Realization of active metamaterials with odd micropolar elasticity

Materials made from active, living, or robotic components can display emergent properties arising from local sensing and computation. Here, we realize a freestanding active metabeam with piezoelectric elements and electronic feed-forward control that gives rise to an odd micropolar elasticity absent...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 5935 - 12
Main Authors Chen, Yangyang, Li, Xiaopeng, Scheibner, Colin, Vitelli, Vincenzo, Huang, Guoliang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Materials made from active, living, or robotic components can display emergent properties arising from local sensing and computation. Here, we realize a freestanding active metabeam with piezoelectric elements and electronic feed-forward control that gives rise to an odd micropolar elasticity absent in energy-conserving media. The non-reciprocal odd modulus enables bending and shearing cycles that convert electrical energy into mechanical work, and vice versa. The sign of this elastic modulus is linked to a non-Hermitian topological index that determines the localization of vibrational modes to sample boundaries. At finite frequency, we can also tune the phase angle of the active modulus to produce a direction-dependent bending modulus and control non-Hermitian vibrational properties. Our continuum approach, built on symmetries and conservation laws, could be exploited to design others systems such as synthetic biofilaments and membranes with feed-forward control loops. Mechanical metamaterials can be engineered with properties not possible in ordinary materials. Here the authors demonstrate and study an active metamaterial with self-sensing characteristics that enables odd elastic properties not observed in passive media.
AbstractList Materials made from active, living, or robotic components can display emergent properties arising from local sensing and computation. Here, we realize a freestanding active metabeam with piezoelectric elements and electronic feed-forward control that gives rise to an odd micropolar elasticity absent in energy-conserving media. The non-reciprocal odd modulus enables bending and shearing cycles that convert electrical energy into mechanical work, and vice versa. The sign of this elastic modulus is linked to a non-Hermitian topological index that determines the localization of vibrational modes to sample boundaries. At finite frequency, we can also tune the phase angle of the active modulus to produce a direction-dependent bending modulus and control non-Hermitian vibrational properties. Our continuum approach, built on symmetries and conservation laws, could be exploited to design others systems such as synthetic biofilaments and membranes with feed-forward control loops.
Materials made from active, living, or robotic components can display emergent properties arising from local sensing and computation. Here, we realize a freestanding active metabeam with piezoelectric elements and electronic feed-forward control that gives rise to an odd micropolar elasticity absent in energy-conserving media. The non-reciprocal odd modulus enables bending and shearing cycles that convert electrical energy into mechanical work, and vice versa. The sign of this elastic modulus is linked to a non-Hermitian topological index that determines the localization of vibrational modes to sample boundaries. At finite frequency, we can also tune the phase angle of the active modulus to produce a direction-dependent bending modulus and control non-Hermitian vibrational properties. Our continuum approach, built on symmetries and conservation laws, could be exploited to design others systems such as synthetic biofilaments and membranes with feed-forward control loops. Mechanical metamaterials can be engineered with properties not possible in ordinary materials. Here the authors demonstrate and study an active metamaterial with self-sensing characteristics that enables odd elastic properties not observed in passive media.
Materials made from active, living, or robotic components can display emergent properties arising from local sensing and computation. Here, we realize a freestanding active metabeam with piezoelectric elements and electronic feed-forward control that gives rise to an odd micropolar elasticity absent in energy-conserving media. The non-reciprocal odd modulus enables bending and shearing cycles that convert electrical energy into mechanical work, and vice versa. The sign of this elastic modulus is linked to a non-Hermitian topological index that determines the localization of vibrational modes to sample boundaries. At finite frequency, we can also tune the phase angle of the active modulus to produce a direction-dependent bending modulus and control non-Hermitian vibrational properties. Our continuum approach, built on symmetries and conservation laws, could be exploited to design others systems such as synthetic biofilaments and membranes with feed-forward control loops.Mechanical metamaterials can be engineered with properties not possible in ordinary materials. Here the authors demonstrate and study an active metamaterial with self-sensing characteristics that enables odd elastic properties not observed in passive media.
Materials made from active, living, or robotic components can display emergent properties arising from local sensing and computation. Here, we realize a freestanding active metabeam with piezoelectric elements and electronic feed-forward control that gives rise to an odd micropolar elasticity absent in energy-conserving media. The non-reciprocal odd modulus enables bending and shearing cycles that convert electrical energy into mechanical work, and vice versa. The sign of this elastic modulus is linked to a non-Hermitian topological index that determines the localization of vibrational modes to sample boundaries. At finite frequency, we can also tune the phase angle of the active modulus to produce a direction-dependent bending modulus and control non-Hermitian vibrational properties. Our continuum approach, built on symmetries and conservation laws, could be exploited to design others systems such as synthetic biofilaments and membranes with feed-forward control loops.Materials made from active, living, or robotic components can display emergent properties arising from local sensing and computation. Here, we realize a freestanding active metabeam with piezoelectric elements and electronic feed-forward control that gives rise to an odd micropolar elasticity absent in energy-conserving media. The non-reciprocal odd modulus enables bending and shearing cycles that convert electrical energy into mechanical work, and vice versa. The sign of this elastic modulus is linked to a non-Hermitian topological index that determines the localization of vibrational modes to sample boundaries. At finite frequency, we can also tune the phase angle of the active modulus to produce a direction-dependent bending modulus and control non-Hermitian vibrational properties. Our continuum approach, built on symmetries and conservation laws, could be exploited to design others systems such as synthetic biofilaments and membranes with feed-forward control loops.
Mechanical metamaterials can be engineered with properties not possible in ordinary materials. Here the authors demonstrate and study an active metamaterial with self-sensing characteristics that enables odd elastic properties not observed in passive media.
ArticleNumber 5935
Author Vitelli, Vincenzo
Chen, Yangyang
Li, Xiaopeng
Scheibner, Colin
Huang, Guoliang
Author_xml – sequence: 1
  givenname: Yangyang
  orcidid: 0000-0003-3637-0137
  surname: Chen
  fullname: Chen, Yangyang
  organization: Department of Mechanical and Aerospace Engineering, University of Missouri
– sequence: 2
  givenname: Xiaopeng
  surname: Li
  fullname: Li, Xiaopeng
  organization: Department of Mechanical and Aerospace Engineering, University of Missouri
– sequence: 3
  givenname: Colin
  orcidid: 0000-0002-4340-1299
  surname: Scheibner
  fullname: Scheibner, Colin
  organization: James Franck Institute, The University of Chicago, Department of Physics, The University of Chicago
– sequence: 4
  givenname: Vincenzo
  orcidid: 0000-0001-6328-8783
  surname: Vitelli
  fullname: Vitelli, Vincenzo
  email: vitelli@uchicago.edu
  organization: James Franck Institute, The University of Chicago, Department of Physics, The University of Chicago, Kadanoff Center for Theoretical Physics, The University of Chicago
– sequence: 5
  givenname: Guoliang
  orcidid: 0000-0002-6238-6127
  surname: Huang
  fullname: Huang, Guoliang
  email: huangg@missouri.edu
  organization: Department of Mechanical and Aerospace Engineering, University of Missouri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34642324$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rFTEUhoNUbK39Ay5kwI2b0XxNJtkItvhRKAii65BJTm5zmZlck9xK7683vdNq20WTRULyvC8v55yX6GCOMyD0muD3BDP5IXPCRd9iSloqMOPt7hk6opiTlvSUHdy7H6KTnNe4LqaI5PwFOmRccMooP0KnP8CMYWdKiHMTfWNsCVfQTFDMZAqkYMbc_AnlsonONVOwKW7iaFIDo8kl2FCuX6HnvlJwcnseo19fPv88-9ZefP96fvbporUdx6UlWHFpsJLcKGmt9CAc59gJ1ys7dH5QinpQVnVMeN9zq0QPg8NVLYfOMXaMzhdfF81ab1KYTLrW0QS9f4hppU2qkUbQ1HuHO6zAYMmJgQGEEVgYMoBT1EL1-rh4bbbDBM7CXJIZH5g-_JnDpV7FKy07QjDvqsG7W4MUf28hFz2FbGEczQxxmzXtJKmbdzfo20foOm7TXEu1pwgWrOsr9eZ-on9R7lpVAbkAtQU5J_C6Fn_ftxowjJpgfTMYehkMXQdD7wdD76qUPpLeuT8pYosoV3heQfof-wnVX20PzAY
CitedBy_id crossref_primary_10_1002_adma_202307998
crossref_primary_10_1088_1361_6463_ad9ab2
crossref_primary_10_1002_adfm_202316745
crossref_primary_10_1103_PhysRevLett_127_268001
crossref_primary_10_1063_5_0224250
crossref_primary_10_1103_PhysRevB_109_115115
crossref_primary_10_1360_nso_20230086
crossref_primary_10_1038_s41586_025_08646_3
crossref_primary_10_1016_j_ymssp_2024_111656
crossref_primary_10_1002_pssb_202400528
crossref_primary_10_34133_research_0356
crossref_primary_10_1038_s42254_022_00445_3
crossref_primary_10_1103_PhysRevLett_134_018302
crossref_primary_10_1126_sciadv_adf7299
crossref_primary_10_1016_j_ijmecsci_2024_109684
crossref_primary_10_1063_5_0139336
crossref_primary_10_1103_PhysRevApplied_21_L051002
crossref_primary_10_1063_5_0152291
crossref_primary_10_1103_PhysRevResearch_4_023089
crossref_primary_10_1088_1361_6633_aceeee
crossref_primary_10_1088_1751_8121_ad8790
crossref_primary_10_1016_j_scib_2024_04_023
crossref_primary_10_1016_j_ymssp_2022_109295
crossref_primary_10_1115_1_4064447
crossref_primary_10_1103_PhysRevB_107_094111
crossref_primary_10_1103_PhysRevResearch_4_033122
crossref_primary_10_1364_AOP_529289
crossref_primary_10_1016_j_jmps_2022_105163
crossref_primary_10_1016_j_jmps_2023_105462
crossref_primary_10_1093_nsr_nwae110
crossref_primary_10_1016_j_euromechsol_2022_104706
crossref_primary_10_1103_PhysRevE_109_024608
crossref_primary_10_3389_fphy_2022_1024964
crossref_primary_10_1063_5_0152606
crossref_primary_10_1039_D3MH01866K
crossref_primary_10_1063_5_0182475
crossref_primary_10_1103_PhysRevB_110_205429
crossref_primary_10_1007_s11071_023_08808_w
crossref_primary_10_7498_aps_70_20211908
crossref_primary_10_1016_j_euromechsol_2023_105220
crossref_primary_10_1177_10996362241302975
crossref_primary_10_1103_PhysRevB_109_035131
crossref_primary_10_1038_s41467_022_35448_2
crossref_primary_10_1103_PhysRevResearch_5_043227
crossref_primary_10_1103_PhysRevE_104_L062602
crossref_primary_10_1016_j_jmps_2024_105865
crossref_primary_10_1016_j_ijsolstr_2024_112774
crossref_primary_10_1007_s10409_023_23007_x
crossref_primary_10_1016_j_jmps_2024_105705
crossref_primary_10_1115_1_4066084
crossref_primary_10_35848_1882_0786_ad0ad9
crossref_primary_10_1002_advs_202308584
crossref_primary_10_1088_1361_665X_ad0393
crossref_primary_10_1103_PhysRevResearch_5_033217
crossref_primary_10_1103_PhysRevE_110_044605
crossref_primary_10_1016_j_tws_2025_113080
crossref_primary_10_1103_PhysRevE_107_054212
crossref_primary_10_1063_5_0097530
crossref_primary_10_1103_PhysRevB_106_134112
crossref_primary_10_1016_j_ijmecsci_2024_109904
crossref_primary_10_1038_s41567_022_01836_0
crossref_primary_10_1016_j_cej_2024_156138
crossref_primary_10_1103_PhysRevB_106_035425
crossref_primary_10_1103_PhysRevB_110_104105
crossref_primary_10_1007_s00707_025_04273_1
crossref_primary_10_1063_5_0093247
crossref_primary_10_1103_PhysRevB_106_014303
crossref_primary_10_1016_j_compstruct_2022_116111
crossref_primary_10_1103_PhysRevResearch_6_033100
crossref_primary_10_1146_annurev_conmatphys_040821_125506
crossref_primary_10_1073_pnas_2305755120
crossref_primary_10_1016_j_tws_2024_112373
crossref_primary_10_1038_s41598_023_36828_4
crossref_primary_10_1103_PhysRevB_107_195112
crossref_primary_10_1016_j_ijmecsci_2022_107131
crossref_primary_10_1038_s41586_024_07097_6
crossref_primary_10_1360_TB_2021_0573
Cites_doi 10.1103/PhysRevLett.126.216405
10.1088/1361-665X/ab6693
10.1038/s41586-019-1022-9
10.1038/s41467-019-14015-2
10.1103/PhysRevLett.122.124301
10.1016/j.jmps.2018.04.005
10.1098/rspa.2016.0604
10.1038/nature21044
10.1063/1.4752468
10.1103/PhysRevLett.125.256802
10.1016/j.jmps.2017.05.009
10.1038/s41586-021-03375-9
10.1126/science.aax6182
10.1088/0964-1726/25/11/115016
10.1007/BF00281479
10.1038/nature18960
10.1038/nphys3801
10.1088/1361-665X/aae27b
10.1126/science.1246957
10.1088/0031-8949/90/8/085807
10.1080/00018732.2021.1876991
10.1088/1361-6633/aa7b9e
10.1016/j.ymssp.2017.02.008
10.1073/pnas.2010580117
10.1103/PhysRevB.99.201103
10.1038/s41567-020-0795-y
10.1088/1361-665X/aa53ea
10.1088/0964-1726/25/10/105036
10.1002/adma.201305280
10.1098/rspa.2015.0256
10.1088/1367-2630/ab81b6
10.1103/PhysRevLett.124.086801
10.1038/s41467-019-12599-3
10.1016/j.ymssp.2020.107479
10.1126/science.aao4640
10.1103/PhysRevLett.125.118001
10.1103/PhysRevLett.77.570
10.1073/pnas.2010318117
10.1103/PhysRevE.96.032404
10.1103/PhysRevLett.125.126402
10.1038/s41586-020-2626-9
10.1103/PhysRevLett.106.213901
10.1038/srep35048
10.1038/ncomms6905
10.1115/1.4028378
10.1103/PhysRevLett.121.086803
10.1103/PhysRevResearch.2.023265
10.1126/science.aaw2498
10.1038/s41563-018-0268-1
10.1088/0034-4885/63/12/202
10.1038/s41467-020-17529-2
10.1103/RevModPhys.93.015005
10.1038/nphys3224
10.1063/1.5110701
10.1103/PhysRevLett.80.5243
10.1103/PhysRevResearch.2.023173
10.1103/PhysRevLett.126.138001
10.1126/science.1258004
10.1098/rsta.1998.0226
10.2307/j.ctvzxx9kj
10.1038/s41578-020-0206-0
10.1201/9781315220703
10.1038/s41567-020-0922-9
10.1007/978-3-319-18212-4_10
10.1007/978-1-4612-0555-5
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-26034-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_2ffd0509ea0841aebe6a606a1bed92ce
PMC8511045
34642324
10_1038_s41467_021_26034_z
Genre Journal Article
GrantInformation_xml – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: W911NF-19-1-0268; W911NF-18-1-0031
  funderid: https://doi.org/10.13039/100000183
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  grantid: AF 9550-18-1-0342; AF 9550-20-0279
  funderid: https://doi.org/10.13039/100000181
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: W911NF-18-1-0031
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  grantid: AF 9550-20-0279
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  grantid: AF 9550-18-1-0342
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: W911NF-19-1-0268
– fundername: ;
  grantid: AF 9550-18-1-0342; AF 9550-20-0279
– fundername: ;
  grantid: W911NF-19-1-0268; W911NF-18-1-0031
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-10948a0984a98cc8fe6d440d6d79cb5fb992fe9c9536ff74c967ebd0c548b5d33
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:58 EDT 2025
Thu Aug 21 18:29:06 EDT 2025
Fri Jul 11 09:38:06 EDT 2025
Wed Aug 13 10:54:17 EDT 2025
Thu Apr 03 06:53:15 EDT 2025
Tue Jul 01 04:17:36 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Fri Feb 21 02:39:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-10948a0984a98cc8fe6d440d6d79cb5fb992fe9c9536ff74c967ebd0c548b5d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4340-1299
0000-0001-6328-8783
0000-0002-6238-6127
0000-0003-3637-0137
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-26034-z
PMID 34642324
PQID 2581106357
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_2ffd0509ea0841aebe6a606a1bed92ce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8511045
proquest_miscellaneous_2581818455
proquest_journals_2581106357
pubmed_primary_34642324
crossref_citationtrail_10_1038_s41467_021_26034_z
crossref_primary_10_1038_s41467_021_26034_z
springer_journals_10_1038_s41467_021_26034_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-12
PublicationDateYYYYMMDD 2021-10-12
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Fleury, Sounas, Al’u (CR11) 2015; 6
Frenzel, Kadic, Wegener (CR3) 2017; 358
Chen, Li, Hu, Haberman, Huang (CR50) 2020; 11
Okuma, Kawabata, Shiozaki, Sato (CR60) 2020; 124
Wang (CR9) 2019; 366
Bender, Boettcher (CR64) 1998; 80
Bergholtz, Budich, Kunst (CR52) 2021; 93
Prost, Julicher, Joanny (CR19) 2015; 11
Kawabata, Shiozaki, Ryu (CR55) 2021; 126
Sirota, Ilan, Shokef, Lahini (CR36) 2020; 125
Bergamini (CR40) 2014; 26
Needleman, Dogic (CR4) 2017; 2
Coulais, Teomy, de Reus, Shokef, vanHecke (CR5) 2016; 535
Li (CR13) 2019; 567
Chen, Hu, Huang (CR45) 2016; 25
Sugino, Ruzzene, Erturk (CR46) 2018; 116
Caruel, Truskinovsky (CR8) 2018; 81
Hatano, Nelson (CR51) 1996; 77
Peng (CR12) 2014; 346
Wang, Cheng, Chen, He (CR43) 2017; 26
CR47
Scheibner, Irvine, Vitelli (CR30) 2020; 125
You, Baskaran, Marchetti (CR25) 2020; 117
Huber (CR2) 2016; 12
Bertoldi, Vitelli, Christensen, van Hecke (CR1) 2017; 2
Maugin (CR48) 1998; 356
Mohammadi Estakhri, Edwards, Engheta (CR17) 2019; 363
Ouisse, Collet, Scarpa (CR37) 2016; 25
Chen, Hu, Huang (CR42) 2017; 105
Lee, Thomale (CR57) 2019; 99
Brandenbourger, Locsin, Lerner, Coulais (CR7) 2019; 10
Muhlestein, Sieck, Al’u, Haberman (CR69) 2016; 472
Zhou, Zhang (CR31) 2020; 2
Faust, Lakes (CR28) 2015; 90
Srivastava (CR67) 2015; 471
Miskin (CR14) 2020; 584
CR58
Yao, Wang (CR59) 2018; 121
Zhang, Yang, Fang (CR62) 2020; 125
Fruchart, Hanai, Littlewood, Vitelli (CR23) 2021; 592
CR54
Saha, Agudo-Canalejo, Golestanian (CR24) 2020; 10
Chen, Zhu, Barnhart, Huang (CR10) 2016; 6
Hofmann (CR61) 2020; 2
Trainiti (CR33) 2019; 122
Fink (CR34) 2000; 63
Guseinov, McMahan, Perez, Daraio, Bickel (CR6) 2020; 11
Sirota, Sabsovich, Lahini, Ilan, Shokef (CR35) 2021; 153
Chen, Huang, Sun (CR39) 2014; 136
Alan, Allam, Erturk (CR41) 2019; 115
Ghatak, Brandenbourger, van Wezel, Coulais (CR56) 2020; 117
Scheibner (CR27) 2020; 16
Ashida, Gong, Ueda (CR53) 2020; 69
Lin (CR15) 2011; 106
Chen, Li, Nassar, Hu, Huang (CR49) 2018; 27
Coulais, Sounas, Al’u (CR21) 2017; 542
CR26
Rosa, Ruzzene (CR29) 2020; 22
Fleury, Sounas, Sieck, Haberman, Al’u (CR22) 2014; 343
Salbreux, J ̈ulicher (CR18) 2017; 96
Banerjee, Vitelli, Jülicher, Surówka (CR32) 2021; 126
CR65
CR20
CR63
Yi (CR38) 2020; 29
Casadei, Delpero, Bergamini, Ermanni, Ruzzene (CR44) 2012; 112
Cui (CR66) 2019; 18
Yi, Collet, Chesne, Monteil (CR16) 2017; 93
Day (CR68) 1971; 40
S Saha (26034_CR24) 2020; 10
Z You (26034_CR25) 2020; 117
CH Lee (26034_CR57) 2019; 99
T Hofmann (26034_CR61) 2020; 2
Y Chen (26034_CR50) 2020; 11
N Okuma (26034_CR60) 2020; 124
M Fruchart (26034_CR23) 2021; 592
D Banerjee (26034_CR32) 2021; 126
S Alan (26034_CR41) 2019; 115
SD Huber (26034_CR2) 2016; 12
T Frenzel (26034_CR3) 2017; 358
B Peng (26034_CR12) 2014; 346
YY Chen (26034_CR39) 2014; 136
26034_CR47
C Coulais (26034_CR21) 2017; 542
Z Lin (26034_CR15) 2011; 106
C Coulais (26034_CR5) 2016; 535
S Li (26034_CR13) 2019; 567
K Zhang (26034_CR62) 2020; 125
L Sirota (26034_CR36) 2020; 125
D Faust (26034_CR28) 2015; 90
YY Chen (26034_CR45) 2016; 25
J Prost (26034_CR19) 2015; 11
D Needleman (26034_CR4) 2017; 2
MZ Miskin (26034_CR14) 2020; 584
G Wang (26034_CR43) 2017; 26
Y Chen (26034_CR49) 2018; 27
R Fleury (26034_CR11) 2015; 6
C Scheibner (26034_CR30) 2020; 125
N Mohammadi Estakhri (26034_CR17) 2019; 363
EJ Bergholtz (26034_CR52) 2021; 93
H Cui (26034_CR66) 2019; 18
L Sirota (26034_CR35) 2021; 153
YY Chen (26034_CR10) 2016; 6
C Scheibner (26034_CR27) 2020; 16
F Casadei (26034_CR44) 2012; 112
R Fleury (26034_CR22) 2014; 343
S Yao (26034_CR59) 2018; 121
WA Day (26034_CR68) 1971; 40
MB Muhlestein (26034_CR69) 2016; 472
A Bergamini (26034_CR40) 2014; 26
M Brandenbourger (26034_CR7) 2019; 10
M Caruel (26034_CR8) 2018; 81
A Srivastava (26034_CR67) 2015; 471
G Salbreux (26034_CR18) 2017; 96
C Sugino (26034_CR46) 2018; 116
MIN Rosa (26034_CR29) 2020; 22
GA Maugin (26034_CR48) 1998; 356
R Wang (26034_CR9) 2019; 366
26034_CR26
N Hatano (26034_CR51) 1996; 77
26034_CR65
G Trainiti (26034_CR33) 2019; 122
CM Bender (26034_CR64) 1998; 80
Y Ashida (26034_CR53) 2020; 69
K Kawabata (26034_CR55) 2021; 126
K Bertoldi (26034_CR1) 2017; 2
K Yi (26034_CR38) 2020; 29
26034_CR63
26034_CR20
D Zhou (26034_CR31) 2020; 2
26034_CR58
Y Chen (26034_CR42) 2017; 105
K Yi (26034_CR16) 2017; 93
M Ouisse (26034_CR37) 2016; 25
26034_CR54
A Ghatak (26034_CR56) 2020; 117
M Fink (26034_CR34) 2000; 63
R Guseinov (26034_CR6) 2020; 11
References_xml – volume: 126
  start-page: 216405
  year: 2021
  ident: CR55
  article-title: Topological Field Theory of Non-Hermitian Systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.216405
– volume: 10
  start-page: 041009
  year: 2020
  ident: CR24
  article-title: Scalar active mixtures: The nonreciprocal Cahn-Hilliard model
  publication-title: Phys. Rev. X
– volume: 29
  start-page: 035005
  year: 2020
  ident: CR38
  article-title: Programmable metamaterials with digital synthetic impedance circuits for vibration control
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab6693
– volume: 567
  start-page: 361
  year: 2019
  end-page: 365
  ident: CR13
  article-title: Particle robotics based on statistical mechanics of loosely coupled components
  publication-title: Nature
  doi: 10.1038/s41586-019-1022-9
– volume: 11
  year: 2020
  ident: CR6
  article-title: Programming temporal morphing of self-actuated shells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14015-2
– ident: CR54
– ident: CR58
– volume: 122
  start-page: 124301
  year: 2019
  ident: CR33
  article-title: Time-periodic stiffness modulation inelastic metamaterials for selective wave filtering: Theory and experiment
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.124301
– volume: 116
  start-page: 323
  year: 2018
  end-page: 333
  ident: CR46
  article-title: Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.04.005
– volume: 472
  start-page: 20160604
  year: 2016
  ident: CR69
  article-title: Reciprocity, passivity and causality in Willis materials
  publication-title: Proc. R. Soc. A: Math., Phys. Eng. Sci.
  doi: 10.1098/rspa.2016.0604
– volume: 542
  start-page: 461
  year: 2017
  end-page: 464
  ident: CR21
  article-title: Static non-reciprocity in mechanical metamaterials
  publication-title: Nature
  doi: 10.1038/nature21044
– volume: 112
  start-page: 064902
  year: 2012
  ident: CR44
  article-title: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4752468
– volume: 125
  start-page: 256802
  year: 2020
  ident: CR36
  article-title: Non-newtonian topological mechanical metamaterials using feedback control
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.256802
– volume: 2
  start-page: 17048
  year: 2017
  ident: CR4
  article-title: Active matter at the inter-face between materials science and cell biology. Nature Reviews
  publication-title: Materials
– volume: 105
  start-page: 179
  year: 2017
  end-page: 198
  ident: CR42
  article-title: A hybrid elastic metamaterial with negative mass density and tunable bending stiffness
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.05.009
– volume: 592
  start-page: 363
  year: 2021
  end-page: 369
  ident: CR23
  article-title: Non-reciprocal phase transitions
  publication-title: Nature
  doi: 10.1038/s41586-021-03375-9
– volume: 366
  start-page: 216
  year: 2019
  end-page: 221
  ident: CR9
  article-title: Torsional refrigeration by twisted, coiled, and supercoiled fibers
  publication-title: Science
  doi: 10.1126/science.aax6182
– volume: 25
  start-page: 115016
  year: 2016
  ident: CR37
  article-title: A piezo-shunted kirigami auxetic lattice for adaptive elastic wave filtering
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/11/115016
– volume: 40
  start-page: 155
  year: 1971
  end-page: 159
  ident: CR68
  article-title: Time-reversal and the symmetry of the relaxation function of a linear viscoelastic material
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281479
– volume: 535
  start-page: 529
  year: 2016
  end-page: 532
  ident: CR5
  article-title: Combinatorial design of textured mechanical metamaterials
  publication-title: Nature
  doi: 10.1038/nature18960
– volume: 12
  start-page: 621
  year: 2016
  end-page: 623
  ident: CR2
  article-title: Topological mechanics
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3801
– volume: 27
  start-page: 115011
  year: 2018
  ident: CR49
  article-title: A programmable metasurface for real time control of broad-band elastic rays
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aae27b
– ident: CR26
– volume: 343
  start-page: 516
  year: 2014
  end-page: 519
  ident: CR22
  article-title: Sound isolation and giant linear nonreciprocity in a compact acoustic circulator
  publication-title: Science
  doi: 10.1126/science.1246957
– volume: 90
  start-page: 085807
  year: 2015
  ident: CR28
  article-title: Reciprocity failure in piezo-electric polymer composite
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/90/8/085807
– volume: 69
  start-page: 249
  year: 2020
  end-page: 435
  ident: CR53
  article-title: Non-hermitian physics
  publication-title: Adv. Phys.
  doi: 10.1080/00018732.2021.1876991
– volume: 81
  start-page: 036602
  year: 2018
  ident: CR8
  article-title: Physics of muscle contraction
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aa7b9e
– volume: 93
  start-page: 255
  year: 2017
  end-page: 266
  ident: CR16
  article-title: Enhancement of elastic wave energy harvesting using adaptive piezolens
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.02.008
– volume: 117
  start-page: 29561
  year: 2020
  end-page: 29568
  ident: CR56
  article-title: Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2010580117
– volume: 99
  start-page: 201103
  year: 2019
  ident: CR57
  article-title: Anatomy of skin modes and topology in non-Hermitian systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.201103
– volume: 16
  start-page: 475
  year: 2020
  end-page: 480
  ident: CR27
  article-title: Odd elasticity
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0795-y
– ident: CR47
– volume: 26
  start-page: 025031
  year: 2017
  ident: CR43
  article-title: Multi-resonant piezoelectric shunting induced by digital controllers for subwavelength elastic wave attenuation in smart metamaterial
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa53ea
– volume: 25
  start-page: 105036
  year: 2016
  ident: CR45
  article-title: An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/10/105036
– volume: 26
  start-page: 1343
  year: 2014
  end-page: 1347
  ident: CR40
  article-title: Phononic crystal with adaptive connectivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305280
– volume: 471
  start-page: 20150256
  year: 2015
  ident: CR67
  article-title: Causality and passivity in elastodynamics
  publication-title: Proc. R. Soc. A: Math., Phys. Eng. Sci.
  doi: 10.1098/rspa.2015.0256
– volume: 22
  start-page: 053004
  year: 2020
  ident: CR29
  article-title: Dynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactions
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/ab81b6
– volume: 124
  start-page: 086801
  year: 2020
  ident: CR60
  article-title: Topological origin of non-Hermitian skin effects
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.086801
– volume: 10
  year: 2019
  ident: CR7
  article-title: Non-reciprocal robotic metamaterials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12599-3
– volume: 153
  start-page: 107479
  year: 2021
  ident: CR35
  article-title: Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107479
– volume: 358
  start-page: 1072
  year: 2017
  end-page: 1074
  ident: CR3
  article-title: Three-dimensional mechanical metamaterials with a twist
  publication-title: Science
  doi: 10.1126/science.aao4640
– volume: 125
  start-page: 118001
  year: 2020
  ident: CR30
  article-title: Non-Hermitian band topology and skin modes in active elastic media
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.118001
– volume: 77
  start-page: 570
  year: 1996
  end-page: 573
  ident: CR51
  article-title: Localization transitions in non-Hermitian quantum mechanics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.570
– volume: 117
  start-page: 19767
  year: 2020
  end-page: 19772
  ident: CR25
  article-title: Nonreciprocity as a generic route to traveling states
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2010318117
– ident: CR63
– volume: 96
  start-page: 032404
  year: 2017
  ident: CR18
  article-title: Mechanics of active surfaces
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.032404
– volume: 125
  start-page: 126402
  year: 2020
  ident: CR62
  article-title: Correspondence between winding numbers and skin modes in non-Hermitian systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.126402
– volume: 584
  start-page: 557
  year: 2020
  end-page: 561
  ident: CR14
  article-title: Electronically integrated, mass-manufactured, microscopic robots
  publication-title: Nature
  doi: 10.1038/s41586-020-2626-9
– ident: CR65
– volume: 106
  start-page: 213901
  year: 2011
  ident: CR15
  article-title: Unidirectional invisibility induced by PT-symmetric periodic structures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.213901
– volume: 6
  year: 2016
  ident: CR10
  article-title: Enhanced flexural wave sensing by adaptive gradient-index metamaterials
  publication-title: Sci. Rep.
  doi: 10.1038/srep35048
– volume: 6
  year: 2015
  ident: CR11
  article-title: An invisible acoustic sensor based on parity-time symmetry
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6905
– volume: 136
  start-page: 061008
  year: 2014
  ident: CR39
  article-title: Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4028378
– volume: 121
  start-page: 086803
  year: 2018
  ident: CR59
  article-title: Edge states and topological invariants of non-Hermitian systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.086803
– volume: 2
  start-page: 023265
  year: 2020
  ident: CR61
  article-title: Reciprocal skin effect and its realization in a topolectrical circuit.
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023265
– volume: 363
  start-page: 1333
  year: 2019
  end-page: 1338
  ident: CR17
  article-title: Inverse-designed metastructures that solve equations
  publication-title: Science
  doi: 10.1126/science.aaw2498
– volume: 18
  start-page: 234
  year: 2019
  end-page: 241
  ident: CR66
  article-title: Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0268-1
– volume: 63
  start-page: 1933
  year: 2000
  end-page: 1995
  ident: CR34
  article-title: Time-reversed acoustics
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/63/12/202
– volume: 2
  start-page: 17066
  year: 2017
  ident: CR1
  article-title: Flexible mechanical metamaterials. Nature Reviews
  publication-title: Materials
– volume: 11
  year: 2020
  ident: CR50
  article-title: An active mechanical Willis meta-layer with asymmetric polarizabilities
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17529-2
– volume: 93
  start-page: 015005
  year: 2021
  ident: CR52
  article-title: Exceptional topology of non-Hermitian systems
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.93.015005
– volume: 11
  start-page: 111
  year: 2015
  end-page: 117
  ident: CR19
  article-title: Active gel physics
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3224
– volume: 115
  start-page: 093502
  year: 2019
  ident: CR41
  article-title: Programmable mode conversion and bandgap formation for surface acoustic waves using piezoelectric metamaterials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5110701
– volume: 80
  start-page: 5243
  year: 1998
  end-page: 5246
  ident: CR64
  article-title: Real spectra in non-Hermitian hamiltonians having PT symmetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5243
– volume: 2
  start-page: 023173
  year: 2020
  ident: CR31
  article-title: Non-Hermitian topological meta-materials with odd elasticity
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023173
– volume: 126
  start-page: 138001
  year: 2021
  ident: CR32
  article-title: Active viscoelasticity of odd materials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.138001
– volume: 346
  start-page: 328
  year: 2014
  end-page: 332
  ident: CR12
  article-title: Loss-induced suppression and revival of lasing
  publication-title: Science
  doi: 10.1126/science.1258004
– ident: CR20
– volume: 356
  start-page: 1367
  year: 1998
  end-page: 1395
  ident: CR48
  article-title: On the structure of the theory of polar elasticity
  publication-title: Philos. Trans.: Math., Phys. Eng. Sci.
  doi: 10.1098/rsta.1998.0226
– volume: 346
  start-page: 328
  year: 2014
  ident: 26034_CR12
  publication-title: Science
  doi: 10.1126/science.1258004
– volume: 121
  start-page: 086803
  year: 2018
  ident: 26034_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.086803
– volume: 125
  start-page: 256802
  year: 2020
  ident: 26034_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.256802
– volume: 116
  start-page: 323
  year: 2018
  ident: 26034_CR46
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.04.005
– volume: 363
  start-page: 1333
  year: 2019
  ident: 26034_CR17
  publication-title: Science
  doi: 10.1126/science.aaw2498
– ident: 26034_CR54
  doi: 10.2307/j.ctvzxx9kj
– volume: 126
  start-page: 138001
  year: 2021
  ident: 26034_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.138001
– volume: 69
  start-page: 249
  year: 2020
  ident: 26034_CR53
  publication-title: Adv. Phys.
  doi: 10.1080/00018732.2021.1876991
– volume: 6
  year: 2015
  ident: 26034_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6905
– volume: 125
  start-page: 126402
  year: 2020
  ident: 26034_CR62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.126402
– volume: 22
  start-page: 053004
  year: 2020
  ident: 26034_CR29
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/ab81b6
– volume: 136
  start-page: 061008
  year: 2014
  ident: 26034_CR39
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4028378
– volume: 592
  start-page: 363
  year: 2021
  ident: 26034_CR23
  publication-title: Nature
  doi: 10.1038/s41586-021-03375-9
– volume: 27
  start-page: 115011
  year: 2018
  ident: 26034_CR49
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aae27b
– volume: 10
  start-page: 041009
  year: 2020
  ident: 26034_CR24
  publication-title: Phys. Rev. X
– volume: 90
  start-page: 085807
  year: 2015
  ident: 26034_CR28
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/90/8/085807
– volume: 77
  start-page: 570
  year: 1996
  ident: 26034_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.570
– ident: 26034_CR20
  doi: 10.1038/s41578-020-0206-0
– volume: 29
  start-page: 035005
  year: 2020
  ident: 26034_CR38
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab6693
– volume: 115
  start-page: 093502
  year: 2019
  ident: 26034_CR41
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5110701
– volume: 112
  start-page: 064902
  year: 2012
  ident: 26034_CR44
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4752468
– volume: 2
  start-page: 17048
  year: 2017
  ident: 26034_CR4
  publication-title: Materials
– volume: 25
  start-page: 115016
  year: 2016
  ident: 26034_CR37
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/11/115016
– volume: 122
  start-page: 124301
  year: 2019
  ident: 26034_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.124301
– volume: 81
  start-page: 036602
  year: 2018
  ident: 26034_CR8
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aa7b9e
– volume: 105
  start-page: 179
  year: 2017
  ident: 26034_CR42
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.05.009
– volume: 106
  start-page: 213901
  year: 2011
  ident: 26034_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.213901
– ident: 26034_CR65
  doi: 10.1201/9781315220703
– volume: 542
  start-page: 461
  year: 2017
  ident: 26034_CR21
  publication-title: Nature
  doi: 10.1038/nature21044
– volume: 25
  start-page: 105036
  year: 2016
  ident: 26034_CR45
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/10/105036
– volume: 125
  start-page: 118001
  year: 2020
  ident: 26034_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.118001
– volume: 124
  start-page: 086801
  year: 2020
  ident: 26034_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.086801
– volume: 2
  start-page: 023173
  year: 2020
  ident: 26034_CR31
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023173
– volume: 10
  year: 2019
  ident: 26034_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12599-3
– volume: 80
  start-page: 5243
  year: 1998
  ident: 26034_CR64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5243
– volume: 472
  start-page: 20160604
  year: 2016
  ident: 26034_CR69
  publication-title: Proc. R. Soc. A: Math., Phys. Eng. Sci.
  doi: 10.1098/rspa.2016.0604
– volume: 96
  start-page: 032404
  year: 2017
  ident: 26034_CR18
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.032404
– ident: 26034_CR26
– volume: 16
  start-page: 475
  year: 2020
  ident: 26034_CR27
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0795-y
– volume: 356
  start-page: 1367
  year: 1998
  ident: 26034_CR48
  publication-title: Philos. Trans.: Math., Phys. Eng. Sci.
  doi: 10.1098/rsta.1998.0226
– volume: 93
  start-page: 015005
  year: 2021
  ident: 26034_CR52
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.93.015005
– ident: 26034_CR58
  doi: 10.1038/s41567-020-0922-9
– volume: 535
  start-page: 529
  year: 2016
  ident: 26034_CR5
  publication-title: Nature
  doi: 10.1038/nature18960
– volume: 343
  start-page: 516
  year: 2014
  ident: 26034_CR22
  publication-title: Science
  doi: 10.1126/science.1246957
– volume: 2
  start-page: 17066
  year: 2017
  ident: 26034_CR1
  publication-title: Materials
– volume: 63
  start-page: 1933
  year: 2000
  ident: 26034_CR34
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/63/12/202
– volume: 26
  start-page: 025031
  year: 2017
  ident: 26034_CR43
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa53ea
– volume: 18
  start-page: 234
  year: 2019
  ident: 26034_CR66
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0268-1
– volume: 153
  start-page: 107479
  year: 2021
  ident: 26034_CR35
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107479
– volume: 471
  start-page: 20150256
  year: 2015
  ident: 26034_CR67
  publication-title: Proc. R. Soc. A: Math., Phys. Eng. Sci.
  doi: 10.1098/rspa.2015.0256
– volume: 6
  year: 2016
  ident: 26034_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/srep35048
– volume: 2
  start-page: 023265
  year: 2020
  ident: 26034_CR61
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023265
– volume: 12
  start-page: 621
  year: 2016
  ident: 26034_CR2
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3801
– volume: 11
  year: 2020
  ident: 26034_CR50
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17529-2
– volume: 40
  start-page: 155
  year: 1971
  ident: 26034_CR68
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281479
– volume: 11
  year: 2020
  ident: 26034_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14015-2
– volume: 366
  start-page: 216
  year: 2019
  ident: 26034_CR9
  publication-title: Science
  doi: 10.1126/science.aax6182
– volume: 99
  start-page: 201103
  year: 2019
  ident: 26034_CR57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.201103
– volume: 126
  start-page: 216405
  year: 2021
  ident: 26034_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.216405
– volume: 567
  start-page: 361
  year: 2019
  ident: 26034_CR13
  publication-title: Nature
  doi: 10.1038/s41586-019-1022-9
– volume: 117
  start-page: 19767
  year: 2020
  ident: 26034_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2010318117
– volume: 11
  start-page: 111
  year: 2015
  ident: 26034_CR19
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3224
– ident: 26034_CR63
  doi: 10.1007/978-3-319-18212-4_10
– volume: 26
  start-page: 1343
  year: 2014
  ident: 26034_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305280
– volume: 117
  start-page: 29561
  year: 2020
  ident: 26034_CR56
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2010580117
– volume: 584
  start-page: 557
  year: 2020
  ident: 26034_CR14
  publication-title: Nature
  doi: 10.1038/s41586-020-2626-9
– volume: 358
  start-page: 1072
  year: 2017
  ident: 26034_CR3
  publication-title: Science
  doi: 10.1126/science.aao4640
– volume: 93
  start-page: 255
  year: 2017
  ident: 26034_CR16
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.02.008
– ident: 26034_CR47
  doi: 10.1007/978-1-4612-0555-5
SSID ssj0000391844
Score 2.640273
Snippet Materials made from active, living, or robotic components can display emergent properties arising from local sensing and computation. Here, we realize a...
Mechanical metamaterials can be engineered with properties not possible in ordinary materials. Here the authors demonstrate and study an active metamaterial...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5935
SubjectTerms 639/301/1023/303
639/766/25/3927
Bending modulus
Conservation laws
Elastic properties
Energy
Energy conservation
Feedforward control
Humanities and Social Sciences
Localization
Mechanical properties
Metamaterials
Modulus of elasticity
multidisciplinary
Piezoelectricity
Robot components
Science
Science (multidisciplinary)
Shearing
Symmetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEA4iFHopbe2PtbZE6K1dzG6SfcmxlooIeigK3kKymdBC3Se6HvSvdybZ9-prq17KXpZNlg0zk8mXnck3jH2kKsYiWKiVlqFWPd4FEXTdgAnBhhR1osPJh0fd_ok6ONWnd0p9UU5YoQcugttpU4rEUQJeGNV4_GbnEXT7JkC0bQ_kfXHNu7OZyj5YWty6qOmUjJBm51Jln0AZCQjhpapvVlaiTNj_L5T5d7LkHxHTvBDtPWfPJgTJv5SRv2BrMLxkT0pNyesNtvsdod90uJLPE_fZofEzGD2C02JvnP6-8nmM_Izy8c5pe8sBcTSlWI_Xr9jJ3rfjr_v1VCih7hFwjehKrTJeWKO8NX1vEnQRdRC7OLN90ClY2yawPYVqU5qhRroZhCjwbRN0lPI1Wx_mA7xlHFQHnVAQhYzKgwgmEVFBE6TwEFtVsWYhNNdPLOJUzOKXy9FsaVwRtENBuyxod1OxT8t3zguHxoO9d0kXy57Ef50foFW4ySrcY1ZRsa2FJt00KS9dqw2CHSLgq9j2shmnE8VI_ADzq9IHL6V1xd4UxS9HIlVHYW2UwWzFJFaGutoy_PyRKbsJ1yJ4rtjnhfH8Htb9otj8H6J4x562ZPU5C2eLrY8XV_AegdQYPuQ5cwvLChwF
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUbiBlGdxM7aJ0QRS4UEB0Sl3iw7HgMSTZZuemh_fWccb6rlUeUSJY7kzIzHnz3jbxh7RVWMhTdQStX4UnZ454VXZQXae-NjUJEOJ3_-0h4eyU_H6jhvuK1zWuXGJyZHHYaO9sj3a6VxpiL2tLer3yVVjaLoai6hcZPdqnCmoZQuvfw477EQ-7mWMp-VEY3eX8vkGSgvAYF8I8uLrfko0fb_C2v-nTL5R9w0TUfLe-xuxpH83aT4--wG9A_Y7amy5PlDdvAVAWA-YsmHyF1ya_wERocQdbI6TnuwfAiBn1BW3ooWuRwQTVOi9Xj-iB0tP3x7f1jmcgllh7BrRIdqpHbCaOmM7jodoQ2oidCGhem8it6YOoLpKGAb4wL10i7AB4Ffa69C0zxmO_3Qw1PGQbbQCglBNEE6EF5HoiuofCMchFoWrNoIzXaZS5xKWvyyKabdaDsJ2qKgbRK0vSjY6_mb1cSkcW3rA9LF3JJYsNOD4fS7zYPK1jEG4q8BJ7SsHNpj63BB5ioPwdQdFGxvo0mbh-baXhlSwV7Or3FQUaTE9TCcTW3wkkoV7Mmk-LknjWwpuI0yWGyZxFZXt9_0P38k4m5CtwihC_ZmYzxX3fq_KJ5d_xe77E5N9pyybPbYznh6Bs8RKI3-RRoNl225EgM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na90wDBddy2CX0X2n7UoGu21hTuLk2cfXsVIebIdthd6MHcvboE1Kmx7av76S8zHe1g1KLiGWwciS_Ysl_Qzwlm8xFk5jJqvSZbKhNydcleWonNMu-CpwcfLnL_XRsVydVCcbUEy1MDFpP1JaxmV6yg77cCmjS3NCASHwUmY3D2CLqdrJtreWy9W31XyywpznSsqxQkaU6o7Oa7tQJOu_C2H-nSj5R7Q0bkKH2_B4RI_pchjvE9jA9ik8HO6TvH4GB18J9o2FlWkXUhsXs_QMe0vAdLC1lE9e08779Ixz8c751zZFwtCcXt1fP4fjw0_fPx5l4yUJWUNgq6dlVEtlhVbSatU0KmDtSf--9gvduCo4rYuAuuEwbQgLmo16gc4L6q1c5cvyBWy2XYuvIEVZYy0kelF6aVE4FZikIHelsOgLmUA-Kc00I4M4X2RxamIku1RmULQhRZuoaHOTwLu5z_nAn_Ff6QOei1mSua_jh-7ihxltwRQheGatQSuUzC1ZYW3pN8zmDr0uGkxgb5pJMzrkpSkqRUCHyfcSeDM3kytxfMS22F0NMvTIqkrg5TDx80hKWXNIm3SwWDOJtaGut7S_fka6bsa0BJwTeD8Zz-9h_VsVO_cT34VHBdt3zLXZg83-4gpfE1zq3f7oH7dGQRGu
  priority: 102
  providerName: Springer Nature
Title Realization of active metamaterials with odd micropolar elasticity
URI https://link.springer.com/article/10.1038/s41467-021-26034-z
https://www.ncbi.nlm.nih.gov/pubmed/34642324
https://www.proquest.com/docview/2581106357
https://www.proquest.com/docview/2581818455
https://pubmed.ncbi.nlm.nih.gov/PMC8511045
https://doaj.org/article/2ffd0509ea0841aebe6a606a1bed92ce
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_uA8EX8due51LBN62mbdomDyK7y63Hwh1yurBvJWkSFe7ac28Pbu-vdyZtV1ZXkUJb0qSE-Uh-yUxmAF5RFmOmpY14luqIV_immc6i2AqtpXYmc3Q4-eQ0P57x6Tyb70Cf7qgj4NXWpR3lk5otzt_e_Fh9QIV_3x4ZF--uuFd3cjZAdJ7y6HYX9nFmKiijwUkH9_3InEpc0JChOWE8jrBC2p2j2f6bjbnKh_TfhkP_dKf8zabqp6rJfbjXYcxw2ArFA9ix9UO402adXD2C0RmCw-74Zdi4UPkhL7ywS4XwtZXIkPZnw8aY8II89i6JSqFFpE1O2MvVY5hNjr6Mj6MulUJUISRb4mAruVBMCq6kqCrhbG6QSyY3hax05rSUibOyImOucwXyLC-sNgxbC52ZNH0Ce3VT22cQWp7bnHFrWGq4skwLR6EMYp0yZU3CA4h7opVVF2ec0l2cl97enYqyJXSJhC49ocvbAF6v21y2UTb-WXtEvFjXpAjZvqBZfC07hSsT5wzFtrGKCR4rlNVc4WJNxdoamVQ2gMOek2UvdWWSCYRDFKIvgJfrz6hwZEVRtW2u2zp48SwL4GnL-HVPUp6T4RtpUGyIxEZXN7_U37_5oN6EfBFeB_CmF55f3fo7KQ7-o5vP4W5CQu3dcA5hb7m4ti8QSS31AHaLeYF3Mfk4gP3hcPp5is_R0emnMywd5-OB36MYeDX6CXeNIBw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiHcDLRgJThDVSZysc0AVBZYtfRxQK_Vm7NgGJJos3VRo-6P4jcw4yVbLo7cqlyi2pcl4PP7seQE8pyrG3JQuFnlmYlHhm-EmjxMnjSmNt7mn4OT9g2JyJD4e58cr8GuIhSG3ykEnBkVtm4ruyDfTXOJORdnTtqY_YqoaRdbVoYRGJxa7bv4Tj2yz1zvvcH5fpOn4_eHbSdxXFYgrRCct6p1SSM1LKXQpq0p6V1gk2BZ2VFYm96YsU-_Kiuya3o-Q_GLkjOU4Wprc0gUoqvxrIsOdnCLTxx8WdzqUbV0K0cfm8ExuzkTQROQHgQeHTMTnS_tfKBPwL2z7t4vmH3basP2Nb8OtHreyN52g3YEVV9-F610ly_k92P6EgLMP6WSNZzqoUXbiWo2QuJNyRne-rLGWnZAX4JQO1cwheifH7nZ-H46uhJEPYLVuarcGzInCFVw4yzMrtONGekqPkJiMa2dTEUEyME1Vfe5yKqHxXQUbeiZVx2iFjFaB0eo8gpeLMdMuc8elvbdpLhY9Ket2-NCcflH9Ilap95by5TjNpUg0yn-h8QCoE-NsmVYugvVhJlWvCmbqQnAjeLZoxkVMlhldu-as64OPyPMIHnYTv6AkEwUZ05EHoyWRWCJ1uaX-9jUkCic0jZA9gleD8FyQ9X9WPLr8L57Cjcnh_p7a2znYfQw3U5Lt4OGzDqvt6ZnbQJDWmidhZTD4fNVL8TceG09v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN5NKRAkOEG0TuIkzgEhlnbVUlhVFZV6M3ZsA1KbLN1UaPvT-HXM5FUtj96qXKLYkezxzPgbz3gG4AVVMWY6twFPYh3wAt8000kQWqF1rp1JHF1O_jRLd4_4h-PkeA1-9XdhKKyy14mNojZVQWfk4ygRuFNR9rSx68IiDranb-c_AqogRZ7WvpxGyyL7dvkTzbfFm71tXOuXUTTd-fx-N-gqDAQFIpUadVDOhWK54CoXRSGcTQ0O3qQmywudOJ3nkbN5QT5O5zKcSppZbRj-LXRi6DAU1f96RlbRCNYnO7ODw-GEh3KvC867mzosFuMFb_QSRUWgGRHz4GJlN2yKBvwL6f4dsPmH17bZDKd34HaHYv13LdvdhTVb3oMbbV3L5X2YHCL87C54-pXzVaNU_VNbKwTILc_7dALsV8b4pxQTOCcT27eI5SnMu14-gKNrIeVDGJVVaTfAtzy1KePWsNhwZZkWjpIlhDpmypqIexD2RJNFl8mcCmqcyMajHgvZEloioWVDaHnhwavhn3mbx-PK3hNai6En5eBuPlRnX2Un0jJyzlD2HKuY4KFCaUgVmoMq1NbkUWE92OpXUnaKYSEv2diD50MzijT5aVRpq_O2Dz48STx41C78MJKYp-RaRxpkKyyxMtTVlvL7tyZtOGFrBPAevO6Z53JY_yfF5tWzeAY3UQzlx73Z_mO4FRFrN-E-WzCqz87tE0RstX7aiYYPX65bGn8DT6RVAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+active+metamaterials+with+odd+micropolar+elasticity&rft.jtitle=Nature+communications&rft.au=Chen%2C+Yangyang&rft.au=Li%2C+Xiaopeng&rft.au=Scheibner%2C+Colin&rft.au=Vitelli%2C+Vincenzo&rft.date=2021-10-12&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=5935&rft_id=info:doi/10.1038%2Fs41467-021-26034-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon