One-step metallization of weft-knitted fabrics for wearable biaxial strain sensors
One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW gree...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 20029 - 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.11.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-022-24676-7 |
Cover
Loading…
Abstract | One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm
2
). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser’s profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles. |
---|---|
AbstractList | One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm
2
). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser’s profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles. One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm ). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser's profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles. One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm2). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser's profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles.One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm2). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser's profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles. Abstract One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm2). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser’s profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles. One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm2). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser’s profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles. |
ArticleNumber | 20029 |
Author | Lin, Chun-Yu Abdolvand, Amin Jia, Lu-Chiang Liu, Tang-Chun Jones, Thomas Tai, Chao-Yi |
Author_xml | – sequence: 1 givenname: Chao-Yi surname: Tai fullname: Tai, Chao-Yi email: cytai@dop.ncu.edu.tw organization: Department of Optics and Photonics, National Central University – sequence: 2 givenname: Chun-Yu surname: Lin fullname: Lin, Chun-Yu organization: Department of Optics and Photonics, National Central University – sequence: 3 givenname: Tang-Chun surname: Liu fullname: Liu, Tang-Chun organization: Department of Optics and Photonics, National Central University – sequence: 4 givenname: Lu-Chiang surname: Jia fullname: Jia, Lu-Chiang organization: Sousveillance Technology, Ltd – sequence: 5 givenname: Thomas surname: Jones fullname: Jones, Thomas organization: School of Science and Engineering, University of Dundee – sequence: 6 givenname: Amin surname: Abdolvand fullname: Abdolvand, Amin organization: School of Science and Engineering, University of Dundee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36414763$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuFDEQHKEgEkJ-gAMaiQuXgfHbc0FCEY9IkSIhOFseu7148dqL7Q0kX493N4Ekh_hiy11Vqu7q591BTBG67iUa36KRyHeFIjbJYcR4wJQLPogn3REeKRswwfjgzvuwOyllObbD8ETR9Kw7JJwiKjg56r5eRBhKhXW_gqpD8Ne6-hT75Prf4OrwM_pawfZOz9mb0ruUW0FnPQfoZ6__eB36UrP2sS8QS8rlRffU6VDg5OY-7r5_-vjt9MtwfvH57PTD-WAYHeuAZuLQzJGx3DLsnLbYcI6EBEYwkk4QqzFDkmmwrUvNBDEY8ZkYKYjkjBx3Z3tdm_RSrbNf6XylkvZq95HyQulcvQmgKJczkZI6EIJOmErEEViqKWfMEAtN6_1ea72ZV2ANxNZSuCd6vxL9D7VIl2riEglBmsCbG4Gcfm2gVLXyxUAIOkLaFIUFmSghZOf79QPoMm1ybKPaoqQYCR1xQ7266-ifldvoGkDuASanUjI4ZXzdhbdNIyg0qu2iqP2iqDZCtVsUJRoVP6Deqj9KIntSaeC4gPzf9iOsv3xUzxc |
CitedBy_id | crossref_primary_10_1080_00405000_2024_2374096 |
Cites_doi | 10.1021/acsnano.8b03391 10.1016/j.surfcoat.2010.02.061 10.1038/srep41757 10.3176/eng.2011.1.05 10.1103/PhysRevB.62.11126 10.1002/adma.201502866 10.1021/acs.jpcc.7b05818 10.1021/nl302959a 10.1021/ja209267c 10.1002/polb.10571 10.1016/j.susc.2008.06.034 10.1364/OL.44.000683 10.1021/acsnano.5b08176 10.1021/acsami.7b01771 10.1021/acsami.8b18231 10.1002/adma.201505119 10.1016/S1359-835X(01)00067-7 10.1016/j.compstruct.2005.10.016 10.3390/inventions3010014 10.1039/C9RA03117K 10.1039/C8MH01062E 10.1016/j.synthmet.2004.07.005 10.1002/aelm.201700253 10.1002/app.38907 10.1109/ECTC.2016.180 10.1520/D0257-07 10.1002/adma.201702665 10.1088/0960-1317/19/8/085020 10.1016/B978-0-12-811810-8.00008-7 10.1039/C9TC05463D 10.3390/s140711957 10.1021/acsami.7b14614 10.1021/ie400804n 10.1021/ja067596w 10.1080/00405000.2017.1362148 10.1002/9781119620396.ch5 10.1063/1.2424671 10.3390/s20092495 10.1002/mop.32075 10.1002/pssb.201100179 10.1021/acsanm.9b01937 10.1016/j.tsf.2016.09.024 10.1021/nl401788w 10.1016/j.ijsolstr.2017.01.011 10.1002/adma.200305413 10.18434/T4T88K 10.1002/adma.201503558 10.2961/jlmn.2007.01.0004 10.1007/978-3-662-06688-1 10.1109/ACCESS.2018.2833501 10.1039/C7NR06685F |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-24676-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_468b3884fe7749248161ed4a4655c3de PMC9681773 36414763 10_1038_s41598_022_24676_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: UK-TW Innovative Industries Researcher Placement Scheme – fundername: RSE and MOST Bilateral Visits Programme grantid: 108-2911-I-008-508 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 107-2112-M-008-010; MOST 107-2112-M-008-010; MOST 110-2112-M-008-028 funderid: http://dx.doi.org/10.13039/501100004663 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 107-2112-M-008-010 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 110-2112-M-008-028 – fundername: ; – fundername: ; grantid: MOST 107-2112-M-008-010; MOST 107-2112-M-008-010; MOST 110-2112-M-008-028 – fundername: ; grantid: 108-2911-I-008-508 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-1b3f1b61cd6d52ffad2c66178e53218f73da25185aed022a573c216b3c8738653 |
IEDL.DBID | C6C |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:46 EDT 2025 Thu Aug 21 18:39:36 EDT 2025 Fri Sep 05 03:33:07 EDT 2025 Wed Aug 13 08:41:48 EDT 2025 Thu Jan 02 22:52:57 EST 2025 Tue Jul 01 00:55:27 EDT 2025 Thu Apr 24 23:44:07 EDT 2025 Fri Feb 21 02:39:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-1b3f1b61cd6d52ffad2c66178e53218f73da25185aed022a573c216b3c8738653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-022-24676-7 |
PMID | 36414763 |
PQID | 2738703402 |
PQPubID | 2041939 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_468b3884fe7749248161ed4a4655c3de pubmedcentral_primary_oai_pubmedcentral_nih_gov_9681773 proquest_miscellaneous_2739433365 proquest_journals_2738703402 pubmed_primary_36414763 crossref_citationtrail_10_1038_s41598_022_24676_7 crossref_primary_10_1038_s41598_022_24676_7 springer_journals_10_1038_s41598_022_24676_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-21 |
PublicationDateYYYYMMDD | 2022-11-21 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | SecorEBAhnBYGaoTZLewisJAHersamMCRapid and versatile photonic annealing of graphene inks for flexible printed electronicsAdv. Mater.20152742668366882642236310.1002/adma.2015028661:CAS:528:DC%2BC2MXhsF2ks77O InagakiNInteractions Between Plasma and Polymeric Materials in Plasma Surface Modification and Plasma Polymerization1996CRC Press2141 DongYOptimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates: The case study of aminesThin Solid Films20166166356422016TSF...616..635D10.1016/j.tsf.2016.09.0241:CAS:528:DC%2BC28XhsFyrt7rO KumarSCVD growth and processing of graphene for electronic applicationsPhys. Status Solidi B201124811260426082011PSSBR.248.2604K10.1002/pssb.2011001791:CAS:528:DC%2BC3MXhtlOjtrbJ WagstaffeMStructure and reactivity of a model oxide supported silver nanocluster catalyst studied by near ambient pressure X-ray photoelectron spectroscopyJ. Phys. Chem. C201712139213832138910.1021/acs.jpcc.7b058181:CAS:528:DC%2BC2sXhsVKgsrfL HempelMNezichDKongJHofmannMA novel class of strain gauges based on layered percolative films of 2D materialsNano Lett.20121211571457182012NanoL..12.5714H2304595510.1021/nl302959a1:CAS:528:DC%2BC38XhsVylurbL McKnightMAgcayaziTGhoshTBozkurtARaymondKYTFiber-based sensors: Enabling next-generation ubiquitous textile systemsWearable Technology in Medicine and Health Care2018Academic Press15317110.1016/B978-0-12-811810-8.00008-7 SeyedinSZhangPNaebeMQinSChenJWangXRazalJMTextile strain sensors: A review of the fabrication technologies, performance evaluation and applicationsMater Horiz.2018621924910.1039/C8MH01062E KononovaOKrasnikovsADzelzitisKKharkovaGVagelAEiduksMModelling and experimental verification of mechanical properties of cotton knitted fabric compositesEstonian J. Eng.201117395010.3176/eng.2011.1.05 YetisenAKNanotechnology in textilesACS Nano201610304230682691848510.1021/acsnano.5b081761:CAS:528:DC%2BC28Xjt1Gjsr8%3D HeGCThe conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheetSci. Rep.20177417572017NatSR...741757H28150712528869010.1038/srep417571:CAS:528:DC%2BC2sXitVynt7o%3D DoJFedorukMJäckelFFeldmannJTwo-color laser printing of individual gold nanorodsNano Lett.2013139416441682013NanoL..13.4164D2392753510.1021/nl401788w1:CAS:528:DC%2BC3sXht1elsLjL LiQLewisJANanoparticle inks for directed assembly of three-dimensional periodic structuresAdv. Mater.2003151639164310.1002/adma.2003054131:CAS:528:DC%2BD3sXosVKntbc%3D HoflundGBHazosZFSalaitaGNSurface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopyPhys. Rev. B2000621611126111332000PhRvB..6211126H10.1103/PhysRevB.62.111261:CAS:528:DC%2BD3cXnsFWju7k%3D Casa Software Ltd. CasaXPS: Processing Software for XPS, AES, SIMS, and More, http://www.casaxps.com (2020). ShahariarHKimISoewardimanHJurJInkjet printing of reactive silver ink on textilesACS Appl. Mater. Interfaces201911620862163064470810.1021/acsami.8b182311:CAS:528:DC%2BC1MXpvFGgtQ%3D%3D ChengYWangRSunJGaoJA stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsionAdv. Mater.20152745736573712647904010.1002/adma.2015035581:CAS:528:DC%2BC2MXhs1yksrjJ AnbalaganASundarsinghEFRamalingamVSDesign and experimental evaluation of a novel on-body textile antenna for unicast applicationsMicrow. Opt. Technol. Lett.202062278979910.1002/mop.32075 LiYElectronic textile by dyeing method for multiresolution physical kineses monitoringAdv. Electron. Mater.20173170025310.1002/aelm.201700253 BolandCSKhanUBenameurHColemanJNSurface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensorsNanoscale2017918507185152916422410.1039/C7NR06685F1:CAS:528:DC%2BC2sXhvVWmsb3O LiuWHuangYPengYWalczakMWangDChenQLiuZLiLStable wearable strain sensors on textiles by direct laser writing of grapheneACS Appl. Nano Mater.20203128329310.1021/acsanm.9b019371:CAS:528:DC%2BB3cXisFSqug%3D%3D Fernández-CaramésTMFraga-LamasPA review on human-centered IoT-connected smart labels for the Industry 4.0IEEE Access20186259392595710.1109/ACCESS.2018.2833501 WalkerSBLewisJAReactive silver inks for patterning high-conductivity features at mild temperaturesJ. Am. Chem. Soc.20121343141914212222058010.1021/ja209267c1:CAS:528:DC%2BC38XivVClsQ%3D%3D Chung, K. et al. Organic Silver Complexes, Their Preparation Methods and Their Methods for Forming Thin Layers, US Patent US8226755B2 (2012). HugoLA review of IoT sensing application and challenges using RFID and sensor networksSensor202020249510.3390/s20092495 YangZPangYHanXYangYLingJJianMZhangYYangYRenTGraphene textile strain sensor with negative resistance variation for human motion detectionACS Nano2018129913491413013409710.1021/acsnano.8b033911:CAS:528:DC%2BC1cXhsFGru7bP GonçalvesCda SilvaAFGomesJSimoesRWearable E-textile technologies: A review on sensors, actuators and control elementsInventions2018311410.3390/inventions3010014 StoppaMChiolerioAWearable electronics and smart textiles: A critical reviewSensors201414711957119922014Senso..1411957S25004153416843510.3390/s1407119571:CAS:528:DC%2BC2cXhvVaqtbbN TaoJGOrigin of XPS binding energy shifts in Ni clusters and atoms on rutile TiO2 surfacesSurf. Sci.200860216276927732008SurSc.602.2769T10.1016/j.susc.2008.06.0341:CAS:528:DC%2BD1cXhtVGlu7jK XuePParkKHTaoXMChenWChengXYElectrically conductive yarns based on PVA/carbon nanotubesCompos. Struct.200778227127710.1016/j.compstruct.2005.10.016 Mikkonen, J. & Pouta, E. Flexible wire-component for weaving electronic textiles. In Proceedings of the ECTC, 1656–1663 (2016). HolmRElectric Contact: Theory and Application1967Springer10.1007/978-3-662-06688-1 Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W. & Powell, C. J. NIST X-ray Photoelectron Spectroscopy Database, https://doi.org/10.18434/T4T88K (2020). WuYLiYOngBSA simple and efficient approach to a printable silver conductor for printed electronicsJ. Am. Chem. Soc.20071297186218631725693810.1021/ja067596w1:CAS:528:DC%2BD2sXhtVOms7s%3D SongBSpringerJDetermination of interfacial tension from the profile of a pendant drop using computer-aided image processing: 2. ExperimentalJ. Colloid Interface Sci.1996184177911996JCIS..184...77S89546411:CAS:528:DyaK28XntFOjt7o%3D ASTM D257-07 Standard Test Methods for DC Resistance or Conductance of Insulating Materials, https://doi.org/10.1520/D0257-07 (2014). YamaguchiKBusfieldJJCThomasAGElectrical and mechanical behavior of filled elastomers. I. The effect of strainJ. Polym. Sci. B Polym. Phys.20034117207920892003JPoSB..41.2079Y10.1002/polb.105711:CAS:528:DC%2BD3sXmsFOht7o%3D LeeYKKimJKwakJWYoonYRogersJARoom temperature electrochemical sintering of Zn microparticles and its use in printable conducting inks for bioresorbable electronicsAdv. Mater.20172938170266510.1002/adma.201702665 Jia, L. C. & Lung, C. M. Silver Conductive Ink and Fabricating Method Thereof, Taiwan Patent I671367 (2019). GorgutsaSBlais-RobergeMViensJLaRochelleSMessaddeqYUser-interactive and wireless-communicating RF textilesAdv. Mater.2016141600032 TricotFFabrication of 3D conductive circuits: Print quality evaluation of a direct ink writing processRSC Adv.202281497614985 AliAElectrical conductivity and physiological comfort of silver coated cotton fabricsJ. Text. Inst.201710.1080/00405000.2017.1362148 ChenDRInk-jet patterning of graphene by cap assisted barrier-guided CVDRSC Adv.2019929105291082019RSCAd...929105C35528442907180910.1039/C9RA03117K1:CAS:528:DC%2BC1MXhslyit7%2FP KimDJeongSParkBKMoonJDirect writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositionsAppl. Phys. Lett.2006892006ApPhL..89z4101K10.1063/1.2424671 YuYPhotoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronicsAdv. Mater.20162824492649342707413910.1002/adma.2015051191:CAS:528:DC%2BC28XmtVKjtLk%3D ArifRJadounSVermaAMohdSShakeelAJavedNSSynthesis of nanomaterials and their applications in textile industryFrontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques2020Wiley11713310.1002/9781119620396.ch5 SerraPPiquéALaser-induced forward transfer: Fundamentals and applicationsAdv. Mater.2019411800099 JiaXTennantALangleyRJHurleyWDiasTA knitted textile waveguideProc. LAPC20141679682 AuyeungRCYKimHMathewsSAPiquéALaser direct-write of metallic nanoparticle inksJLMN J. Laser Micro/Nanoeng.200721212510.2961/jlmn.2007.01.00041:CAS:528:DC%2BD1cXltlaqtbo%3D SridharAInkjet-printing- and electroless- plating- based fabrication of RF circuit structures on high-frequency substratesJ. Micromech. Microeng.20091982009JMiMi..19h5020S10.1088/0960-1317/19/8/085020 Dall’AcquaLToninCPeilaRFerreroFCatellaniMPerformances and properties of intrinsic conductive cellulose-polypyrrole textilesSynth. Met.2004146221322110.1016/j.synthmet.2004.07.005 WeiYChenJSongXGuYZengHLaser direct-writing electrode for rapid customization of a photodectorOpt. Lett.2019446836862019OptL...44..683W3070271010.1364/OL.44.0006831:CAS:528:DC%2BC1MXhs1WhtrvF XuePYuTXTaoXMTensile properties and meso-scale mechanism of weft knitted textile composites for energy absorptionCompos. Part A20023311312310.1016/S1359-835X(01)00067-7 MontazerMAllahyarzadehVElectroless plating of silver nanoparticles/nanolayer on polyester fabric using AgNO3/NaOH and ammoniaInd. Eng. Chem. Res.2013528436844410.1021/ie400804n1:CAS:528:DC%2BC3sXot1Gltbw%3D CanavanKApplications of Textile Products in Textiles and Fashion20141Woodhead Publishing531545 AllahyarzadehVMontazerMNejadNHSamadiNIn situ synthesis of nano silver on polyester using NaOH/nano TiO2J. Appl. Polym. Sci.2013192289290010.1002/app.38907 ArmonNContinuous nanoparticle assembly by a modulated photo-induced microbubble for fabrication of micrometric conductive patternsACS Appl. Mater. Interfaces2017944214442212917241810.1021/acsami.7b146141:CAS:528:DC%2BC2sXhvVKisbfF LiuDChristeDShakibajahromiBKnittelC R Holm (24676_CR48) 1967 RCY Auyeung (24676_CR24) 2007; 2 GB Hoflund (24676_CR34) 2000; 62 YK Lee (24676_CR18) 2017; 29 A Ali (24676_CR61) 2017 A Anbalagan (24676_CR3) 2020; 62 Y Lu (24676_CR14) 2010; 204 SB Walker (24676_CR31) 2012; 134 J Do (24676_CR41) 2013; 13 24676_CR29 JG Tao (24676_CR36) 2008; 602 O Kononova (24676_CR49) 2011; 17 K Yamaguchi (24676_CR42) 2003; 41 24676_CR60 Q Li (24676_CR16) 2003; 15 EB Secor (24676_CR15) 2015; 27 24676_CR26 J Eom (24676_CR53) 2017; 9 C Gonçalves (24676_CR10) 2018; 3 W Yang (24676_CR27) 2019; 7 M Stoppa (24676_CR9) 2014; 14 M Hempel (24676_CR44) 2012; 12 H Shahariar (24676_CR55) 2019; 11 L Hugo (24676_CR4) 2020; 20 TM Fernández-Caramés (24676_CR5) 2018; 6 P Serra (24676_CR23) 2019; 4 Z Yang (24676_CR47) 2018; 12 24676_CR58 R Arif (24676_CR25) 2020 24676_CR59 Y Li (24676_CR54) 2017; 3 A Sridhar (24676_CR21) 2009; 19 AK Yetisen (24676_CR6) 2016; 10 GC He (24676_CR38) 2017; 7 S Gorgutsa (24676_CR2) 2016; 1 Y Wei (24676_CR39) 2019; 44 24676_CR7 Y Yu (24676_CR17) 2016; 28 W Liu (24676_CR52) 2020; 3 K Canavan (24676_CR1) 2014 Y Wu (24676_CR28) 2007; 129 D Kim (24676_CR32) 2006; 89 P Xue (24676_CR13) 2007; 78 CS Boland (24676_CR45) 2017; 9 F Tricot (24676_CR20) 2022; 8 X Jia (24676_CR8) 2014; 1 P Xue (24676_CR51) 2002; 33 D Liu (24676_CR50) 2017; 109 M McKnight (24676_CR11) 2018 S Kumar (24676_CR19) 2011; 248 DR Chen (24676_CR22) 2019; 9 Y Cheng (24676_CR43) 2015; 27 M Montazer (24676_CR33) 2013; 52 M Wagstaffe (24676_CR37) 2017; 121 V Allahyarzadeh (24676_CR57) 2013; 192 N Inagaki (24676_CR35) 1996 S Seyedin (24676_CR46) 2018; 6 L Dall’Acqua (24676_CR12) 2004; 146 N Armon (24676_CR40) 2017; 9 Y Dong (24676_CR30) 2016; 616 B Song (24676_CR56) 1996; 184 |
References_xml | – reference: SecorEBAhnBYGaoTZLewisJAHersamMCRapid and versatile photonic annealing of graphene inks for flexible printed electronicsAdv. Mater.20152742668366882642236310.1002/adma.2015028661:CAS:528:DC%2BC2MXhsF2ks77O – reference: ArifRJadounSVermaAMohdSShakeelAJavedNSSynthesis of nanomaterials and their applications in textile industryFrontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques2020Wiley11713310.1002/9781119620396.ch5 – reference: InagakiNInteractions Between Plasma and Polymeric Materials in Plasma Surface Modification and Plasma Polymerization1996CRC Press2141 – reference: MontazerMAllahyarzadehVElectroless plating of silver nanoparticles/nanolayer on polyester fabric using AgNO3/NaOH and ammoniaInd. Eng. Chem. Res.2013528436844410.1021/ie400804n1:CAS:528:DC%2BC3sXot1Gltbw%3D – reference: DoJFedorukMJäckelFFeldmannJTwo-color laser printing of individual gold nanorodsNano Lett.2013139416441682013NanoL..13.4164D2392753510.1021/nl401788w1:CAS:528:DC%2BC3sXht1elsLjL – reference: AliAElectrical conductivity and physiological comfort of silver coated cotton fabricsJ. Text. Inst.201710.1080/00405000.2017.1362148 – reference: SongBSpringerJDetermination of interfacial tension from the profile of a pendant drop using computer-aided image processing: 2. ExperimentalJ. Colloid Interface Sci.1996184177911996JCIS..184...77S89546411:CAS:528:DyaK28XntFOjt7o%3D – reference: Dall’AcquaLToninCPeilaRFerreroFCatellaniMPerformances and properties of intrinsic conductive cellulose-polypyrrole textilesSynth. Met.2004146221322110.1016/j.synthmet.2004.07.005 – reference: LiQLewisJANanoparticle inks for directed assembly of three-dimensional periodic structuresAdv. Mater.2003151639164310.1002/adma.2003054131:CAS:528:DC%2BD3sXosVKntbc%3D – reference: WagstaffeMStructure and reactivity of a model oxide supported silver nanocluster catalyst studied by near ambient pressure X-ray photoelectron spectroscopyJ. Phys. Chem. C201712139213832138910.1021/acs.jpcc.7b058181:CAS:528:DC%2BC2sXhsVKgsrfL – reference: ASTM D257-07 Standard Test Methods for DC Resistance or Conductance of Insulating Materials, https://doi.org/10.1520/D0257-07 (2014). – reference: KumarSCVD growth and processing of graphene for electronic applicationsPhys. Status Solidi B201124811260426082011PSSBR.248.2604K10.1002/pssb.2011001791:CAS:528:DC%2BC3MXhtlOjtrbJ – reference: AuyeungRCYKimHMathewsSAPiquéALaser direct-write of metallic nanoparticle inksJLMN J. Laser Micro/Nanoeng.200721212510.2961/jlmn.2007.01.00041:CAS:528:DC%2BD1cXltlaqtbo%3D – reference: JiaXTennantALangleyRJHurleyWDiasTA knitted textile waveguideProc. LAPC20141679682 – reference: ChenDRInk-jet patterning of graphene by cap assisted barrier-guided CVDRSC Adv.2019929105291082019RSCAd...929105C35528442907180910.1039/C9RA03117K1:CAS:528:DC%2BC1MXhslyit7%2FP – reference: XuePParkKHTaoXMChenWChengXYElectrically conductive yarns based on PVA/carbon nanotubesCompos. Struct.200778227127710.1016/j.compstruct.2005.10.016 – reference: ChengYWangRSunJGaoJA stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsionAdv. Mater.20152745736573712647904010.1002/adma.2015035581:CAS:528:DC%2BC2MXhs1yksrjJ – reference: DongYOptimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates: The case study of aminesThin Solid Films20166166356422016TSF...616..635D10.1016/j.tsf.2016.09.0241:CAS:528:DC%2BC28XhsFyrt7rO – reference: KononovaOKrasnikovsADzelzitisKKharkovaGVagelAEiduksMModelling and experimental verification of mechanical properties of cotton knitted fabric compositesEstonian J. Eng.201117395010.3176/eng.2011.1.05 – reference: SeyedinSZhangPNaebeMQinSChenJWangXRazalJMTextile strain sensors: A review of the fabrication technologies, performance evaluation and applicationsMater Horiz.2018621924910.1039/C8MH01062E – reference: YetisenAKNanotechnology in textilesACS Nano201610304230682691848510.1021/acsnano.5b081761:CAS:528:DC%2BC28Xjt1Gjsr8%3D – reference: XuePYuTXTaoXMTensile properties and meso-scale mechanism of weft knitted textile composites for energy absorptionCompos. Part A20023311312310.1016/S1359-835X(01)00067-7 – reference: Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W. & Powell, C. J. NIST X-ray Photoelectron Spectroscopy Database, https://doi.org/10.18434/T4T88K (2020). – reference: WalkerSBLewisJAReactive silver inks for patterning high-conductivity features at mild temperaturesJ. Am. Chem. Soc.20121343141914212222058010.1021/ja209267c1:CAS:528:DC%2BC38XivVClsQ%3D%3D – reference: LiuWHuangYPengYWalczakMWangDChenQLiuZLiLStable wearable strain sensors on textiles by direct laser writing of grapheneACS Appl. Nano Mater.20203128329310.1021/acsanm.9b019371:CAS:528:DC%2BB3cXisFSqug%3D%3D – reference: EomJJaisuttiRLeeHLeeWHeoJLeeJParkSKKimYHighly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibersACS Appl. Mater. Interfaces201791110190101972825184810.1021/acsami.7b017711:CAS:528:DC%2BC2sXjsFCku7g%3D – reference: Mikkonen, J. & Pouta, E. Flexible wire-component for weaving electronic textiles. In Proceedings of the ECTC, 1656–1663 (2016). – reference: AnbalaganASundarsinghEFRamalingamVSDesign and experimental evaluation of a novel on-body textile antenna for unicast applicationsMicrow. Opt. Technol. Lett.202062278979910.1002/mop.32075 – reference: HoflundGBHazosZFSalaitaGNSurface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopyPhys. Rev. B2000621611126111332000PhRvB..6211126H10.1103/PhysRevB.62.111261:CAS:528:DC%2BD3cXnsFWju7k%3D – reference: LiYElectronic textile by dyeing method for multiresolution physical kineses monitoringAdv. Electron. Mater.20173170025310.1002/aelm.201700253 – reference: YangZPangYHanXYangYLingJJianMZhangYYangYRenTGraphene textile strain sensor with negative resistance variation for human motion detectionACS Nano2018129913491413013409710.1021/acsnano.8b033911:CAS:528:DC%2BC1cXhsFGru7bP – reference: HolmRElectric Contact: Theory and Application1967Springer10.1007/978-3-662-06688-1 – reference: GorgutsaSBlais-RobergeMViensJLaRochelleSMessaddeqYUser-interactive and wireless-communicating RF textilesAdv. Mater.2016141600032 – reference: WuYLiYOngBSA simple and efficient approach to a printable silver conductor for printed electronicsJ. Am. Chem. Soc.20071297186218631725693810.1021/ja067596w1:CAS:528:DC%2BD2sXhtVOms7s%3D – reference: TaoJGOrigin of XPS binding energy shifts in Ni clusters and atoms on rutile TiO2 surfacesSurf. Sci.200860216276927732008SurSc.602.2769T10.1016/j.susc.2008.06.0341:CAS:528:DC%2BD1cXhtVGlu7jK – reference: CanavanKApplications of Textile Products in Textiles and Fashion20141Woodhead Publishing531545 – reference: McKnightMAgcayaziTGhoshTBozkurtARaymondKYTFiber-based sensors: Enabling next-generation ubiquitous textile systemsWearable Technology in Medicine and Health Care2018Academic Press15317110.1016/B978-0-12-811810-8.00008-7 – reference: YuYPhotoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronicsAdv. Mater.20162824492649342707413910.1002/adma.2015051191:CAS:528:DC%2BC28XmtVKjtLk%3D – reference: LeeYKKimJKwakJWYoonYRogersJARoom temperature electrochemical sintering of Zn microparticles and its use in printable conducting inks for bioresorbable electronicsAdv. Mater.20172938170266510.1002/adma.201702665 – reference: HeGCThe conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheetSci. Rep.20177417572017NatSR...741757H28150712528869010.1038/srep417571:CAS:528:DC%2BC2sXitVynt7o%3D – reference: Casa Software Ltd. CasaXPS: Processing Software for XPS, AES, SIMS, and More, http://www.casaxps.com (2020). – reference: HugoLA review of IoT sensing application and challenges using RFID and sensor networksSensor202020249510.3390/s20092495 – reference: StoppaMChiolerioAWearable electronics and smart textiles: A critical reviewSensors201414711957119922014Senso..1411957S25004153416843510.3390/s1407119571:CAS:528:DC%2BC2cXhvVaqtbbN – reference: ArmonNContinuous nanoparticle assembly by a modulated photo-induced microbubble for fabrication of micrometric conductive patternsACS Appl. Mater. Interfaces2017944214442212917241810.1021/acsami.7b146141:CAS:528:DC%2BC2sXhvVKisbfF – reference: YamaguchiKBusfieldJJCThomasAGElectrical and mechanical behavior of filled elastomers. I. The effect of strainJ. Polym. Sci. B Polym. Phys.20034117207920892003JPoSB..41.2079Y10.1002/polb.105711:CAS:528:DC%2BD3sXmsFOht7o%3D – reference: KimDJeongSParkBKMoonJDirect writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositionsAppl. Phys. Lett.2006892006ApPhL..89z4101K10.1063/1.2424671 – reference: ShahariarHKimISoewardimanHJurJInkjet printing of reactive silver ink on textilesACS Appl. Mater. Interfaces201911620862163064470810.1021/acsami.8b182311:CAS:528:DC%2BC1MXpvFGgtQ%3D%3D – reference: GonçalvesCda SilvaAFGomesJSimoesRWearable E-textile technologies: A review on sensors, actuators and control elementsInventions2018311410.3390/inventions3010014 – reference: BolandCSKhanUBenameurHColemanJNSurface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensorsNanoscale2017918507185152916422410.1039/C7NR06685F1:CAS:528:DC%2BC2sXhvVWmsb3O – reference: SridharAInkjet-printing- and electroless- plating- based fabrication of RF circuit structures on high-frequency substratesJ. Micromech. Microeng.20091982009JMiMi..19h5020S10.1088/0960-1317/19/8/085020 – reference: TricotFFabrication of 3D conductive circuits: Print quality evaluation of a direct ink writing processRSC Adv.202281497614985 – reference: AllahyarzadehVMontazerMNejadNHSamadiNIn situ synthesis of nano silver on polyester using NaOH/nano TiO2J. Appl. Polym. Sci.2013192289290010.1002/app.38907 – reference: LuYJiangSHuangYUltrasonic-assisted electroless deposition of Ag on PET fabric with low silver content for EMI shieldingSurf. Coat. Tech.20102042829283310.1016/j.surfcoat.2010.02.0611:CAS:528:DC%2BC3cXksFagtrk%3D – reference: LiuDChristeDShakibajahromiBKnittelCCastanedaNBreenDDionGKontsosAOn the role of material architecture in the mechanical behavior of knitted textilesInt. J. Solid. Struct.201710910111110.1016/j.ijsolstr.2017.01.011 – reference: Chung, K. et al. Organic Silver Complexes, Their Preparation Methods and Their Methods for Forming Thin Layers, US Patent US8226755B2 (2012). – reference: WeiYChenJSongXGuYZengHLaser direct-writing electrode for rapid customization of a photodectorOpt. Lett.2019446836862019OptL...44..683W3070271010.1364/OL.44.0006831:CAS:528:DC%2BC1MXhs1WhtrvF – reference: Fernández-CaramésTMFraga-LamasPA review on human-centered IoT-connected smart labels for the Industry 4.0IEEE Access20186259392595710.1109/ACCESS.2018.2833501 – reference: HempelMNezichDKongJHofmannMA novel class of strain gauges based on layered percolative films of 2D materialsNano Lett.20121211571457182012NanoL..12.5714H2304595510.1021/nl302959a1:CAS:528:DC%2BC38XhsVylurbL – reference: Jia, L. C. & Lung, C. M. Silver Conductive Ink and Fabricating Method Thereof, Taiwan Patent I671367 (2019). – reference: SerraPPiquéALaser-induced forward transfer: Fundamentals and applicationsAdv. Mater.2019411800099 – reference: YangWList-KratochvilEJWWangCMetal particle-free inks for printed flexible electronicsJ. Mater. Chem. C20197150981511710.1039/C9TC05463D1:CAS:528:DC%2BC1MXitFKitb7E – volume: 1 start-page: 1600032 issue: 4 year: 2016 ident: 24676_CR2 publication-title: Adv. Mater. – volume: 12 start-page: 9134 issue: 9 year: 2018 ident: 24676_CR47 publication-title: ACS Nano doi: 10.1021/acsnano.8b03391 – volume: 204 start-page: 2829 year: 2010 ident: 24676_CR14 publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2010.02.061 – volume: 7 start-page: 41757 year: 2017 ident: 24676_CR38 publication-title: Sci. Rep. doi: 10.1038/srep41757 – volume: 8 start-page: 14976 year: 2022 ident: 24676_CR20 publication-title: RSC Adv. – volume: 17 start-page: 39 year: 2011 ident: 24676_CR49 publication-title: Estonian J. Eng. doi: 10.3176/eng.2011.1.05 – volume: 62 start-page: 11126 issue: 16 year: 2000 ident: 24676_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.11126 – volume: 27 start-page: 6683 issue: 42 year: 2015 ident: 24676_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201502866 – ident: 24676_CR29 – volume: 121 start-page: 21383 issue: 39 year: 2017 ident: 24676_CR37 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b05818 – volume: 12 start-page: 5714 issue: 11 year: 2012 ident: 24676_CR44 publication-title: Nano Lett. doi: 10.1021/nl302959a – volume: 134 start-page: 1419 issue: 3 year: 2012 ident: 24676_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209267c – volume: 41 start-page: 2079 issue: 17 year: 2003 ident: 24676_CR42 publication-title: J. Polym. Sci. B Polym. Phys. doi: 10.1002/polb.10571 – volume: 602 start-page: 2769 issue: 16 year: 2008 ident: 24676_CR36 publication-title: Surf. Sci. doi: 10.1016/j.susc.2008.06.034 – volume: 44 start-page: 683 year: 2019 ident: 24676_CR39 publication-title: Opt. Lett. doi: 10.1364/OL.44.000683 – volume: 10 start-page: 3042 year: 2016 ident: 24676_CR6 publication-title: ACS Nano doi: 10.1021/acsnano.5b08176 – start-page: 21 volume-title: Interactions Between Plasma and Polymeric Materials in Plasma Surface Modification and Plasma Polymerization year: 1996 ident: 24676_CR35 – volume: 9 start-page: 10190 issue: 11 year: 2017 ident: 24676_CR53 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01771 – volume: 11 start-page: 6208 year: 2019 ident: 24676_CR55 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18231 – volume: 28 start-page: 4926 issue: 24 year: 2016 ident: 24676_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201505119 – volume: 33 start-page: 113 year: 2002 ident: 24676_CR51 publication-title: Compos. Part A doi: 10.1016/S1359-835X(01)00067-7 – volume: 78 start-page: 271 issue: 2 year: 2007 ident: 24676_CR13 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2005.10.016 – start-page: 531 volume-title: Applications of Textile Products in Textiles and Fashion year: 2014 ident: 24676_CR1 – volume: 3 start-page: 14 issue: 1 year: 2018 ident: 24676_CR10 publication-title: Inventions doi: 10.3390/inventions3010014 – volume: 1 start-page: 679 year: 2014 ident: 24676_CR8 publication-title: Proc. LAPC – volume: 9 start-page: 29105 year: 2019 ident: 24676_CR22 publication-title: RSC Adv. doi: 10.1039/C9RA03117K – volume: 6 start-page: 219 year: 2018 ident: 24676_CR46 publication-title: Mater Horiz. doi: 10.1039/C8MH01062E – volume: 146 start-page: 213 issue: 2 year: 2004 ident: 24676_CR12 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2004.07.005 – volume: 3 start-page: 1700253 year: 2017 ident: 24676_CR54 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700253 – volume: 192 start-page: 892 issue: 2 year: 2013 ident: 24676_CR57 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.38907 – ident: 24676_CR7 doi: 10.1109/ECTC.2016.180 – ident: 24676_CR60 doi: 10.1520/D0257-07 – volume: 29 start-page: 1702665 issue: 38 year: 2017 ident: 24676_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201702665 – volume: 19 issue: 8 year: 2009 ident: 24676_CR21 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/19/8/085020 – start-page: 153 volume-title: Wearable Technology in Medicine and Health Care year: 2018 ident: 24676_CR11 doi: 10.1016/B978-0-12-811810-8.00008-7 – volume: 7 start-page: 15098 year: 2019 ident: 24676_CR27 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05463D – volume: 14 start-page: 11957 issue: 7 year: 2014 ident: 24676_CR9 publication-title: Sensors doi: 10.3390/s140711957 – volume: 9 start-page: 44214 year: 2017 ident: 24676_CR40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14614 – volume: 52 start-page: 8436 year: 2013 ident: 24676_CR33 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400804n – volume: 129 start-page: 1862 issue: 7 year: 2007 ident: 24676_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067596w – year: 2017 ident: 24676_CR61 publication-title: J. Text. Inst. doi: 10.1080/00405000.2017.1362148 – start-page: 117 volume-title: Frontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques year: 2020 ident: 24676_CR25 doi: 10.1002/9781119620396.ch5 – volume: 4 start-page: 1800099 issue: 1 year: 2019 ident: 24676_CR23 publication-title: Adv. Mater. – volume: 89 year: 2006 ident: 24676_CR32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2424671 – volume: 20 start-page: 2495 year: 2020 ident: 24676_CR4 publication-title: Sensor doi: 10.3390/s20092495 – volume: 62 start-page: 789 issue: 2 year: 2020 ident: 24676_CR3 publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.32075 – volume: 248 start-page: 2604 issue: 11 year: 2011 ident: 24676_CR19 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201100179 – volume: 3 start-page: 283 issue: 1 year: 2020 ident: 24676_CR52 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01937 – volume: 616 start-page: 635 year: 2016 ident: 24676_CR30 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.09.024 – volume: 13 start-page: 4164 issue: 9 year: 2013 ident: 24676_CR41 publication-title: Nano Lett. doi: 10.1021/nl401788w – volume: 109 start-page: 101 year: 2017 ident: 24676_CR50 publication-title: Int. J. Solid. Struct. doi: 10.1016/j.ijsolstr.2017.01.011 – ident: 24676_CR58 – volume: 15 start-page: 1639 year: 2003 ident: 24676_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.200305413 – ident: 24676_CR59 doi: 10.18434/T4T88K – volume: 27 start-page: 7365 issue: 45 year: 2015 ident: 24676_CR43 publication-title: Adv. Mater. doi: 10.1002/adma.201503558 – volume: 184 start-page: 77 issue: 1 year: 1996 ident: 24676_CR56 publication-title: J. Colloid Interface Sci. – volume: 2 start-page: 21 issue: 1 year: 2007 ident: 24676_CR24 publication-title: JLMN J. Laser Micro/Nanoeng. doi: 10.2961/jlmn.2007.01.0004 – volume-title: Electric Contact: Theory and Application year: 1967 ident: 24676_CR48 doi: 10.1007/978-3-662-06688-1 – ident: 24676_CR26 – volume: 6 start-page: 25939 year: 2018 ident: 24676_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2833501 – volume: 9 start-page: 18507 year: 2017 ident: 24676_CR45 publication-title: Nanoscale doi: 10.1039/C7NR06685F |
SSID | ssj0000529419 |
Score | 2.3845158 |
Snippet | One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver... Abstract One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20029 |
SubjectTerms | 639/301/1005/1009 639/301/930/1032 639/624/1075/1080 Anisotropy Coffee Crystallization Electric Conductivity Fabrics Humanities and Social Sciences Irradiation Lasers multidisciplinary Photonics Photoreduction Polyesters - chemistry Polyethylene terephthalate Polyurethanes - chemistry Science Science (multidisciplinary) Sensors Silver Sintering Spectrum analysis Surface tension Textiles Viscosity Wearable Electronic Devices Yarn |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC6CIOQSouYxvuhAbqYxPf2YnqOKIjkkEBS8Nf0kEjMrOyvqv7e6Z3bjJjG55LrdwxbV9fiK7voK4L12ISktHW1cjFQILFDa6FvqEV5E5zNfSnkg-1mdnotPF_Li0aiv_CZsoAceFLcvlHZca5EiAhUsFjRClBiEzbxfnoeYoy_mvEfF1MDqXbeCtWOXzEeu93vMVLmbDGuvGoODos1SJiqE_X9Cmb8_lvzlxrQkopOX8GJEkORgkHwNnsVuHVaHmZL3G_D1SxcpHt01-RERWF-NfZZkkshtTDP6HX0YUSZJ1mEI7AmCVlyw09xCRdylvUODJH2ZHEF6rHEn0_4VnJ8cnx2d0nFwAvUIwGaUOZ6YU8wHFWSdkg21V7kXMEqOKT01PFjENVraGFAhVjbc10w57nWZAcpfw0o36eJbIE4ql6yyLGMtroVumcOkr6STAdXvK2BzJRo_sopnEa9Mud3m2gyKN_g_pijeNBXsLb65Hjg1_rr7MJ_NYmfmwy4_oJWY0UrMv6ykgu35yZrRSXuTu5Iw4GEFXcG7xTK6V74zsV2c3JQ9reCcK1nBm8EQFpJwJZjA-FxBs2QiS6Iur3SX3wqFd6s0axr88sPcmH6K9bQqNv-HKrbgeZ29gDFas21YmU1v4g4Cq5nbLT70AFPOHA8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyQuFW9SCjISN7CK40ecE6KoVcWhoIpKvVl-QkVJls1Wbf99x4431fLoNXaUyXgenz2eGYTeKOujVMKSxoZAOIcNShtcSxzAi2BdqpeSL8geyoNj_vlEnJQDt6Fcq1zZxGyofe_SGflOSiEB6YTtzof5b5K6RqXoammhcRdtgAlWYoY2dvcOvx5NpywpjsVpW7Jl3jO1M4DHSlllsAerwUhI0qx5pFy4_19o8-9Lk39ETrND2n-ANguSxB_HpX-I7oTuEbo39pa8eoyOvnSBwBLO8a8AAPus5FviPuKLEJfkJ-gyoE0cjQVTOGAArzBgFimVCttTcwmCiYfcQQIPsNftF8MTdLy_9-3TASkNFIgDILYk1LJIraTOSy_qGI2vnUw5gUEwcO2xYd4AvlHCBA8MMaJhrqbSMqdyL1D2FM26vgvPEbZC2mikoQlzMcVVSy04fyms8I55VyG6YqJ2pbp4IvFM5yg3U3pkvIbv6Mx43VTo7fTOfKytcevs3bQ208xUFzs_6BffdVEzzaWyTCkeA8Ba2FoqALTBc5OqxAGZoULbq5XVRVkHfSNaFXo9DYOapdiJ6UJ_nue0nDEmRYWejYIwUcIkpxzsdIWaNRFZI3V9pDv9kUt5t1LRpoE3362E6Yas_7Ni6_a_eIHu10m-KSU13Uaz5eI8vATotLSvin5cA5mKFcI priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8GXw2-rp0TwTaOk-Wj6IKLicQgqiAv3FpI00cO1vWv38O6_d5K2K6ur4GuT0OlkJvMb0vkNwGPtmqi0dLRyIVAhMEGpg6-pR3gRnE98KfkH2Q_qcCHeHcmjHZjbHU0KHLamdqmf1KJfPjs_vXiJDv9iLBnXzwcMQqlQDNOqEv1e0eoSXMbIpJKVv5_g_sj1XdaC1VPtzPalG_Ep0_hvw55__kL52z1qDk8H12BvwpXk1WgI12EntDfgythp8uImfPrYBoobekK-B_zS5VR9SbpIfoS4ot_QsxF7kmgdHowDQSiLA7ZPhVXEHdtzNFMy5H4SZMDMt-uHW7A4ePv5zSGd2ilQj7BsRZnjkTnFfKMaWcZom9KrVCEYJMdAHyveWEQ7WtrQoEKsrLgvmXLc69wZlN-G3bZrw10gTioXrbIsITCuha6ZSwqXTjaeN74ANivR-IlrPIm4NPnOm2szKt7ge0xWvKkKeLJeczIybfxz9uu0N-uZiSU7P-j6L2ZyOiOUdlxrEQOCXEw0NcLb0AibOONQzFDA_ryzZrY8k2qV8BjEvLqAR-thdLp0k2Lb0J3lObXgnCtZwJ3RENaScCWYwFO7gGrDRDZE3Rxpj79mYu9aaVZVuPLpbEy_xPq7Ku793_T7cLVM9s4YLdk-7K76s_AAgdXKPcze8hPQ-xvx priority: 102 providerName: Scholars Portal |
Title | One-step metallization of weft-knitted fabrics for wearable biaxial strain sensors |
URI | https://link.springer.com/article/10.1038/s41598-022-24676-7 https://www.ncbi.nlm.nih.gov/pubmed/36414763 https://www.proquest.com/docview/2738703402 https://www.proquest.com/docview/2739433365 https://pubmed.ncbi.nlm.nih.gov/PMC9681773 https://doaj.org/article/468b3884fe7749248161ed4a4655c3de |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_6geCL-O3WeqzgmwbN5mOzj9ejpRxYpVq4t5BkE1use-X2SvW_d5L9kNMq-HILl4QdJjOZ32wyvwC8UrYOUglLSus94RwTlMq7ijiEF966yJeSDsieyOMzPl-IxRYUQy1MOrSfKC3TMj2cDnvbYqCJxWCYOhXo25KU27AbqdsjX_5MzsbvKnHnitOqr495x9QtQzdiUKLqvw1f_nlM8re90hSCju7DvR475tNO2gew5ZuHcKe7TfLHIzj90HiCk3aVf_MIqS_7Cst8GfIbH9bkK3ov4ss8GIuLX5sjXMUGs4rFU7m9MN_RFPM23RmRt5jdLlftYzg7Ovw8Oyb9lQnEIfRaE2pZoFZSV8taFCGYunAyVgF6wTCYh5LVBhGNEsbXqBAjSuYKKi1zKt3-yZ7ATrNs_DPIrZA2GGloRFlMcVVRi-FeCitqx2qXAR2UqF3PJx5FvNRpX5sp3Sle43t0UrwuM3g9jrnq2DT-2fsgzs3YMzJhpz-Wqy-6twzNpbJMKR48AllMJhVCWF9zE3nhUEyfwf4ws7p3z1bHeiRc6jB3zuDl2IyOFXdLTOOX16lPxRljUmTwtDOEURImOeW4MmdQbpjIhqibLc3FeSLvrqSiZYkj3wzG9Eusv6ti7_-6P4e7RbR3SklB92Fnvbr2LxA8re0EtstFOYHd6XT-aY7Pg8OTj6eT5EOT9EECf99z9RNNxRgm |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiDeBAkaCE1jFseM4B4QotNrSsqCqlXoztuNARUmWzValf4rfyNhJtloevfW6dnZnx_P4JuOZAXiqbFlJlVmaW--pEBigFN4V1CG88NaFfinxguxYjvbF-4PsYAl-DbUw4VrlYBOjoS4bF96Rr4USEpRODHdeT37QMDUqZFeHERqdWGz70xMM2dpXW-_wfJ-l6ebG3tsR7acKUIfoZEaZ5RWzkrlSlllaVaZMnQyFcj7j6O-qnJcGnb7KjC_RwZks5y5l0nKn4oBMjt97CVYQZhSoRSvrG-NPu_O3OiFvJljRV-e85GqtRQ8Zqtgw5kvRKEmaL3jAOCjgX-j270uaf2RqowPcvA7XeuRK3nSidgOWfH0TLnezLE9vwe7H2lMUmQn57hHQH_X1naSpyImvZvQb2g5Et6QyFk1vSxAs44KZhtItYg_NT1QE0saJFaTF2LqZtrdh_0JYeweW66b294DYTNrKSMMCxuNKqIJZBBsys1npeOkSYAMTteu7mQcSj3TMqnOlO8Zr_B0dGa_zBJ7Pn5l0vTzO3b0ezma-M_Thjh800y-6V2stpLJcKVF5hNEYyioE0L4UJnSlQzJ9AqvDyereOLT6TJQTeDJfRrUOuRpT--Y47ikE51xmCdztBGFOCZeCCfQLCeQLIrJA6uJKffg1tg4vpGJ5jk--GITpjKz_s-L--f_iMVwZ7X3Y0Ttb4-0HcDUNss4YTdkqLM-mx_4hwraZfdTrCoHPF62evwGEFFGZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkaCE1iLY8dxDghR2lVL0VJVVOrNtR0bKkqybLYq_Wv8OsbOo1oevfW6dnZnx_P4JuOZQei5NKUXMjMkN84RziFAKZwtiAV44YwN_VLiBdmp2NrnHw6ygxX0q6-FCdcqe5sYDXVZ2_COfBxKSEA6IdwZ--5axO7G5O3sBwkTpEKmtR-n0YrIjjs7hfCtebO9AWf9Ik0nm5_fb5FuwgCxgFQWhBrmqRHUlqLMUu91mVoRiuZcxsD3-ZyVGgCAzLQrwdnpLGc2pcIwK-OwTAbfewWt5uAV5Qitrm9Od_eGNzwhh8Zp0VXqvGZy3IC3DBVtEP-lYKAEyZe8YRwa8C-k-_eFzT-yttEZTm6iGx2Kxe9asbuFVlx1G11t51qe3UF7nypHQHxm-LsDcH_c1Xri2uNT5xfkG9gRQLrYawNmuMEAnGFBz0MZFzZH-icoBW7i9ArcQJxdz5u7aP9SWHsPjaq6cg8QNpkwXgtNA95jksuCGgAeIjNZaVlpE0R7JirbdTYPJB6rmGFnUrWMV_A7KjJe5Ql6OTwza_t6XLh7PZzNsDP05I4f1PMvqlNxxYU0TEruHUBqCGslgGlXch061AGZLkFr_cmqzlA06lysE_RsWAYVD3kbXbn6JO4pOGNMZAm63wrCQAkTnHLwEQnKl0RkidTlleroa2wjXghJ8xyefNUL0zlZ_2fFw4v_xVN0DdRSfdye7jxC19Mg6pSSlK6h0WJ-4h4DgluYJ52qYHR42dr5G0zMVcU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-step+metallization+of+weft-knitted+fabrics+for+wearable+biaxial+strain+sensors&rft.jtitle=Scientific+reports&rft.au=Tai%2C+Chao-Yi&rft.au=Lin%2C+Chun-Yu&rft.au=Liu%2C+Tang-Chun&rft.au=Jia%2C+Lu-Chiang&rft.date=2022-11-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-24676-7&rft.externalDocID=10_1038_s41598_022_24676_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |