A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics
The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-ai...
Saved in:
Published in | Nature biomedical engineering Vol. 5; no. 8; pp. 815 - 829 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2157-846X 2157-846X |
DOI | 10.1038/s41551-021-00718-9 |
Cover
Loading…
Abstract | The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.
A microfluidic bronchial-airway-on-a-chip lined by human bronchial-airway epithelium and pulmonary endothelium can be used to rapidly identify antiviral therapeutics and prophylactics with repurposing potential. |
---|---|
AbstractList | The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.A microfluidic bronchial-airway-on-a-chip lined by human bronchial-airway epithelium and pulmonary endothelium can be used to rapidly identify antiviral therapeutics and prophylactics with repurposing potential. The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential. The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential. The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here, we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production, and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection, but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential. A microfluidic bronchial-airway-on-a-chip lined by human bronchial-airway epithelium and pulmonary endothelium can be used to rapidly identify antiviral therapeutics and prophylactics with repurposing potential. The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential. A microfluidic bronchial-airway-on-a-chip lined by human bronchial-airway epithelium and pulmonary endothelium can be used to rapidly identify antiviral therapeutics and prophylactics with repurposing potential. |
Author | Logue, James Frieman, Matthew Weston, Stuart Oh, Crystal Yuri Golynker, Ilona Goyal, Girija Ingber, Donald E. Jiang, Amanda Powers, Rani K. Gilpin, Sarah E. Zhang, Tian Nilsson-Payant, Benjamin E. Si, Longlong Haupt, Robert tenOever, Benjamin R. Blanco-Melo, Daniel Liu, Wen-Chun Frere, Justin Uhl, Skyler Bai, Haiqing Oishi, Kohei Plebani, Roberto Hoagland, Daisy Albrecht, Randy A. Jordan, Tristan Soong, Mercy Kim, Seong Min Zhu, Danni Y. Carlson, Kenneth E. Nurani, Atiq Gygi, Steven P. Moller, Rasmus Cao, Wuji Rodas, Melissa Prantil-Baun, Rachelle Horiuchi, Shu Benam, Kambez H. McGrath, Marisa |
AuthorAffiliation | 4 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA 7 Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy 5 Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA 6 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA 2 Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA 3 Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA 1 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA |
AuthorAffiliation_xml | – name: 7 Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy – name: 5 Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA – name: 2 Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA – name: 4 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA – name: 1 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA – name: 6 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA – name: 3 Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA |
Author_xml | – sequence: 1 givenname: Longlong orcidid: 0000-0002-0504-1659 surname: Si fullname: Si, Longlong organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 2 givenname: Haiqing surname: Bai fullname: Bai, Haiqing organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 3 givenname: Melissa surname: Rodas fullname: Rodas, Melissa organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 4 givenname: Wuji surname: Cao fullname: Cao, Wuji organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 5 givenname: Crystal Yuri surname: Oh fullname: Oh, Crystal Yuri organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 6 givenname: Amanda surname: Jiang fullname: Jiang, Amanda organization: Wyss Institute for Biologically Inspired Engineering, Harvard University, Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School – sequence: 7 givenname: Rasmus orcidid: 0000-0002-8452-0761 surname: Moller fullname: Moller, Rasmus organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 8 givenname: Daisy surname: Hoagland fullname: Hoagland, Daisy organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 9 givenname: Kohei surname: Oishi fullname: Oishi, Kohei organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 10 givenname: Shu surname: Horiuchi fullname: Horiuchi, Shu organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 11 givenname: Skyler surname: Uhl fullname: Uhl, Skyler organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 12 givenname: Daniel surname: Blanco-Melo fullname: Blanco-Melo, Daniel organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 13 givenname: Randy A. orcidid: 0000-0003-4008-503X surname: Albrecht fullname: Albrecht, Randy A. organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 14 givenname: Wen-Chun surname: Liu fullname: Liu, Wen-Chun organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 15 givenname: Tristan surname: Jordan fullname: Jordan, Tristan organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 16 givenname: Benjamin E. orcidid: 0000-0003-2661-7837 surname: Nilsson-Payant fullname: Nilsson-Payant, Benjamin E. organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 17 givenname: Ilona surname: Golynker fullname: Golynker, Ilona organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 18 givenname: Justin orcidid: 0000-0002-7514-8873 surname: Frere fullname: Frere, Justin organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 19 givenname: James orcidid: 0000-0002-7410-9741 surname: Logue fullname: Logue, James organization: Department of Microbiology and Immunology, University of Maryland School of Medicine – sequence: 20 givenname: Robert surname: Haupt fullname: Haupt, Robert organization: Department of Microbiology and Immunology, University of Maryland School of Medicine – sequence: 21 givenname: Marisa orcidid: 0000-0002-7451-4958 surname: McGrath fullname: McGrath, Marisa organization: Department of Microbiology and Immunology, University of Maryland School of Medicine – sequence: 22 givenname: Stuart surname: Weston fullname: Weston, Stuart organization: Department of Microbiology and Immunology, University of Maryland School of Medicine – sequence: 23 givenname: Tian surname: Zhang fullname: Zhang, Tian organization: Department of Cell Biology, Harvard Medical School – sequence: 24 givenname: Roberto surname: Plebani fullname: Plebani, Roberto organization: Wyss Institute for Biologically Inspired Engineering, Harvard University, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara – sequence: 25 givenname: Mercy surname: Soong fullname: Soong, Mercy organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 26 givenname: Atiq surname: Nurani fullname: Nurani, Atiq organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 27 givenname: Seong Min surname: Kim fullname: Kim, Seong Min organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 28 givenname: Danni Y. surname: Zhu fullname: Zhu, Danni Y. organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 29 givenname: Kambez H. surname: Benam fullname: Benam, Kambez H. organization: Wyss Institute for Biologically Inspired Engineering, Harvard University, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Department of Bioengineering, University of Pittsburgh – sequence: 30 givenname: Girija surname: Goyal fullname: Goyal, Girija organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 31 givenname: Sarah E. surname: Gilpin fullname: Gilpin, Sarah E. organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 32 givenname: Rachelle surname: Prantil-Baun fullname: Prantil-Baun, Rachelle organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 33 givenname: Steven P. orcidid: 0000-0001-7626-0034 surname: Gygi fullname: Gygi, Steven P. organization: Department of Cell Biology, Harvard Medical School – sequence: 34 givenname: Rani K. surname: Powers fullname: Powers, Rani K. organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 35 givenname: Kenneth E. surname: Carlson fullname: Carlson, Kenneth E. organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 36 givenname: Matthew orcidid: 0000-0003-0107-0775 surname: Frieman fullname: Frieman, Matthew organization: Department of Microbiology and Immunology, University of Maryland School of Medicine – sequence: 37 givenname: Benjamin R. orcidid: 0000-0003-0324-3078 surname: tenOever fullname: tenOever, Benjamin R. organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai – sequence: 38 givenname: Donald E. orcidid: 0000-0002-4319-6520 surname: Ingber fullname: Ingber, Donald E. email: don.ingber@wyss.harvard.edu organization: Wyss Institute for Biologically Inspired Engineering, Harvard University, Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Harvard John A. Paulson School of Engineering and Applied Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33941899$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEUhoNU7If9Ay5kwI2baDKZZJKNUIpaoeBGwV04k49O6txkTGYq99-b21tr7aKLkHDO8568h_cYHcQUHUKvKHlHCZPvS0c5p5i09ZCeSqyeoaOW8h7LTvw4ePA-RKelXBNCqGKd6vkLdMiY6qhU6gj9PGvGdQMRQ8i_YYtTfWEzhrnxKTfL6JoMc7BNsC4uwQcDS0ixSb4xEG2wsLgGaucmZJh2fMXdugRTatk2c07zuJ3A7Cov0XMPU3Gnd_cJ-v7p47fzC3z59fOX87NLbHhHFkw5kUwJIx0MvveGdNaDGFrGlWwZDEYJoQYBzg-WUj5Y4Eoo0XtKyCAMsBP0YT93XoeNs6Y6r-b0nMMG8lYnCPr_Tgyjvko3WjLZMybrgLd3A3L6tbqy6E0oxk0TRJfWolvetlRRSmhF3zxCr9OaY12vUlII0dOOVOr1Q0f3Vv7mUIF2D5icSsnO3yOU6F3eep-3rnnr27z1TiQfiUxYbvOpW4XpaSnbS0v9J165_M_2E6o_3RvBMQ |
CitedBy_id | crossref_primary_10_1007_s10311_023_01688_x crossref_primary_10_1007_s10439_023_03177_2 crossref_primary_10_1016_j_bioactmat_2022_09_010 crossref_primary_10_1152_physrev_00046_2020 crossref_primary_10_1186_s40580_024_00455_0 crossref_primary_10_3390_microorganisms10081639 crossref_primary_10_1039_D2BM00951J crossref_primary_10_1038_s41576_022_00466_9 crossref_primary_10_3390_mi12091106 crossref_primary_10_3390_bioengineering9110646 crossref_primary_10_1186_s13287_022_03134_1 crossref_primary_10_1002_adfm_202304630 crossref_primary_10_1183_13993003_00455_2022 crossref_primary_10_1183_16000617_0042_2023 crossref_primary_10_7554_eLife_66481 crossref_primary_10_3389_fbioe_2024_1378299 crossref_primary_10_1016_j_drudis_2021_06_020 crossref_primary_10_1007_s42242_023_00255_1 crossref_primary_10_1088_1758_5090_ad6933 crossref_primary_10_1016_j_colsurfb_2025_114591 crossref_primary_10_1016_j_biomaterials_2024_123014 crossref_primary_10_1016_j_drudis_2023_103496 crossref_primary_10_1021_acsami_4c15125 crossref_primary_10_1002_adbi_202200312 crossref_primary_10_1039_D3LC00894K crossref_primary_10_1002_adhm_202301067 crossref_primary_10_1016_S1470_2045_21_00405_8 crossref_primary_10_1002_ppul_26490 crossref_primary_10_1039_D3LC00285C crossref_primary_10_3389_fnins_2022_1055601 crossref_primary_10_26599_FMH_2024_9420013 crossref_primary_10_3390_v13081667 crossref_primary_10_1177_02611929231157756 crossref_primary_10_1016_j_cdev_2022_203776 crossref_primary_10_3390_bios14120581 crossref_primary_10_1128_Spectrum_00257_21 crossref_primary_10_1016_j_phytol_2022_07_010 crossref_primary_10_17816_clinpract637140 crossref_primary_10_1016_j_apsadv_2022_100246 crossref_primary_10_1016_j_biotno_2024_01_001 crossref_primary_10_1016_j_tips_2021_05_007 crossref_primary_10_3390_mi13111820 crossref_primary_10_1088_1758_5090_aceaae crossref_primary_10_1021_acs_chemrestox_1c00219 crossref_primary_10_1039_D1LC01105G crossref_primary_10_1016_j_biomaterials_2022_121531 crossref_primary_10_1021_acsptsci_1c00257 crossref_primary_10_1039_D3RA00470H crossref_primary_10_1080_21688370_2023_2221632 crossref_primary_10_1021_acsomega_3c10271 crossref_primary_10_1039_D3LC00812F crossref_primary_10_3389_frlct_2024_1373029 crossref_primary_10_1016_j_immuni_2024_05_002 crossref_primary_10_3390_microorganisms13030572 crossref_primary_10_1080_07366205_2024_2418748 crossref_primary_10_1002_adfm_202307435 crossref_primary_10_4155_fdd_2020_0034 crossref_primary_10_1093_cei_uxae004 crossref_primary_10_34133_2022_9819154 crossref_primary_10_1016_j_addr_2022_114111 crossref_primary_10_1021_jacs_4c03271 crossref_primary_10_1039_D4LC00104D crossref_primary_10_1002_adbi_202300511 crossref_primary_10_1016_j_jddst_2022_103930 crossref_primary_10_1016_j_synbio_2024_08_007 crossref_primary_10_3389_fbioe_2022_959335 crossref_primary_10_1080_14786419_2022_2112040 crossref_primary_10_1016_j_envint_2023_107801 crossref_primary_10_1002_adhm_202401025 crossref_primary_10_1039_D4LC00840E crossref_primary_10_3390_pharmaceutics15082094 crossref_primary_10_1016_j_copbio_2022_102756 crossref_primary_10_1038_s41573_023_00859_3 crossref_primary_10_1016_j_biomaterials_2024_122806 crossref_primary_10_3390_mi12121443 crossref_primary_10_7554_eLife_93796 crossref_primary_10_1021_acsami_3c14417 crossref_primary_10_1007_s11095_022_03298_8 crossref_primary_10_1039_D1LC00999K crossref_primary_10_1186_s13036_023_00372_6 crossref_primary_10_1002_bit_28754 crossref_primary_10_1016_j_bios_2022_114772 crossref_primary_10_1177_17534666221132736 crossref_primary_10_1002_adma_202210519 crossref_primary_10_1111_cpr_13496 crossref_primary_10_1002_ajoc_202400227 crossref_primary_10_3389_fbioe_2021_764516 crossref_primary_10_3389_fimmu_2024_1448515 crossref_primary_10_1016_j_ooc_2023_100029 crossref_primary_10_1038_s41551_023_01054_w crossref_primary_10_1021_acsptsci_4c00607 crossref_primary_10_1016_j_tig_2023_01_002 crossref_primary_10_1016_j_tibtech_2023_11_014 crossref_primary_10_1038_s41684_024_01458_4 crossref_primary_10_1111_cts_13865 crossref_primary_10_1002_cbic_202400580 crossref_primary_10_1016_j_mam_2022_101108 crossref_primary_10_1002_anbr_202100119 crossref_primary_10_1038_s44172_024_00276_3 crossref_primary_10_1038_s43586_022_00118_6 crossref_primary_10_1126_science_abc3734 crossref_primary_10_3389_fimmu_2024_1373186 crossref_primary_10_3390_cells12222639 crossref_primary_10_3390_gels10020102 crossref_primary_10_1360_SSV_2023_0145 crossref_primary_10_1186_s12951_023_02258_7 crossref_primary_10_1111_nyas_14896 crossref_primary_10_1016_j_rmr_2025_02_001 crossref_primary_10_1360_TB_2023_0435 crossref_primary_10_3390_biomimetics7010003 crossref_primary_10_1016_j_ejps_2024_106709 crossref_primary_10_1002_smll_202403560 crossref_primary_10_1002_adhm_202302970 crossref_primary_10_1016_j_biosx_2022_100218 crossref_primary_10_1016_j_ooc_2023_100030 crossref_primary_10_3390_ijms26062549 crossref_primary_10_1021_acsbiomaterials_1c01428 crossref_primary_10_1002_admt_202200758 crossref_primary_10_3390_bioengineering9050220 crossref_primary_10_3389_fimmu_2023_1093460 crossref_primary_10_3390_mi12101149 crossref_primary_10_1038_s44222_023_00130_9 crossref_primary_10_1007_s42791_024_00078_w crossref_primary_10_1021_acsbiomaterials_2c00531 crossref_primary_10_3389_fphar_2021_718484 crossref_primary_10_3892_mi_2024_212 crossref_primary_10_1016_j_addr_2022_114542 crossref_primary_10_3389_fbioe_2023_1191104 crossref_primary_10_3389_fphar_2023_1139229 crossref_primary_10_1039_D4MH01174K crossref_primary_10_1016_j_biomaterials_2024_122689 crossref_primary_10_1126_scitranslmed_add8273 crossref_primary_10_1002_admt_202201778 crossref_primary_10_1016_j_drudis_2021_12_014 crossref_primary_10_1016_j_mib_2023_102416 crossref_primary_10_1093_lifemedi_lnae016 crossref_primary_10_1109_MPULS_2021_3078598 crossref_primary_10_1016_j_ejps_2022_106329 crossref_primary_10_1016_j_mtbio_2023_100713 crossref_primary_10_1088_2631_7990_acef77 crossref_primary_10_3390_chemosensors10070255 crossref_primary_10_1002_adma_202205083 crossref_primary_10_1109_RBME_2024_3505073 crossref_primary_10_1007_s10600_024_04302_w crossref_primary_10_1021_acsami_3c04091 crossref_primary_10_1093_infdis_jiad334 crossref_primary_10_1371_journal_pone_0280883 crossref_primary_10_15283_ijsc23090 crossref_primary_10_3390_mi13081349 crossref_primary_10_1002_med_21956 crossref_primary_10_1038_s44298_024_00017_5 crossref_primary_10_1016_j_biosx_2022_100194 crossref_primary_10_1038_s41467_022_29562_4 crossref_primary_10_1007_s42242_023_00241_7 crossref_primary_10_1016_j_apsb_2024_11_004 crossref_primary_10_1002_adbi_202200267 crossref_primary_10_1016_j_scib_2022_08_003 crossref_primary_10_1021_acsbiomaterials_4c00179 crossref_primary_10_1002_admt_202400326 crossref_primary_10_1016_j_jcf_2021_10_004 crossref_primary_10_3389_ftox_2022_840606 crossref_primary_10_1128_spectrum_00459_22 crossref_primary_10_7554_eLife_93796_3 crossref_primary_10_1016_j_toxlet_2021_12_007 crossref_primary_10_1021_acsbiomaterials_1c00306 crossref_primary_10_1021_acs_accounts_1c00411 crossref_primary_10_1007_s11030_025_11131_8 crossref_primary_10_1002_cjce_24581 crossref_primary_10_1088_1758_5090_ad4c0b crossref_primary_10_1152_physiol_00012_2022 crossref_primary_10_1007_s11517_024_03062_7 crossref_primary_10_1002_smsc_202400314 crossref_primary_10_1007_s10544_023_00649_z crossref_primary_10_1111_febs_70050 crossref_primary_10_3390_molecules29225357 crossref_primary_10_1038_s41467_024_49415_6 crossref_primary_10_3389_fonc_2023_1187585 crossref_primary_10_1038_s41564_024_01645_6 crossref_primary_10_1002_btm2_10581 crossref_primary_10_1016_j_omtn_2022_08_031 crossref_primary_10_1038_s41429_023_00677_0 crossref_primary_10_3390_v13081603 crossref_primary_10_3389_fbioe_2021_732130 crossref_primary_10_1016_j_cclet_2024_110302 crossref_primary_10_1016_j_eng_2025_01_019 crossref_primary_10_1126_sciadv_abo6783 crossref_primary_10_1002_advs_202406608 crossref_primary_10_1016_j_tice_2024_102319 crossref_primary_10_1039_D3LC00768E crossref_primary_10_1080_17425255_2024_2366390 crossref_primary_10_1016_j_ijbiomac_2023_127379 crossref_primary_10_1016_j_tetlet_2024_155047 crossref_primary_10_1016_j_mtbio_2023_100905 crossref_primary_10_1039_D4LC00848K crossref_primary_10_1039_D3NR01661G crossref_primary_10_1088_1758_5090_ac999e crossref_primary_10_3390_v15010158 crossref_primary_10_1080_17425255_2024_2362183 crossref_primary_10_1024_0301_1526_a000991 crossref_primary_10_1016_j_biomaterials_2024_122525 crossref_primary_10_3390_v14071507 crossref_primary_10_1038_s44222_023_00063_3 crossref_primary_10_1016_j_jconrel_2022_03_039 crossref_primary_10_1183_16000617_0202_2021 crossref_primary_10_3389_fphys_2024_1425618 crossref_primary_10_1002_advs_202105187 crossref_primary_10_1002_advs_202200222 crossref_primary_10_1016_j_apsb_2023_02_014 crossref_primary_10_1016_j_tcb_2024_11_010 crossref_primary_10_59717_j_xinn_med_2024_100076 crossref_primary_10_3390_bios14080401 crossref_primary_10_1007_s00210_023_02541_2 crossref_primary_10_1002_adhm_202300850 crossref_primary_10_1016_j_ejps_2023_106596 crossref_primary_10_1128_jvi_00765_22 crossref_primary_10_1161_CIRCRESAHA_122_321877 crossref_primary_10_1002_adma_202108972 crossref_primary_10_1080_17460441_2023_2216013 crossref_primary_10_3390_ani12070863 crossref_primary_10_3389_fonc_2022_960340 crossref_primary_10_1016_j_apsb_2023_02_006 crossref_primary_10_1007_s10047_024_01460_0 crossref_primary_10_1016_j_drudis_2022_06_004 crossref_primary_10_3389_fmedt_2022_1053588 crossref_primary_10_3389_fimmu_2021_636966 crossref_primary_10_1016_j_bbiosy_2023_100082 crossref_primary_10_1007_s13534_022_00258_4 crossref_primary_10_1007_s10544_023_00680_0 crossref_primary_10_1016_j_dmpk_2024_101050 crossref_primary_10_1038_s42003_023_05081_w crossref_primary_10_3390_medicina60040520 crossref_primary_10_3390_ijms231710071 crossref_primary_10_1016_j_isci_2024_109510 crossref_primary_10_1039_D2QM00072E crossref_primary_10_1089_ten_teb_2024_0212 crossref_primary_10_1016_j_omtn_2022_09_023 crossref_primary_10_1021_acssensors_4c00004 crossref_primary_10_3390_vaccines10020248 crossref_primary_10_3389_fbioe_2022_915702 crossref_primary_10_1177_09731296231216165 crossref_primary_10_3390_jcm13020346 crossref_primary_10_1038_s41564_024_01908_2 crossref_primary_10_1186_s13020_024_00956_4 crossref_primary_10_1021_acs_analchem_2c05036 crossref_primary_10_3389_fimmu_2021_683002 crossref_primary_10_1016_j_dmpk_2024_101041 crossref_primary_10_3389_fmicb_2023_1266136 crossref_primary_10_1016_j_bbamcr_2023_119504 crossref_primary_10_1177_09506608241303436 crossref_primary_10_1039_D1LC00348H crossref_primary_10_1007_s44164_022_00030_z crossref_primary_10_1016_j_ooc_2022_100015 crossref_primary_10_1039_D0CS01065K crossref_primary_10_1126_sciadv_abm8012 |
Cites_doi | 10.1126/science.1125548 10.1146/annurev-pharmtox-010716-104748 10.1126/sciadv.aau8408 10.1097/SHK.0000000000000633 10.1038/s41565-020-0674-9 10.1073/pnas.2018975117 10.1073/pnas.1806308115 10.1007/BF03191163 10.1038/s41467-019-11249-y 10.1038/nature18615 10.1016/j.coviro.2018.04.001 10.1016/j.cell.2020.02.052 10.1038/s41564-020-0688-y 10.1007/s00228-007-0452-8 10.1016/j.coviro.2017.03.018 10.1038/s41467-020-15562-9 10.1126/scitranslmed.aaa5597 10.1038/s41551-019-0498-9 10.1186/s12879-017-2432-7 10.1016/S1473-3099(13)70286-X 10.1038/nri.2017.105 10.1126/scitranslmed.3004249 10.1016/S0140-6736(00)02288-1 10.1016/S0140-6736(02)11772-7 10.1021/acsptsci.0c00131 10.1001/jamanetworkopen.2020.8857 10.1038/s41598-019-56481-0 10.1016/j.tips.2020.05.005 10.1007/s00705-004-0461-1 10.1038/s41551-019-0495-z 10.1056/NEJMoa2016638 10.1038/nmeth.3697 10.1126/scitranslmed.3005471 10.1016/j.virusres.2013.03.003 10.1016/j.tmaid.2020.101873 10.1016/j.cell.2020.04.026 10.1038/s41591-020-0868-6 10.1016/S1535-6108(03)00241-1 10.1073/pnas.2002589117 10.1126/science.1188302 10.1056/NEJMoa1504605 10.1016/j.antiviral.2013.05.003 10.1016/j.gerinurse.2018.12.007 10.1038/s41586-020-2008-3 10.1038/nri.2016.49 10.1016/S2213-2600(18)30236-4 10.1128/AAC.00819-20 10.1016/j.medj.2020.04.001 10.1101/2020.08.10.243220 10.3390/v12070779 10.1002/advs.202002928 10.1016/j.immuni.2021.01.017 10.1039/c9lc00492k 10.1128/JVI.00110-21 10.14573/altex.2001241 10.3390/cells5040040 10.1101/2020.04.13.039917 10.1002/advs.202002030 10.1038/s41467-020-17907-w 10.1128/JVI.01218-20 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1038/s41551-021-00718-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (UHCL Subscription) ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2157-846X |
EndPage | 829 |
ExternalDocumentID | PMC8387338 33941899 10_1038_s41551_021_00718_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH (NCATS 1-UG3-HL-141797-01 and NCATS 1-UH3-HL-141797-01)DARPA under Cooperative Agreements (W911NF-12-2-0036 and W911NF-16-C-0050)Bill and Melinda Gates Foundation, Marc Haas Foundation – fundername: Marc Haas Foundation – fundername: Bill and Melinda Gates Foundation – fundername: NHLBI NIH HHS grantid: UG3 HL141797 – fundername: NHLBI NIH HHS grantid: UH3 HL141797 |
GroupedDBID | 0R~ 53G AARCD AAYZH ABJCF ABJNI ABLJU ACBWK ACGFS AFANA AFKRA AFSHS AFWHJ AHSBF AIBTJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ATHPR AXYYD BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ M7P M7S NFIDA NNMJJ O9- ODYON PHGZM PHGZT PQGLB PTHSS PUEGO RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH AZQEC DWQXO GNUQQ L6V LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c540t-1508396c8eabf7fc04dfa6b2359823abc9669b6aefbd115bda596967f100b6ca3 |
IEDL.DBID | BENPR |
ISSN | 2157-846X |
IngestDate | Thu Aug 21 18:29:55 EDT 2025 Thu Sep 04 19:17:16 EDT 2025 Wed Jul 16 16:34:25 EDT 2025 Mon Jul 21 05:23:44 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Sun Aug 31 08:57:44 EDT 2025 Sun Aug 31 08:58:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-1508396c8eabf7fc04dfa6b2359823abc9669b6aefbd115bda596967f100b6ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. Current address: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA. Contributors. L.S., H.B., and D.E.I. conceived this study, and D.E.I. developed the overall collaborative discovery pipeline. L.S. and H.B. performed and analyzed experiments with other authors assisting with experiments and data analysis. M.B. assisted with cytokine detection assay. W.C., C.O., A.J., A.N., and S.K. assisted with RNA extraction and qRT-PCR. D.Z. and G.G. assisted in the characterization of CoV-2pp. S.P.G. assisted in the mass spectrometry experiments. R.K.P. assisted in statistical analysis. R.P. and S.E.G. coordinated experiments and managed the project progress. R.M., D.H., K.O., S.H., T.J., R.A.A., J.F., I.G., and B.R.t. tested the efficacy of drugs against native SARS-CoV-2 in hamster SARS-CoV-2 infection model. K.C. coordinated the hamster PK studies and assisted in the design of dosing and drug formulation in the hamster efficacy studies. J.L., R.H., M.M., S.W., and M.F. tested the activity of amodiaquine and desethylamodiaquine against native SARS-CoV-2 in Vero E6 cells. L.S., H.B. and D.E.I. wrote the manuscript with all authors providing feedback. |
ORCID | 0000-0003-4008-503X 0000-0001-7626-0034 0000-0003-0107-0775 0000-0002-8452-0761 0000-0002-7410-9741 0000-0002-7514-8873 0000-0002-4319-6520 0000-0003-0324-3078 0000-0002-7451-4958 0000-0002-0504-1659 0000-0003-2661-7837 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8387338 |
PMID | 33941899 |
PQID | 2586667140 |
PQPubID | 4669717 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8387338 proquest_miscellaneous_2522191101 proquest_journals_2586667140 pubmed_primary_33941899 crossref_primary_10_1038_s41551_021_00718_9 crossref_citationtrail_10_1038_s41551_021_00718_9 springer_journals_10_1038_s41551_021_00718_9 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature biomedical engineering |
PublicationTitleAbbrev | Nat Biomed Eng |
PublicationTitleAlternate | Nat Biomed Eng |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Johansen (CR36) 2015; 7 Hu, Frieman, Wolfram (CR3) 2020; 15 Simonson (CR30) 2019; 40 van Riel (CR23) 2006; 312 Kwok (CR24) 2017; 17 Tang (CR52) 2019; 10 Cheung (CR26) 2002; 360 Laporte, Naesens (CR29) 2017; 24 (CR60) 1986; 35 Bocci (CR43) 2020; 3 Jia (CR19) 2016; 46 Armstrong, Mubareka, Lee (CR22) 2013; 99 Letko, Marzi, Munster (CR34) 2020; 5 Nicholson (CR27) 2000; 355 Gignoux (CR59) 2016; 374 Orrell (CR41) 2008; 64 Ramani, Crawford, Blutt, Estes (CR11) 2018; 29 CR4 Chou (CR7) 2020; 4 Herland (CR8) 2020; 4 DeWald (CR57) 2019; 9 Short, Kroeze, Fouchier, Kuiken (CR61) 2014; 14 Blanco-Melo (CR62) 2020; 181 CR49 CR48 CR47 CR46 CR45 Stojdl (CR14) 2003; 4 Zhou (CR28) 2018; 115 Matsuyama (CR39) 2020; 117 Sinou (CR58) 2009; 34 Hui (CR10) 2018; 6 Chan, Chan, Nicholls, Malik Peiris (CR12) 2013; 178 Takayama (CR13) 2020; 41 Papayannopoulos (CR25) 2018; 18 Ou (CR33) 2020; 11 Hoffmann (CR20) 2020; 181 Sungnak (CR21) 2020; 26 Zhao (CR37) 2016; 535 CR18 Huh (CR5) 2010; 328 CR16 CR15 CR56 CR55 CR54 Boulware (CR1) 2020; 383 Imai (CR44) 2020; 117 CR51 CR50 Wu (CR32) 2020; 579 Hattermann (CR38) 2005; 150 Borba (CR2) 2020; 3 Gendrot (CR42) 2020; 37 Prantil-Baun (CR9) 2018; 58 de Oliveira, Rosowski, Huttenlocher (CR53) 2016; 16 Chen (CR40) 2020; 38 Benam (CR17) 2016; 13 Huh (CR6) 2012; 4 Si (CR31) 2018; 4 Johansen (CR35) 2013; 5 W Simonson (718_CR30) 2019; 40 D Huh (718_CR6) 2012; 4 R Prantil-Baun (718_CR9) 2018; 58 Y Zhao (718_CR37) 2016; 535 V Papayannopoulos (718_CR25) 2018; 18 718_CR56 718_CR55 718_CR18 S de Oliveira (718_CR53) 2016; 16 718_CR16 718_CR15 CY Cheung (718_CR26) 2002; 360 718_CR50 C Orrell (718_CR41) 2008; 64 K Hattermann (718_CR38) 2005; 150 718_CR54 718_CR51 S Matsuyama (718_CR39) 2020; 117 BM Tang (718_CR52) 2019; 10 LE DeWald (718_CR57) 2019; 9 J Zhou (718_CR28) 2018; 115 LM Johansen (718_CR36) 2015; 7 A Herland (718_CR8) 2020; 4 S Ramani (718_CR11) 2018; 29 DR Boulware (718_CR1) 2020; 383 D van Riel (718_CR23) 2006; 312 F Wu (718_CR32) 2020; 579 J Chen (718_CR40) 2020; 38 TY Hu (718_CR3) 2020; 15 MGS Borba (718_CR2) 2020; 3 M Imai (718_CR44) 2020; 117 718_CR4 V Sinou (718_CR58) 2009; 34 KR Short (718_CR61) 2014; 14 CDC (718_CR60) 1986; 35 M Hoffmann (718_CR20) 2020; 181 SM Armstrong (718_CR22) 2013; 99 G Bocci (718_CR43) 2020; 3 L Si (718_CR31) 2018; 4 H Jia (718_CR19) 2016; 46 E Gignoux (718_CR59) 2016; 374 RW Chan (718_CR12) 2013; 178 KH Benam (718_CR17) 2016; 13 M Letko (718_CR34) 2020; 5 LM Johansen (718_CR35) 2013; 5 718_CR47 718_CR46 718_CR45 X Ou (718_CR33) 2020; 11 718_CR49 718_CR48 D Blanco-Melo (718_CR62) 2020; 181 DF Stojdl (718_CR14) 2003; 4 K Takayama (718_CR13) 2020; 41 KPY Hui (718_CR10) 2018; 6 M Gendrot (718_CR42) 2020; 37 M Laporte (718_CR29) 2017; 24 KO Kwok (718_CR24) 2017; 17 W Sungnak (718_CR21) 2020; 26 D Huh (718_CR5) 2010; 328 DB Chou (718_CR7) 2020; 4 KG Nicholson (718_CR27) 2000; 355 |
References_xml | – volume: 312 start-page: 399 year: 2006 ident: CR23 article-title: H5N1 virus attachment to lower respiratory tract publication-title: Science doi: 10.1126/science.1125548 – ident: CR45 – volume: 58 start-page: 37 year: 2018 end-page: 64 ident: CR9 article-title: Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked Organs-on-Chips publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010716-104748 – volume: 4 start-page: eaau8408 year: 2018 ident: CR31 article-title: Triterpenoids manipulate a broad range of virus-host fusion via wrapping the HR2 domain prevalent in viral envelopes publication-title: Sci. Adv. doi: 10.1126/sciadv.aau8408 – ident: CR49 – volume: 46 start-page: 239 year: 2016 end-page: 248 ident: CR19 article-title: Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease publication-title: Shock doi: 10.1097/SHK.0000000000000633 – ident: CR4 – ident: CR16 – ident: CR51 – volume: 15 start-page: 247 year: 2020 end-page: 249 ident: CR3 article-title: Insights from nanomedicine into chloroquine efficacy against COVID-19 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0674-9 – volume: 117 start-page: 16587 year: 2020 end-page: 16595 ident: CR44 article-title: Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2018975117 – volume: 115 start-page: 6822 year: 2018 end-page: 6827 ident: CR28 article-title: Differentiated human airway organoids to assess infectivity of emerging influenza virus publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806308115 – ident: CR54 – volume: 34 start-page: 133 year: 2009 end-page: 142 ident: CR58 article-title: Pharmacokinetics and pharmacodynamics of a new ACT formulation: artesunate/amodiaquine (TRIMALACT) following oral administration in African malaria patients publication-title: Eur. J. Drug Metab. Pharmacokinet. doi: 10.1007/BF03191163 – volume: 10 year: 2019 ident: CR52 article-title: Neutrophils-related host factors associated with severe disease and fatality in patients with influenza infection publication-title: Nat. Commun. doi: 10.1038/s41467-019-11249-y – volume: 535 start-page: 169 year: 2016 end-page: 172 ident: CR37 article-title: Toremifene interacts with and destabilizes the Ebola virus glycoprotein publication-title: Nature doi: 10.1038/nature18615 – ident: CR46 – volume: 29 start-page: 79 year: 2018 end-page: 86 ident: CR11 article-title: Human organoid cultures: transformative new tools for human virus studies publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2018.04.001 – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: CR20 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 5 start-page: 562 year: 2020 end-page: 569 ident: CR34 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – volume: 64 start-page: 683 year: 2008 end-page: 690 ident: CR41 article-title: Pharmacokinetics and tolerability of artesunate and amodiaquine alone and in combination in healthy volunteers publication-title: Eur. J. Clin. Pharm. doi: 10.1007/s00228-007-0452-8 – ident: CR15 – ident: CR50 – volume: 24 start-page: 16 year: 2017 end-page: 24 ident: CR29 article-title: Airway proteases: an emerging drug target for influenza and other respiratory virus infections publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2017.03.018 – volume: 11 year: 2020 ident: CR33 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. doi: 10.1038/s41467-020-15562-9 – volume: 7 start-page: 290ra289 year: 2015 ident: CR36 article-title: A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa5597 – volume: 4 start-page: 421 year: 2020 end-page: 436 ident: CR8 article-title: Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0498-9 – volume: 17 year: 2017 ident: CR24 article-title: Relative incidence and individual-level severity of seasonal influenza A H3N2 compared with 2009 pandemic H1N1 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-017-2432-7 – volume: 14 start-page: 57 year: 2014 end-page: 69 ident: CR61 article-title: Pathogenesis of influenza-induced acute respiratory distress syndrome publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(13)70286-X – volume: 18 start-page: 134 year: 2018 end-page: 147 ident: CR25 article-title: Neutrophil extracellular traps in immunity and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.105 – volume: 38 start-page: E008 year: 2020 end-page: E008 ident: CR40 article-title: Efficacies of lopinavir/ritonavir and abidol in the treatment of novel coronavirus pneumonia (in Chinese). Chin publication-title: J. Infect. Dis. – volume: 4 start-page: 159ra147 year: 2012 ident: CR6 article-title: A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004249 – volume: 355 start-page: 1845 year: 2000 end-page: 1850 ident: CR27 article-title: Efficacy and safety of oseltamivir in treatment of acute influenza: a randomised controlled trial. Neuraminidase Inhibitor Flu Treatment Investigator Group publication-title: Lancet doi: 10.1016/S0140-6736(00)02288-1 – volume: 360 start-page: 1831 year: 2002 end-page: 1837 ident: CR26 article-title: Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? publication-title: Lancet doi: 10.1016/S0140-6736(02)11772-7 – volume: 3 start-page: 1278 year: 2020 end-page: 1292 ident: CR43 article-title: Virtual and in vitro antiviral screening revive therapeutic drugs for COVID-19 publication-title: ACS Pharm. Transl. Sci. doi: 10.1021/acsptsci.0c00131 – volume: 3 start-page: e208857 year: 2020 ident: CR2 article-title: Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.8857 – ident: CR18 – volume: 9 year: 2019 ident: CR57 article-title: In vivo activity of amodiaquine against Ebola virus infection publication-title: Sci. Rep. doi: 10.1038/s41598-019-56481-0 – volume: 41 start-page: 513 year: 2020 end-page: 517 ident: CR13 article-title: In vitro and animal models for SARS-CoV-2 research publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2020.05.005 – volume: 150 start-page: 1023 year: 2005 end-page: 1031 ident: CR38 article-title: Susceptibility of different eukaryotic cell lines to SARS-coronavirus publication-title: Arch. Virol. doi: 10.1007/s00705-004-0461-1 – ident: CR47 – volume: 4 start-page: 394 year: 2020 end-page: 406 ident: CR7 article-title: On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0495-z – volume: 383 start-page: 517 year: 2020 end-page: 525 ident: CR1 article-title: A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2016638 – volume: 13 start-page: 151 year: 2016 end-page: 157 ident: CR17 article-title: Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro publication-title: Nat. Methods doi: 10.1038/nmeth.3697 – volume: 5 start-page: 190ra179 year: 2013 ident: CR35 article-title: FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005471 – volume: 178 start-page: 133 year: 2013 end-page: 145 ident: CR12 article-title: Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses publication-title: Virus Res. doi: 10.1016/j.virusres.2013.03.003 – volume: 37 start-page: 101873 year: 2020 ident: CR42 article-title: Antimalarial drugs inhibit the replication of SARS-CoV-2: an in vitro evaluation publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2020.101873 – ident: CR56 – volume: 181 start-page: 1036 year: 2020 end-page: 1045 ident: CR62 article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 26 start-page: 681 year: 2020 end-page: 687 ident: CR21 article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nat. Med. doi: 10.1038/s41591-020-0868-6 – volume: 4 start-page: 263 year: 2003 end-page: 275 ident: CR14 article-title: VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00241-1 – volume: 117 start-page: 7001 year: 2020 end-page: 7003 ident: CR39 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2002589117 – volume: 328 start-page: 1662 year: 2010 end-page: 1668 ident: CR5 article-title: Reconstituting organ-level lung functions on a chip publication-title: Science doi: 10.1126/science.1188302 – volume: 374 start-page: 23 year: 2016 end-page: 32 ident: CR59 article-title: Effect of artesunate–amodiaquine on mortality related to Ebola virus disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1504605 – ident: CR48 – volume: 99 start-page: 113 year: 2013 end-page: 118 ident: CR22 article-title: The lung microvascular endothelium as a therapeutic target in severe influenza publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2013.05.003 – volume: 40 start-page: 99 year: 2019 end-page: 100 ident: CR30 article-title: Influenza treatment with antiviral medications publication-title: Geriatr. Nurs. doi: 10.1016/j.gerinurse.2018.12.007 – ident: CR55 – volume: 579 start-page: 265 year: 2020 end-page: 269 ident: CR32 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 16 start-page: 378 year: 2016 end-page: 391 ident: CR53 article-title: Neutrophil migration in infection and wound repair: going forward in reverse publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.49 – volume: 6 start-page: 846 year: 2018 end-page: 854 ident: CR10 article-title: Tropism, replication competence, and innate immune responses of influenza virus: an analysis of human airway organoids and ex-vivo bronchus cultures publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(18)30236-4 – volume: 35 start-page: 165 year: 1986 end-page: 166 ident: CR60 article-title: International notes agranulocytosis associated with the use of amodiaquine for malaria prophylaxis publication-title: MMWR – volume: 35 start-page: 165 year: 1986 ident: 718_CR60 publication-title: MMWR – volume: 99 start-page: 113 year: 2013 ident: 718_CR22 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2013.05.003 – volume: 38 start-page: E008 year: 2020 ident: 718_CR40 publication-title: J. Infect. Dis. – volume: 11 year: 2020 ident: 718_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15562-9 – volume: 3 start-page: e208857 year: 2020 ident: 718_CR2 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.8857 – volume: 40 start-page: 99 year: 2019 ident: 718_CR30 publication-title: Geriatr. Nurs. doi: 10.1016/j.gerinurse.2018.12.007 – volume: 29 start-page: 79 year: 2018 ident: 718_CR11 publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2018.04.001 – volume: 178 start-page: 133 year: 2013 ident: 718_CR12 publication-title: Virus Res. doi: 10.1016/j.virusres.2013.03.003 – volume: 535 start-page: 169 year: 2016 ident: 718_CR37 publication-title: Nature doi: 10.1038/nature18615 – volume: 579 start-page: 265 year: 2020 ident: 718_CR32 publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 117 start-page: 16587 year: 2020 ident: 718_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2018975117 – ident: 718_CR55 doi: 10.1128/AAC.00819-20 – ident: 718_CR54 doi: 10.1016/j.medj.2020.04.001 – volume: 3 start-page: 1278 year: 2020 ident: 718_CR43 publication-title: ACS Pharm. Transl. Sci. doi: 10.1021/acsptsci.0c00131 – ident: 718_CR49 doi: 10.1101/2020.08.10.243220 – ident: 718_CR45 doi: 10.3390/v12070779 – ident: 718_CR50 doi: 10.1002/advs.202002928 – volume: 5 start-page: 190ra179 year: 2013 ident: 718_CR35 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005471 – volume: 4 start-page: 263 year: 2003 ident: 718_CR14 publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00241-1 – volume: 374 start-page: 23 year: 2016 ident: 718_CR59 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1504605 – volume: 13 start-page: 151 year: 2016 ident: 718_CR17 publication-title: Nat. Methods doi: 10.1038/nmeth.3697 – volume: 17 year: 2017 ident: 718_CR24 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-017-2432-7 – ident: 718_CR46 doi: 10.1016/j.immuni.2021.01.017 – volume: 360 start-page: 1831 year: 2002 ident: 718_CR26 publication-title: Lancet doi: 10.1016/S0140-6736(02)11772-7 – volume: 24 start-page: 16 year: 2017 ident: 718_CR29 publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2017.03.018 – volume: 46 start-page: 239 year: 2016 ident: 718_CR19 publication-title: Shock doi: 10.1097/SHK.0000000000000633 – volume: 16 start-page: 378 year: 2016 ident: 718_CR53 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.49 – volume: 7 start-page: 290ra289 year: 2015 ident: 718_CR36 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa5597 – volume: 37 start-page: 101873 year: 2020 ident: 718_CR42 publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2020.101873 – volume: 312 start-page: 399 year: 2006 ident: 718_CR23 publication-title: Science doi: 10.1126/science.1125548 – ident: 718_CR15 doi: 10.1039/c9lc00492k – volume: 64 start-page: 683 year: 2008 ident: 718_CR41 publication-title: Eur. J. Clin. Pharm. doi: 10.1007/s00228-007-0452-8 – volume: 6 start-page: 846 year: 2018 ident: 718_CR10 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(18)30236-4 – ident: 718_CR48 doi: 10.1128/JVI.00110-21 – volume: 4 start-page: 159ra147 year: 2012 ident: 718_CR6 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004249 – volume: 34 start-page: 133 year: 2009 ident: 718_CR58 publication-title: Eur. J. Drug Metab. Pharmacokinet. doi: 10.1007/BF03191163 – volume: 5 start-page: 562 year: 2020 ident: 718_CR34 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – volume: 150 start-page: 1023 year: 2005 ident: 718_CR38 publication-title: Arch. Virol. doi: 10.1007/s00705-004-0461-1 – ident: 718_CR51 doi: 10.14573/altex.2001241 – volume: 181 start-page: 1036 year: 2020 ident: 718_CR62 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 115 start-page: 6822 year: 2018 ident: 718_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806308115 – ident: 718_CR18 doi: 10.3390/cells5040040 – ident: 718_CR47 doi: 10.1101/2020.04.13.039917 – volume: 10 year: 2019 ident: 718_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11249-y – volume: 4 start-page: eaau8408 year: 2018 ident: 718_CR31 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau8408 – volume: 18 start-page: 134 year: 2018 ident: 718_CR25 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.105 – volume: 4 start-page: 394 year: 2020 ident: 718_CR7 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0495-z – ident: 718_CR16 doi: 10.1002/advs.202002030 – volume: 383 start-page: 517 year: 2020 ident: 718_CR1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2016638 – ident: 718_CR4 doi: 10.1038/s41467-020-17907-w – volume: 15 start-page: 247 year: 2020 ident: 718_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0674-9 – volume: 4 start-page: 421 year: 2020 ident: 718_CR8 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0498-9 – ident: 718_CR56 doi: 10.1128/JVI.01218-20 – volume: 9 year: 2019 ident: 718_CR57 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56481-0 – volume: 181 start-page: 271 year: 2020 ident: 718_CR20 publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 41 start-page: 513 year: 2020 ident: 718_CR13 publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2020.05.005 – volume: 117 start-page: 7001 year: 2020 ident: 718_CR39 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2002589117 – volume: 58 start-page: 37 year: 2018 ident: 718_CR9 publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010716-104748 – volume: 328 start-page: 1662 year: 2010 ident: 718_CR5 publication-title: Science doi: 10.1126/science.1188302 – volume: 355 start-page: 1845 year: 2000 ident: 718_CR27 publication-title: Lancet doi: 10.1016/S0140-6736(00)02288-1 – volume: 26 start-page: 681 year: 2020 ident: 718_CR21 publication-title: Nat. Med. doi: 10.1038/s41591-020-0868-6 – volume: 14 start-page: 57 year: 2014 ident: 718_CR61 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(13)70286-X |
SSID | ssj0001934975 |
Score | 2.5988498 |
Snippet | The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 815 |
SubjectTerms | 13/106 13/107 13/21 13/62 59/5 631/154/1435 631/1647/277 631/326/596/1578 631/326/596/4130 631/61/32 82/47 82/58 Amodiaquine Animals Antiviral agents Antiviral Agents - pharmacology Antiviral Agents - therapeutic use Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Cell Line Cell lines Coronaviruses COVID-19 - diagnosis COVID-19 - virology COVID-19 Drug Treatment COVID-19 Testing - methods Cricetinae Cytokines Drug development Drug dosages Drugs Endothelium Epithelium Female Green Fluorescent Proteins Hamsters Humans Hydroxychloroquine Immune system Immunosuppressive agents Influenza A Lab-On-A-Chip Devices Male Microfluidics Oseltamivir Pandemics Respiratory diseases Respiratory tract SARS-CoV-2 - drug effects Severe acute respiratory syndrome coronavirus 2 Viral diseases Virulence Virus Internalization - drug effects Windows (intervals) |
Title | A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics |
URI | https://link.springer.com/article/10.1038/s41551-021-00718-9 https://www.ncbi.nlm.nih.gov/pubmed/33941899 https://www.proquest.com/docview/2586667140 https://www.proquest.com/docview/2522191101 https://pubmed.ncbi.nlm.nih.gov/PMC8387338 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7W9GV9GNvadd66okHfVlHbsmz5aXSjWRmslLJC34x-UtNgZ3HK2H-_k6Ikzcr6EAix7Nj-pNN30t13AEeZrErlMks5M5IWlpdUFujzWJbqrDB5Ka3Pd_5xUZ5fF99v-E1ccBtiWOXSJgZDbXrt18hPci6QaXt5uc_TX9RXjfK7q7GExhZsowkWfATbX84uLq_Wqyw1K-qKx2yZlImTwc-g6EHn-MHpFUf75oz0iGY-jpb8Z8s0zETjl_AiUkhyusD8FTyz3WvYeSAsuAt3pyQU36Oynf2Wf2iP36i-bacEOSpBzkdmctoa0poYLBTwIb0j2qe5-FUAgq-89RHAE_IgR2vAnw3Bu0d0JiG_atiD6_HZz6_nNJZVoBrp2ZwGBfi61MJK5Sqn08I4Wao8aPkxqTR6QLVCkJwyyBeVkdxL6FQuS1NVasnewKjrO_sWiNW5sRzNPWd4FamkE05zbmvBFPIqlUC2fLWNjprjvvTFpAl730w0CzgahKMJcDR1Ap9W50wXihtPtj5YItbE0Tc0676SwMfVYRw3fjNEdra_921yNNZIfrIE9hcAr_6OsbrI0BFNoNqAftXAa3JvHuna26DNLZio0OtP4HjZSda39f-nePf0U7yH53nosD7u8ABG89m9_YBcaK4OYUuMvx3Gbv8XbHcLFQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEG8CBYwEJ7Ca2HEeB4QKtNrSdoVQK_UW_IoasUqWzVZV_xS_kbGT7Hap6K2HlaKNkziZsecbe-YbgLeRTBNVRpYKbiSNrUiojNHnsTzUUWxYIq3Ldz4cJ6Pj-NuJOFmDP0MujAurHOZEP1GbRrs18i0mMkTajl7u0_Q3dVWj3O7qUEKjU4t9e3GOLlv7ce8ryvcdY7s7R19GtK8qQDWikzn1BOh5ojMrVZmWOoxNKRPFPJUdl0qjA5Ar7GOpDMIlZaRwDDJpGYWhSrTkeN9bsIEwI8dRtPF5Z_z9x3JVJ-dxnoo-Oyfk2VbrLDZ67Ax_aM5xdlm1gFdg7dXozH-2aL3l270P93rISrY7HXsAa7Z-CHcvERk-gl_bxBf7o7KancsL2uAR1afVlCAmJogxyUxOK0Mq0wcneX0gTUm0S6txqw4ERVy5iOMJuZQT1uLfhmDvURsmPp-rfQzHN_LBn8B63dT2GRCrmbECzYvgeBepZJmVWgibZ1whjlMBRMOnLXTPce5KbUwKv9fOs6ITR4HiKLw4ijyA94trph3Dx7WtNweJFf1ob4ulbgbwZnEax6nbfJG1bc5cG4bGAcFWFMDTTsCLx3GexxE6vgGkK6JfNHAc4Ktn6urUc4FnPEs5zwL4MCjJslv_f4vn17_Fa7g9Ojo8KA72xvsv4A7zyutiHjdhfT47sy8Rh83Vq175Cfy86fH2F9ugSAY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+human-airway-on-a-chip+for+the+rapid+identification+of+candidate+antiviral+therapeutics+and+prophylactics&rft.jtitle=Nature+biomedical+engineering&rft.au=Si%2C+Longlong&rft.au=Bai%2C+Haiqing&rft.au=Rodas%2C+Melissa&rft.au=Cao%2C+Wuji&rft.date=2021-08-01&rft.eissn=2157-846X&rft.volume=5&rft.issue=8&rft.spage=815&rft.epage=829&rft_id=info:doi/10.1038%2Fs41551-021-00718-9&rft_id=info%3Apmid%2F33941899&rft.externalDocID=PMC8387338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon |