe%2C+Benard+Ohene&rft.date=2021-06-16&rft.issn=1869-4101&rft.eissn=1869-4101&rft.volume=12&rft.issue=1&rft.spage=80&rft.epage=80&rft_id=info:doi/10.1186%2Fs13244-021-01028-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-4101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-4101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-4101&client=summon |