Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways
High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple elements in near-equal proportions. However, enthalpic interactions inevitably render such chemically disordered SSs rare and metastable, except a...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 3563 - 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.08.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple elements in near-equal proportions. However, enthalpic interactions inevitably render such chemically disordered SSs rare and metastable, except at very high temperatures. Here we highlight the wide variety of local chemical ordering (LCO) that sets these concentrated SSs apart from traditional solvent-solute ones. Using atomistic simulations, we reveal that the LCO of the multi-principal-element NiCoCr SS changes with alloy processing conditions, producing a wide range of generalized planar fault energies. We show that the LCO heightens the ruggedness of the energy landscape and raises activation barriers governing dislocation activities. This influences the selection of dislocation pathways in slip, faulting, and twinning, and increases the lattice friction to dislocation motion via a nanoscale segment detrapping mechanism. In contrast, severe plastic deformation reduces the LCO towards random SS.
Multi-principal-element alloys have been assumed to have the configurational entropy of an ideal solution. Here, the authors use atomistic simulations to show that instead NiCoCr exhibits local chemical order, raising the activation barriers of dislocation activities to elevate mechanical strength. |
---|---|
AbstractList | High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple elements in near-equal proportions. However, enthalpic interactions inevitably render such chemically disordered SSs rare and metastable, except at very high temperatures. Here we highlight the wide variety of local chemical ordering (LCO) that sets these concentrated SSs apart from traditional solvent-solute ones. Using atomistic simulations, we reveal that the LCO of the multi-principal-element NiCoCr SS changes with alloy processing conditions, producing a wide range of generalized planar fault energies. We show that the LCO heightens the ruggedness of the energy landscape and raises activation barriers governing dislocation activities. This influences the selection of dislocation pathways in slip, faulting, and twinning, and increases the lattice friction to dislocation motion via a nanoscale segment detrapping mechanism. In contrast, severe plastic deformation reduces the LCO towards random SS.
Multi-principal-element alloys have been assumed to have the configurational entropy of an ideal solution. Here, the authors use atomistic simulations to show that instead NiCoCr exhibits local chemical order, raising the activation barriers of dislocation activities to elevate mechanical strength. Multi-principal-element alloys have been assumed to have the configurational entropy of an ideal solution. Here, the authors use atomistic simulations to show that instead NiCoCr exhibits local chemical order, raising the activation barriers of dislocation activities to elevate mechanical strength. High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple elements in near-equal proportions. However, enthalpic interactions inevitably render such chemically disordered SSs rare and metastable, except at very high temperatures. Here we highlight the wide variety of local chemical ordering (LCO) that sets these concentrated SSs apart from traditional solvent-solute ones. Using atomistic simulations, we reveal that the LCO of the multi-principal-element NiCoCr SS changes with alloy processing conditions, producing a wide range of generalized planar fault energies. We show that the LCO heightens the ruggedness of the energy landscape and raises activation barriers governing dislocation activities. This influences the selection of dislocation pathways in slip, faulting, and twinning, and increases the lattice friction to dislocation motion via a nanoscale segment detrapping mechanism. In contrast, severe plastic deformation reduces the LCO towards random SS.High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple elements in near-equal proportions. However, enthalpic interactions inevitably render such chemically disordered SSs rare and metastable, except at very high temperatures. Here we highlight the wide variety of local chemical ordering (LCO) that sets these concentrated SSs apart from traditional solvent-solute ones. Using atomistic simulations, we reveal that the LCO of the multi-principal-element NiCoCr SS changes with alloy processing conditions, producing a wide range of generalized planar fault energies. We show that the LCO heightens the ruggedness of the energy landscape and raises activation barriers governing dislocation activities. This influences the selection of dislocation pathways in slip, faulting, and twinning, and increases the lattice friction to dislocation motion via a nanoscale segment detrapping mechanism. In contrast, severe plastic deformation reduces the LCO towards random SS. High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple elements in near-equal proportions. However, enthalpic interactions inevitably render such chemically disordered SSs rare and metastable, except at very high temperatures. Here we highlight the wide variety of local chemical ordering (LCO) that sets these concentrated SSs apart from traditional solvent-solute ones. Using atomistic simulations, we reveal that the LCO of the multi-principal-element NiCoCr SS changes with alloy processing conditions, producing a wide range of generalized planar fault energies. We show that the LCO heightens the ruggedness of the energy landscape and raises activation barriers governing dislocation activities. This influences the selection of dislocation pathways in slip, faulting, and twinning, and increases the lattice friction to dislocation motion via a nanoscale segment detrapping mechanism. In contrast, severe plastic deformation reduces the LCO towards random SS. |
ArticleNumber | 3563 |
Author | Li, Qing-Jie Ma, Evan Sheng, Howard |
Author_xml | – sequence: 1 givenname: Qing-Jie surname: Li fullname: Li, Qing-Jie organization: Department of Materials Science and Engineering, Johns Hopkins University – sequence: 2 givenname: Howard surname: Sheng fullname: Sheng, Howard email: hsheng@gmu.edu organization: Department of Physics and Astronomy, George Mason University, Center for High Pressure Science and Technology Advanced Research – sequence: 3 givenname: Evan orcidid: 0000-0002-7468-4340 surname: Ma fullname: Ma, Evan email: ema@jhu.edu organization: Department of Materials Science and Engineering, Johns Hopkins University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31395881$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxS1URMvSL8ABReLCJWDHTmxfkFDFn0qVOABny3EmiVeOvdgOVb893t1S2h6aS0bJ7z3PjN9LdOKDB4ReE_yeYCo-JEZYx2tMZE1KxWr-DJ01mJGa8Iae3KtP0XlKW1weKolg7AU6pYTKVghyhuYfOYKf8gze-qmyvlpWl229i9Ybu9OuAgcL-Fxp58JNqq5tnisXjHa1mWGx-yLEAWIVwzoVGxiqwaY9kW3w1U7n-VrfpFfo-ahdgvPb9wb9-vL558W3-ur718uLT1e1aRnOdZlNNkZqAlJQLSQD0Y3EdFwaEKKXvQY6YMCtGAY9js3QGtlJAmzgwvCxpxt0efQdgt6qMsai440K2qrDhxAnpWO2xoHqB4OLnTGs6A0be827RrNyGGGiKzvaoI9Hr93aLzCYsoao3QPTh3-8ndUU_qiuE1xQWgze3RrE8HuFlNVikwHntIewJtU0HGPCWi4L-vYRug1r9GVVheqk3INtod7c7-iulX8XWoDmCJgYUoow3iEEq31w1DE4qgRHHYKjeBGJRyJj8-H6ylTWPS2lR2naJ2aC-L_tJ1R_AYqs2fw |
CitedBy_id | crossref_primary_10_1016_j_jnucmat_2024_155186 crossref_primary_10_1016_j_scriptamat_2024_116333 crossref_primary_10_1016_j_jallcom_2022_168521 crossref_primary_10_1016_j_jmst_2023_10_025 crossref_primary_10_1016_j_scriptamat_2020_02_002 crossref_primary_10_31857_S0235010623040059 crossref_primary_10_1016_j_actamat_2022_118662 crossref_primary_10_1016_j_physb_2022_414447 crossref_primary_10_1016_j_actamat_2022_117693 crossref_primary_10_1126_sciadv_abq7433 crossref_primary_10_1021_acs_nanolett_4c02086 crossref_primary_10_1016_j_mtphys_2022_100799 crossref_primary_10_1038_s41467_020_16083_1 crossref_primary_10_1016_j_jallcom_2022_165144 crossref_primary_10_1016_j_pmatsci_2024_101252 crossref_primary_10_1016_j_actamat_2024_120074 crossref_primary_10_1016_j_jmst_2024_12_029 crossref_primary_10_1016_j_mattod_2025_02_006 crossref_primary_10_1016_j_jmrt_2024_12_024 crossref_primary_10_1016_j_actamat_2020_07_070 crossref_primary_10_1073_pnas_2020540118 crossref_primary_10_1016_j_actamat_2022_118314 crossref_primary_10_1016_j_jallcom_2021_162923 crossref_primary_10_1016_j_commatsci_2021_110495 crossref_primary_10_1016_j_ijplas_2025_104308 crossref_primary_10_1016_j_scriptamat_2024_116111 crossref_primary_10_1016_j_msea_2023_145772 crossref_primary_10_1016_j_commatsci_2024_113587 crossref_primary_10_1016_j_jmrt_2024_03_115 crossref_primary_10_1016_j_scriptamat_2021_114450 crossref_primary_10_1002_smll_202204275 crossref_primary_10_1016_j_ceramint_2023_08_139 crossref_primary_10_1016_j_ijmecsci_2025_109979 crossref_primary_10_1016_j_jmps_2023_105305 crossref_primary_10_1080_27660400_2022_2153632 crossref_primary_10_1016_j_jmrt_2023_12_193 crossref_primary_10_1063_5_0206532 crossref_primary_10_1016_j_mtla_2020_100628 crossref_primary_10_1016_j_scriptamat_2020_02_021 crossref_primary_10_1016_j_apsusc_2021_150462 crossref_primary_10_1063_5_0206773 crossref_primary_10_1103_PhysRevMaterials_8_033607 crossref_primary_10_1016_j_ijmecsci_2024_109140 crossref_primary_10_1016_j_jmrt_2024_04_247 crossref_primary_10_1016_j_jallcom_2024_174550 crossref_primary_10_1016_j_commatsci_2023_112089 crossref_primary_10_1016_j_actamat_2021_117380 crossref_primary_10_1016_j_jmst_2023_01_014 crossref_primary_10_1016_j_scriptamat_2020_09_015 crossref_primary_10_1016_j_jmst_2020_04_062 crossref_primary_10_1016_j_cja_2024_01_010 crossref_primary_10_1063_5_0146032 crossref_primary_10_1016_j_mtnano_2022_100298 crossref_primary_10_1016_j_mtcomm_2025_111667 crossref_primary_10_1017_S1431927622012193 crossref_primary_10_1016_j_actamat_2021_117140 crossref_primary_10_1016_j_scriptamat_2024_116535 crossref_primary_10_1016_j_jmst_2022_01_025 crossref_primary_10_1557_s43578_020_00071_8 crossref_primary_10_1038_s41578_019_0121_4 crossref_primary_10_1016_j_ijplas_2024_104059 crossref_primary_10_1016_j_jallcom_2022_167470 crossref_primary_10_1021_acs_nanolett_3c04516 crossref_primary_10_1016_j_jallcom_2024_174335 crossref_primary_10_1016_j_mattod_2024_08_004 crossref_primary_10_1002_adma_202305453 crossref_primary_10_1007_s40843_023_2584_2 crossref_primary_10_1016_j_pmatsci_2021_100777 crossref_primary_10_3390_ma17092124 crossref_primary_10_1016_j_actamat_2022_118590 crossref_primary_10_1016_j_jmrt_2023_03_026 crossref_primary_10_1016_j_matdes_2022_111368 crossref_primary_10_1016_j_jallcom_2022_168219 crossref_primary_10_1103_PhysRevE_104_025310 crossref_primary_10_1002_adfm_202420268 crossref_primary_10_1016_j_pmatsci_2024_101295 crossref_primary_10_1007_s11223_022_00448_6 crossref_primary_10_1007_s42864_020_00052_8 crossref_primary_10_1016_j_pmatsci_2025_101475 crossref_primary_10_1103_PhysRevLett_132_116101 crossref_primary_10_1002_sstr_202400110 crossref_primary_10_1016_j_ijfatigue_2025_108859 crossref_primary_10_1016_j_matchar_2021_111622 crossref_primary_10_1063_5_0064299 crossref_primary_10_1038_s41524_020_0306_9 crossref_primary_10_1007_s10409_024_23569_x crossref_primary_10_1016_j_actamat_2021_117089 crossref_primary_10_1016_j_commatsci_2022_111763 crossref_primary_10_1016_j_commatsci_2022_111762 crossref_primary_10_1103_PhysRevMaterials_6_013605 crossref_primary_10_3390_met14020226 crossref_primary_10_1016_j_jmst_2022_07_065 crossref_primary_10_1038_s41467_022_32134_1 crossref_primary_10_1016_j_actamat_2025_120764 crossref_primary_10_1016_j_actamat_2025_120887 crossref_primary_10_1557_s43577_022_00285_7 crossref_primary_10_1016_j_jnucmat_2021_153140 crossref_primary_10_1016_j_scriptamat_2021_114379 crossref_primary_10_1016_j_jmst_2020_12_017 crossref_primary_10_1021_accountsmr_0c00102 crossref_primary_10_1039_D1RA02073K crossref_primary_10_1016_j_actamat_2022_118201 crossref_primary_10_1039_D0CP03764H crossref_primary_10_1103_PhysRevMaterials_5_085007 crossref_primary_10_1073_pnas_2322962121 crossref_primary_10_1016_j_msea_2022_144037 crossref_primary_10_1016_j_jmrt_2023_05_199 crossref_primary_10_1016_j_scriptamat_2022_114547 crossref_primary_10_1016_j_apsusc_2024_162105 crossref_primary_10_3389_fmats_2022_1046291 crossref_primary_10_3390_app14072752 crossref_primary_10_1016_j_jmps_2023_105359 crossref_primary_10_1016_j_jmrt_2023_10_144 crossref_primary_10_1080_21663831_2024_2357269 crossref_primary_10_3389_fmats_2021_767795 crossref_primary_10_1016_j_commatsci_2022_111626 crossref_primary_10_1016_j_ijmecsci_2022_107931 crossref_primary_10_1016_j_jmst_2023_02_002 crossref_primary_10_1016_j_mtcomm_2022_104686 crossref_primary_10_1002_adma_202405459 crossref_primary_10_1016_j_jmrt_2024_04_217 crossref_primary_10_1016_j_mtchem_2024_102435 crossref_primary_10_1038_s41467_021_25264_5 crossref_primary_10_1016_j_actamat_2020_04_034 crossref_primary_10_1016_j_actamat_2023_119196 crossref_primary_10_1016_j_commatsci_2019_109366 crossref_primary_10_1016_j_ijrmhm_2024_106776 crossref_primary_10_1557_s43577_023_00575_8 crossref_primary_10_1016_j_ijplas_2025_104257 crossref_primary_10_1038_s41563_020_0750_4 crossref_primary_10_1016_j_msea_2024_147280 crossref_primary_10_1103_PhysRevB_109_054117 crossref_primary_10_1016_j_actamat_2021_117457 crossref_primary_10_1063_5_0130402 crossref_primary_10_1039_D3NR05251F crossref_primary_10_1016_j_actamat_2023_119079 crossref_primary_10_1016_j_jallcom_2025_178697 crossref_primary_10_1016_j_matdes_2022_111572 crossref_primary_10_1016_j_intermet_2019_106652 crossref_primary_10_1016_j_ijplas_2023_103859 crossref_primary_10_1016_j_msea_2023_145923 crossref_primary_10_1088_1361_651X_ad04f3 crossref_primary_10_1038_s41467_024_53349_4 crossref_primary_10_1016_j_ijrmhm_2024_106885 crossref_primary_10_1016_j_jnucmat_2023_154520 crossref_primary_10_1016_j_jallcom_2023_172002 crossref_primary_10_1557_jmr_2020_262 crossref_primary_10_1016_j_ijsolstr_2024_113175 crossref_primary_10_1016_j_intermet_2020_106775 crossref_primary_10_1073_pnas_1919136117 crossref_primary_10_1360_TB_2024_0436 crossref_primary_10_1016_j_jmst_2021_01_046 crossref_primary_10_1016_j_scriptamat_2023_115463 crossref_primary_10_1103_PhysRevB_107_174103 crossref_primary_10_1038_s41563_024_01959_0 crossref_primary_10_1016_j_actamat_2020_01_044 crossref_primary_10_1016_j_actamat_2024_120366 crossref_primary_10_1016_j_matdes_2023_111999 crossref_primary_10_1016_j_jallcom_2021_163171 crossref_primary_10_1016_j_ijplas_2020_102819 crossref_primary_10_1080_21663831_2024_2426692 crossref_primary_10_1093_nsr_nwae026 crossref_primary_10_1016_j_actamat_2021_117314 crossref_primary_10_1016_j_ijplas_2025_104274 crossref_primary_10_1002_adem_202201915 crossref_primary_10_1016_j_intermet_2025_108665 crossref_primary_10_1103_PhysRevMaterials_7_033605 crossref_primary_10_1103_PhysRevMaterials_7_033606 crossref_primary_10_1016_j_actamat_2020_04_052 crossref_primary_10_1038_s41467_019_13311_1 crossref_primary_10_1016_j_ijplas_2023_103719 crossref_primary_10_1007_s11837_022_05477_9 crossref_primary_10_1016_j_jmrt_2024_08_086 crossref_primary_10_1063_5_0130784 crossref_primary_10_1016_j_jmrt_2025_01_012 crossref_primary_10_1016_j_msea_2024_146184 crossref_primary_10_1016_j_actamat_2022_117847 crossref_primary_10_1016_j_jmst_2023_12_021 crossref_primary_10_1016_j_ijplas_2025_104285 crossref_primary_10_1016_j_nimb_2024_165581 crossref_primary_10_1103_PhysRevMaterials_8_053602 crossref_primary_10_1016_j_ijplas_2023_103832 crossref_primary_10_1016_j_mtcomm_2025_111823 crossref_primary_10_1038_s41524_020_0348_z crossref_primary_10_1063_5_0098813 crossref_primary_10_1103_PhysRevB_103_104107 crossref_primary_10_1016_j_jmst_2023_05_072 crossref_primary_10_1016_j_actamat_2021_117490 crossref_primary_10_1016_j_ijplas_2024_103925 crossref_primary_10_1016_j_msea_2020_139854 crossref_primary_10_1557_s43577_023_00555_y crossref_primary_10_1063_5_0069108 crossref_primary_10_1557_s43577_022_00306_5 crossref_primary_10_1007_s10853_022_07994_z crossref_primary_10_1126_sciadv_adq6398 crossref_primary_10_3390_cryst14020166 crossref_primary_10_1016_j_ijplas_2023_103768 crossref_primary_10_1038_s41467_023_42894_z crossref_primary_10_1016_j_ijplas_2024_103919 crossref_primary_10_1126_sciadv_adf8602 crossref_primary_10_1016_j_jmrt_2024_08_068 crossref_primary_10_1016_j_commatsci_2021_110618 crossref_primary_10_1186_s41313_024_00059_5 crossref_primary_10_1016_j_actamat_2024_120150 crossref_primary_10_1016_j_eml_2023_102107 crossref_primary_10_1016_j_jmst_2021_02_063 crossref_primary_10_1038_s41586_020_2275_z crossref_primary_10_1016_j_jmst_2022_10_070 crossref_primary_10_1016_j_intermet_2023_108132 crossref_primary_10_1016_j_commatsci_2023_112191 crossref_primary_10_1016_j_intermet_2024_108473 crossref_primary_10_1016_j_actamat_2021_117487 crossref_primary_10_1016_j_jallcom_2022_166649 crossref_primary_10_1016_j_ijplas_2024_103949 crossref_primary_10_1016_j_jallcom_2022_166768 crossref_primary_10_1039_D2FD00111J crossref_primary_10_1021_acs_chemrev_0c00454 crossref_primary_10_1016_j_jallcom_2024_173788 crossref_primary_10_1016_j_jallcom_2021_158869 crossref_primary_10_1002_adem_202301797 crossref_primary_10_1007_s11431_021_1814_y crossref_primary_10_1103_PhysRevB_107_184116 crossref_primary_10_1016_j_actamat_2020_02_041 crossref_primary_10_1016_j_actamat_2021_117112 crossref_primary_10_1080_21663831_2022_2029607 crossref_primary_10_1038_s41467_024_49606_1 crossref_primary_10_1038_s41467_023_36423_1 crossref_primary_10_1038_s41586_019_1617_1 crossref_primary_10_1016_j_euromechsol_2025_105591 crossref_primary_10_3390_ma17235932 crossref_primary_10_1016_j_jmrt_2024_09_198 crossref_primary_10_1016_j_ijplas_2021_103155 crossref_primary_10_1063_5_0072766 crossref_primary_10_1002_ange_202419369 crossref_primary_10_1016_j_actamat_2023_119471 crossref_primary_10_1016_j_jmst_2024_08_058 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1038_s41529_024_00495_1 crossref_primary_10_1016_j_addma_2024_104229 crossref_primary_10_1016_j_actamat_2021_116638 crossref_primary_10_1016_j_jmst_2020_08_058 crossref_primary_10_1016_j_triboint_2024_109392 crossref_primary_10_1063_5_0157728 crossref_primary_10_1063_5_0064420 crossref_primary_10_1073_pnas_2209188120 crossref_primary_10_1016_j_jallcom_2023_171547 crossref_primary_10_1016_j_msea_2024_147568 crossref_primary_10_1016_j_matchar_2022_111779 crossref_primary_10_1515_ntrev_2021_0071 crossref_primary_10_1016_j_jallcom_2021_161289 crossref_primary_10_1016_j_scriptamat_2023_115750 crossref_primary_10_1016_j_msea_2021_141181 crossref_primary_10_1016_j_scriptamat_2023_115632 crossref_primary_10_1103_PhysRevMaterials_7_053601 crossref_primary_10_1038_s41524_024_01260_3 crossref_primary_10_1038_s41563_024_01871_7 crossref_primary_10_3389_fmats_2021_792359 crossref_primary_10_1016_j_actamat_2023_119228 crossref_primary_10_1016_j_jallcom_2022_168093 crossref_primary_10_1016_j_actamat_2023_119104 crossref_primary_10_1038_s41524_024_01393_5 crossref_primary_10_1016_j_actamat_2024_120508 crossref_primary_10_1016_j_commatsci_2022_111287 crossref_primary_10_1016_j_jmrt_2025_02_149 crossref_primary_10_1016_j_matt_2019_12_023 crossref_primary_10_1103_PhysRevMaterials_5_103604 crossref_primary_10_1016_j_actamat_2023_119583 crossref_primary_10_1038_s41467_020_14641_1 crossref_primary_10_1016_j_actamat_2020_10_044 crossref_primary_10_1088_1361_648X_abcb69 crossref_primary_10_1103_PhysRevB_106_094107 crossref_primary_10_1021_acs_chemrev_1c00387 crossref_primary_10_1016_j_commatsci_2023_112538 crossref_primary_10_1021_acsnano_4c01997 crossref_primary_10_1016_j_jmps_2022_104853 crossref_primary_10_1016_j_ijplas_2024_103980 crossref_primary_10_1016_j_scriptamat_2021_113927 crossref_primary_10_1016_j_actamat_2021_116982 crossref_primary_10_1038_s41467_022_34471_7 crossref_primary_10_1016_j_commatsci_2021_110942 crossref_primary_10_1016_j_jmrt_2025_03_074 crossref_primary_10_1038_s41563_023_01636_8 crossref_primary_10_1016_j_ijplas_2022_103389 crossref_primary_10_1016_j_actamat_2024_120635 crossref_primary_10_1016_j_jmst_2022_05_062 crossref_primary_10_1016_j_ijplas_2021_102944 crossref_primary_10_1016_j_jmst_2022_12_005 crossref_primary_10_1103_PhysRevMaterials_9_023602 crossref_primary_10_1063_5_0213996 crossref_primary_10_1016_j_cej_2024_156419 crossref_primary_10_1016_j_actamat_2023_119248 crossref_primary_10_1126_sciadv_abe3105 crossref_primary_10_1016_j_jallcom_2024_176075 crossref_primary_10_1016_j_scriptamat_2022_115048 crossref_primary_10_1021_acs_jpcc_0c09044 crossref_primary_10_3390_met12101757 crossref_primary_10_1016_j_apsusc_2024_160730 crossref_primary_10_1016_j_jallcom_2023_169016 crossref_primary_10_1007_s40195_022_01397_4 crossref_primary_10_1016_j_mtcomm_2020_101902 crossref_primary_10_1038_s41467_022_34470_8 crossref_primary_10_1016_j_jmst_2025_01_023 crossref_primary_10_1016_j_actamat_2021_117535 crossref_primary_10_1016_j_matchar_2024_114329 crossref_primary_10_1007_s11223_023_00511_w crossref_primary_10_1134_S0031918X23601671 crossref_primary_10_1080_21663831_2025_2464802 crossref_primary_10_1016_j_matlet_2022_133394 crossref_primary_10_1038_s43588_023_00407_4 crossref_primary_10_1016_j_matchar_2024_114203 crossref_primary_10_1016_j_mtla_2019_100565 crossref_primary_10_1016_j_actamat_2024_120554 crossref_primary_10_1016_j_jmst_2020_10_078 crossref_primary_10_1063_5_0177256 crossref_primary_10_1088_1361_648X_ad4aab crossref_primary_10_3390_modelling5010019 crossref_primary_10_1016_j_actamat_2021_117527 crossref_primary_10_1134_S0036029523080190 crossref_primary_10_3389_fmats_2020_575262 crossref_primary_10_1007_s12598_022_02194_9 crossref_primary_10_1016_j_jmst_2020_10_073 crossref_primary_10_1016_j_actamat_2023_119389 crossref_primary_10_1016_j_actamat_2023_119385 crossref_primary_10_1007_s42864_021_00085_7 crossref_primary_10_1016_j_matdes_2020_109396 crossref_primary_10_1016_j_matchar_2024_114357 crossref_primary_10_1103_PhysRevB_107_094109 crossref_primary_10_1016_j_jmat_2024_100964 crossref_primary_10_1016_j_actamat_2021_116786 crossref_primary_10_7498_aps_74_20250097 crossref_primary_10_1016_j_jmps_2024_105549 crossref_primary_10_1016_j_jallcom_2025_178559 crossref_primary_10_1002_anie_202419369 crossref_primary_10_1038_s41524_023_01046_z crossref_primary_10_1016_j_commatsci_2024_112980 crossref_primary_10_1016_j_actamat_2024_120457 crossref_primary_10_1016_j_jmst_2020_06_018 crossref_primary_10_1016_j_matdes_2021_109560 crossref_primary_10_1073_pnas_2218673120 crossref_primary_10_1016_j_msea_2022_143869 crossref_primary_10_1016_j_jmrt_2024_01_037 crossref_primary_10_1016_j_jmps_2024_105657 crossref_primary_10_1038_s41586_021_03428_z crossref_primary_10_1007_s40195_021_01260_y crossref_primary_10_1007_s40195_021_01282_6 crossref_primary_10_1016_j_jmst_2021_11_065 crossref_primary_10_1063_5_0069086 crossref_primary_10_1016_j_pmatsci_2020_100709 crossref_primary_10_1016_j_jmst_2021_09_056 crossref_primary_10_1103_PhysRevResearch_4_L022043 crossref_primary_10_1016_j_actamat_2022_118380 crossref_primary_10_1016_j_triboint_2023_108740 crossref_primary_10_1016_j_actamat_2024_119910 crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_1016_j_intermet_2022_107755 crossref_primary_10_1103_PhysRevMaterials_7_073602 crossref_primary_10_1007_s40843_021_1776_y crossref_primary_10_1016_j_actamat_2021_116801 crossref_primary_10_1063_5_0135538 crossref_primary_10_1016_j_jallcom_2024_177527 crossref_primary_10_1039_D0MH01341B crossref_primary_10_1016_j_msea_2024_146995 crossref_primary_10_1016_S1003_6326_24_66651_3 crossref_primary_10_1016_j_vacuum_2020_109953 crossref_primary_10_1126_science_abj8114 crossref_primary_10_1016_j_ijplas_2021_102997 crossref_primary_10_1088_1361_651X_ab7f8b crossref_primary_10_1016_j_actamat_2022_118022 crossref_primary_10_1016_j_apsusc_2022_153391 crossref_primary_10_1016_j_jmst_2024_11_067 crossref_primary_10_3390_met13030594 crossref_primary_10_1080_02670836_2020_1851437 crossref_primary_10_1002_ppap_202100116 crossref_primary_10_1126_science_adr4917 crossref_primary_10_1016_j_intermet_2022_107747 crossref_primary_10_1063_5_0231343 crossref_primary_10_1016_j_mattod_2024_10_004 crossref_primary_10_1016_j_actamat_2022_118159 crossref_primary_10_1016_j_scriptamat_2025_116570 crossref_primary_10_1073_pnas_2211787120 crossref_primary_10_1016_j_mtnano_2021_100139 crossref_primary_10_1016_j_jmrt_2024_11_068 crossref_primary_10_1016_j_jallcom_2024_175452 crossref_primary_10_1016_j_msea_2021_142440 crossref_primary_10_1016_j_jallcom_2021_160342 crossref_primary_10_1038_s43246_022_00289_5 crossref_primary_10_1073_pnas_2200607119 crossref_primary_10_1016_j_jallcom_2021_161314 crossref_primary_10_1016_j_scriptamat_2023_115903 crossref_primary_10_1016_j_jallcom_2023_170826 crossref_primary_10_1088_2752_5724_ad8463 crossref_primary_10_1016_j_commatsci_2022_111559 crossref_primary_10_1016_j_actamat_2023_119537 crossref_primary_10_1016_j_jmst_2024_09_008 crossref_primary_10_1016_j_jallcom_2024_177665 crossref_primary_10_1016_j_actamat_2023_119532 crossref_primary_10_1016_j_actamat_2025_120957 crossref_primary_10_1002_advs_202100870 crossref_primary_10_1016_j_matlet_2020_128821 crossref_primary_10_1016_j_mtla_2021_101059 crossref_primary_10_1007_s12613_024_2840_9 crossref_primary_10_1038_s41586_022_04459_w crossref_primary_10_1016_j_commatsci_2022_111787 crossref_primary_10_3390_met13020331 crossref_primary_10_1021_acs_nanolett_1c00444 crossref_primary_10_3390_met10020250 crossref_primary_10_1016_j_commatsci_2021_111085 crossref_primary_10_1016_j_jmrt_2024_04_188 crossref_primary_10_1016_j_surfcoat_2023_129772 crossref_primary_10_1016_j_mtcomm_2023_106630 crossref_primary_10_1038_s41929_024_01175_8 crossref_primary_10_1103_PhysRevResearch_6_013146 crossref_primary_10_2320_matertrans_MT_M2021234 crossref_primary_10_1557_s43577_022_00277_7 crossref_primary_10_1016_j_scriptamat_2024_116381 crossref_primary_10_1103_PhysRevMaterials_8_013604 crossref_primary_10_1038_s41586_023_06785_z crossref_primary_10_1016_j_actamat_2024_119729 crossref_primary_10_1016_j_actamat_2021_116829 crossref_primary_10_1002_advs_202407283 crossref_primary_10_1103_PhysRevMaterials_5_113601 crossref_primary_10_2139_ssrn_3981498 crossref_primary_10_1016_j_ijplas_2024_104200 crossref_primary_10_1007_s12613_024_2884_x crossref_primary_10_1016_j_actamat_2025_120809 crossref_primary_10_1016_j_actamat_2023_119306 crossref_primary_10_1103_PhysRevMaterials_7_025603 crossref_primary_10_1080_21663831_2023_2208166 crossref_primary_10_1016_j_mtnano_2024_100511 crossref_primary_10_1038_s41467_022_28687_w crossref_primary_10_1038_s41467_022_30524_z crossref_primary_10_1016_j_actamat_2024_120705 crossref_primary_10_1016_j_jmst_2022_08_034 crossref_primary_10_1016_j_jmst_2022_08_033 crossref_primary_10_1007_s40195_024_01812_y crossref_primary_10_1016_j_scriptamat_2025_116559 crossref_primary_10_1021_acs_jcim_1c00849 crossref_primary_10_1088_1361_651X_aca4ed crossref_primary_10_1126_sciadv_adn9673 crossref_primary_10_31857_S0015323023600971 crossref_primary_10_2320_matertrans_MT_MA2024001 crossref_primary_10_1016_j_actamat_2020_06_024 crossref_primary_10_1038_s41529_021_00163_8 crossref_primary_10_1016_j_msea_2024_147626 crossref_primary_10_1016_j_jallcom_2023_170877 crossref_primary_10_1016_j_scriptamat_2022_114949 crossref_primary_10_1016_j_jallcom_2023_171734 crossref_primary_10_1016_j_commt_2025_100028 crossref_primary_10_1016_j_msea_2023_145038 crossref_primary_10_1016_j_actamat_2022_118295 |
Cites_doi | 10.1063/1.2720838 10.1016/j.scriptamat.2017.02.042 10.1103/PhysRevB.13.5188 10.1103/PhysRevLett.102.245501 10.1103/PhysRevB.49.14251 10.1038/s41586-018-0685-y 10.1016/j.msea.2003.10.257 10.1016/j.actamat.2013.06.018 10.1103/PhysRevLett.118.205501 10.1016/j.actamat.2015.08.015 10.1016/j.actamat.2017.05.071 10.1103/PhysRevB.83.134118 10.1007/s11837-015-1609-z 10.1038/nature17981 10.1143/PTPS.115.1 10.1007/s11669-017-0582-3 10.1103/PhysRevB.71.224102 10.1016/j.actamat.2017.10.014 10.1361/105497103770330460 10.1016/j.scriptamat.2015.05.041 10.1103/PhysRevB.50.17953 10.1016/j.actamat.2015.01.068 10.1016/j.actamat.2016.04.005 10.1038/ncomms6964 10.1016/j.actamat.2016.01.018 10.1063/1.4918996 10.1007/s11661-013-2000-8 10.1016/j.actamat.2017.05.001 10.1038/s41467-018-03846-0 10.1016/j.scriptamat.2016.08.008 10.1016/j.actamat.2017.02.036 10.1016/j.actamat.2014.10.033 10.1002/pssb.19700410221 10.1103/PhysRevB.91.224204 10.1063/1.4990950 10.1107/S0021889871006174 10.1073/pnas.1808660115 10.1016/0001-6160(89)90143-0 10.1016/j.actamat.2016.07.038 10.1088/0965-0393/15/3/008 10.1016/j.cossms.2017.08.001 10.1016/j.actamat.2017.07.029 10.1016/j.mattod.2015.11.026 10.1016/j.msea.2016.11.078 10.1103/PhysRevB.29.6443 10.1080/21663831.2018.1478331 10.1016/j.ultramic.2012.12.015 10.1016/j.actamat.2016.08.047 10.1016/j.actamat.2016.08.081 10.1016/j.actamat.2017.04.033 10.1088/0965-0393/18/1/015012 10.1103/PhysRevLett.97.170201 10.1006/jcph.1995.1039 10.1038/ncomms14390 10.1557/jmr.2018.306 10.3390/e15125338 10.1080/09506608.2016.1180020 10.1126/science.1254581 10.1016/j.actamat.2017.10.050 10.1103/PhysRevB.59.1758 10.1038/ncomms10602 10.1016/j.actamat.2017.02.027 10.1016/j.scriptamat.2016.11.014 10.1016/j.scriptamat.2015.10.025 10.1016/j.actamat.2016.03.045 10.1016/j.pmatsci.2013.10.001 10.1038/s41467-018-04780-x 10.1103/PhysRevB.85.184203 10.1002/adem.200300567 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-11464-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_bdc0ae3cc41e4c4fba762a4c67148631 PMC6687833 31395881 10_1038_s41467_019_11464_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research (DMR) grantid: DMR-1611064; DMR-1804320 funderid: https://doi.org/10.13039/100000078 – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research (DMR) grantid: DMR-1611064 – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research (DMR) grantid: DMR-1804320 – fundername: ; grantid: DMR-1611064; DMR-1804320 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-10392c9a1e983a894e86f1c679ce88b9bae3d0e058ddaff2d5c9691e4d78c7fb3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:20:23 EDT 2025 Thu Aug 21 18:41:45 EDT 2025 Mon Jul 21 11:47:26 EDT 2025 Wed Aug 13 06:43:23 EDT 2025 Mon Jul 21 06:05:01 EDT 2025 Thu Apr 24 22:54:02 EDT 2025 Tue Jul 01 04:08:41 EDT 2025 Fri Feb 21 02:38:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-10392c9a1e983a894e86f1c679ce88b9bae3d0e058ddaff2d5c9691e4d78c7fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7468-4340 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-11464-7 |
PMID | 31395881 |
PQID | 2269970015 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bdc0ae3cc41e4c4fba762a4c67148631 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6687833 proquest_miscellaneous_2270014579 proquest_journals_2269970015 pubmed_primary_31395881 crossref_primary_10_1038_s41467_019_11464_7 crossref_citationtrail_10_1038_s41467_019_11464_7 springer_journals_10_1038_s41467_019_11464_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-08 |
PublicationDateYYYYMMDD | 2019-08-08 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Uzer (CR55) 2018; 6 Ogata, Li, Yip (CR48) 2005; 71 Zhao (CR49) 2017; 138 He (CR35) 2017; 126 Bitzek, Koskinen, Gähler, Moseler, Gumbsch (CR70) 2006; 97 Yeh (CR1) 2004; 6 Stukowski (CR68) 2010; 18 Miracle, Senkov (CR9) 2017; 122 Sadigh (CR66) 2012; 85 Zhang, Zhuang, Hu, Kai, Liu (CR40) 2017; 130 Zhang (CR4) 2014; 61 Otto (CR17) 2016; 112 Gludovatz (CR28) 2016; 7 Blöchl (CR63) 1994; 50 Niu, LaRosa, Miao, Mills, Ghazisaeidi (CR42) 2018; 9 Niu (CR20) 2015; 106 Kresse, Hafner (CR62) 1994; 49 Laplanche, Kostka, Horst, Eggeler, George (CR13) 2016; 118 Manzoni, Daoud, Völkl, Glatzel, Wanderka (CR45) 2013; 132 Tsai (CR3) 2013; 15 Sheng, Kramer, Cadien, Fujita, Chen (CR61) 2011; 83 Brommer, Gähler (CR59) 2007; 15 Cantor, Chang, Knight, Vincent (CR2) 2004; 375–377 Gao (CR33) 2017; 21 Huang (CR43) 2015; 108 Miao (CR50) 2017; 132 Xu (CR46) 2015; 84 Kresse, Joubert (CR64) 1999; 59 Wei, He, Tasan (CR37) 2018; 33 Yoshida, Bhattacharjee, Bai, Tsuji (CR56) 2017; 134 Laplanche, Bonneville, Varvenne, Curtin, George (CR15) 2018; 143 Fernández-Caballero, Wróbel, Mummery, Nguyen-Manh (CR24) 2017; 38 Smith (CR53) 2016; 110 Labusch (CR57) 1970; 41 Daw, Baskes (CR58) 1984; 29 Ding, Yu, Asta, Ritchie (CR30) 2018; 115 Laplanche (CR44) 2017; 128 Pickering, Muñoz-Moreno, Stone, Jones (CR18) 2016; 113 Gao (CR5) 2015; 67 Kozak, Sologubenko, Steurer (CR6) 2015; 230 Gerold, Karnthaler (CR47) 1989; 37 Cheng, Ma, Sheng (CR60) 2009; 102 Plimpton (CR67) 1995; 117 Zhang (CR25) 2017; 118 Rao, Woodward, Parthasarathy, Senkov (CR54) 2017; 134 E, Ren, Vanden-Eijnden (CR69) 2007; 126 Santodonato (CR26) 2015; 6 Zhao, Stocks, Zhang (CR38) 2017; 134 Otto (CR12) 2013; 61 Singh, Smirnov, Johnson (CR22) 2015; 91 Okamoto (CR31) 2003; 24 Wu, Gao, Bei (CR16) 2016; 120 Gludovatz (CR10) 2014; 345 Xu (CR52) 2018; 144 Pickering, Jones (CR7) 2016; 61 Huang (CR41) 2018; 9 Maiti, Steurer (CR34) 2016; 106 Li, Pradeep, Deng, Raabe, Tasan (CR11) 2016; 534 de Fontaine (CR29) 1971; 4 Kikuchi (CR32) 1994; 115 Zhang (CR39) 2017; 8 Widom, Huhn, Maiti, Steurer (CR21) 2014; 45 Koch (CR27) 2017; 122 Lei (CR36) 2018; 563 Hong, Moon, Hong, Kim (CR14) 2017; 682 Ye, Wang, Lu, Liu, Yang (CR8) 2016; 19 Laurent-Brocq (CR19) 2015; 88 Nöhring, Curtin (CR51) 2017; 128 Monkhorst, Pack (CR65) 1976; 13 Tamm, Aabloo, Klintenberg, Stocks, Caro (CR23) 2015; 99 EJ Pickering (11464_CR18) 2016; 113 H Okamoto (11464_CR31) 2003; 24 S Ogata (11464_CR48) 2005; 71 M Laurent-Brocq (11464_CR19) 2015; 88 XD Xu (11464_CR52) 2018; 144 B Gludovatz (11464_CR28) 2016; 7 D de Fontaine (11464_CR29) 1971; 4 G Kresse (11464_CR64) 1999; 59 V Gerold (11464_CR47) 1989; 37 G Laplanche (11464_CR44) 2017; 128 TM Smith (11464_CR53) 2016; 110 Y Zhang (11464_CR4) 2014; 61 S Plimpton (11464_CR67) 1995; 117 G Kresse (11464_CR62) 1994; 49 YQ Cheng (11464_CR60) 2009; 102 HW Sheng (11464_CR61) 2011; 83 Z Zhang (11464_CR39) 2017; 8 W E (11464_CR69) 2007; 126 F He (11464_CR35) 2017; 126 J Ding (11464_CR30) 2018; 115 MC Gao (11464_CR33) 2017; 21 EJ Pickering (11464_CR7) 2016; 61 F Otto (11464_CR12) 2013; 61 R Labusch (11464_CR57) 1970; 41 Z Lei (11464_CR36) 2018; 563 L Koch (11464_CR27) 2017; 122 B Uzer (11464_CR55) 2018; 6 B Sadigh (11464_CR66) 2012; 85 B Gludovatz (11464_CR10) 2014; 345 S Zhao (11464_CR38) 2017; 134 DB Miracle (11464_CR9) 2017; 122 S Yoshida (11464_CR56) 2017; 134 SI Rao (11464_CR54) 2017; 134 A Tamm (11464_CR23) 2015; 99 R Kikuchi (11464_CR32) 1994; 115 A Fernández-Caballero (11464_CR24) 2017; 38 B Cantor (11464_CR2) 2004; 375–377 R Kozak (11464_CR6) 2015; 230 FX Zhang (11464_CR25) 2017; 118 J Miao (11464_CR50) 2017; 132 S Huang (11464_CR43) 2015; 108 P Brommer (11464_CR59) 2007; 15 SI Hong (11464_CR14) 2017; 682 M-H Tsai (11464_CR3) 2013; 15 Z Wu (11464_CR16) 2016; 120 LJ Santodonato (11464_CR26) 2015; 6 E Bitzek (11464_CR70) 2006; 97 S Huang (11464_CR41) 2018; 9 MC Gao (11464_CR5) 2015; 67 HJ Monkhorst (11464_CR65) 1976; 13 G Laplanche (11464_CR15) 2018; 143 P Singh (11464_CR22) 2015; 91 A Manzoni (11464_CR45) 2013; 132 MS Daw (11464_CR58) 1984; 29 YL Zhao (11464_CR49) 2017; 138 Z Li (11464_CR11) 2016; 534 F Otto (11464_CR17) 2016; 112 A Stukowski (11464_CR68) 2010; 18 S Wei (11464_CR37) 2018; 33 C Niu (11464_CR42) 2018; 9 XD Xu (11464_CR46) 2015; 84 YF Ye (11464_CR8) 2016; 19 S Maiti (11464_CR34) 2016; 106 J-W Yeh (11464_CR1) 2004; 6 YH Zhang (11464_CR40) 2017; 130 WG Nöhring (11464_CR51) 2017; 128 PE Blöchl (11464_CR63) 1994; 50 M Widom (11464_CR21) 2014; 45 C Niu (11464_CR20) 2015; 106 G Laplanche (11464_CR13) 2016; 118 |
References_xml | – volume: 126 start-page: 164103 year: 2007 ident: CR69 article-title: Simplified and improved string method for computing the minimum energy paths in barrier-crossing events publication-title: J. Chem. Phys. doi: 10.1063/1.2720838 – volume: 134 start-page: 33 year: 2017 end-page: 36 ident: CR56 article-title: Friction stress and Hall–Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.02.042 – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR65 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 102 start-page: 245501 year: 2009 ident: CR60 article-title: Atomic level structure in multicomponent bulk metallic glass publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.245501 – volume: 49 start-page: 14251 year: 1994 end-page: 14269 ident: CR62 article-title: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 563 start-page: 546 year: 2018 ident: CR36 article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes publication-title: Nature doi: 10.1038/s41586-018-0685-y – volume: 375–377 start-page: 213 year: 2004 end-page: 218 ident: CR2 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – volume: 61 start-page: 5743 year: 2013 end-page: 5755 ident: CR12 article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.018 – volume: 118 start-page: 205501 year: 2017 ident: CR25 article-title: Local structure and short-range order in a NiCoCr solid solution alloy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.205501 – volume: 99 start-page: 307 year: 2015 end-page: 312 ident: CR23 article-title: Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.015 – volume: 134 start-page: 188 year: 2017 end-page: 194 ident: CR54 article-title: Atomistic simulations of dislocation behavior in a model FCC multicomponent concentrated solid solution alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.071 – volume: 83 start-page: 134118 year: 2011 ident: CR61 article-title: Highly optimized embedded-atom-method potentials for fourteen fcc metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.134118 – volume: 67 start-page: 2251 year: 2015 end-page: 2253 ident: CR5 article-title: Progress in high entropy alloys publication-title: JOM doi: 10.1007/s11837-015-1609-z – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: CR11 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 115 start-page: 1 year: 1994 end-page: 26 ident: CR32 article-title: CVM entropy algebra publication-title: Prog. Theor. Phys. Suppl. doi: 10.1143/PTPS.115.1 – volume: 38 start-page: 391 year: 2017 end-page: 403 ident: CR24 article-title: Short-range order in high entropy alloys: theoretical formulation and application to Mo-Nb-Ta-V-W system publication-title: J. Phase Equilibria Diffus. doi: 10.1007/s11669-017-0582-3 – volume: 71 start-page: 224102 year: 2005 ident: CR48 article-title: Energy landscape of deformation twinning in bcc and fcc metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.224102 – volume: 143 start-page: 257 year: 2018 end-page: 264 ident: CR15 article-title: Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.10.014 – volume: 24 start-page: 377 year: 2003 end-page: 378 ident: CR31 article-title: Co–Cr (Cobalt–Chromium) publication-title: J. Phase Equilibria Diffus. doi: 10.1361/105497103770330460 – volume: 108 start-page: 44 year: 2015 end-page: 47 ident: CR43 article-title: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.05.041 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR63 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 88 start-page: 355 year: 2015 end-page: 365 ident: CR19 article-title: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.01.068 – volume: 112 start-page: 40 year: 2016 end-page: 52 ident: CR17 article-title: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.04.005 – volume: 6 year: 2015 ident: CR26 article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy publication-title: Nat. Commun. doi: 10.1038/ncomms6964 – volume: 106 start-page: 87 year: 2016 end-page: 97 ident: CR34 article-title: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.01.018 – volume: 106 start-page: 161906 year: 2015 ident: CR20 article-title: Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo publication-title: Appl. Phys. Lett. doi: 10.1063/1.4918996 – volume: 45 start-page: 196 year: 2014 end-page: 200 ident: CR21 article-title: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-013-2000-8 – volume: 134 start-page: 334 year: 2017 end-page: 345 ident: CR38 article-title: Stacking fault energies of face-centered cubic concentrated solid solution alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.001 – volume: 9 year: 2018 ident: CR42 article-title: Magnetically-driven phase transformation strengthening in high entropy alloys publication-title: Nat. Commun. doi: 10.1038/s41467-018-03846-0 – volume: 126 start-page: 15 year: 2017 end-page: 19 ident: CR35 article-title: Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.08.008 – volume: 128 start-page: 292 year: 2017 end-page: 303 ident: CR44 article-title: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.036 – volume: 84 start-page: 145 year: 2015 end-page: 152 ident: CR46 article-title: Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.10.033 – volume: 41 start-page: 659 year: 1970 end-page: 669 ident: CR57 article-title: A Statistical Theory of solid solution hardening publication-title: Phys. Stat. Sol. B doi: 10.1002/pssb.19700410221 – volume: 91 start-page: 224204 year: 2015 ident: CR22 article-title: Atomic short-range order and incipient long-range order in high-entropy alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.224204 – volume: 122 start-page: 105106 year: 2017 ident: CR27 article-title: Local segregation versus irradiation effects in high-entropy alloys: steady-state conditions in a driven system publication-title: J. Appl. Phys. doi: 10.1063/1.4990950 – volume: 4 start-page: 15 year: 1971 end-page: 19 ident: CR29 article-title: The number of independent pair-correlation functions in multicomponent systems publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889871006174 – volume: 115 start-page: 8919 year: 2018 end-page: 8924 ident: CR30 article-title: Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1808660115 – volume: 37 start-page: 2177 year: 1989 end-page: 2183 ident: CR47 article-title: On the origin of planar slip in f.c.c. alloys publication-title: Acta Metall. doi: 10.1016/0001-6160(89)90143-0 – volume: 118 start-page: 152 year: 2016 end-page: 163 ident: CR13 article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.038 – volume: 15 start-page: 295 year: 2007 ident: CR59 article-title: Potfit: effective potentials from ab initio data publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/15/3/008 – volume: 21 start-page: 238 year: 2017 end-page: 251 ident: CR33 article-title: Thermodynamics of concentrated solid solution alloys publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2017.08.001 – volume: 138 start-page: 72 year: 2017 end-page: 82 ident: CR49 article-title: Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.07.029 – volume: 19 start-page: 349 year: 2016 end-page: 362 ident: CR8 article-title: High-entropy alloy: challenges and prospects publication-title: Mater. Today doi: 10.1016/j.mattod.2015.11.026 – volume: 682 start-page: 569 year: 2017 end-page: 576 ident: CR14 article-title: Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.11.078 – volume: 29 start-page: 6443 year: 1984 end-page: 6453 ident: CR58 article-title: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.29.6443 – volume: 6 start-page: 442 year: 2018 end-page: 449 ident: CR55 article-title: On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2018.1478331 – volume: 132 start-page: 212 year: 2013 end-page: 215 ident: CR45 article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.12.015 – volume: 120 start-page: 108 year: 2016 end-page: 119 ident: CR16 article-title: Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.047 – volume: 230 start-page: 55 year: 2015 end-page: 68 ident: CR6 article-title: Single-phase high-entropy alloys—an overview publication-title: Z. Krist. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: CR9 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 132 start-page: 35 year: 2017 end-page: 48 ident: CR50 article-title: The evolution of the deformation substructure in a Ni–Co–Cr equiatomic solid solution alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.04.033 – volume: 18 start-page: 15012 year: 2010 ident: CR68 article-title: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 – volume: 97 start-page: 170201 year: 2006 ident: CR70 article-title: Structural relaxation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.170201 – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: CR67 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 8 year: 2017 ident: CR39 article-title: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy publication-title: Nat. Commun. doi: 10.1038/ncomms14390 – volume: 33 start-page: 2924 year: 2018 end-page: 2937 ident: CR37 article-title: Metastability in high-entropy alloys: A review publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.306 – volume: 15 start-page: 5338 year: 2013 end-page: 5345 ident: CR3 article-title: Physical properties of high entropy alloys publication-title: Entropy doi: 10.3390/e15125338 – volume: 61 start-page: 183 year: 2016 end-page: 202 ident: CR7 article-title: High-entropy alloys: a critical assessment of their founding principles and future prospects publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1180020 – volume: 345 start-page: 1153 year: 2014 end-page: 1158 ident: CR10 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 144 start-page: 107 year: 2018 end-page: 115 ident: CR52 article-title: Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.10.050 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR64 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 7 year: 2016 ident: CR28 article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures publication-title: Nat. Commun. doi: 10.1038/ncomms10602 – volume: 128 start-page: 135 year: 2017 end-page: 148 ident: CR51 article-title: Dislocation cross-slip in fcc solid solution alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.027 – volume: 130 start-page: 96 year: 2017 end-page: 99 ident: CR40 article-title: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.11.014 – volume: 113 start-page: 106 year: 2016 end-page: 109 ident: CR18 article-title: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.10.025 – volume: 110 start-page: 352 year: 2016 end-page: 363 ident: CR53 article-title: Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.045 – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: CR1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: CR4 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 9 year: 2018 ident: CR41 article-title: Twinning in metastable high-entropy alloys publication-title: Nat. Commun. doi: 10.1038/s41467-018-04780-x – volume: 85 start-page: 184203 year: 2012 ident: CR66 article-title: Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.184203 – volume: 97 start-page: 170201 year: 2006 ident: 11464_CR70 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.170201 – volume: 45 start-page: 196 year: 2014 ident: 11464_CR21 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-013-2000-8 – volume: 126 start-page: 15 year: 2017 ident: 11464_CR35 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.08.008 – volume: 134 start-page: 33 year: 2017 ident: 11464_CR56 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.02.042 – volume: 682 start-page: 569 year: 2017 ident: 11464_CR14 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.11.078 – volume: 71 start-page: 224102 year: 2005 ident: 11464_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.224102 – volume: 83 start-page: 134118 year: 2011 ident: 11464_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.134118 – volume: 138 start-page: 72 year: 2017 ident: 11464_CR49 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.07.029 – volume: 144 start-page: 107 year: 2018 ident: 11464_CR52 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.10.050 – volume: 117 start-page: 1 year: 1995 ident: 11464_CR67 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 122 start-page: 448 year: 2017 ident: 11464_CR9 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 59 start-page: 1758 year: 1999 ident: 11464_CR64 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 67 start-page: 2251 year: 2015 ident: 11464_CR5 publication-title: JOM doi: 10.1007/s11837-015-1609-z – volume: 115 start-page: 1 year: 1994 ident: 11464_CR32 publication-title: Prog. Theor. Phys. Suppl. doi: 10.1143/PTPS.115.1 – volume: 106 start-page: 161906 year: 2015 ident: 11464_CR20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4918996 – volume: 106 start-page: 87 year: 2016 ident: 11464_CR34 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.01.018 – volume: 29 start-page: 6443 year: 1984 ident: 11464_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.29.6443 – volume: 534 start-page: 227 year: 2016 ident: 11464_CR11 publication-title: Nature doi: 10.1038/nature17981 – volume: 91 start-page: 224204 year: 2015 ident: 11464_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.224204 – volume: 120 start-page: 108 year: 2016 ident: 11464_CR16 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.047 – volume: 4 start-page: 15 year: 1971 ident: 11464_CR29 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889871006174 – volume: 49 start-page: 14251 year: 1994 ident: 11464_CR62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 61 start-page: 1 year: 2014 ident: 11464_CR4 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 61 start-page: 5743 year: 2013 ident: 11464_CR12 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.018 – volume: 143 start-page: 257 year: 2018 ident: 11464_CR15 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.10.014 – volume: 8 year: 2017 ident: 11464_CR39 publication-title: Nat. Commun. doi: 10.1038/ncomms14390 – volume: 102 start-page: 245501 year: 2009 ident: 11464_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.245501 – volume: 108 start-page: 44 year: 2015 ident: 11464_CR43 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.05.041 – volume: 15 start-page: 5338 year: 2013 ident: 11464_CR3 publication-title: Entropy doi: 10.3390/e15125338 – volume: 41 start-page: 659 year: 1970 ident: 11464_CR57 publication-title: Phys. Stat. Sol. B doi: 10.1002/pssb.19700410221 – volume: 7 year: 2016 ident: 11464_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms10602 – volume: 110 start-page: 352 year: 2016 ident: 11464_CR53 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.045 – volume: 112 start-page: 40 year: 2016 ident: 11464_CR17 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.04.005 – volume: 21 start-page: 238 year: 2017 ident: 11464_CR33 publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2017.08.001 – volume: 132 start-page: 35 year: 2017 ident: 11464_CR50 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.04.033 – volume: 6 start-page: 442 year: 2018 ident: 11464_CR55 publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2018.1478331 – volume: 88 start-page: 355 year: 2015 ident: 11464_CR19 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.01.068 – volume: 118 start-page: 205501 year: 2017 ident: 11464_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.205501 – volume: 61 start-page: 183 year: 2016 ident: 11464_CR7 publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1180020 – volume: 345 start-page: 1153 year: 2014 ident: 11464_CR10 publication-title: Science doi: 10.1126/science.1254581 – volume: 130 start-page: 96 year: 2017 ident: 11464_CR40 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.11.014 – volume: 128 start-page: 292 year: 2017 ident: 11464_CR44 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.036 – volume: 6 start-page: 299 year: 2004 ident: 11464_CR1 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 15 start-page: 295 year: 2007 ident: 11464_CR59 publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/15/3/008 – volume: 99 start-page: 307 year: 2015 ident: 11464_CR23 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.015 – volume: 84 start-page: 145 year: 2015 ident: 11464_CR46 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.10.033 – volume: 50 start-page: 17953 year: 1994 ident: 11464_CR63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 115 start-page: 8919 year: 2018 ident: 11464_CR30 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1808660115 – volume: 230 start-page: 55 year: 2015 ident: 11464_CR6 publication-title: Z. Krist. – volume: 113 start-page: 106 year: 2016 ident: 11464_CR18 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.10.025 – volume: 132 start-page: 212 year: 2013 ident: 11464_CR45 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.12.015 – volume: 37 start-page: 2177 year: 1989 ident: 11464_CR47 publication-title: Acta Metall. doi: 10.1016/0001-6160(89)90143-0 – volume: 13 start-page: 5188 year: 1976 ident: 11464_CR65 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 9 year: 2018 ident: 11464_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03846-0 – volume: 134 start-page: 334 year: 2017 ident: 11464_CR38 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.001 – volume: 33 start-page: 2924 year: 2018 ident: 11464_CR37 publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.306 – volume: 118 start-page: 152 year: 2016 ident: 11464_CR13 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.038 – volume: 19 start-page: 349 year: 2016 ident: 11464_CR8 publication-title: Mater. Today doi: 10.1016/j.mattod.2015.11.026 – volume: 6 year: 2015 ident: 11464_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms6964 – volume: 9 year: 2018 ident: 11464_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04780-x – volume: 122 start-page: 105106 year: 2017 ident: 11464_CR27 publication-title: J. Appl. Phys. doi: 10.1063/1.4990950 – volume: 24 start-page: 377 year: 2003 ident: 11464_CR31 publication-title: J. Phase Equilibria Diffus. doi: 10.1361/105497103770330460 – volume: 134 start-page: 188 year: 2017 ident: 11464_CR54 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.071 – volume: 563 start-page: 546 year: 2018 ident: 11464_CR36 publication-title: Nature doi: 10.1038/s41586-018-0685-y – volume: 85 start-page: 184203 year: 2012 ident: 11464_CR66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.184203 – volume: 375–377 start-page: 213 year: 2004 ident: 11464_CR2 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – volume: 128 start-page: 135 year: 2017 ident: 11464_CR51 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.027 – volume: 126 start-page: 164103 year: 2007 ident: 11464_CR69 publication-title: J. Chem. Phys. doi: 10.1063/1.2720838 – volume: 38 start-page: 391 year: 2017 ident: 11464_CR24 publication-title: J. Phase Equilibria Diffus. doi: 10.1007/s11669-017-0582-3 – volume: 18 start-page: 15012 year: 2010 ident: 11464_CR68 publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 |
SSID | ssj0000391844 |
Score | 2.700061 |
Snippet | High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple... Multi-principal-element alloys have been assumed to have the configurational entropy of an ideal solution. Here, the authors use atomistic simulations to show... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3563 |
SubjectTerms | 119/118 639/301/1023 639/301/1034 639/301/119 Alloying elements Alloys Dislocation Dislocations Entropy Geological faults High entropy alloys High temperature Humanities and Social Sciences multidisciplinary Organic chemistry Plastic deformation Ruggedness Science Science (multidisciplinary) Solid solutions Solution strengthening Twinning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VSJV6qUrpI5QiI3FrLZLYSewjrYoQEj2BxM3yK2WlKiCyCO2_74yd3bJ9wIVrMo6sedifM-NvAPZjXwUX68hLKxyXWliuvK95rJwOtB7Wjg6Kp9_b43N5ctFc3Gv1RTVhmR44K-7ABV_aKLyXVZRe9s5i-Frp2w6BfJtuUNe45907TKU1WGg8usjplkwp1MEo05qAiIbTRVzJu7WdKBH2_wtl_l0s-UfGNG1ER6_g5YQg2WGe-SY8i8NreJ57Si624JLyzMMPIjXA4Ww2sFQzyK_zX3UcGXPFOKOU-2Jk9CeWpS2N-4k9gCdCTpY6-OBaGFiYjSRBRmTUw_jOLsY3cH707ezrMZ_aKXCPsGzOKelbe22rqJWwSsuo2r5CRWoflXLaoZpDGctGhWD7vg6N161GrYdO-a534i1sDFdDfA8MQZTXLhKvrZdBeKeCjVXpAh6-bN23BVRL1Ro_cY1Ty4ufJuW8hTLZHAbNke5FS9MV8Gk15jozbTwo_YUstpIkluz0AH3HTL5jHvOdAnaW9jZT6I4G8ajWlI1vCthbvcago0yKHeLVLcmQgGw6XcC77B6rmQjE1I1S-PFuzXHWprr-ZphdJmLvtlWdEqKAz0sX-z2t_6ti-ylU8QFe1BQbVAyjdmBjfnMbPyLcmrvdFFm_APPYKWA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gCIkXxDeFgYLEG0Rrm7RNnhAgjgkJnpi0tyhx0u0k1DvWm9D999hprtPxsdfWqZLasR3b-Zmx17Gvgo91FKWTXigjndAAtYiVN4H0Ye3poPj1W3t8or6cNqc54DbmssqdTkyKOqyAYuRH6CYYQ0nS5t36p6CuUZRdzS00brJbFVoaKunSi89zjIXQz7VS-a5MKfXRqJJmQL9G0HVcJbo9e5Rg-__la_5dMvlH3jSZo8U9djf7kfz9xPj77EYcHrDbU2fJ7UN2Ttnm4YygDXA4Xw48VQ6K9RRbx5FxqhvnlHjfjpzisTwZNgEZQ0AkWE6e-vigRgw8LEeiIFZy6mT8y23HR-xk8en7x2ORmyoIQOdsIyj1W4NxVTRaOm1U1G1fQdsZiFp7412UoYxlo0NwfV-HBkxrqqhCp6HrvXzMDobVEJ8yjq4UGB8J3RZUkOB1cLEqfcAjmKv7tmDV7tdayIjj1Pjih02Zb6ntxA6L7Ei3o5XtCvZmHrOe8Daupf5AHJspCSs7PVhdnNm89awPUOKiABSuAlTvHRoAp3DJeBRsZVWwwx2_bd7Ao70St4K9ml_j1qN8ihvi6pJoiEA1nSnYk0k85plI9KwbrfHj3Z7g7E11_82wPE_w3ijHnZayYG93InY1rf__imfXr-I5u1OT1FOxiz5kB5uLy_gC3amNf5n2zG9hLCAo priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL1M-urRLBNw3ubrK7yeMplnKgL1roW8jXtgeyV7pX5P57Z7IfcloFXzczS5KZSSaZyW8A3sS2CC6WkedWOC61sFx5X_JYOB1oPSwdHRQ_f6nPzuXyorrYg3J6C5OS9hOkZVqmp-yw971MJo0OCad3tJI39-CAoNpRtw8Wi-XX5XyzQpjnSsrxhUwu1B3MO7tQAuu_y8P8M1Hyt2hp2oROD-Hh6D2yxdDfR7AXu8dwf6gnuX0CVxRj7i4J0ADZ2apjKV-QXw836sgZh2xxRuH2bc_oFpal7Yz7ETmAJzBOlqr34DoYWFj1REECZFS_-Ifd9k_h_PTTt49nfCylwD26ZBtOAd_Sa1tErYRVWkZVt4WvG-2jUk47G0XIY16pEGzblqHyutZFlKFRvmmdeAb73bqLR8DQgfLaRcK09TII71SwschdwIOXLds6g2KaWuNHnHEqd_HdpHi3UGYQh0FxpDfR0jQZvJ15rgeUjX9SfyCJzZSEkJ0-rG8uzagxxgWf46C8lzgKL1tncdm3EoeMB8BaFBmcTPI2o9n2Bn1RrSkSX2Xwem5Gg6Moiu3i-pZoiEBWjc7g-aAec08E-tOVUvjzZkdxdrq629KtrhKod12rRgmRwbtJxX516-9T8eL_yI_hQUlWQCkv6gT2Nze38SU6VRv3arSin4-WH1c priority: 102 providerName: Springer Nature |
Title | Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways |
URI | https://link.springer.com/article/10.1038/s41467-019-11464-7 https://www.ncbi.nlm.nih.gov/pubmed/31395881 https://www.proquest.com/docview/2269970015 https://www.proquest.com/docview/2270014579 https://pubmed.ncbi.nlm.nih.gov/PMC6687833 https://doaj.org/article/bdc0ae3cc41e4c4fba762a4c67148631 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ6C9ID5HYFRB4g0MTewk9gNCXbUxVdqEgEp9i_yVrdKUjrYT9L_nzkmKCh0viZScJdt357vz2b8DeOOrxBmfetbX3DChuGbS2pT5xChH62FqKFA8v8jPxmI0ySY70JU7aidwsTW0o3pS4_n1-18_Vp9Q4T82V8blh4UI6o7OCqM7toIVu7CPlqmgigbnrbsfVmauMKAR7d2Z7U0P4D5HryiTMtkwVQHRf5sb-u9pyr9SqsFSnT6EB62LGQ8amXgEO75-DPeaopOrJ3BFiej6klAPsHk8reNwqJDdNNvu2NI3R8pjysmvFjFt1cbB5jHbwguwgNgZhxI_uFi62E0XREFcjqnI8U-9WjyF8enJ9-EZa-stMIt-25JRVji1SideSa6lEl7mVWLzQlkvpVFGe-76vp9J53RVpS6zKleJF66QtqgMfwZ79az2zyFGL8sq4wn41grHrZFO-6RvHEZnOq3yCJJuakvbgpFTTYzrMiTFuSwbzpTImXBxWpRFBG_XbW4aKI7_Uh8Tx9aUBKMdPszml2WrlaVxto-DslbgKKyojEbboAUOGaPEnCcRHHX8LjvRLNFhVYrS9VkEr9e_USsp1aJrP7slGiIQWaEiOGzEY92TTrwiKDYEZ6Orm3_q6VVA_s5zWUjOI3jXidifbt09FS_u7MJLOEhJ9ukIjDyCveX81r9CJ2tperBbTAp8ytPPPdgfDEbfRvg-Prn48hW_DvNhL2xf9IKG_Qb_WSn_ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFCC6InZQCRoITWE1iJ7EPCLENU7qcWqk34y3tSCgzbaaq5qf4Rt5zkqmGpbdek2fL9lvttxHyOtSZtyEPLDXcMqG4YdK5nIXMKo_yMLd4UdzbL8eH4vtRcbRGfg25MBhWOcjEKKj91OEb-RaYCUqhk7T4MDtl2DUKvatDC42OLHbC4gKubO377S-A3zd5Pvp68HnM-q4CzIF1Mmfo-8ydMllQkhupRJBlnbmyUi5IaZU1gfs0pIX03tR17gunSpUF4SvpqtpymPcGuSk4aHLMTB99W77pYLV1KUSfm5NyudWKKInAjmKY_itYtaL_YpuAf9m2f4do_uGnjepvdI_c7e1W-rEjtPtkLTQPyK2uk-XiITlB73ZzjKUUYDidNDRGKrJZ95YPI0MXp07R0b9oKb7_0qhImetrFrBYBpTGvkEggT31kxYhkHQodk6-MIv2ETm8luN-TNabaROeEgqmm1M2YDVdJzx3VnoTstR6uPKZvC4Tkg1Hq11f4RwbbfzU0dPOpe7QoQEdMRtb6Cohb5djZl19jyuhPyHGlpBYmzt-mJ4d657VtfUuhU05J2AXTtTWgMIxArYMV8-SZwnZHPCte4HR6kvyTsir5W9gdfTfmCZMzxEGAURRqYQ86chjuRIOlnwhJUxerRDOylJX_zSTk1hOvCxlJTlPyLuBxC6X9f-j2Lh6Fy_J7fHB3q7e3d7feUbu5MgBGGgjN8n6_Ow8PAdTbm5fRP6h5Md1M-xvORZePg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AnFBvEkpYCQ4gbVJ7CT2ASFKu2oprCpEpd5Sv9KuhLLbZqtqf42vw-MkWy2P3npNxpbteXhengF446rEapc6GiumKZdMUWFMSl2ipUV5mGo0FL-N891D_uUoO1qDX_1bGEyr7GViENR2atBHPvRqgpQYJM2GVZcWcbA9-jg7o9hBCiOtfTuNlkT23eLSm2_Nh71tj-u3aTra-fF5l3YdBqjxmsqcYhw0NVIlTgqmhORO5FVi8kIaJ4SWWjlmYxdnwlpVVanNjMxl4rgthCkqzfy8t2C9QKtoAOtbO-OD70sPD9ZeF5x3L3ViJoYND3LJa1UUHwNzWqzchqFpwL803b8TNv-I2obLcHQf7nVaLPnUkt0DWHP1Q7jd9rVcPIJTjHXXJ1hYwQ8nk5qEvEU6az37fqRrs9YJhv0XDUFvMAnXKjVdBQMaioKS0EXIy2NL7KRBCCQkgn2UL9WieQyHN3LgT2BQT2v3DIhX5IzUDmvrGm6Z0cIql8TaegNQpVUeQdIfbWm6eufYduNnGeLuTJQtOkqPjvA2m5dFBO-WY2ZttY9robcQY0tIrNQdPkzPT8qO8UttTew3ZQz3uzC80spfP4r7LXtDNGdJBJs9vstOfDTlFbFH8Hr52zM-RnNU7aYXCIMAPCtkBE9b8liuhHm9PhPCT16sEM7KUlf_1JPTUFw8z0UhGIvgfU9iV8v6_1FsXL-LV3DHM2v5dW-8_xzupsgAmHUjNmEwP79wL7xeN9cvOwYicHzTPPsbQBFj0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strengthening+in+multi-principal+element+alloys+with+local-chemical-order+roughened+dislocation+pathways&rft.jtitle=Nature+communications&rft.au=Li%2C+Qing-Jie&rft.au=Sheng%2C+Howard&rft.au=Ma%2C+Evan&rft.date=2019-08-08&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=3563&rft_id=info:doi/10.1038%2Fs41467-019-11464-7&rft_id=info%3Apmid%2F31395881&rft.externalDocID=31395881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |