Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation
Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprisin...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 2261 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.04.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi
0.86
Co
0.11
Al
0.03
O
2
-based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi
0.83
Co
0.11
Mn
0.07
O
2
-based positive electrodes and batteries with the blend of Li(NiCoMn)O
2
- Li(NiCoAl)O
2
positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.
Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from the relaxation voltage curve for battery capacity estimation without requiring other previous cycling information. |
---|---|
AbstractList | Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from the relaxation voltage curve for battery capacity estimation without requiring other previous cycling information. Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi0.86Co0.11Al0.03O2-based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi0.83Co0.11Mn0.07O2-based positive electrodes and batteries with the blend of Li(NiCoMn)O2 - Li(NiCoAl)O2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi0.86Co0.11Al0.03O2-based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi0.83Co0.11Mn0.07O2-based positive electrodes and batteries with the blend of Li(NiCoMn)O2 - Li(NiCoAl)O2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation. Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi0.86Co0.11Al0.03O2-based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi0.83Co0.11Mn0.07O2-based positive electrodes and batteries with the blend of Li(NiCoMn)O2 - Li(NiCoAl)O2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from the relaxation voltage curve for battery capacity estimation without requiring other previous cycling information. Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi 0.86 Co 0.11 Al 0.03 O 2 -based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi 0.83 Co 0.11 Mn 0.07 O 2 -based positive electrodes and batteries with the blend of Li(NiCoMn)O 2 - Li(NiCoAl)O 2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation. Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from the relaxation voltage curve for battery capacity estimation without requiring other previous cycling information. Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi 0.86 Co 0.11 Al 0.03 O 2 -based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi 0.83 Co 0.11 Mn 0.07 O 2 -based positive electrodes and batteries with the blend of Li(NiCoMn)O 2 - Li(NiCoAl)O 2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation. Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi Co Al O -based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi Co Mn O -based positive electrodes and batteries with the blend of Li(NiCoMn)O - Li(NiCoAl)O positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation. |
ArticleNumber | 2261 |
Author | Ehrenberg, Helmut Senyshyn, Anatoliy Heere, Michael Knapp, Michael Mühlbauer, Martin J. Cao, Yankai Wang, Yixiu Liu, Xinhua Zhu, Jiangong Dai, Haifeng Wei, Xuezhe Bhushan Gopaluni, R. Mereacre, Liuda Huang, Yuan |
Author_xml | – sequence: 1 givenname: Jiangong orcidid: 0000-0002-3780-4286 surname: Zhu fullname: Zhu, Jiangong organization: Clean Energy Automotive Engineering Center, School of Automotive Engineering, Tongji University, Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT) – sequence: 2 givenname: Yixiu surname: Wang fullname: Wang, Yixiu organization: Department of Chemical and Biological Engineering, University of British Columbia – sequence: 3 givenname: Yuan surname: Huang fullname: Huang, Yuan organization: Clean Energy Automotive Engineering Center, School of Automotive Engineering, Tongji University, Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT) – sequence: 4 givenname: R. surname: Bhushan Gopaluni fullname: Bhushan Gopaluni, R. organization: Department of Chemical and Biological Engineering, University of British Columbia – sequence: 5 givenname: Yankai surname: Cao fullname: Cao, Yankai organization: Department of Chemical and Biological Engineering, University of British Columbia – sequence: 6 givenname: Michael surname: Heere fullname: Heere, Michael organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Technische Universität Braunschweig, Institute of Internal Combustion Engines – sequence: 7 givenname: Martin J. surname: Mühlbauer fullname: Mühlbauer, Martin J. organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT) – sequence: 8 givenname: Liuda surname: Mereacre fullname: Mereacre, Liuda organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT) – sequence: 9 givenname: Haifeng orcidid: 0000-0001-5322-2019 surname: Dai fullname: Dai, Haifeng email: tongjidai@tongji.edu.cn organization: Clean Energy Automotive Engineering Center, School of Automotive Engineering, Tongji University – sequence: 10 givenname: Xinhua orcidid: 0000-0002-4111-7235 surname: Liu fullname: Liu, Xinhua organization: School of Transportation Science and Engineering, Beihang University – sequence: 11 givenname: Anatoliy orcidid: 0000-0002-1473-8992 surname: Senyshyn fullname: Senyshyn, Anatoliy organization: Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching b – sequence: 12 givenname: Xuezhe surname: Wei fullname: Wei, Xuezhe organization: Clean Energy Automotive Engineering Center, School of Automotive Engineering, Tongji University – sequence: 13 givenname: Michael orcidid: 0000-0003-0091-8463 surname: Knapp fullname: Knapp, Michael email: michael.knapp@kit.edu organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT) – sequence: 14 givenname: Helmut orcidid: 0000-0002-5134-7130 surname: Ehrenberg fullname: Ehrenberg, Helmut organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35477711$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARfdAfYIEisWET8Cuxs0FChUKlSmxgxcLy42bqkRMPtjNt_x7PpIW2i3pjX99zjo7uPcfVwRQmqKo3GH3AiIqPiWHW8QYR0pBeUN5cv6iOCGK4wZzQgwfvw-o0pTUqh_ZYMPaqOqQt45xjfFT9_qKyamx0W5hqozbKuHxbQ8puVNmFqQ5DbcI4QjRO-dq7fOXmsdl1tMoZooNUDzGM9Tb4rFZQR_DqZs99Xb0clE9wenefVL_Ov_48-95c_vh2cfb5sjEtQ7nBQhdvwgrUGjEQ0fUDJ7zrEBr4oBgCDdhgbqlRveg5ZaBaapkWWgsiuKYn1cWia4Nay00s1uOtDMrJ_UeIK6lidsaDRJZYILZXFBnWCy563QLmymoyoFIUrU-L1mbWI1gDU47KPxJ93JnclVyFrewR6whBReD9nUAMf-YySDm6ZMB7NUGYkyRd23HWtnwHffcEug5znMqodqi2J4wLUVBvHzr6Z-V-hwUgFoCJIaUIgyw73C-gGHReYiR3iZFLYmRJjNwnRl4XKnlCvVd_lkQXUirgaQXxv-1nWH8BqqbUlQ |
CitedBy_id | crossref_primary_10_1016_j_energy_2025_134810 crossref_primary_10_1016_j_xinn_2023_100465 crossref_primary_10_1016_j_ymssp_2024_111140 crossref_primary_10_1002_bte2_20240036 crossref_primary_10_1016_j_est_2024_110814 crossref_primary_10_1016_j_egyai_2025_100507 crossref_primary_10_1016_j_jechem_2025_01_035 crossref_primary_10_1016_j_aei_2025_103211 crossref_primary_10_1109_TTE_2024_3398028 crossref_primary_10_1016_j_jpowsour_2024_236044 crossref_primary_10_1016_j_energy_2025_134937 crossref_primary_10_1016_j_joule_2024_03_010 crossref_primary_10_1109_TTE_2024_3357728 crossref_primary_10_1109_TPEL_2025_3532588 crossref_primary_10_1016_j_jpowsour_2024_236038 crossref_primary_10_1115_1_4065095 crossref_primary_10_1016_j_est_2024_114052 crossref_primary_10_1016_j_ensm_2022_06_053 crossref_primary_10_1016_j_ensm_2024_103725 crossref_primary_10_3389_fenrg_2024_1353651 crossref_primary_10_3390_en16176318 crossref_primary_10_1021_acsenergylett_4c03054 crossref_primary_10_1016_j_est_2023_108579 crossref_primary_10_1039_D4CS00361F crossref_primary_10_3389_fenrg_2022_945003 crossref_primary_10_3390_batteries9030181 crossref_primary_10_20517_ss_2024_15 crossref_primary_10_1016_j_isci_2023_107770 crossref_primary_10_1038_s41598_024_82778_w crossref_primary_10_1016_j_est_2025_116098 crossref_primary_10_1021_acs_iecr_3c02849 crossref_primary_10_1016_j_energy_2023_127033 crossref_primary_10_1016_j_jechem_2024_10_001 crossref_primary_10_1007_s42979_024_03046_2 crossref_primary_10_1109_TIE_2024_3379664 crossref_primary_10_1109_TTE_2024_3471867 crossref_primary_10_1109_TTE_2024_3471626 crossref_primary_10_3390_fractalfract6110640 crossref_primary_10_1016_j_jechem_2024_10_018 crossref_primary_10_1016_j_xcrp_2023_101763 crossref_primary_10_1088_1742_6596_2809_1_012053 crossref_primary_10_1002_ente_202300891 crossref_primary_10_1016_j_esci_2024_100325 crossref_primary_10_3390_batteries9080413 crossref_primary_10_1016_j_measurement_2024_116620 crossref_primary_10_1016_j_ensm_2024_103270 crossref_primary_10_1109_TTE_2023_3336618 crossref_primary_10_1109_TTE_2024_3354107 crossref_primary_10_1038_s41467_024_48779_z crossref_primary_10_1016_j_matt_2024_04_030 crossref_primary_10_1016_j_jpowsour_2022_232498 crossref_primary_10_3390_batteries10050164 crossref_primary_10_1016_j_energy_2025_135332 crossref_primary_10_1109_TIE_2023_3342289 crossref_primary_10_1149_1945_7111_ad0492 crossref_primary_10_1002_cjce_25394 crossref_primary_10_1016_j_est_2025_115582 crossref_primary_10_1016_j_est_2025_115345 crossref_primary_10_1016_j_est_2025_115347 crossref_primary_10_1016_j_est_2024_114524 crossref_primary_10_1016_j_apenergy_2023_122454 crossref_primary_10_3390_batteries9050242 crossref_primary_10_1016_j_energy_2025_135220 crossref_primary_10_1016_j_ijhydene_2024_06_090 crossref_primary_10_1016_j_apenergy_2023_121925 crossref_primary_10_1038_s41467_025_56485_7 crossref_primary_10_1016_j_energy_2024_134177 crossref_primary_10_1016_j_jechem_2023_12_043 crossref_primary_10_1016_j_rser_2024_114647 crossref_primary_10_1038_s41524_024_01286_7 crossref_primary_10_1016_j_geits_2024_100152 crossref_primary_10_1016_j_isci_2023_108419 crossref_primary_10_3390_batteries10060187 crossref_primary_10_1016_j_electacta_2023_143565 crossref_primary_10_1109_TTE_2023_3317449 crossref_primary_10_1016_j_apenergy_2024_123555 crossref_primary_10_1109_TPEL_2024_3512516 crossref_primary_10_1016_j_est_2023_108096 crossref_primary_10_1109_TIM_2024_3480208 crossref_primary_10_3390_batteries10090303 crossref_primary_10_1016_j_seta_2022_102915 crossref_primary_10_3390_batteries10090305 crossref_primary_10_1016_j_jechem_2023_11_009 crossref_primary_10_3390_batteries9070385 crossref_primary_10_1016_j_jpowsour_2025_236517 crossref_primary_10_1155_2024_1758578 crossref_primary_10_1149_1945_7111_acf8ff crossref_primary_10_1088_1742_6596_2823_1_012027 crossref_primary_10_1016_j_apenergy_2024_124190 crossref_primary_10_1016_j_energy_2024_133993 crossref_primary_10_1039_D4EE03063J crossref_primary_10_3390_batteries9120565 crossref_primary_10_1016_j_est_2024_114822 crossref_primary_10_1016_j_jpowsour_2024_235813 crossref_primary_10_1109_TIA_2024_3405431 crossref_primary_10_1016_j_est_2023_107430 crossref_primary_10_1088_1742_6596_2968_1_012004 crossref_primary_10_1109_TTE_2023_3265981 crossref_primary_10_1038_s44172_025_00372_y crossref_primary_10_1007_s12598_022_02156_1 crossref_primary_10_1016_j_etran_2025_100397 crossref_primary_10_1016_j_est_2023_108647 crossref_primary_10_1088_1361_6501_ad7a94 crossref_primary_10_1016_j_xcrp_2023_101720 crossref_primary_10_1016_j_jpowsour_2025_236187 crossref_primary_10_3390_wevj13090159 crossref_primary_10_1016_j_jpowsour_2025_236620 crossref_primary_10_1109_ACCESS_2024_3520226 crossref_primary_10_1016_j_jechem_2025_01_057 crossref_primary_10_1016_j_est_2024_113506 crossref_primary_10_1016_j_jechem_2023_06_036 crossref_primary_10_1016_j_ynexs_2024_100026 crossref_primary_10_1016_j_electacta_2024_144512 crossref_primary_10_3390_electronics13030587 crossref_primary_10_1016_j_energy_2024_131208 crossref_primary_10_1016_j_est_2024_113744 crossref_primary_10_1109_TII_2024_3514131 crossref_primary_10_1016_j_apenergy_2023_122488 crossref_primary_10_3390_batteries10090324 crossref_primary_10_3390_batteries10030071 crossref_primary_10_3390_batteries8080090 crossref_primary_10_1016_j_energy_2024_132520 crossref_primary_10_1016_j_energy_2024_132881 crossref_primary_10_1021_acs_nanolett_4c02588 crossref_primary_10_1016_j_est_2023_110189 crossref_primary_10_1016_j_est_2025_115301 crossref_primary_10_3390_batteries9120585 crossref_primary_10_1016_j_jpowsour_2024_234272 crossref_primary_10_1016_j_est_2024_113878 crossref_primary_10_1016_j_ensm_2022_09_013 crossref_primary_10_1016_j_energy_2024_130900 crossref_primary_10_1039_D2NR04673C crossref_primary_10_3390_batteries10030089 crossref_primary_10_1002_aenm_202301452 crossref_primary_10_1016_j_jechem_2022_09_045 crossref_primary_10_1103_PhysRevMaterials_6_103801 crossref_primary_10_1109_TTE_2024_3470551 crossref_primary_10_1016_j_energy_2023_129067 crossref_primary_10_1016_j_xcrp_2023_101464 crossref_primary_10_1016_j_cej_2024_149502 crossref_primary_10_1039_D3TA03603K crossref_primary_10_1016_j_jechem_2023_11_040 crossref_primary_10_1016_j_apenergy_2024_124165 crossref_primary_10_1016_j_est_2024_113920 crossref_primary_10_1088_1361_6439_ad520c crossref_primary_10_1016_j_enbuild_2024_114289 crossref_primary_10_1016_j_est_2024_113005 crossref_primary_10_1016_j_ifacol_2024_08_327 crossref_primary_10_1016_j_est_2023_108732 crossref_primary_10_1016_j_est_2023_107637 crossref_primary_10_1016_j_ensm_2024_103441 crossref_primary_10_1016_j_measurement_2024_115148 crossref_primary_10_1016_j_jechem_2024_08_037 crossref_primary_10_23919_IEN_2023_0034 crossref_primary_10_1002_aenm_202200889 crossref_primary_10_1002_batt_202300080 crossref_primary_10_1021_acs_nanolett_4c04303 crossref_primary_10_1016_j_jallcom_2023_172365 crossref_primary_10_1016_j_etran_2024_100338 crossref_primary_10_1016_j_compchemeng_2024_108623 crossref_primary_10_1016_j_est_2024_111197 crossref_primary_10_1016_j_est_2023_109814 crossref_primary_10_1016_j_est_2023_107549 crossref_primary_10_1016_j_energy_2024_130790 crossref_primary_10_1016_j_energy_2025_134997 crossref_primary_10_3390_en17112487 crossref_primary_10_1039_D4EE04372C crossref_primary_10_1016_j_ensm_2023_102785 crossref_primary_10_1016_j_energy_2024_131404 crossref_primary_10_1016_j_est_2024_111649 crossref_primary_10_1109_TPEL_2025_3531791 crossref_primary_10_3390_batteries9060321 crossref_primary_10_3390_ma18010145 crossref_primary_10_1016_j_apenergy_2024_125116 crossref_primary_10_1016_j_esci_2024_100280 crossref_primary_10_1149_1945_7111_acc696 crossref_primary_10_1016_j_ensm_2024_103668 crossref_primary_10_1016_j_jpowsour_2025_236259 crossref_primary_10_1016_j_eswa_2023_121892 crossref_primary_10_1002_aenm_202304512 crossref_primary_10_1109_TTE_2023_3266386 crossref_primary_10_1109_TTE_2024_3399051 crossref_primary_10_3390_pr11030678 crossref_primary_10_1016_j_energy_2025_134645 crossref_primary_10_1016_j_ensm_2023_103083 crossref_primary_10_1039_D4EE04787G crossref_primary_10_1109_TIE_2022_3212365 crossref_primary_10_1016_j_energy_2024_132167 crossref_primary_10_1016_j_jechem_2024_12_010 crossref_primary_10_1115_1_4066926 crossref_primary_10_1360_TB_2022_0550 crossref_primary_10_1109_TTE_2023_3334826 crossref_primary_10_1038_s41597_024_03859_z crossref_primary_10_1016_j_energy_2023_128738 crossref_primary_10_1016_j_est_2024_110560 crossref_primary_10_1016_j_xcrp_2024_102192 crossref_primary_10_1016_j_egyai_2024_100398 crossref_primary_10_1016_j_apenergy_2024_123600 crossref_primary_10_1002_chem_202400063 crossref_primary_10_1016_j_jechem_2023_09_025 crossref_primary_10_1016_j_energy_2023_129826 crossref_primary_10_1016_j_energy_2023_127408 crossref_primary_10_3390_batteries9070351 crossref_primary_10_1016_j_commatsci_2024_113444 crossref_primary_10_1016_j_rineng_2024_102786 crossref_primary_10_1109_TIE_2023_3286005 crossref_primary_10_1002_chem_202304296 crossref_primary_10_1016_j_est_2024_110855 crossref_primary_10_1016_j_ensm_2023_103014 crossref_primary_10_1016_j_apenergy_2023_121651 crossref_primary_10_3390_coatings13122088 crossref_primary_10_1016_j_energy_2022_125210 crossref_primary_10_1016_j_energy_2023_127633 crossref_primary_10_1016_j_ensm_2023_01_035 crossref_primary_10_3389_fenrg_2022_949760 crossref_primary_10_1016_j_jpowsour_2023_233246 crossref_primary_10_1016_j_etran_2024_100383 crossref_primary_10_1016_j_ress_2024_110325 crossref_primary_10_1002_aenm_202301143 crossref_primary_10_1002_ente_202200437 crossref_primary_10_1038_s41598_024_72510_z crossref_primary_10_1109_TII_2024_3452273 crossref_primary_10_1002_adfm_202422601 crossref_primary_10_1016_j_jechem_2025_02_030 crossref_primary_10_1016_j_ensm_2023_102967 crossref_primary_10_1109_TPEL_2024_3395513 crossref_primary_10_1016_j_etran_2024_100378 crossref_primary_10_1016_j_etran_2023_100270 crossref_primary_10_1016_j_jechem_2024_09_021 crossref_primary_10_1109_TII_2023_3240920 crossref_primary_10_1021_acsenergylett_3c01012 crossref_primary_10_3390_app13137702 crossref_primary_10_1109_TIM_2025_3527527 crossref_primary_10_1002_smtd_202300832 crossref_primary_10_1016_j_jechem_2024_12_063 crossref_primary_10_1016_j_ress_2024_110782 crossref_primary_10_1109_TII_2024_3485809 crossref_primary_10_1016_j_jechem_2022_12_028 crossref_primary_10_1016_j_apenergy_2023_122080 crossref_primary_10_1016_j_jechem_2023_10_056 crossref_primary_10_1016_j_jpowsour_2024_235771 crossref_primary_10_1016_j_gce_2024_09_001 crossref_primary_10_1080_15567036_2024_2329818 crossref_primary_10_1016_j_jpowsour_2024_235768 crossref_primary_10_1149_1945_7111_ad940d crossref_primary_10_1016_j_etran_2024_100361 crossref_primary_10_1016_j_rser_2023_114191 crossref_primary_10_1016_j_etran_2024_100362 crossref_primary_10_1016_j_jallcom_2024_174992 crossref_primary_10_1016_j_energy_2024_131294 crossref_primary_10_1007_s11581_024_05965_9 crossref_primary_10_1016_j_jechem_2024_09_012 crossref_primary_10_1109_TTE_2023_3323976 crossref_primary_10_1016_j_energy_2024_131154 crossref_primary_10_1109_TVT_2023_3284058 crossref_primary_10_1016_j_ensm_2024_103585 crossref_primary_10_1016_j_ensm_2023_103160 crossref_primary_10_1016_j_energy_2024_131398 crossref_primary_10_1016_j_energy_2025_135257 crossref_primary_10_1016_j_est_2024_110768 crossref_primary_10_1016_j_energy_2023_130208 crossref_primary_10_1016_j_rser_2025_115522 crossref_primary_10_1149_1945_7111_ad81b3 crossref_primary_10_1016_j_jpowsour_2023_233282 crossref_primary_10_1016_j_jpowsour_2023_234007 crossref_primary_10_1016_j_est_2024_113234 crossref_primary_10_1016_j_est_2025_115947 crossref_primary_10_1016_j_jpowsour_2024_234668 crossref_primary_10_1016_j_energy_2022_125802 crossref_primary_10_1002_advs_202402608 |
Cites_doi | 10.1016/j.est.2015.05.003 10.4271/2012-01-0199 10.1038/s42256-021-00312-3 10.1016/j.jpowsour.2018.06.036 10.1016/j.jpowsour.2017.01.026 10.1016/j.jpowsour.2016.12.032 10.1109/TTE.2020.3028475 10.1002/anie.202006928 10.1016/j.jpowsour.2019.227575 10.1109/TIE.2020.2973876 10.1149/1945-7111/ab8f56 10.1149/2.0101709jes 10.1038/s41560-019-0356-8 10.1016/j.jpowsour.2019.227281 10.1016/j.electacta.2016.02.109 10.1016/j.jpowsour.2013.08.108 10.1016/j.jpowsour.2018.03.015 10.1016/j.energy.2017.06.141 10.1016/j.jpowsour.2018.10.019 10.1038/s41467-021-26894-5 10.1016/j.electacta.2019.02.055 10.1016/j.apenergy.2012.09.030 10.1016/j.joule.2019.11.018 10.1016/j.apenergy.2018.09.182 10.1016/j.est.2020.101557 10.3390/en12071349 10.1016/j.jpowsour.2020.228742 10.1016/j.energy.2017.08.017 10.1016/j.apenergy.2016.12.143 10.1038/s41586-020-1994-5 10.1109/TEC.2018.2801381 10.1016/j.jpowsour.2014.02.019 10.1111/j.1467-9868.2005.00503.x 10.1038/s41586-019-1682-5 10.1021/acsaem.0c00779 10.1177/0361198118759015 10.1016/j.jpowsour.2018.02.039 10.1016/j.jpowsour.2015.11.044 10.1016/j.jpowsour.2015.02.130 10.1007/978-1-4302-5990-9_4 10.1038/s41467-019-13993-7 10.1016/j.jpowsour.2020.229131 10.1016/j.jpowsour.2020.228863 10.1109/tte.2021.3135525 10.1145/2939672.2939785 10.3390/en14092371 10.1016/j.energy.2021.123082 10.1109/tie.2021.3111585 10.1016/j.energy.2020.117778 10.1016/j.energy.2020.117852 10.1016/j.jpowsour.2020.228192 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-29837-w |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_0d2de2d9a30c498789b5e17adb2f089b PMC9046220 35477711 10_1038_s41467_022_29837_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52107230; U20A20310 funderid: https://doi.org/10.13039/501100001809 – fundername: Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation) funderid: https://doi.org/10.13039/100005156 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52107230 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U20A20310 – fundername: ; – fundername: ; grantid: 52107230; U20A20310 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-18b0008d805c8f2869f7276600f7fa40ebe1c17d3ca989734ea53d4b8bb8287b3 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:39 EDT 2025 Thu Aug 21 13:52:46 EDT 2025 Fri Jul 11 16:21:09 EDT 2025 Wed Aug 13 09:17:03 EDT 2025 Wed Feb 19 02:27:05 EST 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 04:17:48 EDT 2025 Fri Feb 21 02:38:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-18b0008d805c8f2869f7276600f7fa40ebe1c17d3ca989734ea53d4b8bb8287b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3780-4286 0000-0002-4111-7235 0000-0003-0091-8463 0000-0002-5134-7130 0000-0001-5322-2019 0000-0002-1473-8992 |
OpenAccessLink | https://www.nature.com/articles/s41467-022-29837-w |
PMID | 35477711 |
PQID | 2655924788 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d2de2d9a30c498789b5e17adb2f089b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9046220 proquest_miscellaneous_2656745570 proquest_journals_2655924788 pubmed_primary_35477711 crossref_citationtrail_10_1038_s41467_022_29837_w crossref_primary_10_1038_s41467_022_29837_w springer_journals_10_1038_s41467_022_29837_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-27 |
PublicationDateYYYYMMDD | 2022-04-27 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Schuster (CR47) 2015; 1 Khan, Choi (CR34) 2018; 33 CR35 CR32 Smart, Schey (CR37) 2012; 1 Waag, Käbitz, Sauer (CR3) 2013; 102 Meddings (CR46) 2020; 480 Yang, Dong, Zhang, Liu, Wang (CR38) 2018; 2672 Li (CR16) 2018; 232 Schindler, Bauer, Petzl, Danzer (CR26) 2016; 304 Baghdadi, Briat, Gyan, Vinassa (CR25) 2016; 194 Gaberšček (CR45) 2021; 12 CR6 Lin, Cabrera, Denis, Yang, Tsui (CR12) 2020; 167 Qian (CR28) 2019; 303 Xiong, Li, Tian (CR4) 2018; 405 Zhu (CR18) 2020; 448 CR41 CR40 Tang (CR15) 2018; 396 Hu, Xu, Lin, Pecht (CR8) 2020; 4 Severson (CR9) 2019; 4 Roman, Saxena, Robu, Pecht, Flynn (CR5) 2021; 3 Fang, Wei, Lu, Dai, Zhu (CR31) 2019; 12 Harper (CR2) 2019; 575 Bresser (CR1) 2018; 382 CR19 Tagade (CR13) 2020; 445 Sørensen (CR42) 2020; 3 Ding (CR11) 2020; 59 Zou, Hastie (CR39) 2005; 67 Zhang (CR10) 2020; 11 Stiaszny (CR51) 2014; 258 Liu, Shang, Ouyang, Widanage (CR7) 2020; 68 Attia (CR33) 2020; 578 Wang, Hong, Liu, Zhang (CR36) 2017; 196 Schindler, Danzer (CR48) 2017; 343 Yang, Zhang, Pan, Wang, Chen (CR44) 2018; 384 Bauer, Guenther, Kasper, Petzl, Danzer (CR49) 2015; 283 Zhu (CR50) 2020; 7 CR24 CR23 CR22 Attidekou, Wang, Armstrong, Lambert, Christensen (CR29) 2017; 164 CR21 von Lüders (CR27) 2017; 342 CR20 Li (CR30) 2020; 30 Chen (CR14) 2017; 138 Baumhöfer, Brühl, Rothgang, Sauer (CR43) 2014; 247 Goh, Park, Seo, Kim, Kim (CR17) 2017; 135 AB Khan (29837_CR34) 2018; 33 C von Lüders (29837_CR27) 2017; 342 KA Severson (29837_CR9) 2019; 4 P Tagade (29837_CR13) 2020; 445 29837_CR19 J Yang (29837_CR38) 2018; 2672 29837_CR22 DR Sørensen (29837_CR42) 2020; 3 29837_CR21 29837_CR24 29837_CR23 X Tang (29837_CR15) 2018; 396 D Roman (29837_CR5) 2021; 3 K Chen (29837_CR14) 2017; 138 W Waag (29837_CR3) 2013; 102 29837_CR20 PM Attia (29837_CR33) 2020; 578 J Smart (29837_CR37) 2012; 1 T Goh (29837_CR17) 2017; 135 Y Zhang (29837_CR10) 2020; 11 R Xiong (29837_CR4) 2018; 405 W Li (29837_CR30) 2020; 30 B Stiaszny (29837_CR51) 2014; 258 M Bauer (29837_CR49) 2015; 283 PS Attidekou (29837_CR29) 2017; 164 G Harper (29837_CR2) 2019; 575 T Baumhöfer (29837_CR43) 2014; 247 J Zhu (29837_CR18) 2020; 448 M Gaberšček (29837_CR45) 2021; 12 K Liu (29837_CR7) 2020; 68 Z Wang (29837_CR36) 2017; 196 D Bresser (29837_CR1) 2018; 382 29837_CR6 K Qian (29837_CR28) 2019; 303 Q Fang (29837_CR31) 2019; 12 R Ding (29837_CR11) 2020; 59 I Baghdadi (29837_CR25) 2016; 194 SF Schuster (29837_CR47) 2015; 1 29837_CR40 H Zou (29837_CR39) 2005; 67 29837_CR41 S Schindler (29837_CR26) 2016; 304 S Schindler (29837_CR48) 2017; 343 Y Li (29837_CR16) 2018; 232 D Yang (29837_CR44) 2018; 384 N Meddings (29837_CR46) 2020; 480 X Hu (29837_CR8) 2020; 4 29837_CR32 J Zhu (29837_CR50) 2020; 7 29837_CR35 C Lin (29837_CR12) 2020; 167 |
References_xml | – ident: CR22 – volume: 1 start-page: 44 year: 2015 end-page: 53 ident: CR47 article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions publication-title: J. Energy Storage doi: 10.1016/j.est.2015.05.003 – volume: 1 start-page: 27 year: 2012 end-page: 33 ident: CR37 article-title: Battery electric vehicle driving and charging behavior observed early in the EV project publication-title: SAE Int. J. Alternative Powertrains doi: 10.4271/2012-01-0199 – volume: 3 start-page: 447 year: 2021 end-page: 456 ident: CR5 article-title: Machine learning pipeline for battery state-of-health estimation publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00312-3 – volume: 396 start-page: 453 year: 2018 end-page: 458 ident: CR15 article-title: A fast estimation algorithm for lithium-ion battery state of health publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.036 – volume: 343 start-page: 226 year: 2017 end-page: 236 ident: CR48 article-title: A novel mechanistic modeling framework for analysis of electrode balancing and degradation modes in commercial lithium-ion cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.026 – ident: CR35 – ident: CR21 – ident: CR19 – volume: 342 start-page: 17 year: 2017 end-page: 23 ident: CR27 article-title: Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.032 – volume: 7 start-page: 410 year: 2020 end-page: 421 ident: CR50 article-title: Low-Temperature Separating Lithium-Ion Battery Interfacial Polarization Based on Distribution of Relaxation Times (DRT) of Impedance publication-title: IEEE Trans. Transportation Electrification doi: 10.1109/TTE.2020.3028475 – volume: 59 start-page: 19175 year: 2020 end-page: 19183 ident: CR11 article-title: Designing Ai-aided analysis and prediction models for nonprecious metal electrocatalyst-based proton-exchange membrane fuel cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006928 – ident: CR32 – volume: 448 start-page: 227575 year: 2020 ident: CR18 article-title: Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227575 – volume: 68 start-page: 3170 year: 2020 end-page: 3180 ident: CR7 article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2973876 – volume: 11 start-page: 1 year: 2020 end-page: 6 ident: CR10 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat. Commun. – volume: 167 start-page: 090537 year: 2020 ident: CR12 article-title: SOH estimation and SOC recalibration of lithium-ion battery with incremental capacity analysis & cubic smoothing spline publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab8f56 – volume: 164 start-page: A1792 year: 2017 ident: CR29 article-title: A new time constant approach to online capacity monitoring and lifetime prediction of lithium ion batteries for electric vehicles (EV) publication-title: J. Electrochem. Soc. doi: 10.1149/2.0101709jes – volume: 4 start-page: 383 year: 2019 end-page: 391 ident: CR9 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat. Energy doi: 10.1038/s41560-019-0356-8 – volume: 445 start-page: 227281 year: 2020 ident: CR13 article-title: Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227281 – volume: 194 start-page: 461 year: 2016 end-page: 472 ident: CR25 article-title: State of health assessment for lithium batteries based on voltage–time relaxation measure publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.02.109 – volume: 247 start-page: 332 year: 2014 end-page: 338 ident: CR43 article-title: Production caused variation in capacity aging trend and correlation to initial cell performance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.08.108 – volume: 384 start-page: 387 year: 2018 end-page: 395 ident: CR44 article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.015 – volume: 135 start-page: 257 year: 2017 end-page: 268 ident: CR17 article-title: Capacity estimation algorithm with a second-order differential voltage curve for Li-ion batteries with NMC cathodes publication-title: Energy doi: 10.1016/j.energy.2017.06.141 – volume: 405 start-page: 18 year: 2018 end-page: 29 ident: CR4 article-title: Towards a smarter battery management system: a critical review on battery state of health monitoring methods publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.019 – volume: 12 start-page: 1 year: 2021 end-page: 4 ident: CR45 article-title: Understanding Li-based battery materials via electrochemical impedance spectroscopy publication-title: Nat. Commun. doi: 10.1038/s41467-021-26894-5 – volume: 303 start-page: 183 year: 2019 end-page: 191 ident: CR28 article-title: State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.02.055 – ident: CR6 – volume: 102 start-page: 885 year: 2013 end-page: 897 ident: CR3 article-title: Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.09.030 – ident: CR40 – volume: 4 start-page: 310 year: 2020 end-page: 346 ident: CR8 article-title: Battery lifetime prognostics publication-title: Joule doi: 10.1016/j.joule.2019.11.018 – volume: 232 start-page: 197 year: 2018 end-page: 210 ident: CR16 article-title: Random forest regression for online capacity estimation of lithium-ion batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.182 – ident: CR23 – volume: 30 start-page: 101557 year: 2020 ident: CR30 article-title: Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101557 – volume: 12 start-page: 1349 year: 2019 ident: CR31 article-title: A state of health estimation method for lithium-ion batteries based on voltage relaxation model publication-title: Energies doi: 10.3390/en12071349 – volume: 480 start-page: 228742 year: 2020 ident: CR46 article-title: Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228742 – volume: 138 start-page: 1199 year: 2017 end-page: 1208 ident: CR14 article-title: Practical failure recognition model of lithium-ion batteries based on partial charging process publication-title: Energy doi: 10.1016/j.energy.2017.08.017 – volume: 196 start-page: 289 year: 2017 end-page: 302 ident: CR36 article-title: Voltage fault diagnosis and prognosis of battery systems based on entropy and Z -score for electric vehicles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.143 – volume: 578 start-page: 397 year: 2020 end-page: 402 ident: CR33 article-title: Closed-loop optimization of fast-charging protocols for batteries with machine learning publication-title: Nature doi: 10.1038/s41586-020-1994-5 – volume: 33 start-page: 1132 year: 2018 end-page: 1140 ident: CR34 article-title: Optimal charge pattern for the high-performance multistage constant current charge method for the Li-ion batteries publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2018.2801381 – volume: 258 start-page: 61 year: 2014 end-page: 75 ident: CR51 article-title: Electrochemical characterization and post-mortem analysis of aged LiMn2O4–NMC/graphite lithium ion batteries part II: Calendar aging publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.02.019 – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: CR39 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B. (Stat. Methodol.) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 575 start-page: 75 year: 2019 end-page: 86 ident: CR2 article-title: Recycling lithium-ion batteries from electric vehicles publication-title: Nature doi: 10.1038/s41586-019-1682-5 – volume: 3 start-page: 6611 year: 2020 end-page: 6622 ident: CR42 article-title: Fatigue in high-energy commercial li batteries while cycling at standard conditions: an in situ neutron powder diffraction study publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00779 – volume: 2672 start-page: 20 year: 2018 end-page: 30 ident: CR38 article-title: An investigation of battery electric vehicle driving and charging behaviors using vehicle usage data collected in Shanghai, China publication-title: Transp. Res. Rec. doi: 10.1177/0361198118759015 – ident: CR41 – ident: CR24 – volume: 382 start-page: 176 year: 2018 end-page: 178 ident: CR1 article-title: Perspectives of automotive battery R&D in China, Germany, Japan, and the USA publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.039 – ident: CR20 – volume: 304 start-page: 170 year: 2016 end-page: 180 ident: CR26 article-title: Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.044 – volume: 283 start-page: 494 year: 2015 end-page: 504 ident: CR49 article-title: Discrimination of degradation processes in lithium-ion cells based on the sensitivity of aging indicators towards capacity loss publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.130 – volume: 480 start-page: 228742 year: 2020 ident: 29837_CR46 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228742 – ident: 29837_CR41 doi: 10.1007/978-1-4302-5990-9_4 – volume: 30 start-page: 101557 year: 2020 ident: 29837_CR30 publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101557 – volume: 232 start-page: 197 year: 2018 ident: 29837_CR16 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.182 – volume: 3 start-page: 447 year: 2021 ident: 29837_CR5 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00312-3 – volume: 575 start-page: 75 year: 2019 ident: 29837_CR2 publication-title: Nature doi: 10.1038/s41586-019-1682-5 – volume: 11 start-page: 1 year: 2020 ident: 29837_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 196 start-page: 289 year: 2017 ident: 29837_CR36 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.143 – volume: 167 start-page: 090537 year: 2020 ident: 29837_CR12 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab8f56 – ident: 29837_CR23 doi: 10.1016/j.jpowsour.2020.229131 – volume: 135 start-page: 257 year: 2017 ident: 29837_CR17 publication-title: Energy doi: 10.1016/j.energy.2017.06.141 – volume: 68 start-page: 3170 year: 2020 ident: 29837_CR7 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2973876 – volume: 59 start-page: 19175 year: 2020 ident: 29837_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006928 – volume: 102 start-page: 885 year: 2013 ident: 29837_CR3 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.09.030 – volume: 445 start-page: 227281 year: 2020 ident: 29837_CR13 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227281 – volume: 7 start-page: 410 year: 2020 ident: 29837_CR50 publication-title: IEEE Trans. Transportation Electrification doi: 10.1109/TTE.2020.3028475 – volume: 396 start-page: 453 year: 2018 ident: 29837_CR15 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.036 – volume: 405 start-page: 18 year: 2018 ident: 29837_CR4 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.019 – volume: 303 start-page: 183 year: 2019 ident: 29837_CR28 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.02.055 – volume: 247 start-page: 332 year: 2014 ident: 29837_CR43 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.08.108 – ident: 29837_CR6 doi: 10.1016/j.jpowsour.2020.228863 – volume: 4 start-page: 310 year: 2020 ident: 29837_CR8 publication-title: Joule doi: 10.1016/j.joule.2019.11.018 – volume: 1 start-page: 44 year: 2015 ident: 29837_CR47 publication-title: J. Energy Storage doi: 10.1016/j.est.2015.05.003 – volume: 448 start-page: 227575 year: 2020 ident: 29837_CR18 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227575 – volume: 382 start-page: 176 year: 2018 ident: 29837_CR1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.039 – ident: 29837_CR32 doi: 10.1109/tte.2021.3135525 – volume: 194 start-page: 461 year: 2016 ident: 29837_CR25 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.02.109 – volume: 304 start-page: 170 year: 2016 ident: 29837_CR26 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.044 – volume: 164 start-page: A1792 year: 2017 ident: 29837_CR29 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0101709jes – ident: 29837_CR40 doi: 10.1145/2939672.2939785 – volume: 384 start-page: 387 year: 2018 ident: 29837_CR44 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.015 – ident: 29837_CR19 doi: 10.3390/en14092371 – volume: 138 start-page: 1199 year: 2017 ident: 29837_CR14 publication-title: Energy doi: 10.1016/j.energy.2017.08.017 – ident: 29837_CR21 doi: 10.1016/j.energy.2021.123082 – volume: 342 start-page: 17 year: 2017 ident: 29837_CR27 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.032 – volume: 1 start-page: 27 year: 2012 ident: 29837_CR37 publication-title: SAE Int. J. Alternative Powertrains doi: 10.4271/2012-01-0199 – volume: 343 start-page: 226 year: 2017 ident: 29837_CR48 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.026 – volume: 258 start-page: 61 year: 2014 ident: 29837_CR51 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.02.019 – volume: 12 start-page: 1349 year: 2019 ident: 29837_CR31 publication-title: Energies doi: 10.3390/en12071349 – volume: 3 start-page: 6611 year: 2020 ident: 29837_CR42 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00779 – volume: 67 start-page: 301 year: 2005 ident: 29837_CR39 publication-title: J. R. Stat. Soc. Ser. B. (Stat. Methodol.) doi: 10.1111/j.1467-9868.2005.00503.x – ident: 29837_CR24 doi: 10.1109/tie.2021.3111585 – volume: 33 start-page: 1132 year: 2018 ident: 29837_CR34 publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2018.2801381 – volume: 578 start-page: 397 year: 2020 ident: 29837_CR33 publication-title: Nature doi: 10.1038/s41586-020-1994-5 – ident: 29837_CR20 doi: 10.1016/j.energy.2020.117778 – ident: 29837_CR22 doi: 10.1016/j.energy.2020.117852 – volume: 4 start-page: 383 year: 2019 ident: 29837_CR9 publication-title: Nat. Energy doi: 10.1038/s41560-019-0356-8 – volume: 2672 start-page: 20 year: 2018 ident: 29837_CR38 publication-title: Transp. Res. Rec. doi: 10.1177/0361198118759015 – volume: 12 start-page: 1 year: 2021 ident: 29837_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26894-5 – ident: 29837_CR35 doi: 10.1016/j.jpowsour.2020.228192 – volume: 283 start-page: 494 year: 2015 ident: 29837_CR49 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.130 |
SSID | ssj0000391844 |
Score | 2.7310317 |
Snippet | Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve... Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2261 |
SubjectTerms | 639/166/987 639/301/299 639/4077/4079/891 639/705/1046 Cycles Datasets Electric cells Electric potential Electrodes Humanities and Social Sciences Linear transformations Lithium Lithium-ion batteries Machine learning multidisciplinary Rechargeable batteries Root-mean-square errors Science Science (multidisciplinary) Transfer learning Voltage |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SKPgi3l2tZQXfNDS33SSP2lqKoE8WCj6EXGnB7intHqr_3pnsnmOP1xcfd5MJQ2YyF5L5hpCX2bA-QPJDFVeFqtAragoL1GYRUilAw7E4-cPH_uhYvT_pTm60-sI3YRM88LRxeyyJlEWyXrKoIEE2NnSZa5-CKAw-0PqCz7uRTFUbLC2kLmqukmHS7F2pahPw8bqwkJXR6w1PVAH7fxdl_vpY8qcb0-qIDu-SO3ME2b6ZOL9HbuXhPtmeekp-e0A-H_jR03SJVqyN4AojxNktYmlMRYrtorSgZefYaQmWgSj89Gx5TnEkVKxNSJ1bLDppwXCNYG1aLHf5WmkfkuPDd5_2j-jcQYFGiMRGyk118smwLpoiTG8LxCs9BDlFF68YSJBHrpOM3hqrpcq-k0kFEwIC4Qf5iGwNiyE_IW1Owpbe85I4EAYbotGxlzp7zbxnoiF8tZsuzvDi2OXii6vX3NK4SQIOJOCqBNx1Q16taS4mcI2_zn6LQlrPRGDs-gPUxc3q4v6lLg3ZWYnYzaf1yoke8iqBjQQa8mI9DOcML0_8kBfLOqfXCgHLGvJ40og1J7JTWmvOG6I3dGWD1c2R4ey0YnlbLA4WsObrlVb9YOvPW_H0f2zFM3Jb4HFgigq9Q7bGy2V-DhHWGHbrYfoOPJEj_w priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIkLYidQUJC4gVXbcWL7hNiqCglOVHoSh8grrdQm5b08tf33zDh5qR5Lj4kX2Z7x-PMy3xDyOmrWONj8UMllotI1kurEHDVRuJASlOHonPz1W3NwKL8s6sV04LaanlVubGI21KH3eEa-JxrAvgLJ3t-d_aIYNQpvV6cQGjfJLaQuwyddaqHmMxZkP9dSTr4yrNJ7K5ktAz5hFwb2ZvR8az3KtP3_wpp_P5n84940L0f798jdCUeW70fB3yc3YveA3B4jS14-JD8-2cHSsERbVnpYED2g7RIZNUZXxbJPJfT7FOMtQTWAxY-O16cUU1xm3IQNdImuJyWYrwFsTolOLxe57CNyuP_5-8cDOsVRoB7w2EC5zkt90Kz2OgndmASopQGok1SykoEcuecqVN4abVQlo62rIJ12DunwXfWY7HR9F5-SMgZhUmN5ChwKOuO8Vr6pVLSKWctEQfhmNFs_kYxjrIuTNl92V7odJdCCBNosgfa8IG_mMmcjxca1uT-gkOacSI-df_TLn-0021oWRIgiGFsxL41W2rg6cmWDE4nBR0F2NyJupzm7aq80rCCv5mSYbXiFYrvYr3OeRkmkLSvIk1Ej5pZUtVRKcV4QtaUrW03dTumOjzKjt0EXYQF1vt1o1VWz_j8Uz67vxXNyR6CiM0mF2iU7w3IdXwCCGtzLPE1-A-ZFGxo priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61Ivgi3t1aZQXfNJpks7k8iHgrRahPHij4EHK1hXaPPd1D23_vJLt75OhR8HE3mSVkZjLfkJ1vEHoeFREOkh_MKU-YO8GxSsRhHZkLKYEMzcXJB1_E_ox_PmwPt9DU7mjcwPONqV3uJzVbnLy6PLt6Cw7_ZigZV6_PeXH3_F8605Bw4Ytr6DpEJpkd9WCE--VkbjQkNHysndksuhafCo3_Juz55y-Uv92jlvC0dxvdGnFl_W4whDtoK3Z30Y2h0-TVPfTto-0tDot8ttUeAqQH9F1nho2hdLGepxps7zT3X4LPADY_Ol6e4jziCgMnJNR1LkWp4Tjr4QyqcxHMZZG9j2Z7n75-2MdjXwXsAZ_1mKoS-oMirVeJKaEToBgB0CfJZDkBvVJPZWi81UrLhkfbNoE75Vymx3fNA7Tdzbv4CNUxMJ2EpSlQEHTaeSW9aGS0klhLWIXotJvGj6TjuffFiSmX340ygwYMaMAUDZiLCr1YyfwYKDf-Oft9VtJqZqbLLi_mi-9m9D5DAguRBW0b4rlWUmnXRiptcCwReKjQ7qRiM5mgYQKyLZbbC1To2WoYvC9fqdguzpdljpA805hV6OFgEauVNC2XUlJaIblmK2tLXR_pjo8Kw7fOJcMMvvlysqpfy_r7Vuz83_TH6CbLhk84ZnIXbfeLZXwCCKt3T4vb_AS1UCL4 priority: 102 providerName: Scholars Portal |
Title | Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation |
URI | https://link.springer.com/article/10.1038/s41467-022-29837-w https://www.ncbi.nlm.nih.gov/pubmed/35477711 https://www.proquest.com/docview/2655924788 https://www.proquest.com/docview/2656745570 https://pubmed.ncbi.nlm.nih.gov/PMC9046220 https://doaj.org/article/0d2de2d9a30c498789b5e17adb2f089b |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_6geCL-O1qPVbwTYNJNrtJHq9nz3LQImrhwIcl2SS2YO_kekf1v3eS_ZDTKviSZTeZkM1MMpOP-Q3AS69oZXHxQwQTgQhbCaICtUR7bl0ISMOic_LJaXV8Jmbzcr4DvPeFSZf2E6Rlmqb722FvrkQa0vHuOde4qCLXu7AfodujVE-qybCvEhHPlRCdfwwt1A2kWzooQfXfZF_-eU3yt7PSpIKmd-FOZzvm47a192DHL-7DrTaa5I8H8PmtWRviVnH-yhtUgg1a2HlE0WjdE_NlyPFvL2OMJawG7e_zi80liTk2oWziojmP7iY5TllrnGfy6OjyPdE-hLPp0afJMeliJ5AGbbA1YSqpd6do2ajAVaUDWioVmjdBBiMo8o41TLqiMVppWQhvysIJq6yNEPi2eAR7i-XCP4HcO65DZVhwDAmtto2STVVIbyQ1hvIMWN-bddMBi8f4Fl_rdMBdqLrlQI0cqBMH6usMXg0031pYjX-WPoxMGkpGSOz0Ybn6UnciUlPHnedOm4I2QiuptC09k8ZZHii-ZHDQs7juxulVzStcUfEYQiCDF0M2jrB4bGIWfrlJZSopIlRZBo9biRhaUpRCSslYBnJLVraaup2zuDhPKN46ugVzrPN1L1W_mvX3rnj6f8WfwW0eBZ8KwuUB7K1XG_8crai1HcGunEtM1fTdCPbH49nHGT4Pj07ffxilITVK-xOYngj1E5lnIBw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYi0pBYIEJ7DqOJ7YPiAElGpKl1MrjcTB2LFNK9GZdhYN_VP8Rt5zkqmGpbceEy-y_VYv73uEvAqKVQ42P1QUIlLhKkFVZI7qwJ2PEdoUGJy8f1D1j8SXQW-wQn51sTD4rLLTiUlR-1GNZ-SbvALflyPY-_uzc4pZo_B2tUuh0bDFbriYw5Zt8m5nC-j7mvPtz4ef-rTNKkBr8E6mtFDJ8HnFerWKXFU6gg2vwPBHGa1gMKuiLqQva6uVlqUItld64ZRzCA7vSuj3BrkJhpehRMmBXJzpINq6EqKNzWGl2pyIpInwyTzXsBek8yX7l9IE_Mu3_fuJ5h_3tMn8bd8jd1u_Nf_QMNp9shKGD8itJpPlxUPydctOLfVj1J15DQa4Bu8-RwSPJjQyH8Uc1vkU8ztBN-D7H5_MTimWuITwCRv2HENdclCXU9BxOQbZ_ExtH5Gja1nhx2R1OBqGJyQPnutY2SL6Aho67Wol66qUwUpmLeMZKbrVNHULao65NX6YdLleKtNQwAAFTKKAmWfkzaLNWQPpcWXtj0ikRU2E404_RuPvppVuwzz3gXttS1YLraTSrhcKab3jkcFHRjY6EptWR0zMJUdn5OWiGKQbr2zsMIxmqU4lBcKkZWSt4YjFSMqekFIWRUbkEq8sDXW5ZHhynBDENYYkc-jzbcdVl8P6_1KsXz2LF-R2_3B_z-ztHOw-JXc4Mj0TlMsNsjodz8Iz8N6m7nkSmZx8u24Z_Q21WVcN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYidQIEhwAmtsx4mdA0LAMGopVByoNBKH1I5tWolOyiwa-tf4dbznJFMNS289Jl7k-O2x3_cIeeY1KywEP1RyGai0haQ6MEtLL6wLAcZwTE7-tFds78sP43y8QX71uTB4rbLXiVFRu6bGf-QDUYDvKxDsfRC6axGfh6PXJz8oVpDCk9a-nEbLIrv-dAnh2-zVzhBo_VyI0fsv77ZpV2GA1uCpzCnX0Qg6zfJaB6GLMoA9L8AJCCoYyeALec2Vy2pT6lJl0ps8c9JqaxEo3mYw7yVyWWU5RxlTY7X6v4PI61rKLk-HZXowk1Er4fV5UUJcSJdrtjCWDPiXn_v3dc0_zmyjKRzdINc7HzZ90zLdTbLhJ7fIlbaq5elt8nVo5oa6KerRtAZjXIOnnyKaR5smmTYhhT0_xlpPMA3EAYdHi2OKLTaifULwnmLaSwqqcw76LsWEm59x7B2yfyE7fJdsTpqJv09S70QZCsOD4zDQlrbWqi4y5Y1ixjCREN7vZlV3AOdYZ-N7FQ_aM121FKiAAlWkQLVMyIvVmJMW3uPc3m-RSKueCM0dXzTTb1Un6RVzwnnhSpOxWpZa6dLmnivjrAgMHhKy1ZO46vTFrDrj7oQ8XTWDpOPxjZn4ZhH7FEoiZFpC7rUcsVpJlkulFOcJUWu8srbU9ZbJ0WFEEy8xPVnAnC97rjpb1v-34sH5X_GEXAXprD7u7O0-JNcE8jyTVKgtsjmfLvwjcOTm9nGUmJQcXLSI_ga4CltD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+capacity+estimation+of+commercial+lithium-ion+batteries+from+voltage+relaxation&rft.jtitle=Nature+communications&rft.au=Zhu%2C+Jiangong&rft.au=Wang%2C+Yixiu&rft.au=Huang%2C+Yuan&rft.au=Bhushan+Gopaluni%2C+R.&rft.date=2022-04-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-29837-w&rft.externalDocID=10_1038_s41467_022_29837_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |