Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress

Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially...

Full description

Saved in:
Bibliographic Details
Published inCell death discovery Vol. 6; no. 1; p. 83
Main Authors Jawaid, Paras, Rehman, Mati Ur, Zhao, Qing-Li, Misawa, Masaki, Ishikawa, Kenji, Hori, Masaru, Shimizu, Tadamichi, Saitoh, Jun-ichi, Noguchi, Kyo, Kondo, Takashi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O 2 • − ) and hydroxyl radical ( • OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies.
AbstractList Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O 2 • − ) and hydroxyl radical ( • OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies.
Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O ) and hydroxyl radical ( OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies.
Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O2• -) and hydroxyl radical (•OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies.Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O2• -) and hydroxyl radical (•OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies.
Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O2• −) and hydroxyl radical (•OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies.
ArticleNumber 83
Author Ishikawa, Kenji
Kondo, Takashi
Rehman, Mati Ur
Hori, Masaru
Jawaid, Paras
Saitoh, Jun-ichi
Noguchi, Kyo
Zhao, Qing-Li
Misawa, Masaki
Shimizu, Tadamichi
Author_xml – sequence: 1
  givenname: Paras
  surname: Jawaid
  fullname: Jawaid, Paras
  email: paras.jawaid@yahoo.com
  organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama
– sequence: 2
  givenname: Mati Ur
  surname: Rehman
  fullname: Rehman, Mati Ur
  email: rehman.mu84@yahoo.com
  organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama
– sequence: 3
  givenname: Qing-Li
  surname: Zhao
  fullname: Zhao, Qing-Li
  organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama
– sequence: 4
  givenname: Masaki
  surname: Misawa
  fullname: Misawa, Masaki
  organization: Theranostic Devices Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 5
  givenname: Kenji
  surname: Ishikawa
  fullname: Ishikawa, Kenji
  organization: Center for Low-temperature Plasma Science, Nagoya University
– sequence: 6
  givenname: Masaru
  surname: Hori
  fullname: Hori, Masaru
  organization: Center for Low-temperature Plasma Science, Nagoya University
– sequence: 7
  givenname: Tadamichi
  surname: Shimizu
  fullname: Shimizu, Tadamichi
  organization: Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama
– sequence: 8
  givenname: Jun-ichi
  surname: Saitoh
  fullname: Saitoh, Jun-ichi
  organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama
– sequence: 9
  givenname: Kyo
  surname: Noguchi
  fullname: Noguchi, Kyo
  organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama
– sequence: 10
  givenname: Takashi
  surname: Kondo
  fullname: Kondo, Takashi
  organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32963811$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1UREvpC7BAltiwCfg3yWyQUAUtUiUWhbV149zMuHLsYCejaR-FpyVhOlC66OLKtvydo3Pt-5IchRiQkNecvedM1h-y4kqwgi3FJFfF7hk5EUzXRVXx8ujB_pic5XzDGOO6UlUtX5BjKValrDk_Ib-ue_CeZneHdB19SwOEOEAanfWYKYYNBIsUhjiMMbtcuNBOFlva3FK78DD2MQ8bTM7SwUPugW4d0BYHj6OLgcaOujAmsOj95CHRi-tLCqGlfWxd5ywcqLhz7XzYIs1jwpxfkecd-Ixn9-sp-fHl8_fzy-Lq28XX809XhdWKjQXXTHQaFDQgLcOqURqxwRU2jSrLWmoGsOItSKlFhwAgVroUlcamtNBWSp6Sj3vfYWp6bC0uab0Zkush3ZoIzvx_E9zGrOPWVKqWaq5T8u7eIMWfE-bR9C4v7ULAOGUjlNJKlEzJGX37CL2JUwpzewvFZS1LXs3Um4eJ_kY5fNsM1HvApphzws5YN_55yDmg84YzswyJ2Q-JYUstQ2J2s1Q8kh7cnxTJvSjPcFhj-hf7CdVvTVHT3g
CitedBy_id crossref_primary_10_1002_smll_202201462
crossref_primary_10_1039_D4NR02466D
crossref_primary_10_1016_j_freeradbiomed_2021_12_311
crossref_primary_10_3390_molecules28031461
crossref_primary_10_1186_s12964_023_01382_z
crossref_primary_10_1080_15376516_2021_1949083
crossref_primary_10_3390_nano11030727
crossref_primary_10_2147_JIR_S327292
crossref_primary_10_1016_j_biopha_2023_115557
crossref_primary_10_3390_nano11030806
crossref_primary_10_1016_j_biomaterials_2021_121110
crossref_primary_10_1039_D4TB00968A
crossref_primary_10_1007_s11426_023_1839_4
crossref_primary_10_1515_ntrev_2022_0502
crossref_primary_10_3390_jnt4020007
crossref_primary_10_1016_j_ceramint_2023_07_221
crossref_primary_10_1134_S1063780X24601597
crossref_primary_10_3390_microorganisms10020437
crossref_primary_10_1134_S0006350921060063
crossref_primary_10_1186_s12951_021_01203_w
crossref_primary_10_1038_s41598_021_94130_7
crossref_primary_10_3390_nano11082048
crossref_primary_10_1021_acsomega_1c05822
crossref_primary_10_1021_acs_langmuir_3c01983
crossref_primary_10_1088_2043_6262_adb55c
crossref_primary_10_3389_fimmu_2023_1128582
crossref_primary_10_1016_j_ijbiomac_2023_123796
crossref_primary_10_1016_j_bioadv_2024_213855
crossref_primary_10_3390_pharmaceutics15020432
crossref_primary_10_1515_med_2024_1041
crossref_primary_10_1016_j_phyplu_2021_100056
crossref_primary_10_1007_s12011_022_03229_z
crossref_primary_10_1016_j_procbio_2023_06_009
crossref_primary_10_1021_acs_inorgchem_4c01072
crossref_primary_10_3390_cimb46110727
crossref_primary_10_1002_ppsc_202100202
crossref_primary_10_1186_s41110_023_00191_1
crossref_primary_10_3389_fmats_2022_933749
crossref_primary_10_1007_s12668_022_01040_7
crossref_primary_10_1080_10715762_2023_2230351
crossref_primary_10_1016_j_mattod_2022_03_001
crossref_primary_10_1186_s12951_022_01750_w
crossref_primary_10_1039_D1SC04183E
crossref_primary_10_1016_j_jics_2021_100161
crossref_primary_10_1186_s12896_024_00905_x
crossref_primary_10_3390_cells13242139
crossref_primary_10_3390_pharmaceutics13101719
crossref_primary_10_3390_ijms252111687
crossref_primary_10_3390_nano12193397
crossref_primary_10_1016_j_redox_2025_103515
crossref_primary_10_1021_acsabm_3c00130
crossref_primary_10_1038_s41419_022_04660_9
crossref_primary_10_1007_s42247_023_00572_2
crossref_primary_10_5812_ijpr_150385
crossref_primary_10_1088_1361_6463_ad34df
crossref_primary_10_1021_acsomega_2c01313
crossref_primary_10_3390_molecules29112438
crossref_primary_10_35339_ic_8_4_278_289
crossref_primary_10_1155_2021_2990326
crossref_primary_10_1371_journal_pone_0279120
crossref_primary_10_1038_s41598_023_28678_x
Cites_doi 10.1038/aps.2011.82
10.3390/biomedicines5030038
10.1111/jcmm.12880
10.1016/j.biomaterials.2016.02.014
10.2147/IJN.S31751
10.1038/s41598-017-11877-8
10.1016/j.msec.2014.08.045
10.5114/aoms.2015.48221
10.1155/2013/972913
10.1016/j.abb.2016.04.005
10.1042/bj2220001
10.1371/journal.pone.0016270
10.1038/srep29098
10.1088/0022-3727/44/17/174018
10.1038/sj.cr.7290045
10.1021/cs100043j
10.1021/mp800051m
10.1088/0022-3727/47/33/335402
10.1016/S0168-3659(02)00127-X
10.1016/S0378-5173(02)00315-0
10.1038/s41598-018-23262-0
10.1088/0022-3727/42/3/032005
10.1016/S0008-6363(02)00646-6
10.1016/j.redox.2015.05.002
10.1023/A:1012126301290
10.1016/S0169-409X(02)00044-3
10.1039/B821763G
10.1038/nature07194
10.1002/jlb.65.3.337
10.1002/ppap.200700066
10.1016/j.freeradbiomed.2018.10.434
10.1038/srep21974
10.1016/j.toxlet.2011.04.013
10.1021/nn5008572
10.1002/ppap.201500093
10.1002/smll.200900466
10.4049/jimmunol.139.10.3199
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41420-020-00314-x
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
ProQuest Central Student

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2058-7716
ExternalDocumentID PMC7483448
32963811
10_1038_s41420_020_00314_x
Genre Journal Article
GrantInformation_xml – fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 19K17263; 18K07668
  funderid: https://doi.org/10.13039/501100001691
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 18K07668
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 19K17263
– fundername: ;
  grantid: 19K17263; 18K07668
GroupedDBID 0R~
3V.
53G
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
ABUWG
ACSMW
ADBBV
ADRAZ
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
LK8
M48
M7P
M~E
NAO
OK1
PGMZT
PQQKQ
PROAC
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
EJD
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-1502f5a4aba3c0e7b45eebe9ebb4668350aa91da3352feaaa2956275eb6cad743
IEDL.DBID 7X7
ISSN 2058-7716
IngestDate Thu Aug 21 13:34:46 EDT 2025
Fri Jul 11 02:15:35 EDT 2025
Wed Aug 13 10:55:58 EDT 2025
Thu Jan 02 22:55:27 EST 2025
Thu Apr 24 23:03:33 EDT 2025
Tue Jul 01 02:29:00 EDT 2025
Fri Feb 21 02:38:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Radiotherapy
Apoptosis
Language English
License The Author(s) 2020.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-1502f5a4aba3c0e7b45eebe9ebb4668350aa91da3352feaaa2956275eb6cad743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41420-020-00314-x
PMID 32963811
PQID 2441383617
PQPubID 2041962
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7483448
proquest_miscellaneous_2445426043
proquest_journals_2441383617
pubmed_primary_32963811
crossref_citationtrail_10_1038_s41420_020_00314_x
crossref_primary_10_1038_s41420_020_00314_x
springer_journals_10_1038_s41420_020_00314_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-10
PublicationDateYYYYMMDD 2020-09-10
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: New York
PublicationTitle Cell death discovery
PublicationTitleAbbrev Cell Death Discov
PublicationTitleAlternate Cell Death Discov
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
References Brigger, Dubernet, Couvreur (CR4) 2002; 54
Moniruzzaman (CR18) 2017; 15
Cheng (CR30) 2015; 12
Moniruzzaman (CR17) 2018; 129
Turner (CR25) 2018; 454
He (CR19) 2018; 28
Jawaid (CR13) 2016; 20
Nitobe (CR15) 2003; 57
Desai, Labhasetwar, Walter, Levy, Amidon (CR33) 1997; 14
Silveira (CR3) 2014; 44
Alexis, Pridgen, Molnar, Farokhzad (CR31) 2008; 5
Slater (CR37) 1984; 222
Irani, Shahmirani, Atyabi, Mirpoor (CR10) 2015; 11
Yin (CR39) 2000; 10
Pan (CR36) 2009; 5
Manke, Wang, Rojanasakul (CR23) 2013; 2013
Kalghatgi (CR6) 2011; 6
Zhu (CR12) 2016; 6
Prabha, Zhou, Panyam, Labhasetwar (CR32) 2002; 244
Liu, Tsunoyama, Akita, Xie, Tsukuda (CR26) 2011; 1
Thomas (CR22) 2015; 5
Sellins, Cohen (CR14) 1987; 139
Rehman, Jawaid, Uchiyama, Kondo (CR5) 2016; 605
Lim, Li, Ng, Yung, Bay (CR35) 2011; 32
Coulter (CR28) 2012; 7
Traverso (CR24) 2013; 2013
Finkel (CR38) 1999; 65
Siddiqui, Adhami, Chamcheu, Mukhtar (CR1) 2012; 7
Kaushik (CR21) 2016; 87
Kong, Keidar, Ostrikov (CR29) 2011; 44
Cheng (CR11) 2014; 47
Girard (CR8) 2016; 6
Huo (CR27) 2014; 24
Laroussi, Akan (CR7) 2007; 4
Lu (CR16) 2011; 204
Cobley, Chen, Cho, Wang, Xia (CR2) 2011; 40
Kim (CR20) 2008; 42
Saho, Panyam, Prabha, Labhasetwar (CR34) 2002; 82
Aryal, Bisht (CR9) 2017; 5
S Irani (314_CR10) 2015; 11
N Traverso (314_CR24) 2013; 2013
M Turner (314_CR25) 2018; 454
P Jawaid (314_CR13) 2016; 20
NK Kaushik (314_CR21) 2016; 87
Y Pan (314_CR36) 2009; 5
MP Desai (314_CR33) 1997; 14
F Alexis (314_CR31) 2008; 5
S Huo (314_CR27) 2014; 24
GC Kim (314_CR20) 2008; 42
A Manke (314_CR23) 2013; 2013
I Brigger (314_CR4) 2002; 54
W Zhu (314_CR12) 2016; 6
X Cheng (314_CR30) 2015; 12
MU Rehman (314_CR5) 2016; 605
T Finkel (314_CR38) 1999; 65
Y Liu (314_CR26) 2011; 1
XM Yin (314_CR39) 2000; 10
S Aryal (314_CR9) 2017; 5
CM Cobley (314_CR2) 2011; 40
X Cheng (314_CR11) 2014; 47
R Moniruzzaman (314_CR17) 2018; 129
S Kalghatgi (314_CR6) 2011; 6
J Nitobe (314_CR15) 2003; 57
M Laroussi (314_CR7) 2007; 4
MG Kong (314_CR29) 2011; 44
R Moniruzzaman (314_CR18) 2017; 15
DD Thomas (314_CR22) 2015; 5
JA Coulter (314_CR28) 2012; 7
KS Sellins (314_CR14) 1987; 139
PC Silveira (314_CR3) 2014; 44
ZZJ Lim (314_CR35) 2011; 32
Z He (314_CR19) 2018; 28
SK Saho (314_CR34) 2002; 82
S Prabha (314_CR32) 2002; 244
TF Slater (314_CR37) 1984; 222
PM Girard (314_CR8) 2016; 6
I Siddiqui (314_CR1) 2012; 7
TH Lu (314_CR16) 2011; 204
References_xml – volume: 32
  start-page: 983
  year: 2011
  end-page: 990
  ident: CR35
  article-title: Gold nanoparticles in cancer therapy
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2011.82
– volume: 5
  start-page: 38
  year: 2017
  ident: CR9
  article-title: New Paradigm for a targeted cancer therapeutic approach: a short review on potential synergy of Gold nanoparticles and Cold atmospheric plasma
  publication-title: Biomedicines
  doi: 10.3390/biomedicines5030038
– volume: 20
  start-page: 1737
  year: 2016
  end-page: 1748
  ident: CR13
  article-title: Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.12880
– volume: 87
  start-page: 118
  year: 2016
  end-page: 130
  ident: CR21
  article-title: Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and E.M.T
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.02.014
– volume: 7
  start-page: 2673
  year: 2012
  end-page: 2685
  ident: CR28
  article-title: Cell type–dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S31751
– volume: 15
  year: 2017
  ident: CR18
  article-title: Cold atmospheric helium plasma causes synergistic enhancement in cell death with hyperthermia and an additive enhancement with radiation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11877-8
– volume: 44
  start-page: 380
  year: 2014
  end-page: 385
  ident: CR3
  article-title: Iontophoresis with Gold nanoparticles improves mitochondrial activity and oxidative stress markers of burn wounds
  publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl.
  doi: 10.1016/j.msec.2014.08.045
– volume: 11
  start-page: 1286
  year: 2015
  end-page: 1295
  ident: CR10
  article-title: Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles
  publication-title: Arch. Med. Sci.
  doi: 10.5114/aoms.2015.48221
– volume: 139
  start-page: 3199
  year: 1987
  end-page: 3206
  ident: CR14
  article-title: Gene induction by gamma-irradiation leads to D.N.A. fragmentation in lymphocytes
  publication-title: J. Immunol.
– volume: 2013
  start-page: 972913
  year: 2013
  ident: CR24
  article-title: role of glutathione in cancer progression and chemoresistance
  publication-title: Oxid. Med. Cell Longev.
  doi: 10.1155/2013/972913
– volume: 605
  start-page: 19
  year: 2016
  end-page: 25
  ident: CR5
  article-title: Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2016.04.005
– volume: 222
  start-page: 1
  year: 1984
  end-page: 15
  ident: CR37
  article-title: Free-radical mechanisms in tissue injury
  publication-title: J. Biochem.
  doi: 10.1042/bj2220001
– volume: 6
  year: 2011
  ident: CR6
  article-title: Effects of non-thermal plasma on mammalian cells
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0016270
– volume: 6
  year: 2016
  ident: CR8
  article-title: Synergistic effect of H2O2 and NO2 in cell death induced by cold atmospheric He Plasma
  publication-title: Sci. Rep.
  doi: 10.1038/srep29098
– volume: 44
  start-page: 174018
  year: 2011
  ident: CR29
  article-title: Plasmas meet nanoparticles—where synergies can advance the frontier of medicine
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/44/17/174018
– volume: 10
  start-page: 161
  year: 2000
  end-page: 167
  ident: CR39
  article-title: Signal transduction mediated by Bid, a pro-death Bcl-2 family protein, connects the death receptor and mitochondria apoptosis pathways
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7290045
– volume: 1
  start-page: 2
  year: 2011
  end-page: 6
  ident: CR26
  article-title: Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: size effect in the Sub-2 nm regime
  publication-title: ACS Catal.
  doi: 10.1021/cs100043j
– volume: 5
  start-page: 505
  year: 2008
  end-page: 515
  ident: CR31
  article-title: Factors affecting the clearance and biodistribution of polymeric nanoparticles
  publication-title: Mol. Pharm.
  doi: 10.1021/mp800051m
– volume: 47
  start-page: 335402.e
  year: 2014
  ident: CR11
  article-title: Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/47/33/335402
– volume: 82
  start-page: 105
  year: 2002
  end-page: 114
  ident: CR34
  article-title: Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake
  publication-title: Control Release
  doi: 10.1016/S0168-3659(02)00127-X
– volume: 244
  start-page: 105
  year: 2002
  end-page: 115
  ident: CR32
  article-title: Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(02)00315-0
– volume: 28
  year: 2018
  ident: CR19
  article-title: Cold Atmospheric Plasma induces ATP-Dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23262-0
– volume: 42
  start-page: 32005
  year: 2008
  ident: CR20
  article-title: Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/42/3/032005
– volume: 57
  start-page: 119
  year: 2003
  end-page: 128
  ident: CR15
  article-title: Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes
  publication-title: Cardiovasc. Res.
  doi: 10.1016/S0008-6363(02)00646-6
– volume: 5
  start-page: 225
  year: 2015
  end-page: 233
  ident: CR22
  article-title: Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2015.05.002
– volume: 14
  start-page: 1568
  year: 1997
  end-page: 1573
  ident: CR33
  article-title: The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent
  publication-title: Pharm. Res.
  doi: 10.1023/A:1012126301290
– volume: 54
  start-page: 631
  year: 2002
  end-page: 651
  ident: CR4
  article-title: Nanoparticles in cancer therapy and diagnosis
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(02)00044-3
– volume: 40
  start-page: 44
  year: 2011
  end-page: 56
  ident: CR2
  article-title: Gold nanostructures: a class of multifunctional materials for biomedical applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B821763G
– volume: 454
  start-page: 981
  year: 2018
  end-page: 983
  ident: CR25
  article-title: Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters
  publication-title: Nature
  doi: 10.1038/nature07194
– volume: 7
  start-page: 591
  year: 2012
  end-page: 605
  ident: CR1
  article-title: Impact of nanotechnology in cancer: emphasis on nanochemoprevention
  publication-title: Int. J. Nanomed.
– volume: 2013
  start-page: 942916
  year: 2013
  ident: CR23
  article-title: Mechanisms of nanoparticle-induced oxidative stress and toxicity
  publication-title: Bio. Med. Res. Int.
– volume: 65
  start-page: 337
  year: 1999
  end-page: 340
  ident: CR38
  article-title: Signal transduction by reactive oxygen species in non-phagocytic cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/jlb.65.3.337
– volume: 4
  start-page: 777
  year: 2007
  end-page: 788
  ident: CR7
  article-title: Arc-free atmospheric pressure cold plasma jets: a review
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200700066
– volume: 129
  start-page: 537
  year: 2018
  end-page: 547
  ident: CR17
  article-title: Roles of intracellular and extracellular R.O.S. formation in apoptosis induced by cold atmospheric helium plasma and X-irradiation in the presence of sulfasalazine
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.10.434
– volume: 6
  year: 2016
  ident: CR12
  article-title: Synergestic effects of cold atmospheric plasma and drug loaded core-shell nanoparticles on inhibiting breast cancer cell growth
  publication-title: Sci. Rep.
  doi: 10.1038/srep21974
– volume: 204
  start-page: 71
  year: 2011
  end-page: 80
  ident: CR16
  article-title: Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2011.04.013
– volume: 24
  start-page: 5852
  year: 2014
  end-page: 5862
  ident: CR27
  article-title: Ultrasmall gold nanoparticles as carries for nucleus-based gene therapy due to size-dependent nuclear entry
  publication-title: ACS Nano
  doi: 10.1021/nn5008572
– volume: 12
  start-page: 1364
  year: 2015
  end-page: 1369
  ident: CR30
  article-title: Cold plasma accelerates the uptake of gold nanoparticles into glioblastoma cells
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201500093
– volume: 5
  start-page: 2067
  year: 2009
  end-page: 2076
  ident: CR36
  article-title: Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage
  publication-title: Small
  doi: 10.1002/smll.200900466
– volume: 87
  start-page: 118
  year: 2016
  ident: 314_CR21
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.02.014
– volume: 204
  start-page: 71
  year: 2011
  ident: 314_CR16
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2011.04.013
– volume: 6
  year: 2016
  ident: 314_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/srep29098
– volume: 2013
  start-page: 972913
  year: 2013
  ident: 314_CR24
  publication-title: Oxid. Med. Cell Longev.
  doi: 10.1155/2013/972913
– volume: 7
  start-page: 2673
  year: 2012
  ident: 314_CR28
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S31751
– volume: 7
  start-page: 591
  year: 2012
  ident: 314_CR1
  publication-title: Int. J. Nanomed.
– volume: 4
  start-page: 777
  year: 2007
  ident: 314_CR7
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200700066
– volume: 605
  start-page: 19
  year: 2016
  ident: 314_CR5
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2016.04.005
– volume: 65
  start-page: 337
  year: 1999
  ident: 314_CR38
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/jlb.65.3.337
– volume: 454
  start-page: 981
  year: 2018
  ident: 314_CR25
  publication-title: Nature
  doi: 10.1038/nature07194
– volume: 44
  start-page: 380
  year: 2014
  ident: 314_CR3
  publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl.
  doi: 10.1016/j.msec.2014.08.045
– volume: 47
  start-page: 335402.e
  year: 2014
  ident: 314_CR11
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/47/33/335402
– volume: 5
  start-page: 225
  year: 2015
  ident: 314_CR22
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2015.05.002
– volume: 6
  year: 2011
  ident: 314_CR6
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0016270
– volume: 6
  year: 2016
  ident: 314_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/srep21974
– volume: 42
  start-page: 32005
  year: 2008
  ident: 314_CR20
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/42/3/032005
– volume: 5
  start-page: 38
  year: 2017
  ident: 314_CR9
  publication-title: Biomedicines
  doi: 10.3390/biomedicines5030038
– volume: 222
  start-page: 1
  year: 1984
  ident: 314_CR37
  publication-title: J. Biochem.
  doi: 10.1042/bj2220001
– volume: 139
  start-page: 3199
  year: 1987
  ident: 314_CR14
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.139.10.3199
– volume: 11
  start-page: 1286
  year: 2015
  ident: 314_CR10
  publication-title: Arch. Med. Sci.
  doi: 10.5114/aoms.2015.48221
– volume: 2013
  start-page: 942916
  year: 2013
  ident: 314_CR23
  publication-title: Bio. Med. Res. Int.
– volume: 5
  start-page: 2067
  year: 2009
  ident: 314_CR36
  publication-title: Small
  doi: 10.1002/smll.200900466
– volume: 15
  year: 2017
  ident: 314_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11877-8
– volume: 28
  year: 2018
  ident: 314_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23262-0
– volume: 24
  start-page: 5852
  year: 2014
  ident: 314_CR27
  publication-title: ACS Nano
  doi: 10.1021/nn5008572
– volume: 44
  start-page: 174018
  year: 2011
  ident: 314_CR29
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/44/17/174018
– volume: 5
  start-page: 505
  year: 2008
  ident: 314_CR31
  publication-title: Mol. Pharm.
  doi: 10.1021/mp800051m
– volume: 14
  start-page: 1568
  year: 1997
  ident: 314_CR33
  publication-title: Pharm. Res.
  doi: 10.1023/A:1012126301290
– volume: 10
  start-page: 161
  year: 2000
  ident: 314_CR39
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7290045
– volume: 40
  start-page: 44
  year: 2011
  ident: 314_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B821763G
– volume: 129
  start-page: 537
  year: 2018
  ident: 314_CR17
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.10.434
– volume: 57
  start-page: 119
  year: 2003
  ident: 314_CR15
  publication-title: Cardiovasc. Res.
  doi: 10.1016/S0008-6363(02)00646-6
– volume: 20
  start-page: 1737
  year: 2016
  ident: 314_CR13
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.12880
– volume: 12
  start-page: 1364
  year: 2015
  ident: 314_CR30
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201500093
– volume: 244
  start-page: 105
  year: 2002
  ident: 314_CR32
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(02)00315-0
– volume: 54
  start-page: 631
  year: 2002
  ident: 314_CR4
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(02)00044-3
– volume: 82
  start-page: 105
  year: 2002
  ident: 314_CR34
  publication-title: Control Release
  doi: 10.1016/S0168-3659(02)00127-X
– volume: 1
  start-page: 2
  year: 2011
  ident: 314_CR26
  publication-title: ACS Catal.
  doi: 10.1021/cs100043j
– volume: 32
  start-page: 983
  year: 2011
  ident: 314_CR35
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2011.82
SSID ssj0001574783
Score 2.4036167
Snippet Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms 631/67/1059/485
631/80/82/23
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
Cell death
Glutathione
Gold
Helium
Hydroxyl radicals
Intracellular
Life Sciences
Nanoparticles
Oxidative stress
Reactive oxygen species
Stem Cells
Superoxide
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaqIiQuiDehBRmJGwTycF4HhBCirJDKpazUWzR-hEbK2qFJ0W5_Cr-WmTwWLS095JRxEmfG8ffFnm8YeyVlpXIwyq_iMPFFmGsfUUbsp4EpKlkoKGJKTj7-li6W4utpcrrH5nJH0wvsrqV2VE9qed68Xf_cfMAB_35MGc_fdSIUSIKICFGMCh8x5S2cmTIaqMcT3B-zhkktPp5yZ65vujs_XQGdV_dO_rOAOsxLR_fY3QlQ8o9jBNxne8Y-YLfHEpObh-z3yQqahnf1peE_XKO5BYs8edoOx409I7dzaF3bu67ufOTo6G3N5YYrsod-5TrSHqgVbxFqr4D_qoFr05Jst7PcVbymh6QlANrTyr-cLDhYzVdO0z4kmK3cutaDzDgfE1QeseXR5--fFv5Uj8FXiOt6H7FjVCUgQEKsApNJkRiMgcJIKdIUoVwAUIQaKI2rMgAQIfmKssTIVIFGqPKY7VtnzVPGgyrEK2lpIqGETpHVABJBPKIM-WOQeyycvVCqSaycamY05bBoHufl6LkyiEZ5U1GuPfZ626YdpTputD6cnVvOUVci1gmRsiOq89jL7WkccPQKwRp3MdgkJOsvYo89GWNhe7s4ou9ZGHos24mSrQGJee-esfXZIOqd0V9dgR1_M8fT38f6fy-e3dyLA3YnGmK7wOn2kO335xfmOYKoXr4YRsYf1wEcwQ
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQuiDehLTISN4jIw3kdq1XLCgkupVJv0fgRGmnXjpoUtfyU_trOOMlWSwGJQ06ZJHZmHH-fM_OZsfdSNqoEo8ImjbNQxKUOEWWkYR6ZqpGVgiql4uSv3_Llqfhylp3tsGSuhfFJ-17S0n-m5-ywT72IBRIdIjsUhyJE3PiApNspqhf54m5dJSNF-HSqj4nS8g-Xbs9B94Dl_fzI336S-rnn-Al7PIFGfjg28ynbMfYZezhuI3n9nN2crGG14n37y_AfbqW5BYtceOoUN_acXMuhc93g-rYPkYejRzWX11yRPQxr15O-QKt4h3B6DfxnC1ybjqS5neWu4S01kpb5KW-Vfz5ZcrCar52mXCOYrdxVq72UOB-LUF6w0-Oj74tlOO25ECrEbkOI-DBpMhAgIVWRKaTIDPq5MlKKPEe4FgFUsQYq1WoMACRIsJIiMzJXoBGOvGS71lnzmvGoifFOWppEKKFzZC6AZA-PpECOGJUBi2cv1GoSJKd9MVa1_zGelvXouTpKRglTUV8F7MPmmm6U4_in9f7s3Hoamn2NeCZGWo7ILWDvNqdxUNErBGvcpbfJSLpfpAF7NcbC5nFpQt-sOA5YsRUlGwMS7N4-Y9tzL9xd0MqtwI5_nOPprll_78Wb_zPfY48SH-sVTrH7bHe4uDQHCJwG-daPlFvVJxeL
  priority: 102
  providerName: Springer Nature
Title Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress
URI https://link.springer.com/article/10.1038/s41420-020-00314-x
https://www.ncbi.nlm.nih.gov/pubmed/32963811
https://www.proquest.com/docview/2441383617
https://www.proquest.com/docview/2445426043
https://pubmed.ncbi.nlm.nih.gov/PMC7483448
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKyQuiDeGEi0SN7Dqx_p1QiFqiSK1QoRKuVmzD7eWEq_BLkr5KfxaZmwnUajoIYkUTxJvZnZnvtnZbxh7L2WhUjDKLUI_coWfahejjNCNPZMVMlOQhXQ4-ew8nl6I2SJaDAm3Ziir3KyJ3UKtraIc-TG6IR_RFDrcT_UPl7pG0e7q0ELjPjsk6jIq6UoWyS7HEhE7fDiclfHC9LgRvkC8RJiJzFm4631_dCvIvF0r-c-GaeeHTh-zR0MAyce9xp-we6Z6yh70LSVvnrE_8xUsl7wpfxt-aZeaV1AhLh7K37iprkjNHGpbt7YpGxcxOWpXc3nDFclDu7INcQ2UitcYWq-A_yqBa1MTTbetuC14STdJKX-qYeVf5lMOleYrq6nuCDZSdl3qjlac9wdSnrOL05Pvk6k79F9wFcZxrYuxYlBEIEBCqDyTSBEZ1HlmpBRxjKGbB5D5GujYVmEAIECwFSSRkbECjaHJC3ZQ2cq8YtwrfPwmLU0glNAxohhA4IePIEG86KUO8zdayNVATk49MpZ5t0kepnmvudwLejpTka8d9mH7mbqn5rhT-mij3HyYpk2-MyqHvdtexglGfyFUxl53MhHR-IvQYS97W9j-XBjQ-uX7Dkv2rGQrQOTd-1eq8qoj8U4oiytw4B839rS7rf-P4vXdo3jDHgadbWfoXo_YQfvz2rzFoKmVo25mjNjheDybz_D188n512_47iSejLpEBD6fifQvaB4fPQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiDeGAosEJ7Dqx9qJDwjxaElpGyHaSr25sw9TS8na4BQSfgo_gt_IjB-JQkVvPfjkie3NfLsz3-48GHsuZaYGYJSbhX7kCn-gXfQyQjf2TJLJREESUnLy_igeHolPx9HxGvvT5cJQWGW3JtYLtS4U7ZFvohnykU2hwX1TfnOpaxSdrnYtNBpY7Jr5T6Rs1eudD6jfF0GwvXX4fui2XQVchd7J1EUPKMgiECAhVJ7pSxEZHElipBRxjA6JB5D4GigZKTMAECCFCPqRkbECjQYXn3uFrYsQqUyPrb_bGn3-stzViagefdhm53jhYLMSvkCGRiyNJpBwZ6sW8Jxbez46858j2trybd9kN1qXlb9tMHaLrRl7m11tmljO77DfBxMYj3mV_zL8azHW3IJFJt4G3HFjTwlYHMqinBZVXrm51YgnzeWcK5KH6aSoqLpBrniJzvwE-I8cuDYlFQYvLC8yntNH0iEDRc3yjwdDDlbzSaEp0gk6qWKW67qQOW9SYO6yo0vRzT3Ws4U1Dxj3Mh-fpKUJhBI6Rt4ESDXxCvrIUL2Bw_xOC6lqy6FTV45xWh_Lh4O00VzqBU0BVZHOHPZy8ZuyKQZyofRGp9y0XRiqdAljhz1b3MYpTX8hWFOc1TIRNQ4QocPuN1hYvC4MaMX0fYf1V1CyEKBy4at3bH5alw3v076xwIG_6vC0_Kz_j-LhxaN4yq4ND_f30r2d0e4jdj2ocZ6gcd9gven3M_MYXbapfNLOE85OLntq_gWITlkY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNHm4SSbA0KIsmwpVEil0t7Sie3QSLt2IFvY5afwU_h1zOSxq6Witx5y8uThzIxnxp75hrFneV7IIWjpFqEfucIfKhe9jNCNPZ0WeSohDak4-dNBPD4SHybRZIv96WthKK2yXxObhVpZSXvkAzRDPkZTaHAHRZcW8Xl39Lr65lIHKTpp7dtptCKyr5c_MXyrX-3tIq-fB8Ho3Ze3Y7frMOBK9FTmLnpDQRGBgBxC6ekkF5HGWaU6z0Uco3PiAaS-AipMKjQABBhOBEmk81iCQuOLz73ELidh5JOOJZNkvb8TETJ92NXpeOFwUAtfYKxG8RqpknAXm7bwjIN7Nk_zn8PaxgaObrDrnfPK37TSdpNtaXOLXWnbWS5vs9-HM5hOeV3-0vyrnSpuwGBM3qXecW1OSMQ4VLaa27qs3dIolCzF8yWXRA_zma0J56CUvEK3fgb8Rwlc6Yogwq3htuAlfSQdN1D-LH9_OOZgFJ9ZRTlP0FPZRakaSHPeFsPcYUcXwpm7bNtYo-8z7hU-PknlOhBSqBgjKMCgE68gwVjVGzrM77mQyQ4YnfpzTLPmgD4cZi3nMi9ooVRFtnDYi9U9VQsLci71Ts_crFsi6mwt0A57uhpG5aZfCEbb04YmohYCInTYvVYWVq8LA1o7fd9hyYaUrAgIOHxzxJQnDYB4QjvIAif-spen9Wf9fxYPzp_FE3YVFTL7uHew_5BdCxoxT9HK77Dt-fdT_Qh9t3n-uFESzo4vWiv_AofRW-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+size+gold+nanoparticles+enhance+apoptosis-induced+by+cold+atmospheric+plasma+via+depletion+of+intracellular+GSH+and+modification+of+oxidative+stress&rft.jtitle=Cell+death+discovery&rft.au=Paras%2C+Jawaid&rft.au=Rehman%2C+Mati+Ur&rft.au=Qing-Li%2C+Zhao&rft.au=Misawa+Masaki&rft.date=2020-09-10&rft.pub=Springer+Nature+B.V&rft.eissn=2058-7716&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs41420-020-00314-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7716&client=summon