Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation

Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprisin...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 2261 - 10
Main Authors Zhu, Jiangong, Wang, Yixiu, Huang, Yuan, Bhushan Gopaluni, R., Cao, Yankai, Heere, Michael, Mühlbauer, Martin J., Mereacre, Liuda, Dai, Haifeng, Liu, Xinhua, Senyshyn, Anatoliy, Wei, Xuezhe, Knapp, Michael, Ehrenberg, Helmut
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.04.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi 0.86 Co 0.11 Al 0.03 O 2 -based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi 0.83 Co 0.11 Mn 0.07 O 2 -based positive electrodes and batteries with the blend of Li(NiCoMn)O 2 - Li(NiCoAl)O 2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation. Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from the relaxation voltage curve for battery capacity estimation without requiring other previous cycling information.
AbstractList Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from the relaxation voltage curve for battery capacity estimation without requiring other previous cycling information.
Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi0.86Co0.11Al0.03O2-based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi0.83Co0.11Mn0.07O2-based positive electrodes and batteries with the blend of Li(NiCoMn)O2 - Li(NiCoAl)O2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi0.86Co0.11Al0.03O2-based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi0.83Co0.11Mn0.07O2-based positive electrodes and batteries with the blend of Li(NiCoMn)O2 - Li(NiCoAl)O2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.
Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi0.86Co0.11Al0.03O2-based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi0.83Co0.11Mn0.07O2-based positive electrodes and batteries with the blend of Li(NiCoMn)O2 - Li(NiCoAl)O2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from the relaxation voltage curve for battery capacity estimation without requiring other previous cycling information.
Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi 0.86 Co 0.11 Al 0.03 O 2 -based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi 0.83 Co 0.11 Mn 0.07 O 2 -based positive electrodes and batteries with the blend of Li(NiCoMn)O 2 - Li(NiCoAl)O 2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation. Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from the relaxation voltage curve for battery capacity estimation without requiring other previous cycling information.
Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi 0.86 Co 0.11 Al 0.03 O 2 -based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi 0.83 Co 0.11 Mn 0.07 O 2 -based positive electrodes and batteries with the blend of Li(NiCoMn)O 2 - Li(NiCoAl)O 2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.
Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi Co Al O -based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi Co Mn O -based positive electrodes and batteries with the blend of Li(NiCoMn)O - Li(NiCoAl)O positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.
ArticleNumber 2261
Author Ehrenberg, Helmut
Senyshyn, Anatoliy
Heere, Michael
Knapp, Michael
Mühlbauer, Martin J.
Cao, Yankai
Wang, Yixiu
Liu, Xinhua
Zhu, Jiangong
Dai, Haifeng
Wei, Xuezhe
Bhushan Gopaluni, R.
Mereacre, Liuda
Huang, Yuan
Author_xml – sequence: 1
  givenname: Jiangong
  orcidid: 0000-0002-3780-4286
  surname: Zhu
  fullname: Zhu, Jiangong
  organization: Clean Energy Automotive Engineering Center, School of Automotive Engineering, Tongji University, Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT)
– sequence: 2
  givenname: Yixiu
  surname: Wang
  fullname: Wang, Yixiu
  organization: Department of Chemical and Biological Engineering, University of British Columbia
– sequence: 3
  givenname: Yuan
  surname: Huang
  fullname: Huang, Yuan
  organization: Clean Energy Automotive Engineering Center, School of Automotive Engineering, Tongji University, Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT)
– sequence: 4
  givenname: R.
  surname: Bhushan Gopaluni
  fullname: Bhushan Gopaluni, R.
  organization: Department of Chemical and Biological Engineering, University of British Columbia
– sequence: 5
  givenname: Yankai
  surname: Cao
  fullname: Cao, Yankai
  organization: Department of Chemical and Biological Engineering, University of British Columbia
– sequence: 6
  givenname: Michael
  surname: Heere
  fullname: Heere, Michael
  organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Technische Universität Braunschweig, Institute of Internal Combustion Engines
– sequence: 7
  givenname: Martin J.
  surname: Mühlbauer
  fullname: Mühlbauer, Martin J.
  organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT)
– sequence: 8
  givenname: Liuda
  surname: Mereacre
  fullname: Mereacre, Liuda
  organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT)
– sequence: 9
  givenname: Haifeng
  orcidid: 0000-0001-5322-2019
  surname: Dai
  fullname: Dai, Haifeng
  email: tongjidai@tongji.edu.cn
  organization: Clean Energy Automotive Engineering Center, School of Automotive Engineering, Tongji University
– sequence: 10
  givenname: Xinhua
  orcidid: 0000-0002-4111-7235
  surname: Liu
  fullname: Liu, Xinhua
  organization: School of Transportation Science and Engineering, Beihang University
– sequence: 11
  givenname: Anatoliy
  orcidid: 0000-0002-1473-8992
  surname: Senyshyn
  fullname: Senyshyn, Anatoliy
  organization: Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching b
– sequence: 12
  givenname: Xuezhe
  surname: Wei
  fullname: Wei, Xuezhe
  organization: Clean Energy Automotive Engineering Center, School of Automotive Engineering, Tongji University
– sequence: 13
  givenname: Michael
  orcidid: 0000-0003-0091-8463
  surname: Knapp
  fullname: Knapp, Michael
  email: michael.knapp@kit.edu
  organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT)
– sequence: 14
  givenname: Helmut
  orcidid: 0000-0002-5134-7130
  surname: Ehrenberg
  fullname: Ehrenberg, Helmut
  organization: Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35477711$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARfdAfYIEisWET8Cuxs0FChUKlSmxgxcLy42bqkRMPtjNt_x7PpIW2i3pjX99zjo7uPcfVwRQmqKo3GH3AiIqPiWHW8QYR0pBeUN5cv6iOCGK4wZzQgwfvw-o0pTUqh_ZYMPaqOqQt45xjfFT9_qKyamx0W5hqozbKuHxbQ8puVNmFqQ5DbcI4QjRO-dq7fOXmsdl1tMoZooNUDzGM9Tb4rFZQR_DqZs99Xb0clE9wenefVL_Ov_48-95c_vh2cfb5sjEtQ7nBQhdvwgrUGjEQ0fUDJ7zrEBr4oBgCDdhgbqlRveg5ZaBaapkWWgsiuKYn1cWia4Nay00s1uOtDMrJ_UeIK6lidsaDRJZYILZXFBnWCy563QLmymoyoFIUrU-L1mbWI1gDU47KPxJ93JnclVyFrewR6whBReD9nUAMf-YySDm6ZMB7NUGYkyRd23HWtnwHffcEug5znMqodqi2J4wLUVBvHzr6Z-V-hwUgFoCJIaUIgyw73C-gGHReYiR3iZFLYmRJjNwnRl4XKnlCvVd_lkQXUirgaQXxv-1nWH8BqqbUlQ
CitedBy_id crossref_primary_10_1016_j_energy_2025_134810
crossref_primary_10_1016_j_xinn_2023_100465
crossref_primary_10_1016_j_ymssp_2024_111140
crossref_primary_10_1002_bte2_20240036
crossref_primary_10_1016_j_est_2024_110814
crossref_primary_10_1016_j_egyai_2025_100507
crossref_primary_10_1016_j_jechem_2025_01_035
crossref_primary_10_1016_j_aei_2025_103211
crossref_primary_10_1109_TTE_2024_3398028
crossref_primary_10_1016_j_jpowsour_2024_236044
crossref_primary_10_1016_j_energy_2025_134937
crossref_primary_10_1016_j_joule_2024_03_010
crossref_primary_10_1109_TTE_2024_3357728
crossref_primary_10_1109_TPEL_2025_3532588
crossref_primary_10_1016_j_jpowsour_2024_236038
crossref_primary_10_1115_1_4065095
crossref_primary_10_1016_j_est_2024_114052
crossref_primary_10_1016_j_ensm_2022_06_053
crossref_primary_10_1016_j_ensm_2024_103725
crossref_primary_10_3389_fenrg_2024_1353651
crossref_primary_10_3390_en16176318
crossref_primary_10_1021_acsenergylett_4c03054
crossref_primary_10_1016_j_est_2023_108579
crossref_primary_10_1039_D4CS00361F
crossref_primary_10_3389_fenrg_2022_945003
crossref_primary_10_3390_batteries9030181
crossref_primary_10_20517_ss_2024_15
crossref_primary_10_1016_j_isci_2023_107770
crossref_primary_10_1038_s41598_024_82778_w
crossref_primary_10_1016_j_est_2025_116098
crossref_primary_10_1021_acs_iecr_3c02849
crossref_primary_10_1016_j_energy_2023_127033
crossref_primary_10_1016_j_jechem_2024_10_001
crossref_primary_10_1007_s42979_024_03046_2
crossref_primary_10_1109_TIE_2024_3379664
crossref_primary_10_1109_TTE_2024_3471867
crossref_primary_10_1109_TTE_2024_3471626
crossref_primary_10_3390_fractalfract6110640
crossref_primary_10_1016_j_jechem_2024_10_018
crossref_primary_10_1016_j_xcrp_2023_101763
crossref_primary_10_1088_1742_6596_2809_1_012053
crossref_primary_10_1002_ente_202300891
crossref_primary_10_1016_j_esci_2024_100325
crossref_primary_10_3390_batteries9080413
crossref_primary_10_1016_j_measurement_2024_116620
crossref_primary_10_1016_j_ensm_2024_103270
crossref_primary_10_1109_TTE_2023_3336618
crossref_primary_10_1109_TTE_2024_3354107
crossref_primary_10_1038_s41467_024_48779_z
crossref_primary_10_1016_j_matt_2024_04_030
crossref_primary_10_1016_j_jpowsour_2022_232498
crossref_primary_10_3390_batteries10050164
crossref_primary_10_1016_j_energy_2025_135332
crossref_primary_10_1109_TIE_2023_3342289
crossref_primary_10_1149_1945_7111_ad0492
crossref_primary_10_1002_cjce_25394
crossref_primary_10_1016_j_est_2025_115582
crossref_primary_10_1016_j_est_2025_115345
crossref_primary_10_1016_j_est_2025_115347
crossref_primary_10_1016_j_est_2024_114524
crossref_primary_10_1016_j_apenergy_2023_122454
crossref_primary_10_3390_batteries9050242
crossref_primary_10_1016_j_energy_2025_135220
crossref_primary_10_1016_j_ijhydene_2024_06_090
crossref_primary_10_1016_j_apenergy_2023_121925
crossref_primary_10_1038_s41467_025_56485_7
crossref_primary_10_1016_j_energy_2024_134177
crossref_primary_10_1016_j_jechem_2023_12_043
crossref_primary_10_1016_j_rser_2024_114647
crossref_primary_10_1038_s41524_024_01286_7
crossref_primary_10_1016_j_geits_2024_100152
crossref_primary_10_1016_j_isci_2023_108419
crossref_primary_10_3390_batteries10060187
crossref_primary_10_1016_j_electacta_2023_143565
crossref_primary_10_1109_TTE_2023_3317449
crossref_primary_10_1016_j_apenergy_2024_123555
crossref_primary_10_1109_TPEL_2024_3512516
crossref_primary_10_1016_j_est_2023_108096
crossref_primary_10_1109_TIM_2024_3480208
crossref_primary_10_3390_batteries10090303
crossref_primary_10_1016_j_seta_2022_102915
crossref_primary_10_3390_batteries10090305
crossref_primary_10_1016_j_jechem_2023_11_009
crossref_primary_10_3390_batteries9070385
crossref_primary_10_1016_j_jpowsour_2025_236517
crossref_primary_10_1155_2024_1758578
crossref_primary_10_1149_1945_7111_acf8ff
crossref_primary_10_1088_1742_6596_2823_1_012027
crossref_primary_10_1016_j_apenergy_2024_124190
crossref_primary_10_1016_j_energy_2024_133993
crossref_primary_10_1039_D4EE03063J
crossref_primary_10_3390_batteries9120565
crossref_primary_10_1016_j_est_2024_114822
crossref_primary_10_1016_j_jpowsour_2024_235813
crossref_primary_10_1109_TIA_2024_3405431
crossref_primary_10_1016_j_est_2023_107430
crossref_primary_10_1088_1742_6596_2968_1_012004
crossref_primary_10_1109_TTE_2023_3265981
crossref_primary_10_1038_s44172_025_00372_y
crossref_primary_10_1007_s12598_022_02156_1
crossref_primary_10_1016_j_etran_2025_100397
crossref_primary_10_1016_j_est_2023_108647
crossref_primary_10_1088_1361_6501_ad7a94
crossref_primary_10_1016_j_xcrp_2023_101720
crossref_primary_10_1016_j_jpowsour_2025_236187
crossref_primary_10_3390_wevj13090159
crossref_primary_10_1016_j_jpowsour_2025_236620
crossref_primary_10_1109_ACCESS_2024_3520226
crossref_primary_10_1016_j_jechem_2025_01_057
crossref_primary_10_1016_j_est_2024_113506
crossref_primary_10_1016_j_jechem_2023_06_036
crossref_primary_10_1016_j_ynexs_2024_100026
crossref_primary_10_1016_j_electacta_2024_144512
crossref_primary_10_3390_electronics13030587
crossref_primary_10_1016_j_energy_2024_131208
crossref_primary_10_1016_j_est_2024_113744
crossref_primary_10_1109_TII_2024_3514131
crossref_primary_10_1016_j_apenergy_2023_122488
crossref_primary_10_3390_batteries10090324
crossref_primary_10_3390_batteries10030071
crossref_primary_10_3390_batteries8080090
crossref_primary_10_1016_j_energy_2024_132520
crossref_primary_10_1016_j_energy_2024_132881
crossref_primary_10_1021_acs_nanolett_4c02588
crossref_primary_10_1016_j_est_2023_110189
crossref_primary_10_1016_j_est_2025_115301
crossref_primary_10_3390_batteries9120585
crossref_primary_10_1016_j_jpowsour_2024_234272
crossref_primary_10_1016_j_est_2024_113878
crossref_primary_10_1016_j_ensm_2022_09_013
crossref_primary_10_1016_j_energy_2024_130900
crossref_primary_10_1039_D2NR04673C
crossref_primary_10_3390_batteries10030089
crossref_primary_10_1002_aenm_202301452
crossref_primary_10_1016_j_jechem_2022_09_045
crossref_primary_10_1103_PhysRevMaterials_6_103801
crossref_primary_10_1109_TTE_2024_3470551
crossref_primary_10_1016_j_energy_2023_129067
crossref_primary_10_1016_j_xcrp_2023_101464
crossref_primary_10_1016_j_cej_2024_149502
crossref_primary_10_1039_D3TA03603K
crossref_primary_10_1016_j_jechem_2023_11_040
crossref_primary_10_1016_j_apenergy_2024_124165
crossref_primary_10_1016_j_est_2024_113920
crossref_primary_10_1088_1361_6439_ad520c
crossref_primary_10_1016_j_enbuild_2024_114289
crossref_primary_10_1016_j_est_2024_113005
crossref_primary_10_1016_j_ifacol_2024_08_327
crossref_primary_10_1016_j_est_2023_108732
crossref_primary_10_1016_j_est_2023_107637
crossref_primary_10_1016_j_ensm_2024_103441
crossref_primary_10_1016_j_measurement_2024_115148
crossref_primary_10_1016_j_jechem_2024_08_037
crossref_primary_10_23919_IEN_2023_0034
crossref_primary_10_1002_aenm_202200889
crossref_primary_10_1002_batt_202300080
crossref_primary_10_1021_acs_nanolett_4c04303
crossref_primary_10_1016_j_jallcom_2023_172365
crossref_primary_10_1016_j_etran_2024_100338
crossref_primary_10_1016_j_compchemeng_2024_108623
crossref_primary_10_1016_j_est_2024_111197
crossref_primary_10_1016_j_est_2023_109814
crossref_primary_10_1016_j_est_2023_107549
crossref_primary_10_1016_j_energy_2024_130790
crossref_primary_10_1016_j_energy_2025_134997
crossref_primary_10_3390_en17112487
crossref_primary_10_1039_D4EE04372C
crossref_primary_10_1016_j_ensm_2023_102785
crossref_primary_10_1016_j_energy_2024_131404
crossref_primary_10_1016_j_est_2024_111649
crossref_primary_10_1109_TPEL_2025_3531791
crossref_primary_10_3390_batteries9060321
crossref_primary_10_3390_ma18010145
crossref_primary_10_1016_j_apenergy_2024_125116
crossref_primary_10_1016_j_esci_2024_100280
crossref_primary_10_1149_1945_7111_acc696
crossref_primary_10_1016_j_ensm_2024_103668
crossref_primary_10_1016_j_jpowsour_2025_236259
crossref_primary_10_1016_j_eswa_2023_121892
crossref_primary_10_1002_aenm_202304512
crossref_primary_10_1109_TTE_2023_3266386
crossref_primary_10_1109_TTE_2024_3399051
crossref_primary_10_3390_pr11030678
crossref_primary_10_1016_j_energy_2025_134645
crossref_primary_10_1016_j_ensm_2023_103083
crossref_primary_10_1039_D4EE04787G
crossref_primary_10_1109_TIE_2022_3212365
crossref_primary_10_1016_j_energy_2024_132167
crossref_primary_10_1016_j_jechem_2024_12_010
crossref_primary_10_1115_1_4066926
crossref_primary_10_1360_TB_2022_0550
crossref_primary_10_1109_TTE_2023_3334826
crossref_primary_10_1038_s41597_024_03859_z
crossref_primary_10_1016_j_energy_2023_128738
crossref_primary_10_1016_j_est_2024_110560
crossref_primary_10_1016_j_xcrp_2024_102192
crossref_primary_10_1016_j_egyai_2024_100398
crossref_primary_10_1016_j_apenergy_2024_123600
crossref_primary_10_1002_chem_202400063
crossref_primary_10_1016_j_jechem_2023_09_025
crossref_primary_10_1016_j_energy_2023_129826
crossref_primary_10_1016_j_energy_2023_127408
crossref_primary_10_3390_batteries9070351
crossref_primary_10_1016_j_commatsci_2024_113444
crossref_primary_10_1016_j_rineng_2024_102786
crossref_primary_10_1109_TIE_2023_3286005
crossref_primary_10_1002_chem_202304296
crossref_primary_10_1016_j_est_2024_110855
crossref_primary_10_1016_j_ensm_2023_103014
crossref_primary_10_1016_j_apenergy_2023_121651
crossref_primary_10_3390_coatings13122088
crossref_primary_10_1016_j_energy_2022_125210
crossref_primary_10_1016_j_energy_2023_127633
crossref_primary_10_1016_j_ensm_2023_01_035
crossref_primary_10_3389_fenrg_2022_949760
crossref_primary_10_1016_j_jpowsour_2023_233246
crossref_primary_10_1016_j_etran_2024_100383
crossref_primary_10_1016_j_ress_2024_110325
crossref_primary_10_1002_aenm_202301143
crossref_primary_10_1002_ente_202200437
crossref_primary_10_1038_s41598_024_72510_z
crossref_primary_10_1109_TII_2024_3452273
crossref_primary_10_1002_adfm_202422601
crossref_primary_10_1016_j_jechem_2025_02_030
crossref_primary_10_1016_j_ensm_2023_102967
crossref_primary_10_1109_TPEL_2024_3395513
crossref_primary_10_1016_j_etran_2024_100378
crossref_primary_10_1016_j_etran_2023_100270
crossref_primary_10_1016_j_jechem_2024_09_021
crossref_primary_10_1109_TII_2023_3240920
crossref_primary_10_1021_acsenergylett_3c01012
crossref_primary_10_3390_app13137702
crossref_primary_10_1109_TIM_2025_3527527
crossref_primary_10_1002_smtd_202300832
crossref_primary_10_1016_j_jechem_2024_12_063
crossref_primary_10_1016_j_ress_2024_110782
crossref_primary_10_1109_TII_2024_3485809
crossref_primary_10_1016_j_jechem_2022_12_028
crossref_primary_10_1016_j_apenergy_2023_122080
crossref_primary_10_1016_j_jechem_2023_10_056
crossref_primary_10_1016_j_jpowsour_2024_235771
crossref_primary_10_1016_j_gce_2024_09_001
crossref_primary_10_1080_15567036_2024_2329818
crossref_primary_10_1016_j_jpowsour_2024_235768
crossref_primary_10_1149_1945_7111_ad940d
crossref_primary_10_1016_j_etran_2024_100361
crossref_primary_10_1016_j_rser_2023_114191
crossref_primary_10_1016_j_etran_2024_100362
crossref_primary_10_1016_j_jallcom_2024_174992
crossref_primary_10_1016_j_energy_2024_131294
crossref_primary_10_1007_s11581_024_05965_9
crossref_primary_10_1016_j_jechem_2024_09_012
crossref_primary_10_1109_TTE_2023_3323976
crossref_primary_10_1016_j_energy_2024_131154
crossref_primary_10_1109_TVT_2023_3284058
crossref_primary_10_1016_j_ensm_2024_103585
crossref_primary_10_1016_j_ensm_2023_103160
crossref_primary_10_1016_j_energy_2024_131398
crossref_primary_10_1016_j_energy_2025_135257
crossref_primary_10_1016_j_est_2024_110768
crossref_primary_10_1016_j_energy_2023_130208
crossref_primary_10_1016_j_rser_2025_115522
crossref_primary_10_1149_1945_7111_ad81b3
crossref_primary_10_1016_j_jpowsour_2023_233282
crossref_primary_10_1016_j_jpowsour_2023_234007
crossref_primary_10_1016_j_est_2024_113234
crossref_primary_10_1016_j_est_2025_115947
crossref_primary_10_1016_j_jpowsour_2024_234668
crossref_primary_10_1016_j_energy_2022_125802
crossref_primary_10_1002_advs_202402608
Cites_doi 10.1016/j.est.2015.05.003
10.4271/2012-01-0199
10.1038/s42256-021-00312-3
10.1016/j.jpowsour.2018.06.036
10.1016/j.jpowsour.2017.01.026
10.1016/j.jpowsour.2016.12.032
10.1109/TTE.2020.3028475
10.1002/anie.202006928
10.1016/j.jpowsour.2019.227575
10.1109/TIE.2020.2973876
10.1149/1945-7111/ab8f56
10.1149/2.0101709jes
10.1038/s41560-019-0356-8
10.1016/j.jpowsour.2019.227281
10.1016/j.electacta.2016.02.109
10.1016/j.jpowsour.2013.08.108
10.1016/j.jpowsour.2018.03.015
10.1016/j.energy.2017.06.141
10.1016/j.jpowsour.2018.10.019
10.1038/s41467-021-26894-5
10.1016/j.electacta.2019.02.055
10.1016/j.apenergy.2012.09.030
10.1016/j.joule.2019.11.018
10.1016/j.apenergy.2018.09.182
10.1016/j.est.2020.101557
10.3390/en12071349
10.1016/j.jpowsour.2020.228742
10.1016/j.energy.2017.08.017
10.1016/j.apenergy.2016.12.143
10.1038/s41586-020-1994-5
10.1109/TEC.2018.2801381
10.1016/j.jpowsour.2014.02.019
10.1111/j.1467-9868.2005.00503.x
10.1038/s41586-019-1682-5
10.1021/acsaem.0c00779
10.1177/0361198118759015
10.1016/j.jpowsour.2018.02.039
10.1016/j.jpowsour.2015.11.044
10.1016/j.jpowsour.2015.02.130
10.1007/978-1-4302-5990-9_4
10.1038/s41467-019-13993-7
10.1016/j.jpowsour.2020.229131
10.1016/j.jpowsour.2020.228863
10.1109/tte.2021.3135525
10.1145/2939672.2939785
10.3390/en14092371
10.1016/j.energy.2021.123082
10.1109/tie.2021.3111585
10.1016/j.energy.2020.117778
10.1016/j.energy.2020.117852
10.1016/j.jpowsour.2020.228192
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-29837-w
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_0d2de2d9a30c498789b5e17adb2f089b
PMC9046220
35477711
10_1038_s41467_022_29837_w
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52107230; U20A20310
  funderid: https://doi.org/10.13039/501100001809
– fundername: Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation)
  funderid: https://doi.org/10.13039/100005156
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52107230
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U20A20310
– fundername: ;
– fundername: ;
  grantid: 52107230; U20A20310
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-18b0008d805c8f2869f7276600f7fa40ebe1c17d3ca989734ea53d4b8bb8287b3
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:39 EDT 2025
Thu Aug 21 13:52:46 EDT 2025
Fri Jul 11 16:21:09 EDT 2025
Wed Aug 13 09:17:03 EDT 2025
Wed Feb 19 02:27:05 EST 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Jul 01 04:17:48 EDT 2025
Fri Feb 21 02:38:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-18b0008d805c8f2869f7276600f7fa40ebe1c17d3ca989734ea53d4b8bb8287b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3780-4286
0000-0002-4111-7235
0000-0003-0091-8463
0000-0002-5134-7130
0000-0001-5322-2019
0000-0002-1473-8992
OpenAccessLink https://www.nature.com/articles/s41467-022-29837-w
PMID 35477711
PQID 2655924788
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_0d2de2d9a30c498789b5e17adb2f089b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9046220
proquest_miscellaneous_2656745570
proquest_journals_2655924788
pubmed_primary_35477711
crossref_citationtrail_10_1038_s41467_022_29837_w
crossref_primary_10_1038_s41467_022_29837_w
springer_journals_10_1038_s41467_022_29837_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-27
PublicationDateYYYYMMDD 2022-04-27
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Schuster (CR47) 2015; 1
Khan, Choi (CR34) 2018; 33
CR35
CR32
Smart, Schey (CR37) 2012; 1
Waag, Käbitz, Sauer (CR3) 2013; 102
Meddings (CR46) 2020; 480
Yang, Dong, Zhang, Liu, Wang (CR38) 2018; 2672
Li (CR16) 2018; 232
Schindler, Bauer, Petzl, Danzer (CR26) 2016; 304
Baghdadi, Briat, Gyan, Vinassa (CR25) 2016; 194
Gaberšček (CR45) 2021; 12
CR6
Lin, Cabrera, Denis, Yang, Tsui (CR12) 2020; 167
Qian (CR28) 2019; 303
Xiong, Li, Tian (CR4) 2018; 405
Zhu (CR18) 2020; 448
CR41
CR40
Tang (CR15) 2018; 396
Hu, Xu, Lin, Pecht (CR8) 2020; 4
Severson (CR9) 2019; 4
Roman, Saxena, Robu, Pecht, Flynn (CR5) 2021; 3
Fang, Wei, Lu, Dai, Zhu (CR31) 2019; 12
Harper (CR2) 2019; 575
Bresser (CR1) 2018; 382
CR19
Tagade (CR13) 2020; 445
Sørensen (CR42) 2020; 3
Ding (CR11) 2020; 59
Zou, Hastie (CR39) 2005; 67
Zhang (CR10) 2020; 11
Stiaszny (CR51) 2014; 258
Liu, Shang, Ouyang, Widanage (CR7) 2020; 68
Attia (CR33) 2020; 578
Wang, Hong, Liu, Zhang (CR36) 2017; 196
Schindler, Danzer (CR48) 2017; 343
Yang, Zhang, Pan, Wang, Chen (CR44) 2018; 384
Bauer, Guenther, Kasper, Petzl, Danzer (CR49) 2015; 283
Zhu (CR50) 2020; 7
CR24
CR23
CR22
Attidekou, Wang, Armstrong, Lambert, Christensen (CR29) 2017; 164
CR21
von Lüders (CR27) 2017; 342
CR20
Li (CR30) 2020; 30
Chen (CR14) 2017; 138
Baumhöfer, Brühl, Rothgang, Sauer (CR43) 2014; 247
Goh, Park, Seo, Kim, Kim (CR17) 2017; 135
AB Khan (29837_CR34) 2018; 33
C von Lüders (29837_CR27) 2017; 342
KA Severson (29837_CR9) 2019; 4
P Tagade (29837_CR13) 2020; 445
29837_CR19
J Yang (29837_CR38) 2018; 2672
29837_CR22
DR Sørensen (29837_CR42) 2020; 3
29837_CR21
29837_CR24
29837_CR23
X Tang (29837_CR15) 2018; 396
D Roman (29837_CR5) 2021; 3
K Chen (29837_CR14) 2017; 138
W Waag (29837_CR3) 2013; 102
29837_CR20
PM Attia (29837_CR33) 2020; 578
J Smart (29837_CR37) 2012; 1
T Goh (29837_CR17) 2017; 135
Y Zhang (29837_CR10) 2020; 11
R Xiong (29837_CR4) 2018; 405
W Li (29837_CR30) 2020; 30
B Stiaszny (29837_CR51) 2014; 258
M Bauer (29837_CR49) 2015; 283
PS Attidekou (29837_CR29) 2017; 164
G Harper (29837_CR2) 2019; 575
T Baumhöfer (29837_CR43) 2014; 247
J Zhu (29837_CR18) 2020; 448
M Gaberšček (29837_CR45) 2021; 12
K Liu (29837_CR7) 2020; 68
Z Wang (29837_CR36) 2017; 196
D Bresser (29837_CR1) 2018; 382
29837_CR6
K Qian (29837_CR28) 2019; 303
Q Fang (29837_CR31) 2019; 12
R Ding (29837_CR11) 2020; 59
I Baghdadi (29837_CR25) 2016; 194
SF Schuster (29837_CR47) 2015; 1
29837_CR40
H Zou (29837_CR39) 2005; 67
29837_CR41
S Schindler (29837_CR26) 2016; 304
S Schindler (29837_CR48) 2017; 343
Y Li (29837_CR16) 2018; 232
D Yang (29837_CR44) 2018; 384
N Meddings (29837_CR46) 2020; 480
X Hu (29837_CR8) 2020; 4
29837_CR32
J Zhu (29837_CR50) 2020; 7
29837_CR35
C Lin (29837_CR12) 2020; 167
References_xml – ident: CR22
– volume: 1
  start-page: 44
  year: 2015
  end-page: 53
  ident: CR47
  article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2015.05.003
– volume: 1
  start-page: 27
  year: 2012
  end-page: 33
  ident: CR37
  article-title: Battery electric vehicle driving and charging behavior observed early in the EV project
  publication-title: SAE Int. J. Alternative Powertrains
  doi: 10.4271/2012-01-0199
– volume: 3
  start-page: 447
  year: 2021
  end-page: 456
  ident: CR5
  article-title: Machine learning pipeline for battery state-of-health estimation
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00312-3
– volume: 396
  start-page: 453
  year: 2018
  end-page: 458
  ident: CR15
  article-title: A fast estimation algorithm for lithium-ion battery state of health
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.036
– volume: 343
  start-page: 226
  year: 2017
  end-page: 236
  ident: CR48
  article-title: A novel mechanistic modeling framework for analysis of electrode balancing and degradation modes in commercial lithium-ion cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.026
– ident: CR35
– ident: CR21
– ident: CR19
– volume: 342
  start-page: 17
  year: 2017
  end-page: 23
  ident: CR27
  article-title: Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.032
– volume: 7
  start-page: 410
  year: 2020
  end-page: 421
  ident: CR50
  article-title: Low-Temperature Separating Lithium-Ion Battery Interfacial Polarization Based on Distribution of Relaxation Times (DRT) of Impedance
  publication-title: IEEE Trans. Transportation Electrification
  doi: 10.1109/TTE.2020.3028475
– volume: 59
  start-page: 19175
  year: 2020
  end-page: 19183
  ident: CR11
  article-title: Designing Ai-aided analysis and prediction models for nonprecious metal electrocatalyst-based proton-exchange membrane fuel cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006928
– ident: CR32
– volume: 448
  start-page: 227575
  year: 2020
  ident: CR18
  article-title: Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227575
– volume: 68
  start-page: 3170
  year: 2020
  end-page: 3180
  ident: CR7
  article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2973876
– volume: 11
  start-page: 1
  year: 2020
  end-page: 6
  ident: CR10
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat. Commun.
– volume: 167
  start-page: 090537
  year: 2020
  ident: CR12
  article-title: SOH estimation and SOC recalibration of lithium-ion battery with incremental capacity analysis & cubic smoothing spline
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab8f56
– volume: 164
  start-page: A1792
  year: 2017
  ident: CR29
  article-title: A new time constant approach to online capacity monitoring and lifetime prediction of lithium ion batteries for electric vehicles (EV)
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0101709jes
– volume: 4
  start-page: 383
  year: 2019
  end-page: 391
  ident: CR9
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0356-8
– volume: 445
  start-page: 227281
  year: 2020
  ident: CR13
  article-title: Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227281
– volume: 194
  start-page: 461
  year: 2016
  end-page: 472
  ident: CR25
  article-title: State of health assessment for lithium batteries based on voltage–time relaxation measure
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.02.109
– volume: 247
  start-page: 332
  year: 2014
  end-page: 338
  ident: CR43
  article-title: Production caused variation in capacity aging trend and correlation to initial cell performance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.08.108
– volume: 384
  start-page: 387
  year: 2018
  end-page: 395
  ident: CR44
  article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.015
– volume: 135
  start-page: 257
  year: 2017
  end-page: 268
  ident: CR17
  article-title: Capacity estimation algorithm with a second-order differential voltage curve for Li-ion batteries with NMC cathodes
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.141
– volume: 405
  start-page: 18
  year: 2018
  end-page: 29
  ident: CR4
  article-title: Towards a smarter battery management system: a critical review on battery state of health monitoring methods
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.019
– volume: 12
  start-page: 1
  year: 2021
  end-page: 4
  ident: CR45
  article-title: Understanding Li-based battery materials via electrochemical impedance spectroscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26894-5
– volume: 303
  start-page: 183
  year: 2019
  end-page: 191
  ident: CR28
  article-title: State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.02.055
– ident: CR6
– volume: 102
  start-page: 885
  year: 2013
  end-page: 897
  ident: CR3
  article-title: Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.09.030
– ident: CR40
– volume: 4
  start-page: 310
  year: 2020
  end-page: 346
  ident: CR8
  article-title: Battery lifetime prognostics
  publication-title: Joule
  doi: 10.1016/j.joule.2019.11.018
– volume: 232
  start-page: 197
  year: 2018
  end-page: 210
  ident: CR16
  article-title: Random forest regression for online capacity estimation of lithium-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.182
– ident: CR23
– volume: 30
  start-page: 101557
  year: 2020
  ident: CR30
  article-title: Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101557
– volume: 12
  start-page: 1349
  year: 2019
  ident: CR31
  article-title: A state of health estimation method for lithium-ion batteries based on voltage relaxation model
  publication-title: Energies
  doi: 10.3390/en12071349
– volume: 480
  start-page: 228742
  year: 2020
  ident: CR46
  article-title: Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228742
– volume: 138
  start-page: 1199
  year: 2017
  end-page: 1208
  ident: CR14
  article-title: Practical failure recognition model of lithium-ion batteries based on partial charging process
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.017
– volume: 196
  start-page: 289
  year: 2017
  end-page: 302
  ident: CR36
  article-title: Voltage fault diagnosis and prognosis of battery systems based on entropy and Z -score for electric vehicles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.143
– volume: 578
  start-page: 397
  year: 2020
  end-page: 402
  ident: CR33
  article-title: Closed-loop optimization of fast-charging protocols for batteries with machine learning
  publication-title: Nature
  doi: 10.1038/s41586-020-1994-5
– volume: 33
  start-page: 1132
  year: 2018
  end-page: 1140
  ident: CR34
  article-title: Optimal charge pattern for the high-performance multistage constant current charge method for the Li-ion batteries
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2018.2801381
– volume: 258
  start-page: 61
  year: 2014
  end-page: 75
  ident: CR51
  article-title: Electrochemical characterization and post-mortem analysis of aged LiMn2O4–NMC/graphite lithium ion batteries part II: Calendar aging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.019
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: CR39
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B. (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 575
  start-page: 75
  year: 2019
  end-page: 86
  ident: CR2
  article-title: Recycling lithium-ion batteries from electric vehicles
  publication-title: Nature
  doi: 10.1038/s41586-019-1682-5
– volume: 3
  start-page: 6611
  year: 2020
  end-page: 6622
  ident: CR42
  article-title: Fatigue in high-energy commercial li batteries while cycling at standard conditions: an in situ neutron powder diffraction study
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00779
– volume: 2672
  start-page: 20
  year: 2018
  end-page: 30
  ident: CR38
  article-title: An investigation of battery electric vehicle driving and charging behaviors using vehicle usage data collected in Shanghai, China
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198118759015
– ident: CR41
– ident: CR24
– volume: 382
  start-page: 176
  year: 2018
  end-page: 178
  ident: CR1
  article-title: Perspectives of automotive battery R&D in China, Germany, Japan, and the USA
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.039
– ident: CR20
– volume: 304
  start-page: 170
  year: 2016
  end-page: 180
  ident: CR26
  article-title: Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.044
– volume: 283
  start-page: 494
  year: 2015
  end-page: 504
  ident: CR49
  article-title: Discrimination of degradation processes in lithium-ion cells based on the sensitivity of aging indicators towards capacity loss
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.130
– volume: 480
  start-page: 228742
  year: 2020
  ident: 29837_CR46
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228742
– ident: 29837_CR41
  doi: 10.1007/978-1-4302-5990-9_4
– volume: 30
  start-page: 101557
  year: 2020
  ident: 29837_CR30
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101557
– volume: 232
  start-page: 197
  year: 2018
  ident: 29837_CR16
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.182
– volume: 3
  start-page: 447
  year: 2021
  ident: 29837_CR5
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00312-3
– volume: 575
  start-page: 75
  year: 2019
  ident: 29837_CR2
  publication-title: Nature
  doi: 10.1038/s41586-019-1682-5
– volume: 11
  start-page: 1
  year: 2020
  ident: 29837_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 196
  start-page: 289
  year: 2017
  ident: 29837_CR36
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.143
– volume: 167
  start-page: 090537
  year: 2020
  ident: 29837_CR12
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab8f56
– ident: 29837_CR23
  doi: 10.1016/j.jpowsour.2020.229131
– volume: 135
  start-page: 257
  year: 2017
  ident: 29837_CR17
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.141
– volume: 68
  start-page: 3170
  year: 2020
  ident: 29837_CR7
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2973876
– volume: 59
  start-page: 19175
  year: 2020
  ident: 29837_CR11
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006928
– volume: 102
  start-page: 885
  year: 2013
  ident: 29837_CR3
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.09.030
– volume: 445
  start-page: 227281
  year: 2020
  ident: 29837_CR13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227281
– volume: 7
  start-page: 410
  year: 2020
  ident: 29837_CR50
  publication-title: IEEE Trans. Transportation Electrification
  doi: 10.1109/TTE.2020.3028475
– volume: 396
  start-page: 453
  year: 2018
  ident: 29837_CR15
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.036
– volume: 405
  start-page: 18
  year: 2018
  ident: 29837_CR4
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.019
– volume: 303
  start-page: 183
  year: 2019
  ident: 29837_CR28
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.02.055
– volume: 247
  start-page: 332
  year: 2014
  ident: 29837_CR43
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.08.108
– ident: 29837_CR6
  doi: 10.1016/j.jpowsour.2020.228863
– volume: 4
  start-page: 310
  year: 2020
  ident: 29837_CR8
  publication-title: Joule
  doi: 10.1016/j.joule.2019.11.018
– volume: 1
  start-page: 44
  year: 2015
  ident: 29837_CR47
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2015.05.003
– volume: 448
  start-page: 227575
  year: 2020
  ident: 29837_CR18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227575
– volume: 382
  start-page: 176
  year: 2018
  ident: 29837_CR1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.039
– ident: 29837_CR32
  doi: 10.1109/tte.2021.3135525
– volume: 194
  start-page: 461
  year: 2016
  ident: 29837_CR25
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.02.109
– volume: 304
  start-page: 170
  year: 2016
  ident: 29837_CR26
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.044
– volume: 164
  start-page: A1792
  year: 2017
  ident: 29837_CR29
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0101709jes
– ident: 29837_CR40
  doi: 10.1145/2939672.2939785
– volume: 384
  start-page: 387
  year: 2018
  ident: 29837_CR44
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.015
– ident: 29837_CR19
  doi: 10.3390/en14092371
– volume: 138
  start-page: 1199
  year: 2017
  ident: 29837_CR14
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.017
– ident: 29837_CR21
  doi: 10.1016/j.energy.2021.123082
– volume: 342
  start-page: 17
  year: 2017
  ident: 29837_CR27
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.032
– volume: 1
  start-page: 27
  year: 2012
  ident: 29837_CR37
  publication-title: SAE Int. J. Alternative Powertrains
  doi: 10.4271/2012-01-0199
– volume: 343
  start-page: 226
  year: 2017
  ident: 29837_CR48
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.026
– volume: 258
  start-page: 61
  year: 2014
  ident: 29837_CR51
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.019
– volume: 12
  start-page: 1349
  year: 2019
  ident: 29837_CR31
  publication-title: Energies
  doi: 10.3390/en12071349
– volume: 3
  start-page: 6611
  year: 2020
  ident: 29837_CR42
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00779
– volume: 67
  start-page: 301
  year: 2005
  ident: 29837_CR39
  publication-title: J. R. Stat. Soc. Ser. B. (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 29837_CR24
  doi: 10.1109/tie.2021.3111585
– volume: 33
  start-page: 1132
  year: 2018
  ident: 29837_CR34
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2018.2801381
– volume: 578
  start-page: 397
  year: 2020
  ident: 29837_CR33
  publication-title: Nature
  doi: 10.1038/s41586-020-1994-5
– ident: 29837_CR20
  doi: 10.1016/j.energy.2020.117778
– ident: 29837_CR22
  doi: 10.1016/j.energy.2020.117852
– volume: 4
  start-page: 383
  year: 2019
  ident: 29837_CR9
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0356-8
– volume: 2672
  start-page: 20
  year: 2018
  ident: 29837_CR38
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198118759015
– volume: 12
  start-page: 1
  year: 2021
  ident: 29837_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26894-5
– ident: 29837_CR35
  doi: 10.1016/j.jpowsour.2020.228192
– volume: 283
  start-page: 494
  year: 2015
  ident: 29837_CR49
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.130
SSID ssj0000391844
Score 2.7310317
Snippet Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve...
Accurate capacity estimation is crucial for lithium-ion batteries' reliable and safe operation. Here, the authors propose an approach exploiting features from...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2261
SubjectTerms 639/166/987
639/301/299
639/4077/4079/891
639/705/1046
Cycles
Datasets
Electric cells
Electric potential
Electrodes
Humanities and Social Sciences
Linear transformations
Lithium
Lithium-ion batteries
Machine learning
multidisciplinary
Rechargeable batteries
Root-mean-square errors
Science
Science (multidisciplinary)
Transfer learning
Voltage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SKPgi3l2tZQXfNDS33SSP2lqKoE8WCj6EXGnB7intHqr_3pnsnmOP1xcfd5MJQ2YyF5L5hpCX2bA-QPJDFVeFqtAragoL1GYRUilAw7E4-cPH_uhYvT_pTm60-sI3YRM88LRxeyyJlEWyXrKoIEE2NnSZa5-CKAw-0PqCz7uRTFUbLC2kLmqukmHS7F2pahPw8bqwkJXR6w1PVAH7fxdl_vpY8qcb0-qIDu-SO3ME2b6ZOL9HbuXhPtmeekp-e0A-H_jR03SJVqyN4AojxNktYmlMRYrtorSgZefYaQmWgSj89Gx5TnEkVKxNSJ1bLDppwXCNYG1aLHf5WmkfkuPDd5_2j-jcQYFGiMRGyk118smwLpoiTG8LxCs9BDlFF68YSJBHrpOM3hqrpcq-k0kFEwIC4Qf5iGwNiyE_IW1Owpbe85I4EAYbotGxlzp7zbxnoiF8tZsuzvDi2OXii6vX3NK4SQIOJOCqBNx1Q16taS4mcI2_zn6LQlrPRGDs-gPUxc3q4v6lLg3ZWYnYzaf1yoke8iqBjQQa8mI9DOcML0_8kBfLOqfXCgHLGvJ40og1J7JTWmvOG6I3dGWD1c2R4ey0YnlbLA4WsObrlVb9YOvPW_H0f2zFM3Jb4HFgigq9Q7bGy2V-DhHWGHbrYfoOPJEj_w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIkLYidQUJC4gVXbcWL7hNiqCglOVHoSh8grrdQm5b08tf33zDh5qR5Lj4kX2Z7x-PMy3xDyOmrWONj8UMllotI1kurEHDVRuJASlOHonPz1W3NwKL8s6sV04LaanlVubGI21KH3eEa-JxrAvgLJ3t-d_aIYNQpvV6cQGjfJLaQuwyddaqHmMxZkP9dSTr4yrNJ7K5ktAz5hFwb2ZvR8az3KtP3_wpp_P5n84940L0f798jdCUeW70fB3yc3YveA3B4jS14-JD8-2cHSsERbVnpYED2g7RIZNUZXxbJPJfT7FOMtQTWAxY-O16cUU1xm3IQNdImuJyWYrwFsTolOLxe57CNyuP_5-8cDOsVRoB7w2EC5zkt90Kz2OgndmASopQGok1SykoEcuecqVN4abVQlo62rIJ12DunwXfWY7HR9F5-SMgZhUmN5ChwKOuO8Vr6pVLSKWctEQfhmNFs_kYxjrIuTNl92V7odJdCCBNosgfa8IG_mMmcjxca1uT-gkOacSI-df_TLn-0021oWRIgiGFsxL41W2rg6cmWDE4nBR0F2NyJupzm7aq80rCCv5mSYbXiFYrvYr3OeRkmkLSvIk1Ej5pZUtVRKcV4QtaUrW03dTumOjzKjt0EXYQF1vt1o1VWz_j8Uz67vxXNyR6CiM0mF2iU7w3IdXwCCGtzLPE1-A-ZFGxo
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61Ivgi3t1aZQXfNJpks7k8iHgrRahPHij4EHK1hXaPPd1D23_vJLt75OhR8HE3mSVkZjLfkJ1vEHoeFREOkh_MKU-YO8GxSsRhHZkLKYEMzcXJB1_E_ox_PmwPt9DU7mjcwPONqV3uJzVbnLy6PLt6Cw7_ZigZV6_PeXH3_F8605Bw4Ytr6DpEJpkd9WCE--VkbjQkNHysndksuhafCo3_Juz55y-Uv92jlvC0dxvdGnFl_W4whDtoK3Z30Y2h0-TVPfTto-0tDot8ttUeAqQH9F1nho2hdLGepxps7zT3X4LPADY_Ol6e4jziCgMnJNR1LkWp4Tjr4QyqcxHMZZG9j2Z7n75-2MdjXwXsAZ_1mKoS-oMirVeJKaEToBgB0CfJZDkBvVJPZWi81UrLhkfbNoE75Vymx3fNA7Tdzbv4CNUxMJ2EpSlQEHTaeSW9aGS0klhLWIXotJvGj6TjuffFiSmX340ygwYMaMAUDZiLCr1YyfwYKDf-Oft9VtJqZqbLLi_mi-9m9D5DAguRBW0b4rlWUmnXRiptcCwReKjQ7qRiM5mgYQKyLZbbC1To2WoYvC9fqdguzpdljpA805hV6OFgEauVNC2XUlJaIblmK2tLXR_pjo8Kw7fOJcMMvvlysqpfy_r7Vuz83_TH6CbLhk84ZnIXbfeLZXwCCKt3T4vb_AS1UCL4
  priority: 102
  providerName: Scholars Portal
Title Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation
URI https://link.springer.com/article/10.1038/s41467-022-29837-w
https://www.ncbi.nlm.nih.gov/pubmed/35477711
https://www.proquest.com/docview/2655924788
https://www.proquest.com/docview/2656745570
https://pubmed.ncbi.nlm.nih.gov/PMC9046220
https://doaj.org/article/0d2de2d9a30c498789b5e17adb2f089b
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_6geCL-O1qPVbwTYNJNrtJHq9nz3LQImrhwIcl2SS2YO_kekf1v3eS_ZDTKviSZTeZkM1MMpOP-Q3AS69oZXHxQwQTgQhbCaICtUR7bl0ISMOic_LJaXV8Jmbzcr4DvPeFSZf2E6Rlmqb722FvrkQa0vHuOde4qCLXu7AfodujVE-qybCvEhHPlRCdfwwt1A2kWzooQfXfZF_-eU3yt7PSpIKmd-FOZzvm47a192DHL-7DrTaa5I8H8PmtWRviVnH-yhtUgg1a2HlE0WjdE_NlyPFvL2OMJawG7e_zi80liTk2oWziojmP7iY5TllrnGfy6OjyPdE-hLPp0afJMeliJ5AGbbA1YSqpd6do2ajAVaUDWioVmjdBBiMo8o41TLqiMVppWQhvysIJq6yNEPi2eAR7i-XCP4HcO65DZVhwDAmtto2STVVIbyQ1hvIMWN-bddMBi8f4Fl_rdMBdqLrlQI0cqBMH6usMXg0031pYjX-WPoxMGkpGSOz0Ybn6UnciUlPHnedOm4I2QiuptC09k8ZZHii-ZHDQs7juxulVzStcUfEYQiCDF0M2jrB4bGIWfrlJZSopIlRZBo9biRhaUpRCSslYBnJLVraaup2zuDhPKN46ugVzrPN1L1W_mvX3rnj6f8WfwW0eBZ8KwuUB7K1XG_8crai1HcGunEtM1fTdCPbH49nHGT4Pj07ffxilITVK-xOYngj1E5lnIBw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYi0pBYIEJ7DqOJ7YPiAElGpKl1MrjcTB2LFNK9GZdhYN_VP8Rt5zkqmGpbceEy-y_VYv73uEvAqKVQ42P1QUIlLhKkFVZI7qwJ2PEdoUGJy8f1D1j8SXQW-wQn51sTD4rLLTiUlR-1GNZ-SbvALflyPY-_uzc4pZo_B2tUuh0bDFbriYw5Zt8m5nC-j7mvPtz4ef-rTNKkBr8E6mtFDJ8HnFerWKXFU6gg2vwPBHGa1gMKuiLqQva6uVlqUItld64ZRzCA7vSuj3BrkJhpehRMmBXJzpINq6EqKNzWGl2pyIpInwyTzXsBek8yX7l9IE_Mu3_fuJ5h_3tMn8bd8jd1u_Nf_QMNp9shKGD8itJpPlxUPydctOLfVj1J15DQa4Bu8-RwSPJjQyH8Uc1vkU8ztBN-D7H5_MTimWuITwCRv2HENdclCXU9BxOQbZ_ExtH5Gja1nhx2R1OBqGJyQPnutY2SL6Aho67Wol66qUwUpmLeMZKbrVNHULao65NX6YdLleKtNQwAAFTKKAmWfkzaLNWQPpcWXtj0ikRU2E404_RuPvppVuwzz3gXttS1YLraTSrhcKab3jkcFHRjY6EptWR0zMJUdn5OWiGKQbr2zsMIxmqU4lBcKkZWSt4YjFSMqekFIWRUbkEq8sDXW5ZHhynBDENYYkc-jzbcdVl8P6_1KsXz2LF-R2_3B_z-ztHOw-JXc4Mj0TlMsNsjodz8Iz8N6m7nkSmZx8u24Z_Q21WVcN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYidQIEhwAmtsx4mdA0LAMGopVByoNBKH1I5tWolOyiwa-tf4dbznJFMNS289Jl7k-O2x3_cIeeY1KywEP1RyGai0haQ6MEtLL6wLAcZwTE7-tFds78sP43y8QX71uTB4rbLXiVFRu6bGf-QDUYDvKxDsfRC6axGfh6PXJz8oVpDCk9a-nEbLIrv-dAnh2-zVzhBo_VyI0fsv77ZpV2GA1uCpzCnX0Qg6zfJaB6GLMoA9L8AJCCoYyeALec2Vy2pT6lJl0ps8c9JqaxEo3mYw7yVyWWU5RxlTY7X6v4PI61rKLk-HZXowk1Er4fV5UUJcSJdrtjCWDPiXn_v3dc0_zmyjKRzdINc7HzZ90zLdTbLhJ7fIlbaq5elt8nVo5oa6KerRtAZjXIOnnyKaR5smmTYhhT0_xlpPMA3EAYdHi2OKLTaifULwnmLaSwqqcw76LsWEm59x7B2yfyE7fJdsTpqJv09S70QZCsOD4zDQlrbWqi4y5Y1ixjCREN7vZlV3AOdYZ-N7FQ_aM121FKiAAlWkQLVMyIvVmJMW3uPc3m-RSKueCM0dXzTTb1Un6RVzwnnhSpOxWpZa6dLmnivjrAgMHhKy1ZO46vTFrDrj7oQ8XTWDpOPxjZn4ZhH7FEoiZFpC7rUcsVpJlkulFOcJUWu8srbU9ZbJ0WFEEy8xPVnAnC97rjpb1v-34sH5X_GEXAXprD7u7O0-JNcE8jyTVKgtsjmfLvwjcOTm9nGUmJQcXLSI_ga4CltD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+capacity+estimation+of+commercial+lithium-ion+batteries+from+voltage+relaxation&rft.jtitle=Nature+communications&rft.au=Zhu%2C+Jiangong&rft.au=Wang%2C+Yixiu&rft.au=Huang%2C+Yuan&rft.au=Bhushan+Gopaluni%2C+R.&rft.date=2022-04-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-29837-w&rft.externalDocID=10_1038_s41467_022_29837_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon