Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress
Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially...
Saved in:
Published in | Cell death discovery Vol. 6; no. 1; p. 83 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O
2
• −
) and hydroxyl radical (
•
OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies. |
---|---|
AbstractList | Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O
2
• −
) and hydroxyl radical (
•
OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies. Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O ) and hydroxyl radical ( OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies. Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O2• -) and hydroxyl radical (•OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies.Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O2• -) and hydroxyl radical (•OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies. Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O2• −) and hydroxyl radical (•OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies. |
ArticleNumber | 83 |
Author | Ishikawa, Kenji Kondo, Takashi Rehman, Mati Ur Hori, Masaru Jawaid, Paras Saitoh, Jun-ichi Noguchi, Kyo Zhao, Qing-Li Misawa, Masaki Shimizu, Tadamichi |
Author_xml | – sequence: 1 givenname: Paras surname: Jawaid fullname: Jawaid, Paras email: paras.jawaid@yahoo.com organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama – sequence: 2 givenname: Mati Ur surname: Rehman fullname: Rehman, Mati Ur email: rehman.mu84@yahoo.com organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama – sequence: 3 givenname: Qing-Li surname: Zhao fullname: Zhao, Qing-Li organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama – sequence: 4 givenname: Masaki surname: Misawa fullname: Misawa, Masaki organization: Theranostic Devices Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 5 givenname: Kenji surname: Ishikawa fullname: Ishikawa, Kenji organization: Center for Low-temperature Plasma Science, Nagoya University – sequence: 6 givenname: Masaru surname: Hori fullname: Hori, Masaru organization: Center for Low-temperature Plasma Science, Nagoya University – sequence: 7 givenname: Tadamichi surname: Shimizu fullname: Shimizu, Tadamichi organization: Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama – sequence: 8 givenname: Jun-ichi surname: Saitoh fullname: Saitoh, Jun-ichi organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama – sequence: 9 givenname: Kyo surname: Noguchi fullname: Noguchi, Kyo organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama – sequence: 10 givenname: Takashi surname: Kondo fullname: Kondo, Takashi organization: Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences University of Toyama |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32963811$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhS1UREvpC7BAltiwCfg3yWyQUAUtUiUWhbV149zMuHLsYCejaR-FpyVhOlC66OLKtvydo3Pt-5IchRiQkNecvedM1h-y4kqwgi3FJFfF7hk5EUzXRVXx8ujB_pic5XzDGOO6UlUtX5BjKValrDk_Ib-ue_CeZneHdB19SwOEOEAanfWYKYYNBIsUhjiMMbtcuNBOFlva3FK78DD2MQ8bTM7SwUPugW4d0BYHj6OLgcaOujAmsOj95CHRi-tLCqGlfWxd5ywcqLhz7XzYIs1jwpxfkecd-Ixn9-sp-fHl8_fzy-Lq28XX809XhdWKjQXXTHQaFDQgLcOqURqxwRU2jSrLWmoGsOItSKlFhwAgVroUlcamtNBWSp6Sj3vfYWp6bC0uab0Zkush3ZoIzvx_E9zGrOPWVKqWaq5T8u7eIMWfE-bR9C4v7ULAOGUjlNJKlEzJGX37CL2JUwpzewvFZS1LXs3Um4eJ_kY5fNsM1HvApphzws5YN_55yDmg84YzswyJ2Q-JYUstQ2J2s1Q8kh7cnxTJvSjPcFhj-hf7CdVvTVHT3g |
CitedBy_id | crossref_primary_10_1002_smll_202201462 crossref_primary_10_1039_D4NR02466D crossref_primary_10_1016_j_freeradbiomed_2021_12_311 crossref_primary_10_3390_molecules28031461 crossref_primary_10_1186_s12964_023_01382_z crossref_primary_10_1080_15376516_2021_1949083 crossref_primary_10_3390_nano11030727 crossref_primary_10_2147_JIR_S327292 crossref_primary_10_1016_j_biopha_2023_115557 crossref_primary_10_3390_nano11030806 crossref_primary_10_1016_j_biomaterials_2021_121110 crossref_primary_10_1039_D4TB00968A crossref_primary_10_1007_s11426_023_1839_4 crossref_primary_10_1515_ntrev_2022_0502 crossref_primary_10_3390_jnt4020007 crossref_primary_10_1016_j_ceramint_2023_07_221 crossref_primary_10_1134_S1063780X24601597 crossref_primary_10_3390_microorganisms10020437 crossref_primary_10_1134_S0006350921060063 crossref_primary_10_1186_s12951_021_01203_w crossref_primary_10_1038_s41598_021_94130_7 crossref_primary_10_3390_nano11082048 crossref_primary_10_1021_acsomega_1c05822 crossref_primary_10_1021_acs_langmuir_3c01983 crossref_primary_10_1088_2043_6262_adb55c crossref_primary_10_3389_fimmu_2023_1128582 crossref_primary_10_1016_j_ijbiomac_2023_123796 crossref_primary_10_1016_j_bioadv_2024_213855 crossref_primary_10_3390_pharmaceutics15020432 crossref_primary_10_1515_med_2024_1041 crossref_primary_10_1016_j_phyplu_2021_100056 crossref_primary_10_1007_s12011_022_03229_z crossref_primary_10_1016_j_procbio_2023_06_009 crossref_primary_10_1021_acs_inorgchem_4c01072 crossref_primary_10_3390_cimb46110727 crossref_primary_10_1002_ppsc_202100202 crossref_primary_10_1186_s41110_023_00191_1 crossref_primary_10_3389_fmats_2022_933749 crossref_primary_10_1007_s12668_022_01040_7 crossref_primary_10_1080_10715762_2023_2230351 crossref_primary_10_1016_j_mattod_2022_03_001 crossref_primary_10_1186_s12951_022_01750_w crossref_primary_10_1039_D1SC04183E crossref_primary_10_1016_j_jics_2021_100161 crossref_primary_10_1186_s12896_024_00905_x crossref_primary_10_3390_cells13242139 crossref_primary_10_3390_pharmaceutics13101719 crossref_primary_10_3390_ijms252111687 crossref_primary_10_3390_nano12193397 crossref_primary_10_1016_j_redox_2025_103515 crossref_primary_10_1021_acsabm_3c00130 crossref_primary_10_1038_s41419_022_04660_9 crossref_primary_10_1007_s42247_023_00572_2 crossref_primary_10_5812_ijpr_150385 crossref_primary_10_1088_1361_6463_ad34df crossref_primary_10_1021_acsomega_2c01313 crossref_primary_10_3390_molecules29112438 crossref_primary_10_35339_ic_8_4_278_289 crossref_primary_10_1155_2021_2990326 crossref_primary_10_1371_journal_pone_0279120 crossref_primary_10_1038_s41598_023_28678_x |
Cites_doi | 10.1038/aps.2011.82 10.3390/biomedicines5030038 10.1111/jcmm.12880 10.1016/j.biomaterials.2016.02.014 10.2147/IJN.S31751 10.1038/s41598-017-11877-8 10.1016/j.msec.2014.08.045 10.5114/aoms.2015.48221 10.1155/2013/972913 10.1016/j.abb.2016.04.005 10.1042/bj2220001 10.1371/journal.pone.0016270 10.1038/srep29098 10.1088/0022-3727/44/17/174018 10.1038/sj.cr.7290045 10.1021/cs100043j 10.1021/mp800051m 10.1088/0022-3727/47/33/335402 10.1016/S0168-3659(02)00127-X 10.1016/S0378-5173(02)00315-0 10.1038/s41598-018-23262-0 10.1088/0022-3727/42/3/032005 10.1016/S0008-6363(02)00646-6 10.1016/j.redox.2015.05.002 10.1023/A:1012126301290 10.1016/S0169-409X(02)00044-3 10.1039/B821763G 10.1038/nature07194 10.1002/jlb.65.3.337 10.1002/ppap.200700066 10.1016/j.freeradbiomed.2018.10.434 10.1038/srep21974 10.1016/j.toxlet.2011.04.013 10.1021/nn5008572 10.1002/ppap.201500093 10.1002/smll.200900466 10.4049/jimmunol.139.10.3199 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41420-020-00314-x |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2058-7716 |
ExternalDocumentID | PMC7483448 32963811 10_1038_s41420_020_00314_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 19K17263; 18K07668 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 18K07668 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 19K17263 – fundername: ; grantid: 19K17263; 18K07668 |
GroupedDBID | 0R~ 3V. 53G 7X7 8FE 8FH 8FI 8FJ AAFWJ AAJSJ ABUWG ACSMW ADBBV ADRAZ AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EMOBN FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE LK8 M48 M7P M~E NAO OK1 PGMZT PQQKQ PROAC RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT EJD NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c540t-1502f5a4aba3c0e7b45eebe9ebb4668350aa91da3352feaaa2956275eb6cad743 |
IEDL.DBID | 7X7 |
ISSN | 2058-7716 |
IngestDate | Thu Aug 21 13:34:46 EDT 2025 Fri Jul 11 02:15:35 EDT 2025 Wed Aug 13 10:55:58 EDT 2025 Thu Jan 02 22:55:27 EST 2025 Thu Apr 24 23:03:33 EDT 2025 Tue Jul 01 02:29:00 EDT 2025 Fri Feb 21 02:38:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Radiotherapy Apoptosis |
Language | English |
License | The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-1502f5a4aba3c0e7b45eebe9ebb4668350aa91da3352feaaa2956275eb6cad743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41420-020-00314-x |
PMID | 32963811 |
PQID | 2441383617 |
PQPubID | 2041962 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7483448 proquest_miscellaneous_2445426043 proquest_journals_2441383617 pubmed_primary_32963811 crossref_citationtrail_10_1038_s41420_020_00314_x crossref_primary_10_1038_s41420_020_00314_x springer_journals_10_1038_s41420_020_00314_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-10 |
PublicationDateYYYYMMDD | 2020-09-10 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: New York |
PublicationTitle | Cell death discovery |
PublicationTitleAbbrev | Cell Death Discov |
PublicationTitleAlternate | Cell Death Discov |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Springer Nature B.V |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V |
References | Brigger, Dubernet, Couvreur (CR4) 2002; 54 Moniruzzaman (CR18) 2017; 15 Cheng (CR30) 2015; 12 Moniruzzaman (CR17) 2018; 129 Turner (CR25) 2018; 454 He (CR19) 2018; 28 Jawaid (CR13) 2016; 20 Nitobe (CR15) 2003; 57 Desai, Labhasetwar, Walter, Levy, Amidon (CR33) 1997; 14 Silveira (CR3) 2014; 44 Alexis, Pridgen, Molnar, Farokhzad (CR31) 2008; 5 Slater (CR37) 1984; 222 Irani, Shahmirani, Atyabi, Mirpoor (CR10) 2015; 11 Yin (CR39) 2000; 10 Pan (CR36) 2009; 5 Manke, Wang, Rojanasakul (CR23) 2013; 2013 Kalghatgi (CR6) 2011; 6 Zhu (CR12) 2016; 6 Prabha, Zhou, Panyam, Labhasetwar (CR32) 2002; 244 Liu, Tsunoyama, Akita, Xie, Tsukuda (CR26) 2011; 1 Thomas (CR22) 2015; 5 Sellins, Cohen (CR14) 1987; 139 Rehman, Jawaid, Uchiyama, Kondo (CR5) 2016; 605 Lim, Li, Ng, Yung, Bay (CR35) 2011; 32 Coulter (CR28) 2012; 7 Traverso (CR24) 2013; 2013 Finkel (CR38) 1999; 65 Siddiqui, Adhami, Chamcheu, Mukhtar (CR1) 2012; 7 Kaushik (CR21) 2016; 87 Kong, Keidar, Ostrikov (CR29) 2011; 44 Cheng (CR11) 2014; 47 Girard (CR8) 2016; 6 Huo (CR27) 2014; 24 Laroussi, Akan (CR7) 2007; 4 Lu (CR16) 2011; 204 Cobley, Chen, Cho, Wang, Xia (CR2) 2011; 40 Kim (CR20) 2008; 42 Saho, Panyam, Prabha, Labhasetwar (CR34) 2002; 82 Aryal, Bisht (CR9) 2017; 5 S Irani (314_CR10) 2015; 11 N Traverso (314_CR24) 2013; 2013 M Turner (314_CR25) 2018; 454 P Jawaid (314_CR13) 2016; 20 NK Kaushik (314_CR21) 2016; 87 Y Pan (314_CR36) 2009; 5 MP Desai (314_CR33) 1997; 14 F Alexis (314_CR31) 2008; 5 S Huo (314_CR27) 2014; 24 GC Kim (314_CR20) 2008; 42 A Manke (314_CR23) 2013; 2013 I Brigger (314_CR4) 2002; 54 W Zhu (314_CR12) 2016; 6 X Cheng (314_CR30) 2015; 12 MU Rehman (314_CR5) 2016; 605 T Finkel (314_CR38) 1999; 65 Y Liu (314_CR26) 2011; 1 XM Yin (314_CR39) 2000; 10 S Aryal (314_CR9) 2017; 5 CM Cobley (314_CR2) 2011; 40 X Cheng (314_CR11) 2014; 47 R Moniruzzaman (314_CR17) 2018; 129 S Kalghatgi (314_CR6) 2011; 6 J Nitobe (314_CR15) 2003; 57 M Laroussi (314_CR7) 2007; 4 MG Kong (314_CR29) 2011; 44 R Moniruzzaman (314_CR18) 2017; 15 DD Thomas (314_CR22) 2015; 5 JA Coulter (314_CR28) 2012; 7 KS Sellins (314_CR14) 1987; 139 PC Silveira (314_CR3) 2014; 44 ZZJ Lim (314_CR35) 2011; 32 Z He (314_CR19) 2018; 28 SK Saho (314_CR34) 2002; 82 S Prabha (314_CR32) 2002; 244 TF Slater (314_CR37) 1984; 222 PM Girard (314_CR8) 2016; 6 I Siddiqui (314_CR1) 2012; 7 TH Lu (314_CR16) 2011; 204 |
References_xml | – volume: 32 start-page: 983 year: 2011 end-page: 990 ident: CR35 article-title: Gold nanoparticles in cancer therapy publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2011.82 – volume: 5 start-page: 38 year: 2017 ident: CR9 article-title: New Paradigm for a targeted cancer therapeutic approach: a short review on potential synergy of Gold nanoparticles and Cold atmospheric plasma publication-title: Biomedicines doi: 10.3390/biomedicines5030038 – volume: 20 start-page: 1737 year: 2016 end-page: 1748 ident: CR13 article-title: Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.12880 – volume: 87 start-page: 118 year: 2016 end-page: 130 ident: CR21 article-title: Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and E.M.T publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.02.014 – volume: 7 start-page: 2673 year: 2012 end-page: 2685 ident: CR28 article-title: Cell type–dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S31751 – volume: 15 year: 2017 ident: CR18 article-title: Cold atmospheric helium plasma causes synergistic enhancement in cell death with hyperthermia and an additive enhancement with radiation publication-title: Sci. Rep. doi: 10.1038/s41598-017-11877-8 – volume: 44 start-page: 380 year: 2014 end-page: 385 ident: CR3 article-title: Iontophoresis with Gold nanoparticles improves mitochondrial activity and oxidative stress markers of burn wounds publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl. doi: 10.1016/j.msec.2014.08.045 – volume: 11 start-page: 1286 year: 2015 end-page: 1295 ident: CR10 article-title: Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles publication-title: Arch. Med. Sci. doi: 10.5114/aoms.2015.48221 – volume: 139 start-page: 3199 year: 1987 end-page: 3206 ident: CR14 article-title: Gene induction by gamma-irradiation leads to D.N.A. fragmentation in lymphocytes publication-title: J. Immunol. – volume: 2013 start-page: 972913 year: 2013 ident: CR24 article-title: role of glutathione in cancer progression and chemoresistance publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2013/972913 – volume: 605 start-page: 19 year: 2016 end-page: 25 ident: CR5 article-title: Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2016.04.005 – volume: 222 start-page: 1 year: 1984 end-page: 15 ident: CR37 article-title: Free-radical mechanisms in tissue injury publication-title: J. Biochem. doi: 10.1042/bj2220001 – volume: 6 year: 2011 ident: CR6 article-title: Effects of non-thermal plasma on mammalian cells publication-title: PloS ONE doi: 10.1371/journal.pone.0016270 – volume: 6 year: 2016 ident: CR8 article-title: Synergistic effect of H2O2 and NO2 in cell death induced by cold atmospheric He Plasma publication-title: Sci. Rep. doi: 10.1038/srep29098 – volume: 44 start-page: 174018 year: 2011 ident: CR29 article-title: Plasmas meet nanoparticles—where synergies can advance the frontier of medicine publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/44/17/174018 – volume: 10 start-page: 161 year: 2000 end-page: 167 ident: CR39 article-title: Signal transduction mediated by Bid, a pro-death Bcl-2 family protein, connects the death receptor and mitochondria apoptosis pathways publication-title: Cell Res. doi: 10.1038/sj.cr.7290045 – volume: 1 start-page: 2 year: 2011 end-page: 6 ident: CR26 article-title: Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: size effect in the Sub-2 nm regime publication-title: ACS Catal. doi: 10.1021/cs100043j – volume: 5 start-page: 505 year: 2008 end-page: 515 ident: CR31 article-title: Factors affecting the clearance and biodistribution of polymeric nanoparticles publication-title: Mol. Pharm. doi: 10.1021/mp800051m – volume: 47 start-page: 335402.e year: 2014 ident: CR11 article-title: Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/47/33/335402 – volume: 82 start-page: 105 year: 2002 end-page: 114 ident: CR34 article-title: Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake publication-title: Control Release doi: 10.1016/S0168-3659(02)00127-X – volume: 244 start-page: 105 year: 2002 end-page: 115 ident: CR32 article-title: Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(02)00315-0 – volume: 28 year: 2018 ident: CR19 article-title: Cold Atmospheric Plasma induces ATP-Dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death publication-title: Sci. Rep. doi: 10.1038/s41598-018-23262-0 – volume: 42 start-page: 32005 year: 2008 ident: CR20 article-title: Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/42/3/032005 – volume: 57 start-page: 119 year: 2003 end-page: 128 ident: CR15 article-title: Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(02)00646-6 – volume: 5 start-page: 225 year: 2015 end-page: 233 ident: CR22 article-title: Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide publication-title: Redox Biol. doi: 10.1016/j.redox.2015.05.002 – volume: 14 start-page: 1568 year: 1997 end-page: 1573 ident: CR33 article-title: The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent publication-title: Pharm. Res. doi: 10.1023/A:1012126301290 – volume: 54 start-page: 631 year: 2002 end-page: 651 ident: CR4 article-title: Nanoparticles in cancer therapy and diagnosis publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00044-3 – volume: 40 start-page: 44 year: 2011 end-page: 56 ident: CR2 article-title: Gold nanostructures: a class of multifunctional materials for biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/B821763G – volume: 454 start-page: 981 year: 2018 end-page: 983 ident: CR25 article-title: Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters publication-title: Nature doi: 10.1038/nature07194 – volume: 7 start-page: 591 year: 2012 end-page: 605 ident: CR1 article-title: Impact of nanotechnology in cancer: emphasis on nanochemoprevention publication-title: Int. J. Nanomed. – volume: 2013 start-page: 942916 year: 2013 ident: CR23 article-title: Mechanisms of nanoparticle-induced oxidative stress and toxicity publication-title: Bio. Med. Res. Int. – volume: 65 start-page: 337 year: 1999 end-page: 340 ident: CR38 article-title: Signal transduction by reactive oxygen species in non-phagocytic cells publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.65.3.337 – volume: 4 start-page: 777 year: 2007 end-page: 788 ident: CR7 article-title: Arc-free atmospheric pressure cold plasma jets: a review publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200700066 – volume: 129 start-page: 537 year: 2018 end-page: 547 ident: CR17 article-title: Roles of intracellular and extracellular R.O.S. formation in apoptosis induced by cold atmospheric helium plasma and X-irradiation in the presence of sulfasalazine publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.10.434 – volume: 6 year: 2016 ident: CR12 article-title: Synergestic effects of cold atmospheric plasma and drug loaded core-shell nanoparticles on inhibiting breast cancer cell growth publication-title: Sci. Rep. doi: 10.1038/srep21974 – volume: 204 start-page: 71 year: 2011 end-page: 80 ident: CR16 article-title: Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2011.04.013 – volume: 24 start-page: 5852 year: 2014 end-page: 5862 ident: CR27 article-title: Ultrasmall gold nanoparticles as carries for nucleus-based gene therapy due to size-dependent nuclear entry publication-title: ACS Nano doi: 10.1021/nn5008572 – volume: 12 start-page: 1364 year: 2015 end-page: 1369 ident: CR30 article-title: Cold plasma accelerates the uptake of gold nanoparticles into glioblastoma cells publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201500093 – volume: 5 start-page: 2067 year: 2009 end-page: 2076 ident: CR36 article-title: Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage publication-title: Small doi: 10.1002/smll.200900466 – volume: 87 start-page: 118 year: 2016 ident: 314_CR21 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.02.014 – volume: 204 start-page: 71 year: 2011 ident: 314_CR16 publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2011.04.013 – volume: 6 year: 2016 ident: 314_CR8 publication-title: Sci. Rep. doi: 10.1038/srep29098 – volume: 2013 start-page: 972913 year: 2013 ident: 314_CR24 publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2013/972913 – volume: 7 start-page: 2673 year: 2012 ident: 314_CR28 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S31751 – volume: 7 start-page: 591 year: 2012 ident: 314_CR1 publication-title: Int. J. Nanomed. – volume: 4 start-page: 777 year: 2007 ident: 314_CR7 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200700066 – volume: 605 start-page: 19 year: 2016 ident: 314_CR5 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2016.04.005 – volume: 65 start-page: 337 year: 1999 ident: 314_CR38 publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.65.3.337 – volume: 454 start-page: 981 year: 2018 ident: 314_CR25 publication-title: Nature doi: 10.1038/nature07194 – volume: 44 start-page: 380 year: 2014 ident: 314_CR3 publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl. doi: 10.1016/j.msec.2014.08.045 – volume: 47 start-page: 335402.e year: 2014 ident: 314_CR11 publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/47/33/335402 – volume: 5 start-page: 225 year: 2015 ident: 314_CR22 publication-title: Redox Biol. doi: 10.1016/j.redox.2015.05.002 – volume: 6 year: 2011 ident: 314_CR6 publication-title: PloS ONE doi: 10.1371/journal.pone.0016270 – volume: 6 year: 2016 ident: 314_CR12 publication-title: Sci. Rep. doi: 10.1038/srep21974 – volume: 42 start-page: 32005 year: 2008 ident: 314_CR20 publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/42/3/032005 – volume: 5 start-page: 38 year: 2017 ident: 314_CR9 publication-title: Biomedicines doi: 10.3390/biomedicines5030038 – volume: 222 start-page: 1 year: 1984 ident: 314_CR37 publication-title: J. Biochem. doi: 10.1042/bj2220001 – volume: 139 start-page: 3199 year: 1987 ident: 314_CR14 publication-title: J. Immunol. doi: 10.4049/jimmunol.139.10.3199 – volume: 11 start-page: 1286 year: 2015 ident: 314_CR10 publication-title: Arch. Med. Sci. doi: 10.5114/aoms.2015.48221 – volume: 2013 start-page: 942916 year: 2013 ident: 314_CR23 publication-title: Bio. Med. Res. Int. – volume: 5 start-page: 2067 year: 2009 ident: 314_CR36 publication-title: Small doi: 10.1002/smll.200900466 – volume: 15 year: 2017 ident: 314_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-017-11877-8 – volume: 28 year: 2018 ident: 314_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-018-23262-0 – volume: 24 start-page: 5852 year: 2014 ident: 314_CR27 publication-title: ACS Nano doi: 10.1021/nn5008572 – volume: 44 start-page: 174018 year: 2011 ident: 314_CR29 publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/44/17/174018 – volume: 5 start-page: 505 year: 2008 ident: 314_CR31 publication-title: Mol. Pharm. doi: 10.1021/mp800051m – volume: 14 start-page: 1568 year: 1997 ident: 314_CR33 publication-title: Pharm. Res. doi: 10.1023/A:1012126301290 – volume: 10 start-page: 161 year: 2000 ident: 314_CR39 publication-title: Cell Res. doi: 10.1038/sj.cr.7290045 – volume: 40 start-page: 44 year: 2011 ident: 314_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/B821763G – volume: 129 start-page: 537 year: 2018 ident: 314_CR17 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.10.434 – volume: 57 start-page: 119 year: 2003 ident: 314_CR15 publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(02)00646-6 – volume: 20 start-page: 1737 year: 2016 ident: 314_CR13 publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.12880 – volume: 12 start-page: 1364 year: 2015 ident: 314_CR30 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201500093 – volume: 244 start-page: 105 year: 2002 ident: 314_CR32 publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(02)00315-0 – volume: 54 start-page: 631 year: 2002 ident: 314_CR4 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00044-3 – volume: 82 start-page: 105 year: 2002 ident: 314_CR34 publication-title: Control Release doi: 10.1016/S0168-3659(02)00127-X – volume: 1 start-page: 2 year: 2011 ident: 314_CR26 publication-title: ACS Catal. doi: 10.1021/cs100043j – volume: 32 start-page: 983 year: 2011 ident: 314_CR35 publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2011.82 |
SSID | ssj0001574783 |
Score | 2.4036167 |
Snippet | Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 83 |
SubjectTerms | 631/67/1059/485 631/80/82/23 Apoptosis Biochemistry Biomedical and Life Sciences Cell Biology Cell Cycle Analysis Cell death Glutathione Gold Helium Hydroxyl radicals Intracellular Life Sciences Nanoparticles Oxidative stress Reactive oxygen species Stem Cells Superoxide |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaqIiQuiDehBRmJGwTycF4HhBCirJDKpazUWzR-hEbK2qFJ0W5_Cr-WmTwWLS095JRxEmfG8ffFnm8YeyVlpXIwyq_iMPFFmGsfUUbsp4EpKlkoKGJKTj7-li6W4utpcrrH5nJH0wvsrqV2VE9qed68Xf_cfMAB_35MGc_fdSIUSIKICFGMCh8x5S2cmTIaqMcT3B-zhkktPp5yZ65vujs_XQGdV_dO_rOAOsxLR_fY3QlQ8o9jBNxne8Y-YLfHEpObh-z3yQqahnf1peE_XKO5BYs8edoOx409I7dzaF3bu67ufOTo6G3N5YYrsod-5TrSHqgVbxFqr4D_qoFr05Jst7PcVbymh6QlANrTyr-cLDhYzVdO0z4kmK3cutaDzDgfE1QeseXR5--fFv5Uj8FXiOt6H7FjVCUgQEKsApNJkRiMgcJIKdIUoVwAUIQaKI2rMgAQIfmKssTIVIFGqPKY7VtnzVPGgyrEK2lpIqGETpHVABJBPKIM-WOQeyycvVCqSaycamY05bBoHufl6LkyiEZ5U1GuPfZ626YdpTputD6cnVvOUVci1gmRsiOq89jL7WkccPQKwRp3MdgkJOsvYo89GWNhe7s4ou9ZGHos24mSrQGJee-esfXZIOqd0V9dgR1_M8fT38f6fy-e3dyLA3YnGmK7wOn2kO335xfmOYKoXr4YRsYf1wEcwQ priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQuiDehLTISN4jIw3kdq1XLCgkupVJv0fgRGmnXjpoUtfyU_trOOMlWSwGJQ06ZJHZmHH-fM_OZsfdSNqoEo8ImjbNQxKUOEWWkYR6ZqpGVgiql4uSv3_Llqfhylp3tsGSuhfFJ-17S0n-m5-ywT72IBRIdIjsUhyJE3PiApNspqhf54m5dJSNF-HSqj4nS8g-Xbs9B94Dl_fzI336S-rnn-Al7PIFGfjg28ynbMfYZezhuI3n9nN2crGG14n37y_AfbqW5BYtceOoUN_acXMuhc93g-rYPkYejRzWX11yRPQxr15O-QKt4h3B6DfxnC1ybjqS5neWu4S01kpb5KW-Vfz5ZcrCar52mXCOYrdxVq72UOB-LUF6w0-Oj74tlOO25ECrEbkOI-DBpMhAgIVWRKaTIDPq5MlKKPEe4FgFUsQYq1WoMACRIsJIiMzJXoBGOvGS71lnzmvGoifFOWppEKKFzZC6AZA-PpECOGJUBi2cv1GoSJKd9MVa1_zGelvXouTpKRglTUV8F7MPmmm6U4_in9f7s3Hoamn2NeCZGWo7ILWDvNqdxUNErBGvcpbfJSLpfpAF7NcbC5nFpQt-sOA5YsRUlGwMS7N4-Y9tzL9xd0MqtwI5_nOPprll_78Wb_zPfY48SH-sVTrH7bHe4uDQHCJwG-daPlFvVJxeL priority: 102 providerName: Springer Nature |
Title | Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress |
URI | https://link.springer.com/article/10.1038/s41420-020-00314-x https://www.ncbi.nlm.nih.gov/pubmed/32963811 https://www.proquest.com/docview/2441383617 https://www.proquest.com/docview/2445426043 https://pubmed.ncbi.nlm.nih.gov/PMC7483448 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKyQuiDeGEi0SN7Dqx_p1QiFqiSK1QoRKuVmzD7eWEq_BLkr5KfxaZmwnUajoIYkUTxJvZnZnvtnZbxh7L2WhUjDKLUI_coWfahejjNCNPZMVMlOQhXQ4-ew8nl6I2SJaDAm3Ziir3KyJ3UKtraIc-TG6IR_RFDrcT_UPl7pG0e7q0ELjPjsk6jIq6UoWyS7HEhE7fDiclfHC9LgRvkC8RJiJzFm4631_dCvIvF0r-c-GaeeHTh-zR0MAyce9xp-we6Z6yh70LSVvnrE_8xUsl7wpfxt-aZeaV1AhLh7K37iprkjNHGpbt7YpGxcxOWpXc3nDFclDu7INcQ2UitcYWq-A_yqBa1MTTbetuC14STdJKX-qYeVf5lMOleYrq6nuCDZSdl3qjlac9wdSnrOL05Pvk6k79F9wFcZxrYuxYlBEIEBCqDyTSBEZ1HlmpBRxjKGbB5D5GujYVmEAIECwFSSRkbECjaHJC3ZQ2cq8YtwrfPwmLU0glNAxohhA4IePIEG86KUO8zdayNVATk49MpZ5t0kepnmvudwLejpTka8d9mH7mbqn5rhT-mij3HyYpk2-MyqHvdtexglGfyFUxl53MhHR-IvQYS97W9j-XBjQ-uX7Dkv2rGQrQOTd-1eq8qoj8U4oiytw4B839rS7rf-P4vXdo3jDHgadbWfoXo_YQfvz2rzFoKmVo25mjNjheDybz_D188n512_47iSejLpEBD6fifQvaB4fPQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiDeGAosEJ7Dqx9qJDwjxaElpGyHaSr25sw9TS8na4BQSfgo_gt_IjB-JQkVvPfjkie3NfLsz3-48GHsuZaYGYJSbhX7kCn-gXfQyQjf2TJLJREESUnLy_igeHolPx9HxGvvT5cJQWGW3JtYLtS4U7ZFvohnykU2hwX1TfnOpaxSdrnYtNBpY7Jr5T6Rs1eudD6jfF0GwvXX4fui2XQVchd7J1EUPKMgiECAhVJ7pSxEZHElipBRxjA6JB5D4GigZKTMAECCFCPqRkbECjQYXn3uFrYsQqUyPrb_bGn3-stzViagefdhm53jhYLMSvkCGRiyNJpBwZ6sW8Jxbez46858j2trybd9kN1qXlb9tMHaLrRl7m11tmljO77DfBxMYj3mV_zL8azHW3IJFJt4G3HFjTwlYHMqinBZVXrm51YgnzeWcK5KH6aSoqLpBrniJzvwE-I8cuDYlFQYvLC8yntNH0iEDRc3yjwdDDlbzSaEp0gk6qWKW67qQOW9SYO6yo0vRzT3Ws4U1Dxj3Mh-fpKUJhBI6Rt4ESDXxCvrIUL2Bw_xOC6lqy6FTV45xWh_Lh4O00VzqBU0BVZHOHPZy8ZuyKQZyofRGp9y0XRiqdAljhz1b3MYpTX8hWFOc1TIRNQ4QocPuN1hYvC4MaMX0fYf1V1CyEKBy4at3bH5alw3v076xwIG_6vC0_Kz_j-LhxaN4yq4ND_f30r2d0e4jdj2ocZ6gcd9gven3M_MYXbapfNLOE85OLntq_gWITlkY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNHm4SSbA0KIsmwpVEil0t7Sie3QSLt2IFvY5afwU_h1zOSxq6Witx5y8uThzIxnxp75hrFneV7IIWjpFqEfucIfKhe9jNCNPZ0WeSohDak4-dNBPD4SHybRZIv96WthKK2yXxObhVpZSXvkAzRDPkZTaHAHRZcW8Xl39Lr65lIHKTpp7dtptCKyr5c_MXyrX-3tIq-fB8Ho3Ze3Y7frMOBK9FTmLnpDQRGBgBxC6ekkF5HGWaU6z0Uco3PiAaS-AipMKjQABBhOBEmk81iCQuOLz73ELidh5JOOJZNkvb8TETJ92NXpeOFwUAtfYKxG8RqpknAXm7bwjIN7Nk_zn8PaxgaObrDrnfPK37TSdpNtaXOLXWnbWS5vs9-HM5hOeV3-0vyrnSpuwGBM3qXecW1OSMQ4VLaa27qs3dIolCzF8yWXRA_zma0J56CUvEK3fgb8Rwlc6Yogwq3htuAlfSQdN1D-LH9_OOZgFJ9ZRTlP0FPZRakaSHPeFsPcYUcXwpm7bNtYo-8z7hU-PknlOhBSqBgjKMCgE68gwVjVGzrM77mQyQ4YnfpzTLPmgD4cZi3nMi9ooVRFtnDYi9U9VQsLci71Ts_crFsi6mwt0A57uhpG5aZfCEbb04YmohYCInTYvVYWVq8LA1o7fd9hyYaUrAgIOHxzxJQnDYB4QjvIAif-spen9Wf9fxYPzp_FE3YVFTL7uHew_5BdCxoxT9HK77Dt-fdT_Qh9t3n-uFESzo4vWiv_AofRW-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+size+gold+nanoparticles+enhance+apoptosis-induced+by+cold+atmospheric+plasma+via+depletion+of+intracellular+GSH+and+modification+of+oxidative+stress&rft.jtitle=Cell+death+discovery&rft.au=Paras%2C+Jawaid&rft.au=Rehman%2C+Mati+Ur&rft.au=Qing-Li%2C+Zhao&rft.au=Misawa+Masaki&rft.date=2020-09-10&rft.pub=Springer+Nature+B.V&rft.eissn=2058-7716&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs41420-020-00314-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7716&client=summon |