One-step metallization of weft-knitted fabrics for wearable biaxial strain sensors

One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW gree...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 20029 - 9
Main Authors Tai, Chao-Yi, Lin, Chun-Yu, Liu, Tang-Chun, Jia, Lu-Chiang, Jones, Thomas, Abdolvand, Amin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.11.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-24676-7

Cover

Loading…
Abstract One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm 2 ). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser’s profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles.
AbstractList One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm 2 ). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser’s profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles.
One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm ). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser's profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles.
One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm2). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser's profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles.One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm2). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser's profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles.
Abstract One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm2). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser’s profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles.
One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm2). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser’s profile with negligible coffee stain effect. Length resistance as low as 4 Ω/cm is measured and anisotropy of the gauge factor as high as 25 is achieved. The metallized fabric exhibits reversible and hysteresis-free electromechanical responses subject to high strains. Durability assessment qualifies that the as-metallized strain sensors are able to sustain their performance for over 5000 stretch/release cycles, demonstrating its potential applications in biaxial strain sensing and interactive smart textiles.
ArticleNumber 20029
Author Lin, Chun-Yu
Abdolvand, Amin
Jia, Lu-Chiang
Liu, Tang-Chun
Jones, Thomas
Tai, Chao-Yi
Author_xml – sequence: 1
  givenname: Chao-Yi
  surname: Tai
  fullname: Tai, Chao-Yi
  email: cytai@dop.ncu.edu.tw
  organization: Department of Optics and Photonics, National Central University
– sequence: 2
  givenname: Chun-Yu
  surname: Lin
  fullname: Lin, Chun-Yu
  organization: Department of Optics and Photonics, National Central University
– sequence: 3
  givenname: Tang-Chun
  surname: Liu
  fullname: Liu, Tang-Chun
  organization: Department of Optics and Photonics, National Central University
– sequence: 4
  givenname: Lu-Chiang
  surname: Jia
  fullname: Jia, Lu-Chiang
  organization: Sousveillance Technology, Ltd
– sequence: 5
  givenname: Thomas
  surname: Jones
  fullname: Jones, Thomas
  organization: School of Science and Engineering, University of Dundee
– sequence: 6
  givenname: Amin
  surname: Abdolvand
  fullname: Abdolvand, Amin
  organization: School of Science and Engineering, University of Dundee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36414763$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEgEkJ-gAMaiQuXgfHbc0FCEY9IkSIhOFseu7148dqL7Q0kX493N4Ekh_hiy11Vqu7q591BTBG67iUa36KRyHeFIjbJYcR4wJQLPogn3REeKRswwfjgzvuwOyllObbD8ETR9Kw7JJwiKjg56r5eRBhKhXW_gqpD8Ne6-hT75Prf4OrwM_pawfZOz9mb0ruUW0FnPQfoZ6__eB36UrP2sS8QS8rlRffU6VDg5OY-7r5_-vjt9MtwfvH57PTD-WAYHeuAZuLQzJGx3DLsnLbYcI6EBEYwkk4QqzFDkmmwrUvNBDEY8ZkYKYjkjBx3Z3tdm_RSrbNf6XylkvZq95HyQulcvQmgKJczkZI6EIJOmErEEViqKWfMEAtN6_1ea72ZV2ANxNZSuCd6vxL9D7VIl2riEglBmsCbG4Gcfm2gVLXyxUAIOkLaFIUFmSghZOf79QPoMm1ybKPaoqQYCR1xQ7266-ifldvoGkDuASanUjI4ZXzdhbdNIyg0qu2iqP2iqDZCtVsUJRoVP6Deqj9KIntSaeC4gPzf9iOsv3xUzxc
CitedBy_id crossref_primary_10_1080_00405000_2024_2374096
Cites_doi 10.1021/acsnano.8b03391
10.1016/j.surfcoat.2010.02.061
10.1038/srep41757
10.3176/eng.2011.1.05
10.1103/PhysRevB.62.11126
10.1002/adma.201502866
10.1021/acs.jpcc.7b05818
10.1021/nl302959a
10.1021/ja209267c
10.1002/polb.10571
10.1016/j.susc.2008.06.034
10.1364/OL.44.000683
10.1021/acsnano.5b08176
10.1021/acsami.7b01771
10.1021/acsami.8b18231
10.1002/adma.201505119
10.1016/S1359-835X(01)00067-7
10.1016/j.compstruct.2005.10.016
10.3390/inventions3010014
10.1039/C9RA03117K
10.1039/C8MH01062E
10.1016/j.synthmet.2004.07.005
10.1002/aelm.201700253
10.1002/app.38907
10.1109/ECTC.2016.180
10.1520/D0257-07
10.1002/adma.201702665
10.1088/0960-1317/19/8/085020
10.1016/B978-0-12-811810-8.00008-7
10.1039/C9TC05463D
10.3390/s140711957
10.1021/acsami.7b14614
10.1021/ie400804n
10.1021/ja067596w
10.1080/00405000.2017.1362148
10.1002/9781119620396.ch5
10.1063/1.2424671
10.3390/s20092495
10.1002/mop.32075
10.1002/pssb.201100179
10.1021/acsanm.9b01937
10.1016/j.tsf.2016.09.024
10.1021/nl401788w
10.1016/j.ijsolstr.2017.01.011
10.1002/adma.200305413
10.18434/T4T88K
10.1002/adma.201503558
10.2961/jlmn.2007.01.0004
10.1007/978-3-662-06688-1
10.1109/ACCESS.2018.2833501
10.1039/C7NR06685F
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-24676-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_468b3884fe7749248161ed4a4655c3de
PMC9681773
36414763
10_1038_s41598_022_24676_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: UK-TW Innovative Industries Researcher Placement Scheme
– fundername: RSE and MOST Bilateral Visits Programme
  grantid: 108-2911-I-008-508
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 107-2112-M-008-010; MOST 107-2112-M-008-010; MOST 110-2112-M-008-028
  funderid: http://dx.doi.org/10.13039/501100004663
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 107-2112-M-008-010
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 110-2112-M-008-028
– fundername: ;
– fundername: ;
  grantid: MOST 107-2112-M-008-010; MOST 107-2112-M-008-010; MOST 110-2112-M-008-028
– fundername: ;
  grantid: 108-2911-I-008-508
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-1b3f1b61cd6d52ffad2c66178e53218f73da25185aed022a573c216b3c8738653
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:46 EDT 2025
Thu Aug 21 18:39:36 EDT 2025
Fri Sep 05 03:33:07 EDT 2025
Wed Aug 13 08:41:48 EDT 2025
Thu Jan 02 22:52:57 EST 2025
Tue Jul 01 00:55:27 EDT 2025
Thu Apr 24 23:44:07 EDT 2025
Fri Feb 21 02:39:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-1b3f1b61cd6d52ffad2c66178e53218f73da25185aed022a573c216b3c8738653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-022-24676-7
PMID 36414763
PQID 2738703402
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_468b3884fe7749248161ed4a4655c3de
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9681773
proquest_miscellaneous_2739433365
proquest_journals_2738703402
pubmed_primary_36414763
crossref_citationtrail_10_1038_s41598_022_24676_7
crossref_primary_10_1038_s41598_022_24676_7
springer_journals_10_1038_s41598_022_24676_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-21
PublicationDateYYYYMMDD 2022-11-21
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References SecorEBAhnBYGaoTZLewisJAHersamMCRapid and versatile photonic annealing of graphene inks for flexible printed electronicsAdv. Mater.20152742668366882642236310.1002/adma.2015028661:CAS:528:DC%2BC2MXhsF2ks77O
InagakiNInteractions Between Plasma and Polymeric Materials in Plasma Surface Modification and Plasma Polymerization1996CRC Press2141
DongYOptimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates: The case study of aminesThin Solid Films20166166356422016TSF...616..635D10.1016/j.tsf.2016.09.0241:CAS:528:DC%2BC28XhsFyrt7rO
KumarSCVD growth and processing of graphene for electronic applicationsPhys. Status Solidi B201124811260426082011PSSBR.248.2604K10.1002/pssb.2011001791:CAS:528:DC%2BC3MXhtlOjtrbJ
WagstaffeMStructure and reactivity of a model oxide supported silver nanocluster catalyst studied by near ambient pressure X-ray photoelectron spectroscopyJ. Phys. Chem. C201712139213832138910.1021/acs.jpcc.7b058181:CAS:528:DC%2BC2sXhsVKgsrfL
HempelMNezichDKongJHofmannMA novel class of strain gauges based on layered percolative films of 2D materialsNano Lett.20121211571457182012NanoL..12.5714H2304595510.1021/nl302959a1:CAS:528:DC%2BC38XhsVylurbL
McKnightMAgcayaziTGhoshTBozkurtARaymondKYTFiber-based sensors: Enabling next-generation ubiquitous textile systemsWearable Technology in Medicine and Health Care2018Academic Press15317110.1016/B978-0-12-811810-8.00008-7
SeyedinSZhangPNaebeMQinSChenJWangXRazalJMTextile strain sensors: A review of the fabrication technologies, performance evaluation and applicationsMater Horiz.2018621924910.1039/C8MH01062E
KononovaOKrasnikovsADzelzitisKKharkovaGVagelAEiduksMModelling and experimental verification of mechanical properties of cotton knitted fabric compositesEstonian J. Eng.201117395010.3176/eng.2011.1.05
YetisenAKNanotechnology in textilesACS Nano201610304230682691848510.1021/acsnano.5b081761:CAS:528:DC%2BC28Xjt1Gjsr8%3D
HeGCThe conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheetSci. Rep.20177417572017NatSR...741757H28150712528869010.1038/srep417571:CAS:528:DC%2BC2sXitVynt7o%3D
DoJFedorukMJäckelFFeldmannJTwo-color laser printing of individual gold nanorodsNano Lett.2013139416441682013NanoL..13.4164D2392753510.1021/nl401788w1:CAS:528:DC%2BC3sXht1elsLjL
LiQLewisJANanoparticle inks for directed assembly of three-dimensional periodic structuresAdv. Mater.2003151639164310.1002/adma.2003054131:CAS:528:DC%2BD3sXosVKntbc%3D
HoflundGBHazosZFSalaitaGNSurface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopyPhys. Rev. B2000621611126111332000PhRvB..6211126H10.1103/PhysRevB.62.111261:CAS:528:DC%2BD3cXnsFWju7k%3D
Casa Software Ltd. CasaXPS: Processing Software for XPS, AES, SIMS, and More, http://www.casaxps.com (2020).
ShahariarHKimISoewardimanHJurJInkjet printing of reactive silver ink on textilesACS Appl. Mater. Interfaces201911620862163064470810.1021/acsami.8b182311:CAS:528:DC%2BC1MXpvFGgtQ%3D%3D
ChengYWangRSunJGaoJA stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsionAdv. Mater.20152745736573712647904010.1002/adma.2015035581:CAS:528:DC%2BC2MXhs1yksrjJ
AnbalaganASundarsinghEFRamalingamVSDesign and experimental evaluation of a novel on-body textile antenna for unicast applicationsMicrow. Opt. Technol. Lett.202062278979910.1002/mop.32075
LiYElectronic textile by dyeing method for multiresolution physical kineses monitoringAdv. Electron. Mater.20173170025310.1002/aelm.201700253
BolandCSKhanUBenameurHColemanJNSurface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensorsNanoscale2017918507185152916422410.1039/C7NR06685F1:CAS:528:DC%2BC2sXhvVWmsb3O
LiuWHuangYPengYWalczakMWangDChenQLiuZLiLStable wearable strain sensors on textiles by direct laser writing of grapheneACS Appl. Nano Mater.20203128329310.1021/acsanm.9b019371:CAS:528:DC%2BB3cXisFSqug%3D%3D
Fernández-CaramésTMFraga-LamasPA review on human-centered IoT-connected smart labels for the Industry 4.0IEEE Access20186259392595710.1109/ACCESS.2018.2833501
WalkerSBLewisJAReactive silver inks for patterning high-conductivity features at mild temperaturesJ. Am. Chem. Soc.20121343141914212222058010.1021/ja209267c1:CAS:528:DC%2BC38XivVClsQ%3D%3D
Chung, K. et al. Organic Silver Complexes, Their Preparation Methods and Their Methods for Forming Thin Layers, US Patent US8226755B2 (2012).
HugoLA review of IoT sensing application and challenges using RFID and sensor networksSensor202020249510.3390/s20092495
YangZPangYHanXYangYLingJJianMZhangYYangYRenTGraphene textile strain sensor with negative resistance variation for human motion detectionACS Nano2018129913491413013409710.1021/acsnano.8b033911:CAS:528:DC%2BC1cXhsFGru7bP
GonçalvesCda SilvaAFGomesJSimoesRWearable E-textile technologies: A review on sensors, actuators and control elementsInventions2018311410.3390/inventions3010014
StoppaMChiolerioAWearable electronics and smart textiles: A critical reviewSensors201414711957119922014Senso..1411957S25004153416843510.3390/s1407119571:CAS:528:DC%2BC2cXhvVaqtbbN
TaoJGOrigin of XPS binding energy shifts in Ni clusters and atoms on rutile TiO2 surfacesSurf. Sci.200860216276927732008SurSc.602.2769T10.1016/j.susc.2008.06.0341:CAS:528:DC%2BD1cXhtVGlu7jK
XuePParkKHTaoXMChenWChengXYElectrically conductive yarns based on PVA/carbon nanotubesCompos. Struct.200778227127710.1016/j.compstruct.2005.10.016
Mikkonen, J. & Pouta, E. Flexible wire-component for weaving electronic textiles. In Proceedings of the ECTC, 1656–1663 (2016).
HolmRElectric Contact: Theory and Application1967Springer10.1007/978-3-662-06688-1
Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W. & Powell, C. J. NIST X-ray Photoelectron Spectroscopy Database, https://doi.org/10.18434/T4T88K (2020).
WuYLiYOngBSA simple and efficient approach to a printable silver conductor for printed electronicsJ. Am. Chem. Soc.20071297186218631725693810.1021/ja067596w1:CAS:528:DC%2BD2sXhtVOms7s%3D
SongBSpringerJDetermination of interfacial tension from the profile of a pendant drop using computer-aided image processing: 2. ExperimentalJ. Colloid Interface Sci.1996184177911996JCIS..184...77S89546411:CAS:528:DyaK28XntFOjt7o%3D
ASTM D257-07 Standard Test Methods for DC Resistance or Conductance of Insulating Materials, https://doi.org/10.1520/D0257-07 (2014).
YamaguchiKBusfieldJJCThomasAGElectrical and mechanical behavior of filled elastomers. I. The effect of strainJ. Polym. Sci. B Polym. Phys.20034117207920892003JPoSB..41.2079Y10.1002/polb.105711:CAS:528:DC%2BD3sXmsFOht7o%3D
LeeYKKimJKwakJWYoonYRogersJARoom temperature electrochemical sintering of Zn microparticles and its use in printable conducting inks for bioresorbable electronicsAdv. Mater.20172938170266510.1002/adma.201702665
Jia, L. C. & Lung, C. M. Silver Conductive Ink and Fabricating Method Thereof, Taiwan Patent I671367 (2019).
GorgutsaSBlais-RobergeMViensJLaRochelleSMessaddeqYUser-interactive and wireless-communicating RF textilesAdv. Mater.2016141600032
TricotFFabrication of 3D conductive circuits: Print quality evaluation of a direct ink writing processRSC Adv.202281497614985
AliAElectrical conductivity and physiological comfort of silver coated cotton fabricsJ. Text. Inst.201710.1080/00405000.2017.1362148
ChenDRInk-jet patterning of graphene by cap assisted barrier-guided CVDRSC Adv.2019929105291082019RSCAd...929105C35528442907180910.1039/C9RA03117K1:CAS:528:DC%2BC1MXhslyit7%2FP
KimDJeongSParkBKMoonJDirect writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositionsAppl. Phys. Lett.2006892006ApPhL..89z4101K10.1063/1.2424671
YuYPhotoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronicsAdv. Mater.20162824492649342707413910.1002/adma.2015051191:CAS:528:DC%2BC28XmtVKjtLk%3D
ArifRJadounSVermaAMohdSShakeelAJavedNSSynthesis of nanomaterials and their applications in textile industryFrontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques2020Wiley11713310.1002/9781119620396.ch5
SerraPPiquéALaser-induced forward transfer: Fundamentals and applicationsAdv. Mater.2019411800099
JiaXTennantALangleyRJHurleyWDiasTA knitted textile waveguideProc. LAPC20141679682
AuyeungRCYKimHMathewsSAPiquéALaser direct-write of metallic nanoparticle inksJLMN J. Laser Micro/Nanoeng.200721212510.2961/jlmn.2007.01.00041:CAS:528:DC%2BD1cXltlaqtbo%3D
SridharAInkjet-printing- and electroless- plating- based fabrication of RF circuit structures on high-frequency substratesJ. Micromech. Microeng.20091982009JMiMi..19h5020S10.1088/0960-1317/19/8/085020
Dall’AcquaLToninCPeilaRFerreroFCatellaniMPerformances and properties of intrinsic conductive cellulose-polypyrrole textilesSynth. Met.2004146221322110.1016/j.synthmet.2004.07.005
WeiYChenJSongXGuYZengHLaser direct-writing electrode for rapid customization of a photodectorOpt. Lett.2019446836862019OptL...44..683W3070271010.1364/OL.44.0006831:CAS:528:DC%2BC1MXhs1WhtrvF
XuePYuTXTaoXMTensile properties and meso-scale mechanism of weft knitted textile composites for energy absorptionCompos. Part A20023311312310.1016/S1359-835X(01)00067-7
MontazerMAllahyarzadehVElectroless plating of silver nanoparticles/nanolayer on polyester fabric using AgNO3/NaOH and ammoniaInd. Eng. Chem. Res.2013528436844410.1021/ie400804n1:CAS:528:DC%2BC3sXot1Gltbw%3D
CanavanKApplications of Textile Products in Textiles and Fashion20141Woodhead Publishing531545
AllahyarzadehVMontazerMNejadNHSamadiNIn situ synthesis of nano silver on polyester using NaOH/nano TiO2J. Appl. Polym. Sci.2013192289290010.1002/app.38907
ArmonNContinuous nanoparticle assembly by a modulated photo-induced microbubble for fabrication of micrometric conductive patternsACS Appl. Mater. Interfaces2017944214442212917241810.1021/acsami.7b146141:CAS:528:DC%2BC2sXhvVKisbfF
LiuDChristeDShakibajahromiBKnittelC
R Holm (24676_CR48) 1967
RCY Auyeung (24676_CR24) 2007; 2
GB Hoflund (24676_CR34) 2000; 62
YK Lee (24676_CR18) 2017; 29
A Ali (24676_CR61) 2017
A Anbalagan (24676_CR3) 2020; 62
Y Lu (24676_CR14) 2010; 204
SB Walker (24676_CR31) 2012; 134
J Do (24676_CR41) 2013; 13
24676_CR29
JG Tao (24676_CR36) 2008; 602
O Kononova (24676_CR49) 2011; 17
K Yamaguchi (24676_CR42) 2003; 41
24676_CR60
Q Li (24676_CR16) 2003; 15
EB Secor (24676_CR15) 2015; 27
24676_CR26
J Eom (24676_CR53) 2017; 9
C Gonçalves (24676_CR10) 2018; 3
W Yang (24676_CR27) 2019; 7
M Stoppa (24676_CR9) 2014; 14
M Hempel (24676_CR44) 2012; 12
H Shahariar (24676_CR55) 2019; 11
L Hugo (24676_CR4) 2020; 20
TM Fernández-Caramés (24676_CR5) 2018; 6
P Serra (24676_CR23) 2019; 4
Z Yang (24676_CR47) 2018; 12
24676_CR58
R Arif (24676_CR25) 2020
24676_CR59
Y Li (24676_CR54) 2017; 3
A Sridhar (24676_CR21) 2009; 19
AK Yetisen (24676_CR6) 2016; 10
GC He (24676_CR38) 2017; 7
S Gorgutsa (24676_CR2) 2016; 1
Y Wei (24676_CR39) 2019; 44
24676_CR7
Y Yu (24676_CR17) 2016; 28
W Liu (24676_CR52) 2020; 3
K Canavan (24676_CR1) 2014
Y Wu (24676_CR28) 2007; 129
D Kim (24676_CR32) 2006; 89
P Xue (24676_CR13) 2007; 78
CS Boland (24676_CR45) 2017; 9
F Tricot (24676_CR20) 2022; 8
X Jia (24676_CR8) 2014; 1
P Xue (24676_CR51) 2002; 33
D Liu (24676_CR50) 2017; 109
M McKnight (24676_CR11) 2018
S Kumar (24676_CR19) 2011; 248
DR Chen (24676_CR22) 2019; 9
Y Cheng (24676_CR43) 2015; 27
M Montazer (24676_CR33) 2013; 52
M Wagstaffe (24676_CR37) 2017; 121
V Allahyarzadeh (24676_CR57) 2013; 192
N Inagaki (24676_CR35) 1996
S Seyedin (24676_CR46) 2018; 6
L Dall’Acqua (24676_CR12) 2004; 146
N Armon (24676_CR40) 2017; 9
Y Dong (24676_CR30) 2016; 616
B Song (24676_CR56) 1996; 184
References_xml – reference: SecorEBAhnBYGaoTZLewisJAHersamMCRapid and versatile photonic annealing of graphene inks for flexible printed electronicsAdv. Mater.20152742668366882642236310.1002/adma.2015028661:CAS:528:DC%2BC2MXhsF2ks77O
– reference: ArifRJadounSVermaAMohdSShakeelAJavedNSSynthesis of nanomaterials and their applications in textile industryFrontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques2020Wiley11713310.1002/9781119620396.ch5
– reference: InagakiNInteractions Between Plasma and Polymeric Materials in Plasma Surface Modification and Plasma Polymerization1996CRC Press2141
– reference: MontazerMAllahyarzadehVElectroless plating of silver nanoparticles/nanolayer on polyester fabric using AgNO3/NaOH and ammoniaInd. Eng. Chem. Res.2013528436844410.1021/ie400804n1:CAS:528:DC%2BC3sXot1Gltbw%3D
– reference: DoJFedorukMJäckelFFeldmannJTwo-color laser printing of individual gold nanorodsNano Lett.2013139416441682013NanoL..13.4164D2392753510.1021/nl401788w1:CAS:528:DC%2BC3sXht1elsLjL
– reference: AliAElectrical conductivity and physiological comfort of silver coated cotton fabricsJ. Text. Inst.201710.1080/00405000.2017.1362148
– reference: SongBSpringerJDetermination of interfacial tension from the profile of a pendant drop using computer-aided image processing: 2. ExperimentalJ. Colloid Interface Sci.1996184177911996JCIS..184...77S89546411:CAS:528:DyaK28XntFOjt7o%3D
– reference: Dall’AcquaLToninCPeilaRFerreroFCatellaniMPerformances and properties of intrinsic conductive cellulose-polypyrrole textilesSynth. Met.2004146221322110.1016/j.synthmet.2004.07.005
– reference: LiQLewisJANanoparticle inks for directed assembly of three-dimensional periodic structuresAdv. Mater.2003151639164310.1002/adma.2003054131:CAS:528:DC%2BD3sXosVKntbc%3D
– reference: WagstaffeMStructure and reactivity of a model oxide supported silver nanocluster catalyst studied by near ambient pressure X-ray photoelectron spectroscopyJ. Phys. Chem. C201712139213832138910.1021/acs.jpcc.7b058181:CAS:528:DC%2BC2sXhsVKgsrfL
– reference: ASTM D257-07 Standard Test Methods for DC Resistance or Conductance of Insulating Materials, https://doi.org/10.1520/D0257-07 (2014).
– reference: KumarSCVD growth and processing of graphene for electronic applicationsPhys. Status Solidi B201124811260426082011PSSBR.248.2604K10.1002/pssb.2011001791:CAS:528:DC%2BC3MXhtlOjtrbJ
– reference: AuyeungRCYKimHMathewsSAPiquéALaser direct-write of metallic nanoparticle inksJLMN J. Laser Micro/Nanoeng.200721212510.2961/jlmn.2007.01.00041:CAS:528:DC%2BD1cXltlaqtbo%3D
– reference: JiaXTennantALangleyRJHurleyWDiasTA knitted textile waveguideProc. LAPC20141679682
– reference: ChenDRInk-jet patterning of graphene by cap assisted barrier-guided CVDRSC Adv.2019929105291082019RSCAd...929105C35528442907180910.1039/C9RA03117K1:CAS:528:DC%2BC1MXhslyit7%2FP
– reference: XuePParkKHTaoXMChenWChengXYElectrically conductive yarns based on PVA/carbon nanotubesCompos. Struct.200778227127710.1016/j.compstruct.2005.10.016
– reference: ChengYWangRSunJGaoJA stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsionAdv. Mater.20152745736573712647904010.1002/adma.2015035581:CAS:528:DC%2BC2MXhs1yksrjJ
– reference: DongYOptimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates: The case study of aminesThin Solid Films20166166356422016TSF...616..635D10.1016/j.tsf.2016.09.0241:CAS:528:DC%2BC28XhsFyrt7rO
– reference: KononovaOKrasnikovsADzelzitisKKharkovaGVagelAEiduksMModelling and experimental verification of mechanical properties of cotton knitted fabric compositesEstonian J. Eng.201117395010.3176/eng.2011.1.05
– reference: SeyedinSZhangPNaebeMQinSChenJWangXRazalJMTextile strain sensors: A review of the fabrication technologies, performance evaluation and applicationsMater Horiz.2018621924910.1039/C8MH01062E
– reference: YetisenAKNanotechnology in textilesACS Nano201610304230682691848510.1021/acsnano.5b081761:CAS:528:DC%2BC28Xjt1Gjsr8%3D
– reference: XuePYuTXTaoXMTensile properties and meso-scale mechanism of weft knitted textile composites for energy absorptionCompos. Part A20023311312310.1016/S1359-835X(01)00067-7
– reference: Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W. & Powell, C. J. NIST X-ray Photoelectron Spectroscopy Database, https://doi.org/10.18434/T4T88K (2020).
– reference: WalkerSBLewisJAReactive silver inks for patterning high-conductivity features at mild temperaturesJ. Am. Chem. Soc.20121343141914212222058010.1021/ja209267c1:CAS:528:DC%2BC38XivVClsQ%3D%3D
– reference: LiuWHuangYPengYWalczakMWangDChenQLiuZLiLStable wearable strain sensors on textiles by direct laser writing of grapheneACS Appl. Nano Mater.20203128329310.1021/acsanm.9b019371:CAS:528:DC%2BB3cXisFSqug%3D%3D
– reference: EomJJaisuttiRLeeHLeeWHeoJLeeJParkSKKimYHighly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibersACS Appl. Mater. Interfaces201791110190101972825184810.1021/acsami.7b017711:CAS:528:DC%2BC2sXjsFCku7g%3D
– reference: Mikkonen, J. & Pouta, E. Flexible wire-component for weaving electronic textiles. In Proceedings of the ECTC, 1656–1663 (2016).
– reference: AnbalaganASundarsinghEFRamalingamVSDesign and experimental evaluation of a novel on-body textile antenna for unicast applicationsMicrow. Opt. Technol. Lett.202062278979910.1002/mop.32075
– reference: HoflundGBHazosZFSalaitaGNSurface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopyPhys. Rev. B2000621611126111332000PhRvB..6211126H10.1103/PhysRevB.62.111261:CAS:528:DC%2BD3cXnsFWju7k%3D
– reference: LiYElectronic textile by dyeing method for multiresolution physical kineses monitoringAdv. Electron. Mater.20173170025310.1002/aelm.201700253
– reference: YangZPangYHanXYangYLingJJianMZhangYYangYRenTGraphene textile strain sensor with negative resistance variation for human motion detectionACS Nano2018129913491413013409710.1021/acsnano.8b033911:CAS:528:DC%2BC1cXhsFGru7bP
– reference: HolmRElectric Contact: Theory and Application1967Springer10.1007/978-3-662-06688-1
– reference: GorgutsaSBlais-RobergeMViensJLaRochelleSMessaddeqYUser-interactive and wireless-communicating RF textilesAdv. Mater.2016141600032
– reference: WuYLiYOngBSA simple and efficient approach to a printable silver conductor for printed electronicsJ. Am. Chem. Soc.20071297186218631725693810.1021/ja067596w1:CAS:528:DC%2BD2sXhtVOms7s%3D
– reference: TaoJGOrigin of XPS binding energy shifts in Ni clusters and atoms on rutile TiO2 surfacesSurf. Sci.200860216276927732008SurSc.602.2769T10.1016/j.susc.2008.06.0341:CAS:528:DC%2BD1cXhtVGlu7jK
– reference: CanavanKApplications of Textile Products in Textiles and Fashion20141Woodhead Publishing531545
– reference: McKnightMAgcayaziTGhoshTBozkurtARaymondKYTFiber-based sensors: Enabling next-generation ubiquitous textile systemsWearable Technology in Medicine and Health Care2018Academic Press15317110.1016/B978-0-12-811810-8.00008-7
– reference: YuYPhotoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronicsAdv. Mater.20162824492649342707413910.1002/adma.2015051191:CAS:528:DC%2BC28XmtVKjtLk%3D
– reference: LeeYKKimJKwakJWYoonYRogersJARoom temperature electrochemical sintering of Zn microparticles and its use in printable conducting inks for bioresorbable electronicsAdv. Mater.20172938170266510.1002/adma.201702665
– reference: HeGCThe conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheetSci. Rep.20177417572017NatSR...741757H28150712528869010.1038/srep417571:CAS:528:DC%2BC2sXitVynt7o%3D
– reference: Casa Software Ltd. CasaXPS: Processing Software for XPS, AES, SIMS, and More, http://www.casaxps.com (2020).
– reference: HugoLA review of IoT sensing application and challenges using RFID and sensor networksSensor202020249510.3390/s20092495
– reference: StoppaMChiolerioAWearable electronics and smart textiles: A critical reviewSensors201414711957119922014Senso..1411957S25004153416843510.3390/s1407119571:CAS:528:DC%2BC2cXhvVaqtbbN
– reference: ArmonNContinuous nanoparticle assembly by a modulated photo-induced microbubble for fabrication of micrometric conductive patternsACS Appl. Mater. Interfaces2017944214442212917241810.1021/acsami.7b146141:CAS:528:DC%2BC2sXhvVKisbfF
– reference: YamaguchiKBusfieldJJCThomasAGElectrical and mechanical behavior of filled elastomers. I. The effect of strainJ. Polym. Sci. B Polym. Phys.20034117207920892003JPoSB..41.2079Y10.1002/polb.105711:CAS:528:DC%2BD3sXmsFOht7o%3D
– reference: KimDJeongSParkBKMoonJDirect writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositionsAppl. Phys. Lett.2006892006ApPhL..89z4101K10.1063/1.2424671
– reference: ShahariarHKimISoewardimanHJurJInkjet printing of reactive silver ink on textilesACS Appl. Mater. Interfaces201911620862163064470810.1021/acsami.8b182311:CAS:528:DC%2BC1MXpvFGgtQ%3D%3D
– reference: GonçalvesCda SilvaAFGomesJSimoesRWearable E-textile technologies: A review on sensors, actuators and control elementsInventions2018311410.3390/inventions3010014
– reference: BolandCSKhanUBenameurHColemanJNSurface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensorsNanoscale2017918507185152916422410.1039/C7NR06685F1:CAS:528:DC%2BC2sXhvVWmsb3O
– reference: SridharAInkjet-printing- and electroless- plating- based fabrication of RF circuit structures on high-frequency substratesJ. Micromech. Microeng.20091982009JMiMi..19h5020S10.1088/0960-1317/19/8/085020
– reference: TricotFFabrication of 3D conductive circuits: Print quality evaluation of a direct ink writing processRSC Adv.202281497614985
– reference: AllahyarzadehVMontazerMNejadNHSamadiNIn situ synthesis of nano silver on polyester using NaOH/nano TiO2J. Appl. Polym. Sci.2013192289290010.1002/app.38907
– reference: LuYJiangSHuangYUltrasonic-assisted electroless deposition of Ag on PET fabric with low silver content for EMI shieldingSurf. Coat. Tech.20102042829283310.1016/j.surfcoat.2010.02.0611:CAS:528:DC%2BC3cXksFagtrk%3D
– reference: LiuDChristeDShakibajahromiBKnittelCCastanedaNBreenDDionGKontsosAOn the role of material architecture in the mechanical behavior of knitted textilesInt. J. Solid. Struct.201710910111110.1016/j.ijsolstr.2017.01.011
– reference: Chung, K. et al. Organic Silver Complexes, Their Preparation Methods and Their Methods for Forming Thin Layers, US Patent US8226755B2 (2012).
– reference: WeiYChenJSongXGuYZengHLaser direct-writing electrode for rapid customization of a photodectorOpt. Lett.2019446836862019OptL...44..683W3070271010.1364/OL.44.0006831:CAS:528:DC%2BC1MXhs1WhtrvF
– reference: Fernández-CaramésTMFraga-LamasPA review on human-centered IoT-connected smart labels for the Industry 4.0IEEE Access20186259392595710.1109/ACCESS.2018.2833501
– reference: HempelMNezichDKongJHofmannMA novel class of strain gauges based on layered percolative films of 2D materialsNano Lett.20121211571457182012NanoL..12.5714H2304595510.1021/nl302959a1:CAS:528:DC%2BC38XhsVylurbL
– reference: Jia, L. C. & Lung, C. M. Silver Conductive Ink and Fabricating Method Thereof, Taiwan Patent I671367 (2019).
– reference: SerraPPiquéALaser-induced forward transfer: Fundamentals and applicationsAdv. Mater.2019411800099
– reference: YangWList-KratochvilEJWWangCMetal particle-free inks for printed flexible electronicsJ. Mater. Chem. C20197150981511710.1039/C9TC05463D1:CAS:528:DC%2BC1MXitFKitb7E
– volume: 1
  start-page: 1600032
  issue: 4
  year: 2016
  ident: 24676_CR2
  publication-title: Adv. Mater.
– volume: 12
  start-page: 9134
  issue: 9
  year: 2018
  ident: 24676_CR47
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03391
– volume: 204
  start-page: 2829
  year: 2010
  ident: 24676_CR14
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2010.02.061
– volume: 7
  start-page: 41757
  year: 2017
  ident: 24676_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep41757
– volume: 8
  start-page: 14976
  year: 2022
  ident: 24676_CR20
  publication-title: RSC Adv.
– volume: 17
  start-page: 39
  year: 2011
  ident: 24676_CR49
  publication-title: Estonian J. Eng.
  doi: 10.3176/eng.2011.1.05
– volume: 62
  start-page: 11126
  issue: 16
  year: 2000
  ident: 24676_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.11126
– volume: 27
  start-page: 6683
  issue: 42
  year: 2015
  ident: 24676_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502866
– ident: 24676_CR29
– volume: 121
  start-page: 21383
  issue: 39
  year: 2017
  ident: 24676_CR37
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b05818
– volume: 12
  start-page: 5714
  issue: 11
  year: 2012
  ident: 24676_CR44
  publication-title: Nano Lett.
  doi: 10.1021/nl302959a
– volume: 134
  start-page: 1419
  issue: 3
  year: 2012
  ident: 24676_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209267c
– volume: 41
  start-page: 2079
  issue: 17
  year: 2003
  ident: 24676_CR42
  publication-title: J. Polym. Sci. B Polym. Phys.
  doi: 10.1002/polb.10571
– volume: 602
  start-page: 2769
  issue: 16
  year: 2008
  ident: 24676_CR36
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2008.06.034
– volume: 44
  start-page: 683
  year: 2019
  ident: 24676_CR39
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000683
– volume: 10
  start-page: 3042
  year: 2016
  ident: 24676_CR6
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b08176
– start-page: 21
  volume-title: Interactions Between Plasma and Polymeric Materials in Plasma Surface Modification and Plasma Polymerization
  year: 1996
  ident: 24676_CR35
– volume: 9
  start-page: 10190
  issue: 11
  year: 2017
  ident: 24676_CR53
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01771
– volume: 11
  start-page: 6208
  year: 2019
  ident: 24676_CR55
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18231
– volume: 28
  start-page: 4926
  issue: 24
  year: 2016
  ident: 24676_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505119
– volume: 33
  start-page: 113
  year: 2002
  ident: 24676_CR51
  publication-title: Compos. Part A
  doi: 10.1016/S1359-835X(01)00067-7
– volume: 78
  start-page: 271
  issue: 2
  year: 2007
  ident: 24676_CR13
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2005.10.016
– start-page: 531
  volume-title: Applications of Textile Products in Textiles and Fashion
  year: 2014
  ident: 24676_CR1
– volume: 3
  start-page: 14
  issue: 1
  year: 2018
  ident: 24676_CR10
  publication-title: Inventions
  doi: 10.3390/inventions3010014
– volume: 1
  start-page: 679
  year: 2014
  ident: 24676_CR8
  publication-title: Proc. LAPC
– volume: 9
  start-page: 29105
  year: 2019
  ident: 24676_CR22
  publication-title: RSC Adv.
  doi: 10.1039/C9RA03117K
– volume: 6
  start-page: 219
  year: 2018
  ident: 24676_CR46
  publication-title: Mater Horiz.
  doi: 10.1039/C8MH01062E
– volume: 146
  start-page: 213
  issue: 2
  year: 2004
  ident: 24676_CR12
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2004.07.005
– volume: 3
  start-page: 1700253
  year: 2017
  ident: 24676_CR54
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700253
– volume: 192
  start-page: 892
  issue: 2
  year: 2013
  ident: 24676_CR57
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.38907
– ident: 24676_CR7
  doi: 10.1109/ECTC.2016.180
– ident: 24676_CR60
  doi: 10.1520/D0257-07
– volume: 29
  start-page: 1702665
  issue: 38
  year: 2017
  ident: 24676_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702665
– volume: 19
  issue: 8
  year: 2009
  ident: 24676_CR21
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/19/8/085020
– start-page: 153
  volume-title: Wearable Technology in Medicine and Health Care
  year: 2018
  ident: 24676_CR11
  doi: 10.1016/B978-0-12-811810-8.00008-7
– volume: 7
  start-page: 15098
  year: 2019
  ident: 24676_CR27
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05463D
– volume: 14
  start-page: 11957
  issue: 7
  year: 2014
  ident: 24676_CR9
  publication-title: Sensors
  doi: 10.3390/s140711957
– volume: 9
  start-page: 44214
  year: 2017
  ident: 24676_CR40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14614
– volume: 52
  start-page: 8436
  year: 2013
  ident: 24676_CR33
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400804n
– volume: 129
  start-page: 1862
  issue: 7
  year: 2007
  ident: 24676_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja067596w
– year: 2017
  ident: 24676_CR61
  publication-title: J. Text. Inst.
  doi: 10.1080/00405000.2017.1362148
– start-page: 117
  volume-title: Frontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques
  year: 2020
  ident: 24676_CR25
  doi: 10.1002/9781119620396.ch5
– volume: 4
  start-page: 1800099
  issue: 1
  year: 2019
  ident: 24676_CR23
  publication-title: Adv. Mater.
– volume: 89
  year: 2006
  ident: 24676_CR32
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2424671
– volume: 20
  start-page: 2495
  year: 2020
  ident: 24676_CR4
  publication-title: Sensor
  doi: 10.3390/s20092495
– volume: 62
  start-page: 789
  issue: 2
  year: 2020
  ident: 24676_CR3
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.32075
– volume: 248
  start-page: 2604
  issue: 11
  year: 2011
  ident: 24676_CR19
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201100179
– volume: 3
  start-page: 283
  issue: 1
  year: 2020
  ident: 24676_CR52
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01937
– volume: 616
  start-page: 635
  year: 2016
  ident: 24676_CR30
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.09.024
– volume: 13
  start-page: 4164
  issue: 9
  year: 2013
  ident: 24676_CR41
  publication-title: Nano Lett.
  doi: 10.1021/nl401788w
– volume: 109
  start-page: 101
  year: 2017
  ident: 24676_CR50
  publication-title: Int. J. Solid. Struct.
  doi: 10.1016/j.ijsolstr.2017.01.011
– ident: 24676_CR58
– volume: 15
  start-page: 1639
  year: 2003
  ident: 24676_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200305413
– ident: 24676_CR59
  doi: 10.18434/T4T88K
– volume: 27
  start-page: 7365
  issue: 45
  year: 2015
  ident: 24676_CR43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503558
– volume: 184
  start-page: 77
  issue: 1
  year: 1996
  ident: 24676_CR56
  publication-title: J. Colloid Interface Sci.
– volume: 2
  start-page: 21
  issue: 1
  year: 2007
  ident: 24676_CR24
  publication-title: JLMN J. Laser Micro/Nanoeng.
  doi: 10.2961/jlmn.2007.01.0004
– volume-title: Electric Contact: Theory and Application
  year: 1967
  ident: 24676_CR48
  doi: 10.1007/978-3-662-06688-1
– ident: 24676_CR26
– volume: 6
  start-page: 25939
  year: 2018
  ident: 24676_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2833501
– volume: 9
  start-page: 18507
  year: 2017
  ident: 24676_CR45
  publication-title: Nanoscale
  doi: 10.1039/C7NR06685F
SSID ssj0000529419
Score 2.3845158
Snippet One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver...
Abstract One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20029
SubjectTerms 639/301/1005/1009
639/301/930/1032
639/624/1075/1080
Anisotropy
Coffee
Crystallization
Electric Conductivity
Fabrics
Humanities and Social Sciences
Irradiation
Lasers
multidisciplinary
Photonics
Photoreduction
Polyesters - chemistry
Polyethylene terephthalate
Polyurethanes - chemistry
Science
Science (multidisciplinary)
Sensors
Silver
Sintering
Spectrum analysis
Surface tension
Textiles
Viscosity
Wearable Electronic Devices
Yarn
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC6CIOQSouYxvuhAbqYxPf2YnqOKIjkkEBS8Nf0kEjMrOyvqv7e6Z3bjJjG55LrdwxbV9fiK7voK4L12ISktHW1cjFQILFDa6FvqEV5E5zNfSnkg-1mdnotPF_Li0aiv_CZsoAceFLcvlHZca5EiAhUsFjRClBiEzbxfnoeYoy_mvEfF1MDqXbeCtWOXzEeu93vMVLmbDGuvGoODos1SJiqE_X9Cmb8_lvzlxrQkopOX8GJEkORgkHwNnsVuHVaHmZL3G_D1SxcpHt01-RERWF-NfZZkkshtTDP6HX0YUSZJ1mEI7AmCVlyw09xCRdylvUODJH2ZHEF6rHEn0_4VnJ8cnx2d0nFwAvUIwGaUOZ6YU8wHFWSdkg21V7kXMEqOKT01PFjENVraGFAhVjbc10w57nWZAcpfw0o36eJbIE4ql6yyLGMtroVumcOkr6STAdXvK2BzJRo_sopnEa9Mud3m2gyKN_g_pijeNBXsLb65Hjg1_rr7MJ_NYmfmwy4_oJWY0UrMv6ykgu35yZrRSXuTu5Iw4GEFXcG7xTK6V74zsV2c3JQ9reCcK1nBm8EQFpJwJZjA-FxBs2QiS6Iur3SX3wqFd6s0axr88sPcmH6K9bQqNv-HKrbgeZ29gDFas21YmU1v4g4Cq5nbLT70AFPOHA8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyQuFW9SCjISN7CK40ecE6KoVcWhoIpKvVl-QkVJls1Wbf99x4431fLoNXaUyXgenz2eGYTeKOujVMKSxoZAOIcNShtcSxzAi2BdqpeSL8geyoNj_vlEnJQDt6Fcq1zZxGyofe_SGflOSiEB6YTtzof5b5K6RqXoammhcRdtgAlWYoY2dvcOvx5NpywpjsVpW7Jl3jO1M4DHSlllsAerwUhI0qx5pFy4_19o8-9Lk39ETrND2n-ANguSxB_HpX-I7oTuEbo39pa8eoyOvnSBwBLO8a8AAPus5FviPuKLEJfkJ-gyoE0cjQVTOGAArzBgFimVCttTcwmCiYfcQQIPsNftF8MTdLy_9-3TASkNFIgDILYk1LJIraTOSy_qGI2vnUw5gUEwcO2xYd4AvlHCBA8MMaJhrqbSMqdyL1D2FM26vgvPEbZC2mikoQlzMcVVSy04fyms8I55VyG6YqJ2pbp4IvFM5yg3U3pkvIbv6Mx43VTo7fTOfKytcevs3bQ208xUFzs_6BffdVEzzaWyTCkeA8Ba2FoqALTBc5OqxAGZoULbq5XVRVkHfSNaFXo9DYOapdiJ6UJ_nue0nDEmRYWejYIwUcIkpxzsdIWaNRFZI3V9pDv9kUt5t1LRpoE3362E6Yas_7Ni6_a_eIHu10m-KSU13Uaz5eI8vATotLSvin5cA5mKFcI
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8GXw2-rp0TwTaOk-Wj6IKLicQgqiAv3FpI00cO1vWv38O6_d5K2K6ur4GuT0OlkJvMb0vkNwGPtmqi0dLRyIVAhMEGpg6-pR3gRnE98KfkH2Q_qcCHeHcmjHZjbHU0KHLamdqmf1KJfPjs_vXiJDv9iLBnXzwcMQqlQDNOqEv1e0eoSXMbIpJKVv5_g_sj1XdaC1VPtzPalG_Ep0_hvw55__kL52z1qDk8H12BvwpXk1WgI12EntDfgythp8uImfPrYBoobekK-B_zS5VR9SbpIfoS4ot_QsxF7kmgdHowDQSiLA7ZPhVXEHdtzNFMy5H4SZMDMt-uHW7A4ePv5zSGd2ilQj7BsRZnjkTnFfKMaWcZom9KrVCEYJMdAHyveWEQ7WtrQoEKsrLgvmXLc69wZlN-G3bZrw10gTioXrbIsITCuha6ZSwqXTjaeN74ANivR-IlrPIm4NPnOm2szKt7ge0xWvKkKeLJeczIybfxz9uu0N-uZiSU7P-j6L2ZyOiOUdlxrEQOCXEw0NcLb0AibOONQzFDA_ryzZrY8k2qV8BjEvLqAR-thdLp0k2Lb0J3lObXgnCtZwJ3RENaScCWYwFO7gGrDRDZE3Rxpj79mYu9aaVZVuPLpbEy_xPq7Ku793_T7cLVM9s4YLdk-7K76s_AAgdXKPcze8hPQ-xvx
  priority: 102
  providerName: Scholars Portal
Title One-step metallization of weft-knitted fabrics for wearable biaxial strain sensors
URI https://link.springer.com/article/10.1038/s41598-022-24676-7
https://www.ncbi.nlm.nih.gov/pubmed/36414763
https://www.proquest.com/docview/2738703402
https://www.proquest.com/docview/2739433365
https://pubmed.ncbi.nlm.nih.gov/PMC9681773
https://doaj.org/article/468b3884fe7749248161ed4a4655c3de
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_6geCL-O3WeqzgmwbN5mOzj9ejpRxYpVq4t5BkE1use-X2SvW_d5L9kNMq-HILl4QdJjOZ32wyvwC8UrYOUglLSus94RwTlMq7ijiEF966yJeSDsieyOMzPl-IxRYUQy1MOrSfKC3TMj2cDnvbYqCJxWCYOhXo25KU27AbqdsjX_5MzsbvKnHnitOqr495x9QtQzdiUKLqvw1f_nlM8re90hSCju7DvR475tNO2gew5ZuHcKe7TfLHIzj90HiCk3aVf_MIqS_7Cst8GfIbH9bkK3ov4ss8GIuLX5sjXMUGs4rFU7m9MN_RFPM23RmRt5jdLlftYzg7Ovw8Oyb9lQnEIfRaE2pZoFZSV8taFCGYunAyVgF6wTCYh5LVBhGNEsbXqBAjSuYKKi1zKt3-yZ7ATrNs_DPIrZA2GGloRFlMcVVRi-FeCitqx2qXAR2UqF3PJx5FvNRpX5sp3Sle43t0UrwuM3g9jrnq2DT-2fsgzs3YMzJhpz-Wqy-6twzNpbJMKR48AllMJhVCWF9zE3nhUEyfwf4ws7p3z1bHeiRc6jB3zuDl2IyOFXdLTOOX16lPxRljUmTwtDOEURImOeW4MmdQbpjIhqibLc3FeSLvrqSiZYkj3wzG9Eusv6ti7_-6P4e7RbR3SklB92Fnvbr2LxA8re0EtstFOYHd6XT-aY7Pg8OTj6eT5EOT9EECf99z9RNNxRgm
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiDeBAkaCE1jFseM4B4QotNrSsqCqlXoztuNARUmWzValf4rfyNhJtloevfW6dnZnx_P4JuOZAXiqbFlJlVmaW--pEBigFN4V1CG88NaFfinxguxYjvbF-4PsYAl-DbUw4VrlYBOjoS4bF96Rr4USEpRODHdeT37QMDUqZFeHERqdWGz70xMM2dpXW-_wfJ-l6ebG3tsR7acKUIfoZEaZ5RWzkrlSlllaVaZMnQyFcj7j6O-qnJcGnb7KjC_RwZks5y5l0nKn4oBMjt97CVYQZhSoRSvrG-NPu_O3OiFvJljRV-e85GqtRQ8Zqtgw5kvRKEmaL3jAOCjgX-j270uaf2RqowPcvA7XeuRK3nSidgOWfH0TLnezLE9vwe7H2lMUmQn57hHQH_X1naSpyImvZvQb2g5Et6QyFk1vSxAs44KZhtItYg_NT1QE0saJFaTF2LqZtrdh_0JYeweW66b294DYTNrKSMMCxuNKqIJZBBsys1npeOkSYAMTteu7mQcSj3TMqnOlO8Zr_B0dGa_zBJ7Pn5l0vTzO3b0ezma-M_Thjh800y-6V2stpLJcKVF5hNEYyioE0L4UJnSlQzJ9AqvDyereOLT6TJQTeDJfRrUOuRpT--Y47ikE51xmCdztBGFOCZeCCfQLCeQLIrJA6uJKffg1tg4vpGJ5jk--GITpjKz_s-L--f_iMVwZ7X3Y0Ttb4-0HcDUNss4YTdkqLM-mx_4hwraZfdTrCoHPF62evwGEFFGZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkaCE1iLY8dxDghR2lVL0VJVVOrNtR0bKkqybLYq_Wv8OsbOo1oevfW6dnZnx_P4JuOZQei5NKUXMjMkN84RziFAKZwtiAV44YwN_VLiBdmp2NrnHw6ygxX0q6-FCdcqe5sYDXVZ2_COfBxKSEA6IdwZ--5axO7G5O3sBwkTpEKmtR-n0YrIjjs7hfCtebO9AWf9Ik0nm5_fb5FuwgCxgFQWhBrmqRHUlqLMUu91mVoRiuZcxsD3-ZyVGgCAzLQrwdnpLGc2pcIwK-OwTAbfewWt5uAV5Qitrm9Od_eGNzwhh8Zp0VXqvGZy3IC3DBVtEP-lYKAEyZe8YRwa8C-k-_eFzT-yttEZTm6iGx2Kxe9asbuFVlx1G11t51qe3UF7nypHQHxm-LsDcH_c1Xri2uNT5xfkG9gRQLrYawNmuMEAnGFBz0MZFzZH-icoBW7i9ArcQJxdz5u7aP9SWHsPjaq6cg8QNpkwXgtNA95jksuCGgAeIjNZaVlpE0R7JirbdTYPJB6rmGFnUrWMV_A7KjJe5Ql6OTwza_t6XLh7PZzNsDP05I4f1PMvqlNxxYU0TEruHUBqCGslgGlXch061AGZLkFr_cmqzlA06lysE_RsWAYVD3kbXbn6JO4pOGNMZAm63wrCQAkTnHLwEQnKl0RkidTlleroa2wjXghJ8xyefNUL0zlZ_2fFw4v_xVN0DdRSfdye7jxC19Mg6pSSlK6h0WJ-4h4DgluYJ52qYHR42dr5G0zMVcU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-step+metallization+of+weft-knitted+fabrics+for+wearable+biaxial+strain+sensors&rft.jtitle=Scientific+reports&rft.au=Tai%2C+Chao-Yi&rft.au=Lin%2C+Chun-Yu&rft.au=Liu%2C+Tang-Chun&rft.au=Jia%2C+Lu-Chiang&rft.date=2022-11-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-24676-7&rft.externalDocID=10_1038_s41598_022_24676_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon