A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics

The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-ai...

Full description

Saved in:
Bibliographic Details
Published inNature biomedical engineering Vol. 5; no. 8; pp. 815 - 829
Main Authors Si, Longlong, Bai, Haiqing, Rodas, Melissa, Cao, Wuji, Oh, Crystal Yuri, Jiang, Amanda, Moller, Rasmus, Hoagland, Daisy, Oishi, Kohei, Horiuchi, Shu, Uhl, Skyler, Blanco-Melo, Daniel, Albrecht, Randy A., Liu, Wen-Chun, Jordan, Tristan, Nilsson-Payant, Benjamin E., Golynker, Ilona, Frere, Justin, Logue, James, Haupt, Robert, McGrath, Marisa, Weston, Stuart, Zhang, Tian, Plebani, Roberto, Soong, Mercy, Nurani, Atiq, Kim, Seong Min, Zhu, Danni Y., Benam, Kambez H., Goyal, Girija, Gilpin, Sarah E., Prantil-Baun, Rachelle, Gygi, Steven P., Powers, Rani K., Carlson, Kenneth E., Frieman, Matthew, tenOever, Benjamin R., Ingber, Donald E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2157-846X
2157-846X
DOI10.1038/s41551-021-00718-9

Cover

Loading…
Abstract The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential. A microfluidic bronchial-airway-on-a-chip lined by human bronchial-airway epithelium and pulmonary endothelium can be used to rapidly identify antiviral therapeutics and prophylactics with repurposing potential.
AbstractList The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.A microfluidic bronchial-airway-on-a-chip lined by human bronchial-airway epithelium and pulmonary endothelium can be used to rapidly identify antiviral therapeutics and prophylactics with repurposing potential.
The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.
The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.
The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here, we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production, and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection, but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential. A microfluidic bronchial-airway-on-a-chip lined by human bronchial-airway epithelium and pulmonary endothelium can be used to rapidly identify antiviral therapeutics and prophylactics with repurposing potential.
The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential. A microfluidic bronchial-airway-on-a-chip lined by human bronchial-airway epithelium and pulmonary endothelium can be used to rapidly identify antiviral therapeutics and prophylactics with repurposing potential.
Author Logue, James
Frieman, Matthew
Weston, Stuart
Oh, Crystal Yuri
Golynker, Ilona
Goyal, Girija
Ingber, Donald E.
Jiang, Amanda
Powers, Rani K.
Gilpin, Sarah E.
Zhang, Tian
Nilsson-Payant, Benjamin E.
Si, Longlong
Haupt, Robert
tenOever, Benjamin R.
Blanco-Melo, Daniel
Liu, Wen-Chun
Frere, Justin
Uhl, Skyler
Bai, Haiqing
Oishi, Kohei
Plebani, Roberto
Hoagland, Daisy
Albrecht, Randy A.
Jordan, Tristan
Soong, Mercy
Kim, Seong Min
Zhu, Danni Y.
Carlson, Kenneth E.
Nurani, Atiq
Gygi, Steven P.
Moller, Rasmus
Cao, Wuji
Rodas, Melissa
Prantil-Baun, Rachelle
Horiuchi, Shu
Benam, Kambez H.
McGrath, Marisa
AuthorAffiliation 4 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
7 Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
5 Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
6 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
2 Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
3 Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
1 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
AuthorAffiliation_xml – name: 7 Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
– name: 5 Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
– name: 2 Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
– name: 4 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– name: 1 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
– name: 6 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
– name: 3 Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
Author_xml – sequence: 1
  givenname: Longlong
  orcidid: 0000-0002-0504-1659
  surname: Si
  fullname: Si, Longlong
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 2
  givenname: Haiqing
  surname: Bai
  fullname: Bai, Haiqing
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 3
  givenname: Melissa
  surname: Rodas
  fullname: Rodas, Melissa
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 4
  givenname: Wuji
  surname: Cao
  fullname: Cao, Wuji
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 5
  givenname: Crystal Yuri
  surname: Oh
  fullname: Oh, Crystal Yuri
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 6
  givenname: Amanda
  surname: Jiang
  fullname: Jiang, Amanda
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University, Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School
– sequence: 7
  givenname: Rasmus
  orcidid: 0000-0002-8452-0761
  surname: Moller
  fullname: Moller, Rasmus
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 8
  givenname: Daisy
  surname: Hoagland
  fullname: Hoagland, Daisy
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 9
  givenname: Kohei
  surname: Oishi
  fullname: Oishi, Kohei
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 10
  givenname: Shu
  surname: Horiuchi
  fullname: Horiuchi, Shu
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 11
  givenname: Skyler
  surname: Uhl
  fullname: Uhl, Skyler
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 12
  givenname: Daniel
  surname: Blanco-Melo
  fullname: Blanco-Melo, Daniel
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 13
  givenname: Randy A.
  orcidid: 0000-0003-4008-503X
  surname: Albrecht
  fullname: Albrecht, Randy A.
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 14
  givenname: Wen-Chun
  surname: Liu
  fullname: Liu, Wen-Chun
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 15
  givenname: Tristan
  surname: Jordan
  fullname: Jordan, Tristan
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 16
  givenname: Benjamin E.
  orcidid: 0000-0003-2661-7837
  surname: Nilsson-Payant
  fullname: Nilsson-Payant, Benjamin E.
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 17
  givenname: Ilona
  surname: Golynker
  fullname: Golynker, Ilona
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 18
  givenname: Justin
  orcidid: 0000-0002-7514-8873
  surname: Frere
  fullname: Frere, Justin
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 19
  givenname: James
  orcidid: 0000-0002-7410-9741
  surname: Logue
  fullname: Logue, James
  organization: Department of Microbiology and Immunology, University of Maryland School of Medicine
– sequence: 20
  givenname: Robert
  surname: Haupt
  fullname: Haupt, Robert
  organization: Department of Microbiology and Immunology, University of Maryland School of Medicine
– sequence: 21
  givenname: Marisa
  orcidid: 0000-0002-7451-4958
  surname: McGrath
  fullname: McGrath, Marisa
  organization: Department of Microbiology and Immunology, University of Maryland School of Medicine
– sequence: 22
  givenname: Stuart
  surname: Weston
  fullname: Weston, Stuart
  organization: Department of Microbiology and Immunology, University of Maryland School of Medicine
– sequence: 23
  givenname: Tian
  surname: Zhang
  fullname: Zhang, Tian
  organization: Department of Cell Biology, Harvard Medical School
– sequence: 24
  givenname: Roberto
  surname: Plebani
  fullname: Plebani, Roberto
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara
– sequence: 25
  givenname: Mercy
  surname: Soong
  fullname: Soong, Mercy
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 26
  givenname: Atiq
  surname: Nurani
  fullname: Nurani, Atiq
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 27
  givenname: Seong Min
  surname: Kim
  fullname: Kim, Seong Min
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 28
  givenname: Danni Y.
  surname: Zhu
  fullname: Zhu, Danni Y.
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 29
  givenname: Kambez H.
  surname: Benam
  fullname: Benam, Kambez H.
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Department of Bioengineering, University of Pittsburgh
– sequence: 30
  givenname: Girija
  surname: Goyal
  fullname: Goyal, Girija
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 31
  givenname: Sarah E.
  surname: Gilpin
  fullname: Gilpin, Sarah E.
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 32
  givenname: Rachelle
  surname: Prantil-Baun
  fullname: Prantil-Baun, Rachelle
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 33
  givenname: Steven P.
  orcidid: 0000-0001-7626-0034
  surname: Gygi
  fullname: Gygi, Steven P.
  organization: Department of Cell Biology, Harvard Medical School
– sequence: 34
  givenname: Rani K.
  surname: Powers
  fullname: Powers, Rani K.
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 35
  givenname: Kenneth E.
  surname: Carlson
  fullname: Carlson, Kenneth E.
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 36
  givenname: Matthew
  orcidid: 0000-0003-0107-0775
  surname: Frieman
  fullname: Frieman, Matthew
  organization: Department of Microbiology and Immunology, University of Maryland School of Medicine
– sequence: 37
  givenname: Benjamin R.
  orcidid: 0000-0003-0324-3078
  surname: tenOever
  fullname: tenOever, Benjamin R.
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai
– sequence: 38
  givenname: Donald E.
  orcidid: 0000-0002-4319-6520
  surname: Ingber
  fullname: Ingber, Donald E.
  email: don.ingber@wyss.harvard.edu
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University, Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Harvard John A. Paulson School of Engineering and Applied Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33941899$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEUhoNU7If9Ay5kwI2baDKZZJKNUIpaoeBGwV04k49O6txkTGYq99-b21tr7aKLkHDO8568h_cYHcQUHUKvKHlHCZPvS0c5p5i09ZCeSqyeoaOW8h7LTvw4ePA-RKelXBNCqGKd6vkLdMiY6qhU6gj9PGvGdQMRQ8i_YYtTfWEzhrnxKTfL6JoMc7BNsC4uwQcDS0ixSb4xEG2wsLgGaucmZJh2fMXdugRTatk2c07zuJ3A7Cov0XMPU3Gnd_cJ-v7p47fzC3z59fOX87NLbHhHFkw5kUwJIx0MvveGdNaDGFrGlWwZDEYJoQYBzg-WUj5Y4Eoo0XtKyCAMsBP0YT93XoeNs6Y6r-b0nMMG8lYnCPr_Tgyjvko3WjLZMybrgLd3A3L6tbqy6E0oxk0TRJfWolvetlRRSmhF3zxCr9OaY12vUlII0dOOVOr1Q0f3Vv7mUIF2D5icSsnO3yOU6F3eep-3rnnr27z1TiQfiUxYbvOpW4XpaSnbS0v9J165_M_2E6o_3RvBMQ
CitedBy_id crossref_primary_10_1007_s10311_023_01688_x
crossref_primary_10_1007_s10439_023_03177_2
crossref_primary_10_1016_j_bioactmat_2022_09_010
crossref_primary_10_1152_physrev_00046_2020
crossref_primary_10_1186_s40580_024_00455_0
crossref_primary_10_3390_microorganisms10081639
crossref_primary_10_1039_D2BM00951J
crossref_primary_10_1038_s41576_022_00466_9
crossref_primary_10_3390_mi12091106
crossref_primary_10_3390_bioengineering9110646
crossref_primary_10_1186_s13287_022_03134_1
crossref_primary_10_1002_adfm_202304630
crossref_primary_10_1183_13993003_00455_2022
crossref_primary_10_1183_16000617_0042_2023
crossref_primary_10_7554_eLife_66481
crossref_primary_10_3389_fbioe_2024_1378299
crossref_primary_10_1016_j_drudis_2021_06_020
crossref_primary_10_1007_s42242_023_00255_1
crossref_primary_10_1088_1758_5090_ad6933
crossref_primary_10_1016_j_colsurfb_2025_114591
crossref_primary_10_1016_j_biomaterials_2024_123014
crossref_primary_10_1016_j_drudis_2023_103496
crossref_primary_10_1021_acsami_4c15125
crossref_primary_10_1002_adbi_202200312
crossref_primary_10_1039_D3LC00894K
crossref_primary_10_1002_adhm_202301067
crossref_primary_10_1016_S1470_2045_21_00405_8
crossref_primary_10_1002_ppul_26490
crossref_primary_10_1039_D3LC00285C
crossref_primary_10_3389_fnins_2022_1055601
crossref_primary_10_26599_FMH_2024_9420013
crossref_primary_10_3390_v13081667
crossref_primary_10_1177_02611929231157756
crossref_primary_10_1016_j_cdev_2022_203776
crossref_primary_10_3390_bios14120581
crossref_primary_10_1128_Spectrum_00257_21
crossref_primary_10_1016_j_phytol_2022_07_010
crossref_primary_10_17816_clinpract637140
crossref_primary_10_1016_j_apsadv_2022_100246
crossref_primary_10_1016_j_biotno_2024_01_001
crossref_primary_10_1016_j_tips_2021_05_007
crossref_primary_10_3390_mi13111820
crossref_primary_10_1088_1758_5090_aceaae
crossref_primary_10_1021_acs_chemrestox_1c00219
crossref_primary_10_1039_D1LC01105G
crossref_primary_10_1016_j_biomaterials_2022_121531
crossref_primary_10_1021_acsptsci_1c00257
crossref_primary_10_1039_D3RA00470H
crossref_primary_10_1080_21688370_2023_2221632
crossref_primary_10_1021_acsomega_3c10271
crossref_primary_10_1039_D3LC00812F
crossref_primary_10_3389_frlct_2024_1373029
crossref_primary_10_1016_j_immuni_2024_05_002
crossref_primary_10_3390_microorganisms13030572
crossref_primary_10_1080_07366205_2024_2418748
crossref_primary_10_1002_adfm_202307435
crossref_primary_10_4155_fdd_2020_0034
crossref_primary_10_1093_cei_uxae004
crossref_primary_10_34133_2022_9819154
crossref_primary_10_1016_j_addr_2022_114111
crossref_primary_10_1021_jacs_4c03271
crossref_primary_10_1039_D4LC00104D
crossref_primary_10_1002_adbi_202300511
crossref_primary_10_1016_j_jddst_2022_103930
crossref_primary_10_1016_j_synbio_2024_08_007
crossref_primary_10_3389_fbioe_2022_959335
crossref_primary_10_1080_14786419_2022_2112040
crossref_primary_10_1016_j_envint_2023_107801
crossref_primary_10_1002_adhm_202401025
crossref_primary_10_1039_D4LC00840E
crossref_primary_10_3390_pharmaceutics15082094
crossref_primary_10_1016_j_copbio_2022_102756
crossref_primary_10_1038_s41573_023_00859_3
crossref_primary_10_1016_j_biomaterials_2024_122806
crossref_primary_10_3390_mi12121443
crossref_primary_10_7554_eLife_93796
crossref_primary_10_1021_acsami_3c14417
crossref_primary_10_1007_s11095_022_03298_8
crossref_primary_10_1039_D1LC00999K
crossref_primary_10_1186_s13036_023_00372_6
crossref_primary_10_1002_bit_28754
crossref_primary_10_1016_j_bios_2022_114772
crossref_primary_10_1177_17534666221132736
crossref_primary_10_1002_adma_202210519
crossref_primary_10_1111_cpr_13496
crossref_primary_10_1002_ajoc_202400227
crossref_primary_10_3389_fbioe_2021_764516
crossref_primary_10_3389_fimmu_2024_1448515
crossref_primary_10_1016_j_ooc_2023_100029
crossref_primary_10_1038_s41551_023_01054_w
crossref_primary_10_1021_acsptsci_4c00607
crossref_primary_10_1016_j_tig_2023_01_002
crossref_primary_10_1016_j_tibtech_2023_11_014
crossref_primary_10_1038_s41684_024_01458_4
crossref_primary_10_1111_cts_13865
crossref_primary_10_1002_cbic_202400580
crossref_primary_10_1016_j_mam_2022_101108
crossref_primary_10_1002_anbr_202100119
crossref_primary_10_1038_s44172_024_00276_3
crossref_primary_10_1038_s43586_022_00118_6
crossref_primary_10_1126_science_abc3734
crossref_primary_10_3389_fimmu_2024_1373186
crossref_primary_10_3390_cells12222639
crossref_primary_10_3390_gels10020102
crossref_primary_10_1360_SSV_2023_0145
crossref_primary_10_1186_s12951_023_02258_7
crossref_primary_10_1111_nyas_14896
crossref_primary_10_1016_j_rmr_2025_02_001
crossref_primary_10_1360_TB_2023_0435
crossref_primary_10_3390_biomimetics7010003
crossref_primary_10_1016_j_ejps_2024_106709
crossref_primary_10_1002_smll_202403560
crossref_primary_10_1002_adhm_202302970
crossref_primary_10_1016_j_biosx_2022_100218
crossref_primary_10_1016_j_ooc_2023_100030
crossref_primary_10_3390_ijms26062549
crossref_primary_10_1021_acsbiomaterials_1c01428
crossref_primary_10_1002_admt_202200758
crossref_primary_10_3390_bioengineering9050220
crossref_primary_10_3389_fimmu_2023_1093460
crossref_primary_10_3390_mi12101149
crossref_primary_10_1038_s44222_023_00130_9
crossref_primary_10_1007_s42791_024_00078_w
crossref_primary_10_1021_acsbiomaterials_2c00531
crossref_primary_10_3389_fphar_2021_718484
crossref_primary_10_3892_mi_2024_212
crossref_primary_10_1016_j_addr_2022_114542
crossref_primary_10_3389_fbioe_2023_1191104
crossref_primary_10_3389_fphar_2023_1139229
crossref_primary_10_1039_D4MH01174K
crossref_primary_10_1016_j_biomaterials_2024_122689
crossref_primary_10_1126_scitranslmed_add8273
crossref_primary_10_1002_admt_202201778
crossref_primary_10_1016_j_drudis_2021_12_014
crossref_primary_10_1016_j_mib_2023_102416
crossref_primary_10_1093_lifemedi_lnae016
crossref_primary_10_1109_MPULS_2021_3078598
crossref_primary_10_1016_j_ejps_2022_106329
crossref_primary_10_1016_j_mtbio_2023_100713
crossref_primary_10_1088_2631_7990_acef77
crossref_primary_10_3390_chemosensors10070255
crossref_primary_10_1002_adma_202205083
crossref_primary_10_1109_RBME_2024_3505073
crossref_primary_10_1007_s10600_024_04302_w
crossref_primary_10_1021_acsami_3c04091
crossref_primary_10_1093_infdis_jiad334
crossref_primary_10_1371_journal_pone_0280883
crossref_primary_10_15283_ijsc23090
crossref_primary_10_3390_mi13081349
crossref_primary_10_1002_med_21956
crossref_primary_10_1038_s44298_024_00017_5
crossref_primary_10_1016_j_biosx_2022_100194
crossref_primary_10_1038_s41467_022_29562_4
crossref_primary_10_1007_s42242_023_00241_7
crossref_primary_10_1016_j_apsb_2024_11_004
crossref_primary_10_1002_adbi_202200267
crossref_primary_10_1016_j_scib_2022_08_003
crossref_primary_10_1021_acsbiomaterials_4c00179
crossref_primary_10_1002_admt_202400326
crossref_primary_10_1016_j_jcf_2021_10_004
crossref_primary_10_3389_ftox_2022_840606
crossref_primary_10_1128_spectrum_00459_22
crossref_primary_10_7554_eLife_93796_3
crossref_primary_10_1016_j_toxlet_2021_12_007
crossref_primary_10_1021_acsbiomaterials_1c00306
crossref_primary_10_1021_acs_accounts_1c00411
crossref_primary_10_1007_s11030_025_11131_8
crossref_primary_10_1002_cjce_24581
crossref_primary_10_1088_1758_5090_ad4c0b
crossref_primary_10_1152_physiol_00012_2022
crossref_primary_10_1007_s11517_024_03062_7
crossref_primary_10_1002_smsc_202400314
crossref_primary_10_1007_s10544_023_00649_z
crossref_primary_10_1111_febs_70050
crossref_primary_10_3390_molecules29225357
crossref_primary_10_1038_s41467_024_49415_6
crossref_primary_10_3389_fonc_2023_1187585
crossref_primary_10_1038_s41564_024_01645_6
crossref_primary_10_1002_btm2_10581
crossref_primary_10_1016_j_omtn_2022_08_031
crossref_primary_10_1038_s41429_023_00677_0
crossref_primary_10_3390_v13081603
crossref_primary_10_3389_fbioe_2021_732130
crossref_primary_10_1016_j_cclet_2024_110302
crossref_primary_10_1016_j_eng_2025_01_019
crossref_primary_10_1126_sciadv_abo6783
crossref_primary_10_1002_advs_202406608
crossref_primary_10_1016_j_tice_2024_102319
crossref_primary_10_1039_D3LC00768E
crossref_primary_10_1080_17425255_2024_2366390
crossref_primary_10_1016_j_ijbiomac_2023_127379
crossref_primary_10_1016_j_tetlet_2024_155047
crossref_primary_10_1016_j_mtbio_2023_100905
crossref_primary_10_1039_D4LC00848K
crossref_primary_10_1039_D3NR01661G
crossref_primary_10_1088_1758_5090_ac999e
crossref_primary_10_3390_v15010158
crossref_primary_10_1080_17425255_2024_2362183
crossref_primary_10_1024_0301_1526_a000991
crossref_primary_10_1016_j_biomaterials_2024_122525
crossref_primary_10_3390_v14071507
crossref_primary_10_1038_s44222_023_00063_3
crossref_primary_10_1016_j_jconrel_2022_03_039
crossref_primary_10_1183_16000617_0202_2021
crossref_primary_10_3389_fphys_2024_1425618
crossref_primary_10_1002_advs_202105187
crossref_primary_10_1002_advs_202200222
crossref_primary_10_1016_j_apsb_2023_02_014
crossref_primary_10_1016_j_tcb_2024_11_010
crossref_primary_10_59717_j_xinn_med_2024_100076
crossref_primary_10_3390_bios14080401
crossref_primary_10_1007_s00210_023_02541_2
crossref_primary_10_1002_adhm_202300850
crossref_primary_10_1016_j_ejps_2023_106596
crossref_primary_10_1128_jvi_00765_22
crossref_primary_10_1161_CIRCRESAHA_122_321877
crossref_primary_10_1002_adma_202108972
crossref_primary_10_1080_17460441_2023_2216013
crossref_primary_10_3390_ani12070863
crossref_primary_10_3389_fonc_2022_960340
crossref_primary_10_1016_j_apsb_2023_02_006
crossref_primary_10_1007_s10047_024_01460_0
crossref_primary_10_1016_j_drudis_2022_06_004
crossref_primary_10_3389_fmedt_2022_1053588
crossref_primary_10_3389_fimmu_2021_636966
crossref_primary_10_1016_j_bbiosy_2023_100082
crossref_primary_10_1007_s13534_022_00258_4
crossref_primary_10_1007_s10544_023_00680_0
crossref_primary_10_1016_j_dmpk_2024_101050
crossref_primary_10_1038_s42003_023_05081_w
crossref_primary_10_3390_medicina60040520
crossref_primary_10_3390_ijms231710071
crossref_primary_10_1016_j_isci_2024_109510
crossref_primary_10_1039_D2QM00072E
crossref_primary_10_1089_ten_teb_2024_0212
crossref_primary_10_1016_j_omtn_2022_09_023
crossref_primary_10_1021_acssensors_4c00004
crossref_primary_10_3390_vaccines10020248
crossref_primary_10_3389_fbioe_2022_915702
crossref_primary_10_1177_09731296231216165
crossref_primary_10_3390_jcm13020346
crossref_primary_10_1038_s41564_024_01908_2
crossref_primary_10_1186_s13020_024_00956_4
crossref_primary_10_1021_acs_analchem_2c05036
crossref_primary_10_3389_fimmu_2021_683002
crossref_primary_10_1016_j_dmpk_2024_101041
crossref_primary_10_3389_fmicb_2023_1266136
crossref_primary_10_1016_j_bbamcr_2023_119504
crossref_primary_10_1177_09506608241303436
crossref_primary_10_1039_D1LC00348H
crossref_primary_10_1007_s44164_022_00030_z
crossref_primary_10_1016_j_ooc_2022_100015
crossref_primary_10_1039_D0CS01065K
crossref_primary_10_1126_sciadv_abm8012
Cites_doi 10.1126/science.1125548
10.1146/annurev-pharmtox-010716-104748
10.1126/sciadv.aau8408
10.1097/SHK.0000000000000633
10.1038/s41565-020-0674-9
10.1073/pnas.2018975117
10.1073/pnas.1806308115
10.1007/BF03191163
10.1038/s41467-019-11249-y
10.1038/nature18615
10.1016/j.coviro.2018.04.001
10.1016/j.cell.2020.02.052
10.1038/s41564-020-0688-y
10.1007/s00228-007-0452-8
10.1016/j.coviro.2017.03.018
10.1038/s41467-020-15562-9
10.1126/scitranslmed.aaa5597
10.1038/s41551-019-0498-9
10.1186/s12879-017-2432-7
10.1016/S1473-3099(13)70286-X
10.1038/nri.2017.105
10.1126/scitranslmed.3004249
10.1016/S0140-6736(00)02288-1
10.1016/S0140-6736(02)11772-7
10.1021/acsptsci.0c00131
10.1001/jamanetworkopen.2020.8857
10.1038/s41598-019-56481-0
10.1016/j.tips.2020.05.005
10.1007/s00705-004-0461-1
10.1038/s41551-019-0495-z
10.1056/NEJMoa2016638
10.1038/nmeth.3697
10.1126/scitranslmed.3005471
10.1016/j.virusres.2013.03.003
10.1016/j.tmaid.2020.101873
10.1016/j.cell.2020.04.026
10.1038/s41591-020-0868-6
10.1016/S1535-6108(03)00241-1
10.1073/pnas.2002589117
10.1126/science.1188302
10.1056/NEJMoa1504605
10.1016/j.antiviral.2013.05.003
10.1016/j.gerinurse.2018.12.007
10.1038/s41586-020-2008-3
10.1038/nri.2016.49
10.1016/S2213-2600(18)30236-4
10.1128/AAC.00819-20
10.1016/j.medj.2020.04.001
10.1101/2020.08.10.243220
10.3390/v12070779
10.1002/advs.202002928
10.1016/j.immuni.2021.01.017
10.1039/c9lc00492k
10.1128/JVI.00110-21
10.14573/altex.2001241
10.3390/cells5040040
10.1101/2020.04.13.039917
10.1002/advs.202002030
10.1038/s41467-020-17907-w
10.1128/JVI.01218-20
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1038/s41551-021-00718-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (UHCL Subscription)
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2157-846X
EndPage 829
ExternalDocumentID PMC8387338
33941899
10_1038_s41551_021_00718_9
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH (NCATS 1-UG3-HL-141797-01 and NCATS 1-UH3-HL-141797-01)DARPA under Cooperative Agreements (W911NF-12-2-0036 and W911NF-16-C-0050)Bill and Melinda Gates Foundation, Marc Haas Foundation
– fundername: Marc Haas Foundation
– fundername: Bill and Melinda Gates Foundation
– fundername: NHLBI NIH HHS
  grantid: UG3 HL141797
– fundername: NHLBI NIH HHS
  grantid: UH3 HL141797
GroupedDBID 0R~
53G
AARCD
AAYZH
ABJCF
ABJNI
ABLJU
ACBWK
ACGFS
AFANA
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ATHPR
AXYYD
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
M7P
M7S
NFIDA
NNMJJ
O9-
ODYON
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
AZQEC
DWQXO
GNUQQ
L6V
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-1508396c8eabf7fc04dfa6b2359823abc9669b6aefbd115bda596967f100b6ca3
IEDL.DBID BENPR
ISSN 2157-846X
IngestDate Thu Aug 21 18:29:55 EDT 2025
Thu Sep 04 19:17:16 EDT 2025
Wed Jul 16 16:34:25 EDT 2025
Mon Jul 21 05:23:44 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Sun Aug 31 08:57:44 EDT 2025
Sun Aug 31 08:58:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-1508396c8eabf7fc04dfa6b2359823abc9669b6aefbd115bda596967f100b6ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
Current address: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
Contributors. L.S., H.B., and D.E.I. conceived this study, and D.E.I. developed the overall collaborative discovery pipeline. L.S. and H.B. performed and analyzed experiments with other authors assisting with experiments and data analysis. M.B. assisted with cytokine detection assay. W.C., C.O., A.J., A.N., and S.K. assisted with RNA extraction and qRT-PCR. D.Z. and G.G. assisted in the characterization of CoV-2pp. S.P.G. assisted in the mass spectrometry experiments. R.K.P. assisted in statistical analysis. R.P. and S.E.G. coordinated experiments and managed the project progress. R.M., D.H., K.O., S.H., T.J., R.A.A., J.F., I.G., and B.R.t. tested the efficacy of drugs against native SARS-CoV-2 in hamster SARS-CoV-2 infection model. K.C. coordinated the hamster PK studies and assisted in the design of dosing and drug formulation in the hamster efficacy studies. J.L., R.H., M.M., S.W., and M.F. tested the activity of amodiaquine and desethylamodiaquine against native SARS-CoV-2 in Vero E6 cells. L.S., H.B. and D.E.I. wrote the manuscript with all authors providing feedback.
ORCID 0000-0003-4008-503X
0000-0001-7626-0034
0000-0003-0107-0775
0000-0002-8452-0761
0000-0002-7410-9741
0000-0002-7514-8873
0000-0002-4319-6520
0000-0003-0324-3078
0000-0002-7451-4958
0000-0002-0504-1659
0000-0003-2661-7837
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8387338
PMID 33941899
PQID 2586667140
PQPubID 4669717
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8387338
proquest_miscellaneous_2522191101
proquest_journals_2586667140
pubmed_primary_33941899
crossref_primary_10_1038_s41551_021_00718_9
crossref_citationtrail_10_1038_s41551_021_00718_9
springer_journals_10_1038_s41551_021_00718_9
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature biomedical engineering
PublicationTitleAbbrev Nat Biomed Eng
PublicationTitleAlternate Nat Biomed Eng
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Johansen (CR36) 2015; 7
Hu, Frieman, Wolfram (CR3) 2020; 15
Simonson (CR30) 2019; 40
van Riel (CR23) 2006; 312
Kwok (CR24) 2017; 17
Tang (CR52) 2019; 10
Cheung (CR26) 2002; 360
Laporte, Naesens (CR29) 2017; 24
(CR60) 1986; 35
Bocci (CR43) 2020; 3
Jia (CR19) 2016; 46
Armstrong, Mubareka, Lee (CR22) 2013; 99
Letko, Marzi, Munster (CR34) 2020; 5
Nicholson (CR27) 2000; 355
Gignoux (CR59) 2016; 374
Orrell (CR41) 2008; 64
Ramani, Crawford, Blutt, Estes (CR11) 2018; 29
CR4
Chou (CR7) 2020; 4
Herland (CR8) 2020; 4
DeWald (CR57) 2019; 9
Short, Kroeze, Fouchier, Kuiken (CR61) 2014; 14
Blanco-Melo (CR62) 2020; 181
CR49
CR48
CR47
CR46
CR45
Stojdl (CR14) 2003; 4
Zhou (CR28) 2018; 115
Matsuyama (CR39) 2020; 117
Sinou (CR58) 2009; 34
Hui (CR10) 2018; 6
Chan, Chan, Nicholls, Malik Peiris (CR12) 2013; 178
Takayama (CR13) 2020; 41
Papayannopoulos (CR25) 2018; 18
Ou (CR33) 2020; 11
Hoffmann (CR20) 2020; 181
Sungnak (CR21) 2020; 26
Zhao (CR37) 2016; 535
CR18
Huh (CR5) 2010; 328
CR16
CR15
CR56
CR55
CR54
Boulware (CR1) 2020; 383
Imai (CR44) 2020; 117
CR51
CR50
Wu (CR32) 2020; 579
Hattermann (CR38) 2005; 150
Borba (CR2) 2020; 3
Gendrot (CR42) 2020; 37
Prantil-Baun (CR9) 2018; 58
de Oliveira, Rosowski, Huttenlocher (CR53) 2016; 16
Chen (CR40) 2020; 38
Benam (CR17) 2016; 13
Huh (CR6) 2012; 4
Si (CR31) 2018; 4
Johansen (CR35) 2013; 5
W Simonson (718_CR30) 2019; 40
D Huh (718_CR6) 2012; 4
R Prantil-Baun (718_CR9) 2018; 58
Y Zhao (718_CR37) 2016; 535
V Papayannopoulos (718_CR25) 2018; 18
718_CR56
718_CR55
718_CR18
S de Oliveira (718_CR53) 2016; 16
718_CR16
718_CR15
CY Cheung (718_CR26) 2002; 360
718_CR50
C Orrell (718_CR41) 2008; 64
K Hattermann (718_CR38) 2005; 150
718_CR54
718_CR51
S Matsuyama (718_CR39) 2020; 117
BM Tang (718_CR52) 2019; 10
LE DeWald (718_CR57) 2019; 9
J Zhou (718_CR28) 2018; 115
LM Johansen (718_CR36) 2015; 7
A Herland (718_CR8) 2020; 4
S Ramani (718_CR11) 2018; 29
DR Boulware (718_CR1) 2020; 383
D van Riel (718_CR23) 2006; 312
F Wu (718_CR32) 2020; 579
J Chen (718_CR40) 2020; 38
TY Hu (718_CR3) 2020; 15
MGS Borba (718_CR2) 2020; 3
M Imai (718_CR44) 2020; 117
718_CR4
V Sinou (718_CR58) 2009; 34
KR Short (718_CR61) 2014; 14
CDC (718_CR60) 1986; 35
M Hoffmann (718_CR20) 2020; 181
SM Armstrong (718_CR22) 2013; 99
G Bocci (718_CR43) 2020; 3
L Si (718_CR31) 2018; 4
H Jia (718_CR19) 2016; 46
E Gignoux (718_CR59) 2016; 374
RW Chan (718_CR12) 2013; 178
KH Benam (718_CR17) 2016; 13
M Letko (718_CR34) 2020; 5
LM Johansen (718_CR35) 2013; 5
718_CR47
718_CR46
718_CR45
X Ou (718_CR33) 2020; 11
718_CR49
718_CR48
D Blanco-Melo (718_CR62) 2020; 181
DF Stojdl (718_CR14) 2003; 4
K Takayama (718_CR13) 2020; 41
KPY Hui (718_CR10) 2018; 6
M Gendrot (718_CR42) 2020; 37
M Laporte (718_CR29) 2017; 24
KO Kwok (718_CR24) 2017; 17
W Sungnak (718_CR21) 2020; 26
D Huh (718_CR5) 2010; 328
DB Chou (718_CR7) 2020; 4
KG Nicholson (718_CR27) 2000; 355
References_xml – volume: 312
  start-page: 399
  year: 2006
  ident: CR23
  article-title: H5N1 virus attachment to lower respiratory tract
  publication-title: Science
  doi: 10.1126/science.1125548
– ident: CR45
– volume: 58
  start-page: 37
  year: 2018
  end-page: 64
  ident: CR9
  article-title: Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked Organs-on-Chips
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010716-104748
– volume: 4
  start-page: eaau8408
  year: 2018
  ident: CR31
  article-title: Triterpenoids manipulate a broad range of virus-host fusion via wrapping the HR2 domain prevalent in viral envelopes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau8408
– ident: CR49
– volume: 46
  start-page: 239
  year: 2016
  end-page: 248
  ident: CR19
  article-title: Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease
  publication-title: Shock
  doi: 10.1097/SHK.0000000000000633
– ident: CR4
– ident: CR16
– ident: CR51
– volume: 15
  start-page: 247
  year: 2020
  end-page: 249
  ident: CR3
  article-title: Insights from nanomedicine into chloroquine efficacy against COVID-19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0674-9
– volume: 117
  start-page: 16587
  year: 2020
  end-page: 16595
  ident: CR44
  article-title: Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2018975117
– volume: 115
  start-page: 6822
  year: 2018
  end-page: 6827
  ident: CR28
  article-title: Differentiated human airway organoids to assess infectivity of emerging influenza virus
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806308115
– ident: CR54
– volume: 34
  start-page: 133
  year: 2009
  end-page: 142
  ident: CR58
  article-title: Pharmacokinetics and pharmacodynamics of a new ACT formulation: artesunate/amodiaquine (TRIMALACT) following oral administration in African malaria patients
  publication-title: Eur. J. Drug Metab. Pharmacokinet.
  doi: 10.1007/BF03191163
– volume: 10
  year: 2019
  ident: CR52
  article-title: Neutrophils-related host factors associated with severe disease and fatality in patients with influenza infection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11249-y
– volume: 535
  start-page: 169
  year: 2016
  end-page: 172
  ident: CR37
  article-title: Toremifene interacts with and destabilizes the Ebola virus glycoprotein
  publication-title: Nature
  doi: 10.1038/nature18615
– ident: CR46
– volume: 29
  start-page: 79
  year: 2018
  end-page: 86
  ident: CR11
  article-title: Human organoid cultures: transformative new tools for human virus studies
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2018.04.001
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280
  ident: CR20
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 5
  start-page: 562
  year: 2020
  end-page: 569
  ident: CR34
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– volume: 64
  start-page: 683
  year: 2008
  end-page: 690
  ident: CR41
  article-title: Pharmacokinetics and tolerability of artesunate and amodiaquine alone and in combination in healthy volunteers
  publication-title: Eur. J. Clin. Pharm.
  doi: 10.1007/s00228-007-0452-8
– ident: CR15
– ident: CR50
– volume: 24
  start-page: 16
  year: 2017
  end-page: 24
  ident: CR29
  article-title: Airway proteases: an emerging drug target for influenza and other respiratory virus infections
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2017.03.018
– volume: 11
  year: 2020
  ident: CR33
  article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15562-9
– volume: 7
  start-page: 290ra289
  year: 2015
  ident: CR36
  article-title: A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa5597
– volume: 4
  start-page: 421
  year: 2020
  end-page: 436
  ident: CR8
  article-title: Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0498-9
– volume: 17
  year: 2017
  ident: CR24
  article-title: Relative incidence and individual-level severity of seasonal influenza A H3N2 compared with 2009 pandemic H1N1
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-017-2432-7
– volume: 14
  start-page: 57
  year: 2014
  end-page: 69
  ident: CR61
  article-title: Pathogenesis of influenza-induced acute respiratory distress syndrome
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(13)70286-X
– volume: 18
  start-page: 134
  year: 2018
  end-page: 147
  ident: CR25
  article-title: Neutrophil extracellular traps in immunity and disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.105
– volume: 38
  start-page: E008
  year: 2020
  end-page: E008
  ident: CR40
  article-title: Efficacies of lopinavir/ritonavir and abidol in the treatment of novel coronavirus pneumonia (in Chinese). Chin
  publication-title: J. Infect. Dis.
– volume: 4
  start-page: 159ra147
  year: 2012
  ident: CR6
  article-title: A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3004249
– volume: 355
  start-page: 1845
  year: 2000
  end-page: 1850
  ident: CR27
  article-title: Efficacy and safety of oseltamivir in treatment of acute influenza: a randomised controlled trial. Neuraminidase Inhibitor Flu Treatment Investigator Group
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02288-1
– volume: 360
  start-page: 1831
  year: 2002
  end-page: 1837
  ident: CR26
  article-title: Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)11772-7
– volume: 3
  start-page: 1278
  year: 2020
  end-page: 1292
  ident: CR43
  article-title: Virtual and in vitro antiviral screening revive therapeutic drugs for COVID-19
  publication-title: ACS Pharm. Transl. Sci.
  doi: 10.1021/acsptsci.0c00131
– volume: 3
  start-page: e208857
  year: 2020
  ident: CR2
  article-title: Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.8857
– ident: CR18
– volume: 9
  year: 2019
  ident: CR57
  article-title: In vivo activity of amodiaquine against Ebola virus infection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56481-0
– volume: 41
  start-page: 513
  year: 2020
  end-page: 517
  ident: CR13
  article-title: In vitro and animal models for SARS-CoV-2 research
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2020.05.005
– volume: 150
  start-page: 1023
  year: 2005
  end-page: 1031
  ident: CR38
  article-title: Susceptibility of different eukaryotic cell lines to SARS-coronavirus
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-004-0461-1
– ident: CR47
– volume: 4
  start-page: 394
  year: 2020
  end-page: 406
  ident: CR7
  article-title: On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0495-z
– volume: 383
  start-page: 517
  year: 2020
  end-page: 525
  ident: CR1
  article-title: A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2016638
– volume: 13
  start-page: 151
  year: 2016
  end-page: 157
  ident: CR17
  article-title: Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3697
– volume: 5
  start-page: 190ra179
  year: 2013
  ident: CR35
  article-title: FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3005471
– volume: 178
  start-page: 133
  year: 2013
  end-page: 145
  ident: CR12
  article-title: Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2013.03.003
– volume: 37
  start-page: 101873
  year: 2020
  ident: CR42
  article-title: Antimalarial drugs inhibit the replication of SARS-CoV-2: an in vitro evaluation
  publication-title: Travel Med. Infect. Dis.
  doi: 10.1016/j.tmaid.2020.101873
– ident: CR56
– volume: 181
  start-page: 1036
  year: 2020
  end-page: 1045
  ident: CR62
  article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.026
– volume: 26
  start-page: 681
  year: 2020
  end-page: 687
  ident: CR21
  article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0868-6
– volume: 4
  start-page: 263
  year: 2003
  end-page: 275
  ident: CR14
  article-title: VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00241-1
– volume: 117
  start-page: 7001
  year: 2020
  end-page: 7003
  ident: CR39
  article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2002589117
– volume: 328
  start-page: 1662
  year: 2010
  end-page: 1668
  ident: CR5
  article-title: Reconstituting organ-level lung functions on a chip
  publication-title: Science
  doi: 10.1126/science.1188302
– volume: 374
  start-page: 23
  year: 2016
  end-page: 32
  ident: CR59
  article-title: Effect of artesunate–amodiaquine on mortality related to Ebola virus disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504605
– ident: CR48
– volume: 99
  start-page: 113
  year: 2013
  end-page: 118
  ident: CR22
  article-title: The lung microvascular endothelium as a therapeutic target in severe influenza
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2013.05.003
– volume: 40
  start-page: 99
  year: 2019
  end-page: 100
  ident: CR30
  article-title: Influenza treatment with antiviral medications
  publication-title: Geriatr. Nurs.
  doi: 10.1016/j.gerinurse.2018.12.007
– ident: CR55
– volume: 579
  start-page: 265
  year: 2020
  end-page: 269
  ident: CR32
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 16
  start-page: 378
  year: 2016
  end-page: 391
  ident: CR53
  article-title: Neutrophil migration in infection and wound repair: going forward in reverse
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.49
– volume: 6
  start-page: 846
  year: 2018
  end-page: 854
  ident: CR10
  article-title: Tropism, replication competence, and innate immune responses of influenza virus: an analysis of human airway organoids and ex-vivo bronchus cultures
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(18)30236-4
– volume: 35
  start-page: 165
  year: 1986
  end-page: 166
  ident: CR60
  article-title: International notes agranulocytosis associated with the use of amodiaquine for malaria prophylaxis
  publication-title: MMWR
– volume: 35
  start-page: 165
  year: 1986
  ident: 718_CR60
  publication-title: MMWR
– volume: 99
  start-page: 113
  year: 2013
  ident: 718_CR22
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2013.05.003
– volume: 38
  start-page: E008
  year: 2020
  ident: 718_CR40
  publication-title: J. Infect. Dis.
– volume: 11
  year: 2020
  ident: 718_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15562-9
– volume: 3
  start-page: e208857
  year: 2020
  ident: 718_CR2
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.8857
– volume: 40
  start-page: 99
  year: 2019
  ident: 718_CR30
  publication-title: Geriatr. Nurs.
  doi: 10.1016/j.gerinurse.2018.12.007
– volume: 29
  start-page: 79
  year: 2018
  ident: 718_CR11
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2018.04.001
– volume: 178
  start-page: 133
  year: 2013
  ident: 718_CR12
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2013.03.003
– volume: 535
  start-page: 169
  year: 2016
  ident: 718_CR37
  publication-title: Nature
  doi: 10.1038/nature18615
– volume: 579
  start-page: 265
  year: 2020
  ident: 718_CR32
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 117
  start-page: 16587
  year: 2020
  ident: 718_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2018975117
– ident: 718_CR55
  doi: 10.1128/AAC.00819-20
– ident: 718_CR54
  doi: 10.1016/j.medj.2020.04.001
– volume: 3
  start-page: 1278
  year: 2020
  ident: 718_CR43
  publication-title: ACS Pharm. Transl. Sci.
  doi: 10.1021/acsptsci.0c00131
– ident: 718_CR49
  doi: 10.1101/2020.08.10.243220
– ident: 718_CR45
  doi: 10.3390/v12070779
– ident: 718_CR50
  doi: 10.1002/advs.202002928
– volume: 5
  start-page: 190ra179
  year: 2013
  ident: 718_CR35
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3005471
– volume: 4
  start-page: 263
  year: 2003
  ident: 718_CR14
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00241-1
– volume: 374
  start-page: 23
  year: 2016
  ident: 718_CR59
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504605
– volume: 13
  start-page: 151
  year: 2016
  ident: 718_CR17
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3697
– volume: 17
  year: 2017
  ident: 718_CR24
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-017-2432-7
– ident: 718_CR46
  doi: 10.1016/j.immuni.2021.01.017
– volume: 360
  start-page: 1831
  year: 2002
  ident: 718_CR26
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)11772-7
– volume: 24
  start-page: 16
  year: 2017
  ident: 718_CR29
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2017.03.018
– volume: 46
  start-page: 239
  year: 2016
  ident: 718_CR19
  publication-title: Shock
  doi: 10.1097/SHK.0000000000000633
– volume: 16
  start-page: 378
  year: 2016
  ident: 718_CR53
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.49
– volume: 7
  start-page: 290ra289
  year: 2015
  ident: 718_CR36
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa5597
– volume: 37
  start-page: 101873
  year: 2020
  ident: 718_CR42
  publication-title: Travel Med. Infect. Dis.
  doi: 10.1016/j.tmaid.2020.101873
– volume: 312
  start-page: 399
  year: 2006
  ident: 718_CR23
  publication-title: Science
  doi: 10.1126/science.1125548
– ident: 718_CR15
  doi: 10.1039/c9lc00492k
– volume: 64
  start-page: 683
  year: 2008
  ident: 718_CR41
  publication-title: Eur. J. Clin. Pharm.
  doi: 10.1007/s00228-007-0452-8
– volume: 6
  start-page: 846
  year: 2018
  ident: 718_CR10
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(18)30236-4
– ident: 718_CR48
  doi: 10.1128/JVI.00110-21
– volume: 4
  start-page: 159ra147
  year: 2012
  ident: 718_CR6
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3004249
– volume: 34
  start-page: 133
  year: 2009
  ident: 718_CR58
  publication-title: Eur. J. Drug Metab. Pharmacokinet.
  doi: 10.1007/BF03191163
– volume: 5
  start-page: 562
  year: 2020
  ident: 718_CR34
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– volume: 150
  start-page: 1023
  year: 2005
  ident: 718_CR38
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-004-0461-1
– ident: 718_CR51
  doi: 10.14573/altex.2001241
– volume: 181
  start-page: 1036
  year: 2020
  ident: 718_CR62
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.026
– volume: 115
  start-page: 6822
  year: 2018
  ident: 718_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806308115
– ident: 718_CR18
  doi: 10.3390/cells5040040
– ident: 718_CR47
  doi: 10.1101/2020.04.13.039917
– volume: 10
  year: 2019
  ident: 718_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11249-y
– volume: 4
  start-page: eaau8408
  year: 2018
  ident: 718_CR31
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau8408
– volume: 18
  start-page: 134
  year: 2018
  ident: 718_CR25
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.105
– volume: 4
  start-page: 394
  year: 2020
  ident: 718_CR7
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0495-z
– ident: 718_CR16
  doi: 10.1002/advs.202002030
– volume: 383
  start-page: 517
  year: 2020
  ident: 718_CR1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2016638
– ident: 718_CR4
  doi: 10.1038/s41467-020-17907-w
– volume: 15
  start-page: 247
  year: 2020
  ident: 718_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0674-9
– volume: 4
  start-page: 421
  year: 2020
  ident: 718_CR8
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0498-9
– ident: 718_CR56
  doi: 10.1128/JVI.01218-20
– volume: 9
  year: 2019
  ident: 718_CR57
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56481-0
– volume: 181
  start-page: 271
  year: 2020
  ident: 718_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 41
  start-page: 513
  year: 2020
  ident: 718_CR13
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2020.05.005
– volume: 117
  start-page: 7001
  year: 2020
  ident: 718_CR39
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2002589117
– volume: 58
  start-page: 37
  year: 2018
  ident: 718_CR9
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010716-104748
– volume: 328
  start-page: 1662
  year: 2010
  ident: 718_CR5
  publication-title: Science
  doi: 10.1126/science.1188302
– volume: 355
  start-page: 1845
  year: 2000
  ident: 718_CR27
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02288-1
– volume: 26
  start-page: 681
  year: 2020
  ident: 718_CR21
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0868-6
– volume: 14
  start-page: 57
  year: 2014
  ident: 718_CR61
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(13)70286-X
SSID ssj0001934975
Score 2.5988498
Snippet The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 815
SubjectTerms 13/106
13/107
13/21
13/62
59/5
631/154/1435
631/1647/277
631/326/596/1578
631/326/596/4130
631/61/32
82/47
82/58
Amodiaquine
Animals
Antiviral agents
Antiviral Agents - pharmacology
Antiviral Agents - therapeutic use
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Cell Line
Cell lines
Coronaviruses
COVID-19 - diagnosis
COVID-19 - virology
COVID-19 Drug Treatment
COVID-19 Testing - methods
Cricetinae
Cytokines
Drug development
Drug dosages
Drugs
Endothelium
Epithelium
Female
Green Fluorescent Proteins
Hamsters
Humans
Hydroxychloroquine
Immune system
Immunosuppressive agents
Influenza A
Lab-On-A-Chip Devices
Male
Microfluidics
Oseltamivir
Pandemics
Respiratory diseases
Respiratory tract
SARS-CoV-2 - drug effects
Severe acute respiratory syndrome coronavirus 2
Viral diseases
Virulence
Virus Internalization - drug effects
Windows (intervals)
Title A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics
URI https://link.springer.com/article/10.1038/s41551-021-00718-9
https://www.ncbi.nlm.nih.gov/pubmed/33941899
https://www.proquest.com/docview/2586667140
https://www.proquest.com/docview/2522191101
https://pubmed.ncbi.nlm.nih.gov/PMC8387338
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7W9GV9GNvadd66okHfVlHbsmz5aXSjWRmslLJC34x-UtNgZ3HK2H-_k6Ikzcr6EAix7Nj-pNN30t13AEeZrErlMks5M5IWlpdUFujzWJbqrDB5Ka3Pd_5xUZ5fF99v-E1ccBtiWOXSJgZDbXrt18hPci6QaXt5uc_TX9RXjfK7q7GExhZsowkWfATbX84uLq_Wqyw1K-qKx2yZlImTwc-g6EHn-MHpFUf75oz0iGY-jpb8Z8s0zETjl_AiUkhyusD8FTyz3WvYeSAsuAt3pyQU36Oynf2Wf2iP36i-bacEOSpBzkdmctoa0poYLBTwIb0j2qe5-FUAgq-89RHAE_IgR2vAnw3Bu0d0JiG_atiD6_HZz6_nNJZVoBrp2ZwGBfi61MJK5Sqn08I4Wao8aPkxqTR6QLVCkJwyyBeVkdxL6FQuS1NVasnewKjrO_sWiNW5sRzNPWd4FamkE05zbmvBFPIqlUC2fLWNjprjvvTFpAl730w0CzgahKMJcDR1Ap9W50wXihtPtj5YItbE0Tc0676SwMfVYRw3fjNEdra_921yNNZIfrIE9hcAr_6OsbrI0BFNoNqAftXAa3JvHuna26DNLZio0OtP4HjZSda39f-nePf0U7yH53nosD7u8ABG89m9_YBcaK4OYUuMvx3Gbv8XbHcLFQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEG8CBYwEJ7Ca2HEeB4QKtNrSdoVQK_UW_IoasUqWzVZV_xS_kbGT7Hap6K2HlaKNkziZsecbe-YbgLeRTBNVRpYKbiSNrUiojNHnsTzUUWxYIq3Ldz4cJ6Pj-NuJOFmDP0MujAurHOZEP1GbRrs18i0mMkTajl7u0_Q3dVWj3O7qUEKjU4t9e3GOLlv7ce8ryvcdY7s7R19GtK8qQDWikzn1BOh5ojMrVZmWOoxNKRPFPJUdl0qjA5Ar7GOpDMIlZaRwDDJpGYWhSrTkeN9bsIEwI8dRtPF5Z_z9x3JVJ-dxnoo-Oyfk2VbrLDZ67Ax_aM5xdlm1gFdg7dXozH-2aL3l270P93rISrY7HXsAa7Z-CHcvERk-gl_bxBf7o7KancsL2uAR1afVlCAmJogxyUxOK0Mq0wcneX0gTUm0S6txqw4ERVy5iOMJuZQT1uLfhmDvURsmPp-rfQzHN_LBn8B63dT2GRCrmbECzYvgeBepZJmVWgibZ1whjlMBRMOnLXTPce5KbUwKv9fOs6ITR4HiKLw4ijyA94trph3Dx7WtNweJFf1ob4ulbgbwZnEax6nbfJG1bc5cG4bGAcFWFMDTTsCLx3GexxE6vgGkK6JfNHAc4Ktn6urUc4FnPEs5zwL4MCjJslv_f4vn17_Fa7g9Ojo8KA72xvsv4A7zyutiHjdhfT47sy8Rh83Vq175Cfy86fH2F9ugSAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+human-airway-on-a-chip+for+the+rapid+identification+of+candidate+antiviral+therapeutics+and+prophylactics&rft.jtitle=Nature+biomedical+engineering&rft.au=Si%2C+Longlong&rft.au=Bai%2C+Haiqing&rft.au=Rodas%2C+Melissa&rft.au=Cao%2C+Wuji&rft.date=2021-08-01&rft.eissn=2157-846X&rft.volume=5&rft.issue=8&rft.spage=815&rft.epage=829&rft_id=info:doi/10.1038%2Fs41551-021-00718-9&rft_id=info%3Apmid%2F33941899&rft.externalDocID=PMC8387338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon