Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models

Sub‐kilometer dynamical downscaling was performed using the Weather Research and Forecasting (WRF) and Mesoscale Model Version 5 (MM5) models. The models were configured with horizontal grid spacing ranging from 27 km in the outermost telescoping to 333 m in the innermost domains and verified with o...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Atmospheres Vol. 117; no. D11
Main Authors Horvath, Kristian, Koracin, Darko, Vellore, Ramesh, Jiang, Jinhua, Belu, Radian
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 16.06.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sub‐kilometer dynamical downscaling was performed using the Weather Research and Forecasting (WRF) and Mesoscale Model Version 5 (MM5) models. The models were configured with horizontal grid spacing ranging from 27 km in the outermost telescoping to 333 m in the innermost domains and verified with observations collected at four 50‐m towers in west‐central Nevada during July and December 2007. Moment‐based and spectral verification metrics showed that the performance of WRF was superior to MM5. The modeling results were more accurate at 50 m than at 10 m AGL. Both models accurately simulated the mean near‐surface wind shear; however, WRF (MM5) generally overestimated (underestimated) mean wind speeds at these levels. The dispersion errors were the dominant component of the root‐mean square errors. The major weakness of WRF was the overestimation of the intensity and frequency of strong nocturnal thermally driven flows and their sub‐diurnal scale variability, while the main weaknesses of MM5 were larger biases, underestimation of the frequency of stronger daytime winds in the mixed layer and underestimation of the observed spectral kinetic energy of the major energy‐containing motions. Neither of the verification metrics showed systematic improvement in the models' accuracy with increasing the horizontal resolution and the share of dispersion errors increased with increased resolution. However, a profound improvement in the moment‐based accuracy was found for the mean vertical wind shear and the temporal variability of wind speed, in particular for summer daytime simulations of the thermally driven flows. The most prominent spectral accuracy improvement among the primary energy‐containing frequency bands was found for both models in the summertime diurnal periods. Also, the improvement for WRF (MM5) was more (less) apparent for longer‐than‐diurnal than for sub‐diurnal periods. Finally, the study shows that at least near‐kilometer horizontal grid spacing is necessary for dynamical downscaling of near‐surface wind speed climate over complex terrain; however, some of the physics options might be less appropriate for grid spacing nearing the scales of the energy‐containing turbulent eddies, i.e., resolutions of several hundred meters. In addition to the effects of the lower boundary, the accuracy of the lateral boundary conditions of the parent domains also controls the onset and evolution of the thermally driven flows. Key Points WRF performance is superior to MM5; model error is higher closer to the ground The improvement with horizontal grid resolution is not systematic The most profound improvement was found for wind shear and bias of std. dev
AbstractList Sub‐kilometer dynamical downscaling was performed using the Weather Research and Forecasting (WRF) and Mesoscale Model Version 5 (MM5) models. The models were configured with horizontal grid spacing ranging from 27 km in the outermost telescoping to 333 m in the innermost domains and verified with observations collected at four 50‐m towers in west‐central Nevada during July and December 2007. Moment‐based and spectral verification metrics showed that the performance of WRF was superior to MM5. The modeling results were more accurate at 50 m than at 10 m AGL. Both models accurately simulated the mean near‐surface wind shear; however, WRF (MM5) generally overestimated (underestimated) mean wind speeds at these levels. The dispersion errors were the dominant component of the root‐mean square errors. The major weakness of WRF was the overestimation of the intensity and frequency of strong nocturnal thermally driven flows and their sub‐diurnal scale variability, while the main weaknesses of MM5 were larger biases, underestimation of the frequency of stronger daytime winds in the mixed layer and underestimation of the observed spectral kinetic energy of the major energy‐containing motions. Neither of the verification metrics showed systematic improvement in the models' accuracy with increasing the horizontal resolution and the share of dispersion errors increased with increased resolution. However, a profound improvement in the moment‐based accuracy was found for the mean vertical wind shear and the temporal variability of wind speed, in particular for summer daytime simulations of the thermally driven flows. The most prominent spectral accuracy improvement among the primary energy‐containing frequency bands was found for both models in the summertime diurnal periods. Also, the improvement for WRF (MM5) was more (less) apparent for longer‐than‐diurnal than for sub‐diurnal periods. Finally, the study shows that at least near‐kilometer horizontal grid spacing is necessary for dynamical downscaling of near‐surface wind speed climate over complex terrain; however, some of the physics options might be less appropriate for grid spacing nearing the scales of the energy‐containing turbulent eddies, i.e., resolutions of several hundred meters. In addition to the effects of the lower boundary, the accuracy of the lateral boundary conditions of the parent domains also controls the onset and evolution of the thermally driven flows. WRF performance is superior to MM5; model error is higher closer to the ground The improvement with horizontal grid resolution is not systematic The most profound improvement was found for wind shear and bias of std. dev
Sub-kilometer dynamical downscaling was performed using the Weather Research and Forecasting (WRF) and Mesoscale Model Version 5 (MM5) models. The models were configured with horizontal grid spacing ranging from 27 km in the outermost telescoping to 333 m in the innermost domains and verified with observations collected at four 50-m towers in west-central Nevada during July and December 2007. Moment-based and spectral verification metrics showed that the performance of WRF was superior to MM5. The modeling results were more accurate at 50 m than at 10 m AGL. Both models accurately simulated the mean near-surface wind shear; however, WRF (MM5) generally overestimated (underestimated) mean wind speeds at these levels. The dispersion errors were the dominant component of the root-mean square errors. The major weakness of WRF was the overestimation of the intensity and frequency of strong nocturnal thermally driven flows and their sub-diurnal scale variability, while the main weaknesses of MM5 were larger biases, underestimation of the frequency of stronger daytime winds in the mixed layer and underestimation of the observed spectral kinetic energy of the major energy-containing motions. Neither of the verification metrics showed systematic improvement in the models' accuracy with increasing the horizontal resolution and the share of dispersion errors increased with increased resolution. However, a profound improvement in the moment-based accuracy was found for the mean vertical wind shear and the temporal variability of wind speed, in particular for summer daytime simulations of the thermally driven flows. The most prominent spectral accuracy improvement among the primary energy-containing frequency bands was found for both models in the summertime diurnal periods. Also, the improvement for WRF (MM5) was more (less) apparent for longer-than-diurnal than for sub-diurnal periods. Finally, the study shows that at least near-kilometer horizontal grid spacing is necessary for dynamical downscaling of near-surface wind speed climate over complex terrain; however, some of the physics options might be less appropriate for grid spacing nearing the scales of the energy-containing turbulent eddies, i.e., resolutions of several hundred meters. In addition to the effects of the lower boundary, the accuracy of the lateral boundary conditions of the parent domains also controls the onset and evolution of the thermally driven flows.
Sub‐kilometer dynamical downscaling was performed using the Weather Research and Forecasting (WRF) and Mesoscale Model Version 5 (MM5) models. The models were configured with horizontal grid spacing ranging from 27 km in the outermost telescoping to 333 m in the innermost domains and verified with observations collected at four 50‐m towers in west‐central Nevada during July and December 2007. Moment‐based and spectral verification metrics showed that the performance of WRF was superior to MM5. The modeling results were more accurate at 50 m than at 10 m AGL. Both models accurately simulated the mean near‐surface wind shear; however, WRF (MM5) generally overestimated (underestimated) mean wind speeds at these levels. The dispersion errors were the dominant component of the root‐mean square errors. The major weakness of WRF was the overestimation of the intensity and frequency of strong nocturnal thermally driven flows and their sub‐diurnal scale variability, while the main weaknesses of MM5 were larger biases, underestimation of the frequency of stronger daytime winds in the mixed layer and underestimation of the observed spectral kinetic energy of the major energy‐containing motions. Neither of the verification metrics showed systematic improvement in the models' accuracy with increasing the horizontal resolution and the share of dispersion errors increased with increased resolution. However, a profound improvement in the moment‐based accuracy was found for the mean vertical wind shear and the temporal variability of wind speed, in particular for summer daytime simulations of the thermally driven flows. The most prominent spectral accuracy improvement among the primary energy‐containing frequency bands was found for both models in the summertime diurnal periods. Also, the improvement for WRF (MM5) was more (less) apparent for longer‐than‐diurnal than for sub‐diurnal periods. Finally, the study shows that at least near‐kilometer horizontal grid spacing is necessary for dynamical downscaling of near‐surface wind speed climate over complex terrain; however, some of the physics options might be less appropriate for grid spacing nearing the scales of the energy‐containing turbulent eddies, i.e., resolutions of several hundred meters. In addition to the effects of the lower boundary, the accuracy of the lateral boundary conditions of the parent domains also controls the onset and evolution of the thermally driven flows. Key Points WRF performance is superior to MM5; model error is higher closer to the ground The improvement with horizontal grid resolution is not systematic The most profound improvement was found for wind shear and bias of std. dev
Author Koracin, Darko
Belu, Radian
Jiang, Jinhua
Vellore, Ramesh
Horvath, Kristian
Author_xml – sequence: 1
  givenname: Kristian
  surname: Horvath
  fullname: Horvath, Kristian
  email: kristian.horvath@gmail.com, kristian.horvath@cirus.dhz.hr
  organization: Meteorological and Hydrological Service, Zagreb, Croatia
– sequence: 2
  givenname: Darko
  surname: Koracin
  fullname: Koracin, Darko
  organization: Desert Research Institute, Reno, Nevada, USA
– sequence: 3
  givenname: Ramesh
  surname: Vellore
  fullname: Vellore, Ramesh
  organization: Desert Research Institute, Reno, Nevada, USA
– sequence: 4
  givenname: Jinhua
  surname: Jiang
  fullname: Jiang, Jinhua
  organization: Desert Research Institute, Reno, Nevada, USA
– sequence: 5
  givenname: Radian
  surname: Belu
  fullname: Belu, Radian
  organization: School of Technology and Professional Studies, Drexel University, Philadelphia, Pennsylvania, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363829$$DView record in Pascal Francis
BookMark eNp9kdFqFDEUhoNUcK298wECInjhaJJJJpNL6dqtpa2yq9S7kMmckbQzyTaZod23N8NWkYLNTXLg-z_OOXmJDnzwgNBrSj5QwtRHRig7WxIqecmeoQWjoioYI-wALQjldUEYky_QUUrXJB8uKk7oAoXN1BQ3rg8DjBBxu_NmcNb0uA13PuWH879w6LAHE4s0xc5YwHfOtwk7j20Ytj3c4xyNJtdTmvGr9Qk2vsUXFwIPkMKsATyEFvr0Cj3vTJ_g6OE-RD9OPn8_Pi3Ov66-HH86L6zgRBVG1p2RILkFAqXgDW8bQbum5VR0DafGSiXrhrQUOi5rZqtGWGMZKNMqwWx5iN7tvdsYbidIox5cstD3xkOYks4r45VQipGMvnmEXocp-tydZhWr6lryWj5FZReRlSqFytTbB8rMU3fReOuS3kY3mLjLvrIqazZzbM_ZGFKK0GnrRjO64Me8yD4rZ6vS_35qDr1_FPrj_Q9e7vE718PuSVafrdZLKhWZOyv2KZdGuP-bMvFGV7KUQl9drvRys7n8uVbf9Gn5G0qhwLw
CitedBy_id crossref_primary_10_1088_1748_9326_ad0bd6
crossref_primary_10_1016_j_atmosres_2022_106143
crossref_primary_10_1016_j_renene_2018_05_080
crossref_primary_10_5194_acp_20_5923_2020
crossref_primary_10_1175_JAMC_D_19_0212_1
crossref_primary_10_1029_2022JD037989
crossref_primary_10_1002_2014MS000317
crossref_primary_10_5194_hess_25_4967_2021
crossref_primary_10_5194_gmd_13_5079_2020
crossref_primary_10_5194_tc_15_743_2021
crossref_primary_10_1016_j_envsoft_2021_105017
crossref_primary_10_1002_joc_4217
crossref_primary_10_1016_j_jhydrol_2015_07_041
crossref_primary_10_1029_2022WR033363
crossref_primary_10_1007_s00703_022_00939_w
crossref_primary_10_1016_j_atmosres_2017_11_030
crossref_primary_10_1175_JHM_D_17_0212_1
crossref_primary_10_1175_MWR_D_14_00128_1
crossref_primary_10_1016_j_apr_2020_02_005
crossref_primary_10_3389_feart_2019_00182
crossref_primary_10_3390_rs15112906
crossref_primary_10_1016_j_jclepro_2023_140217
crossref_primary_10_1175_JHM_D_16_0054_1
crossref_primary_10_7886_hgs_92_17
crossref_primary_10_1016_j_jweia_2015_10_010
crossref_primary_10_1016_j_pocean_2023_103047
crossref_primary_10_1007_s13351_015_4070_6
crossref_primary_10_1175_WAF_D_14_00021_1
crossref_primary_10_3390_su12030876
crossref_primary_10_1002_2015JD023266
crossref_primary_10_1016_j_energy_2021_121047
crossref_primary_10_1016_j_jhydrol_2017_02_045
crossref_primary_10_1175_JAMC_D_12_0204_1
crossref_primary_10_5094_APR_2013_034
crossref_primary_10_1002_qj_3769
crossref_primary_10_1016_j_geothermics_2021_102261
crossref_primary_10_3390_atmos12030298
crossref_primary_10_3390_atmos3040522
crossref_primary_10_1002_qj_2453
crossref_primary_10_1175_JAMC_D_13_0230_1
crossref_primary_10_1175_MWR_D_13_00212_1
crossref_primary_10_3402_tellusa_v68_31820
crossref_primary_10_1080_24694452_2016_1232615
crossref_primary_10_1016_j_oceaneng_2016_02_020
crossref_primary_10_1007_s12517_021_08317_3
crossref_primary_10_1175_JAMC_D_13_0163_1
crossref_primary_10_1175_MWR_D_16_0401_1
crossref_primary_10_1007_s12040_018_0976_6
crossref_primary_10_1175_JAMC_D_17_0144_1
crossref_primary_10_5194_os_12_1049_2016
crossref_primary_10_1002_we_2566
crossref_primary_10_1016_j_energy_2023_129713
crossref_primary_10_3390_f10100877
crossref_primary_10_3390_jmse12091494
crossref_primary_10_1016_j_envpol_2018_10_067
crossref_primary_10_5194_wes_2_211_2017
crossref_primary_10_1002_joc_7877
crossref_primary_10_1029_2020WR028536
crossref_primary_10_1029_2023JD038806
crossref_primary_10_1007_s00024_018_1833_x
crossref_primary_10_1002_2016JD025289
crossref_primary_10_1175_JAMC_D_13_0202_1
crossref_primary_10_1016_j_ejrh_2025_102191
crossref_primary_10_2139_ssrn_3923485
crossref_primary_10_1175_JAMC_D_17_0151_1
crossref_primary_10_1175_JAMC_D_14_0150_1
crossref_primary_10_1002_joc_5182
crossref_primary_10_1016_j_seta_2016_11_002
Cites_doi 10.1175/2008BAMS2487.1
10.1175/1520‐0493(1985)113<1050:ATSSFT>2.0.CO;2
10.1175/1520‐0477(2002)083<0699:ACSOTD>2.3.CO;2
10.1175/1520‐0493(2003)131<2857:RVCSFR>2.0.CO;2
10.1175/MWR3183.1
10.1175/2010MWR3432.1
10.1007/s00382‐010‐0826‐y
10.1175/JCLI3837.1
10.1175/1520‐0469(1974)031<1791:AHOTCM>2.0.CO;2
10.1175/1520‐0450(2004)043<0170:TKCPAU>2.0.CO;2
10.1175/2011JAMC2638.1
10.1175/1520‐0477(1997)078<2599:ATOLBC>2.0.CO;2
10.1175/1520‐0493(1992)120<0197:TEEOMW>2.0.CO;2
10.1175/1520‐0469(2004)061<1816:TNMITT>2.0.CO;2
10.1175/BAMS‐87‐12‐1747
10.1029/2002JD003296
10.1002/we.288
10.1175/BAMS‐87‐3‐343
10.1029/2007JD009461
10.1007/s10584‐009‐9583‐5
10.1051/jp4:2006139008
10.1175/1520‐0493(2004)132<0519:EFOWPU>2.0.CO;2
10.1175/1520‐0493(1998)126<0028:WATWSO>2.0.CO;2
10.1029/97JD00237
10.1017/CBO9780511546013
10.1111/j.1600-0870.2006.00186.x
10.1093/oso/9780195132717.001.0001
10.1175/1520‐0493(2001)129<2040:MABLDA>2.0.CO;2
10.1175/2010JCLI3514.1
10.1175/1520‐0493(1999)127<0308:LSORCA>2.0.CO;2
10.1109/TAU.1967.1161901
10.1002/qj.49711548803
10.1175/2009JAMC2351.1
10.1175/1520‐0493(2004)132<0368:NSOTFI>2.0.CO;2
10.1002/qj.129
10.1029/RG020i004p00851
10.1175/MWR3052.1
10.1175/1520‐0477(2002)083<0407:DIHRPM>2.3.CO;2
10.1175/1520‐0434(2003)018<0249:MMSOHE>2.0.CO;2
10.1007/s10546‐005‐3780‐1
10.1175/1520‐0493(2001)129<0587:CAALSH>2.0.CO;2
10.1175/JAM2322.1
10.1007/978-1-935704-13-3_16
10.1175/1520‐0493(1988)116<2417:SSBOTM>2.0.CO;2
10.1029/2007JD009216
10.1175/MWR2801.1
10.1016/j.renene.2009.02.024
10.1002/qj.49712454804
10.1175/1520‐0493(2000)128<3664:ASNTFD>2.0.CO;2
10.1175/1520‐0469(1989)046<3077:NSOCOD>2.0.CO;2
10.1175/2009JAMC2175.1
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Copyright American Geophysical Union 2012
Copyright Blackwell Publishing Ltd. Jun 2012
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
– notice: Copyright Blackwell Publishing Ltd. Jun 2012
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7TG
7UA
7XB
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1029/2012JD017432
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
Engineering Database (Proquest)
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Research Library Prep
Aerospace Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-8996
EndPage n/a
ExternalDocumentID 2689543831
26363829
10_1029_2012JD017432
JGRD17909
ark_67375_WNG_DSSNXR9P_H
Genre article
Feature
GeographicLocations United States
Nevada
USA, Nevada
GeographicLocations_xml – name: USA, Nevada
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
50Y
52M
5VS
702
7TG
7UA
7XB
8-1
8FD
8FG
8FK
AAESR
AAIHA
AASGY
AAZKR
ABJCF
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
K6-
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
Q9U
R.K
SUPJJ
WBKPD
PUEGO
ID FETCH-LOGICAL-c5409-a78fa7e74ce0e354b4db51fbd415fb41ac7978b0d1ef4782c6b5cac2e9ad952c3
IEDL.DBID BENPR
ISSN 0148-0227
2169-897X
IngestDate Fri Jul 11 05:37:04 EDT 2025
Tue Aug 26 04:12:54 EDT 2025
Fri Jul 25 11:07:51 EDT 2025
Mon Jul 21 09:15:01 EDT 2025
Tue Jul 01 01:55:52 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Wed Jan 22 16:27:13 EST 2025
Wed Oct 30 09:55:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue D11
Keywords time variations
Night
Scale reduction
Bias
simulation
Wind velocity
Summer
accuracy
variability
North America
Modeling
Dynamic method
Mean square error
frequency
Complex terrain
performances
flow
kinetic energy
Verification
climate
intensity
Mixed layer
Mesoscale
dispersion
Wind shear
Surface wind
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5409-a78fa7e74ce0e354b4db51fbd415fb41ac7978b0d1ef4782c6b5cac2e9ad952c3
Notes ArticleID:2012JD017432
ark:/67375/WNG-DSSNXR9P-H
Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.
istex:C79F10B76105D425BE4CA6BD022E1F2253B7E098
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Article-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2012JD017432
PQID 1020769359
PQPubID 54657
PageCount 19
ParticipantIDs proquest_miscellaneous_1024659920
proquest_journals_2626887487
proquest_journals_1020769359
pascalfrancis_primary_26363829
crossref_citationtrail_10_1029_2012JD017432
crossref_primary_10_1029_2012JD017432
wiley_primary_10_1029_2012JD017432_JGRD17909
istex_primary_ark_67375_WNG_DSSNXR9P_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 June 2012
PublicationDateYYYYMMDD 2012-06-16
PublicationDate_xml – month: 06
  year: 2012
  text: 16 June 2012
  day: 16
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Atmospheres
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Qian, J.-H., A. Seth, and S. Zebiak (2003), Reinitialized versus continuous simulations for regional climate downscaling, Mon. Weather. Rev., 131, 2857-2874, doi:10.1175/1520-0493(2003)131<2857:RVCSFR>2.0.CO;2.
Cuxart, J., et al. (2006), Single-column model intercomparison for a stably stratified atmospheric boundary layer, Boundary Layer Meteorol., 118, 273-303, doi:10.1007/s10546-005-3780-1.
Cairns, M. M., and J. Corey (2003), Mesoscale model simulations of high-wind events in the complex terrain of western Nevada, Weather Forecast., 18, 249-263, doi:10.1175/1520-0434(2003)018<0249:MMSOHE>2.0.CO;2.
Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.
Koracin, D., and C. E. Dorman (2001), Marine atmospheric boundary layer divergence and clouds along California in June 1996, Mon. Weather Rev., 129, 2040-2056, doi:10.1175/1520-0493(2001)129<2040:MABLDA>2.0.CO;2.
Mellor, G. L., and T. Yamada (1974), A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791-1806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.
Takacs, L. L. (1985), A two-step scheme for the advection equation with minimized dissipation and dispersion errors, Mon. Weather Rev., 113, 1050-1065, doi:10.1175/1520-0493(1985)113<1050:ATSSFT>2.0.CO;2.
Leung, L. R., Y. H. Kuo, and J. Tribbia (2006), Research needs and directions of regional climate modeling using WRF and CCSM, Bull. Am. Meteorol. Soc., 87, 1747-1751, doi:10.1175/BAMS-87-12-1747.
Trapp, R. J., E. D. Robinson, M. E. Baldwin, N. S. Diffenbaugh, and B. R. J. Schwedler (2011), Regional climate of hazardous convective weather through high-resolution dynamical downscaling, Clim. Dyn., 37, 677-688, doi:10.1007/s00382-010-0826-y.
Pan, Z., E. Takle, W. Gutowski, and R. Turner (1999), Long simulation of regional climate as a sequence of short segments, Mon. Weather Rev., 127, 308-321, doi:10.1175/1520-0493(1999)127<0308:LSORCA>2.0.CO;2.
Jeglum, M. E., W. J. Steenburgh, T. P. Lee, and L. F. Bosart (2010), Multi-reanalysis climatology of intermountain cyclones, Mon. Weather Rev., 138, 4035-4053, doi:10.1175/2010MWR3432.1.
vonStorch, H., H. Langenberg, and F. Feser (2000), A spectral nudging technique for dynamical downscaling purposes, Mon. Weather Rev., 128, 3664-3673, doi:10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.
Grubišić, V., et al. (2008), The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights, Bull. Am. Meteorol. Soc., 89, 1513-1533, doi:10.1175/2008BAMS2487.1.
Rife, D. L., C. A. Davis, and Y. Liu (2004), Predictability of low-level winds by mesoscale meteorological models, Mon. Weather Rev., 132, 2553-2569, doi:10.1175/MWR2801.1.
Wyngaard, J. C. (2004), Toward numerical modeling in the "terra incognita," J. Atmos. Sci., 61, 1816-1826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.
Conil, S., and A. Hall (2006), Local regimes of atmospheric variability: A case study of Southern California, J. Clim., 19, 4308-4325, doi:10.1175/JCLI3837.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102(D14), 16,663-16,682, doi:10.1029/97JD00237.
Rife, D. L., and C. A. Davis (2005), Verification of temporal variations in mesoscale numerical wind forecasts, Mon. Weather Rev., 133, 3368-3381, doi:10.1175/MWR3052.1.
Kain, J. S. (2004), The Kain-Fritsch convective parameterization: An update, J. Appl. Meteorol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco (2009), Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: Implications for wind energy, Wind Energy, 12, 81-90, doi:10.1002/we.288.
Thompson, G., R. M. Rasmussen, and K. Manning (2004), Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis, Mon. Weather Rev., 132, 519-542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.
Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle (2002), Does increasing horizontal resolution produce more skillful forecast?, Bull. Am. Meteorol. Soc., 83, 407-430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.
Dudhia, J. (1989), Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Jiménez, P. A., J. F. Gonzálaz-Rouco, E. García-Bustamente, J. Navarro, J. P. Montávez, J. Vilá-Guerau de Arellano, J. Dudhia, and A. Munoz-Roldan (2010), Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation, J. Appl. Meteorol. Climatol., 49, 268-287, doi:10.1175/2009JAMC2175.1.
Feser, F. (2006), Enhanced detectability of added value in limited-area model results separated into different spatial scales, Mon. Weather Rev., 134, 2180-2190, doi:10.1175/MWR3183.1.
Warner, T. T., R. A. Peterson, and R. E. Treadon (1997), A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction, Bull. Am. Meteorol. Soc., 78, 2599-2617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.
Anthes, R. A., Y.-H. Kuo, E.-Y. Hsie, S. Low-Nam, and T. W. Bettge (1989), Estimation of skill and uncertainty in regional numerical models, Q. J. R. Meteorol. Soc., 115, 763-806, doi:10.1002/qj.49711548803.
Giorgi, F. (2006), Regional climate modeling: Status and perspectives, J. Phys. IV, 139, 101-118, doi:10.1051/jp4:2006139008.
Colle, B. A., and C. F. Mass (1998), Windstorms along the western side of the Washington Cascade Mountains. Part I: A high-resolution observational and modeling study of the 12 February 1995 event, Mon. Weather Rev., 126, 28-52, doi:10.1175/1520-0493(1998)126<0028:WATWSO>2.0.CO;2.
Mesinger, F., et al. (2006), North American regional reanalysis, Bull. Am. Meteorol. Soc., 87, 343-360, doi:10.1175/BAMS-87-3-343.
Chen, F., and J. Dudhia (2001), Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 Modeling System. Part II: Preliminary model validation, Mon. Weather Rev., 129, 587-604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.
Welch, P. D. (1967), The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust., 15(2), 70-73, doi:10.1109/TAU.1967.1161901.
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes (1998), Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model, Q. J. R. Meteorol. Soc., 124, 1071-1107, doi:10.1002/qj.49712454804.
Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan (2010), Global distribution and characteristics of diurnally varying low-level jets, J. Clim., 23, 5041-5064, doi:10.1175/2010JCLI3514.1.
Belušić, D., M. Žagar, and B. Grisogono (2007), Numerical simulation of pulsations in the bora wind, Q. J. R. Meteorol. Soc., 133, 1371-1388, doi:10.1002/qj.129.
Belu, R., and D. Koracin (2009), Wind characteristics and wind energy potential in western Nevada, Renewable Energy, 34, 2246-2251, doi:10.1016/j.renene.2009.02.024.
Stewart, J. Q., C. D. Whiteman, W. J. Steenburgh, and X. Bian (2002), A climatological study of thermally driven wind systems if the U.S. intermountain west, Bull. Am. Meteorol. Soc., 83, 699-708, doi:10.1175/1520-0477(2002)083<0699:ACSOTD>2.3.CO;2.
Zängl, G., B. Chimani, and C. Häberli (2004), Numerical simulations of the foehn in the Rhine valley on 24 October 1999 (MAP IOP 10), Mon. Weather Rev., 132, 368-389, doi:10.1175/1520-0493(2004)132<0368:NSOTFI>2.0.CO;2.
Rockel, B., C. L. Castro, R. A. Pielke Sr., H. vonStorch, and G. Leoncini (2008), Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models, J. Geophys. Res., 113, D21107, doi:10.1029/2007JD009461.
Lo, J. C.-F., Z.-L. Yang, and R. A. Pielke Sr. (2008), Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model, J. Geophys. Res., 113, D09112, doi:10.1029/2007JD009216.
Mellor, G. L., and T. Yamada (1982), Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851-875, doi:10.1029/RG020i004p00851.
Hahmann, A. N., D. Rostkier-Edelstein, T. T. Warner, F. Vandenberghe, Y. Liu, R. Babarsky, and S. P. Swerdlin (2010), A reanalysis system for the generation of mesoscale climatographies, J. Appl. Meteorol. Climatol., 49, 954-972.
Whiteman, C. D. (2000), Mountain Meteorology: Fundamentals and Applications, Oxford Univ. Press, New York.
Laprise, R. (1992), The Euler equations of motion with hydrostatic pressure as an independent variable, Mon. Weather Rev., 120, 197-207, doi:10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2.
Murphy, A. H. (1988), Skill scores based on the mean square error and their relationships to the correlation coefficient, Mon. Weather Rev., 116, 2417-2424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.
Žagar, N., M. Žagar, J. Cedilnik, G. Gregorič, and J. Rakovec (2006), Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA-40 over complex terrain, Tellus, Ser. A, 58, 445-455.
Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grummann, V. Koren, G. Gayno, and J. D. Tarpley (2003), Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res., 108(D22), 8851, doi:10.1029/2002JD003296.
Horvath, K., A. Bajić, and S. Ivatek-Šahdan (2011), Dynamical downscaling of wind speed in comp
2004; 43
2004; 61
1974; 31
1992; 120
2005; 133
1989; 115
2006; 58
2008
2007
1996
2006; 19
1994
2003; 18
1993
2011; 37
2001; 129
2006; 118
1989; 46
2006; 139
1999; 127
2006; 134
2003; 131
2009; 34
1997; 102
2010; 23
2009; 12
2004; 132
2003; 108
2010; 49
2009; 95
2006; 45
2001
2000
2010; 138
2006; 87
2002; 83
2000; 128
2007; 133
1982; 20
2011; 50
1997; 78
1985; 113
2008; 89
1998; 126
1967; 15
2008; 113
1998; 124
1988; 116
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – reference: Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.
– reference: Qian, J.-H., A. Seth, and S. Zebiak (2003), Reinitialized versus continuous simulations for regional climate downscaling, Mon. Weather. Rev., 131, 2857-2874, doi:10.1175/1520-0493(2003)131<2857:RVCSFR>2.0.CO;2.
– reference: Rife, D. L., and C. A. Davis (2005), Verification of temporal variations in mesoscale numerical wind forecasts, Mon. Weather Rev., 133, 3368-3381, doi:10.1175/MWR3052.1.
– reference: Jiménez, P. A., J. F. Gonzálaz-Rouco, E. García-Bustamente, J. Navarro, J. P. Montávez, J. Vilá-Guerau de Arellano, J. Dudhia, and A. Munoz-Roldan (2010), Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation, J. Appl. Meteorol. Climatol., 49, 268-287, doi:10.1175/2009JAMC2175.1.
– reference: Mellor, G. L., and T. Yamada (1982), Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851-875, doi:10.1029/RG020i004p00851.
– reference: Jeglum, M. E., W. J. Steenburgh, T. P. Lee, and L. F. Bosart (2010), Multi-reanalysis climatology of intermountain cyclones, Mon. Weather Rev., 138, 4035-4053, doi:10.1175/2010MWR3432.1.
– reference: Chen, F., and J. Dudhia (2001), Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 Modeling System. Part II: Preliminary model validation, Mon. Weather Rev., 129, 587-604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.
– reference: Zängl, G., B. Chimani, and C. Häberli (2004), Numerical simulations of the foehn in the Rhine valley on 24 October 1999 (MAP IOP 10), Mon. Weather Rev., 132, 368-389, doi:10.1175/1520-0493(2004)132<0368:NSOTFI>2.0.CO;2.
– reference: Rockel, B., C. L. Castro, R. A. Pielke Sr., H. vonStorch, and G. Leoncini (2008), Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models, J. Geophys. Res., 113, D21107, doi:10.1029/2007JD009461.
– reference: Žagar, N., M. Žagar, J. Cedilnik, G. Gregorič, and J. Rakovec (2006), Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA-40 over complex terrain, Tellus, Ser. A, 58, 445-455.
– reference: Murphy, A. H. (1988), Skill scores based on the mean square error and their relationships to the correlation coefficient, Mon. Weather Rev., 116, 2417-2424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.
– reference: Dudhia, J. (1989), Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
– reference: Trapp, R. J., E. D. Robinson, M. E. Baldwin, N. S. Diffenbaugh, and B. R. J. Schwedler (2011), Regional climate of hazardous convective weather through high-resolution dynamical downscaling, Clim. Dyn., 37, 677-688, doi:10.1007/s00382-010-0826-y.
– reference: Conil, S., and A. Hall (2006), Local regimes of atmospheric variability: A case study of Southern California, J. Clim., 19, 4308-4325, doi:10.1175/JCLI3837.1.
– reference: Whiteman, C. D. (2000), Mountain Meteorology: Fundamentals and Applications, Oxford Univ. Press, New York.
– reference: Kain, J. S. (2004), The Kain-Fritsch convective parameterization: An update, J. Appl. Meteorol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
– reference: vonStorch, H., H. Langenberg, and F. Feser (2000), A spectral nudging technique for dynamical downscaling purposes, Mon. Weather Rev., 128, 3664-3673, doi:10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.
– reference: Laprise, R. (1992), The Euler equations of motion with hydrostatic pressure as an independent variable, Mon. Weather Rev., 120, 197-207, doi:10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2.
– reference: Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle (2002), Does increasing horizontal resolution produce more skillful forecast?, Bull. Am. Meteorol. Soc., 83, 407-430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.
– reference: Colle, B. A., and C. F. Mass (1998), Windstorms along the western side of the Washington Cascade Mountains. Part I: A high-resolution observational and modeling study of the 12 February 1995 event, Mon. Weather Rev., 126, 28-52, doi:10.1175/1520-0493(1998)126<0028:WATWSO>2.0.CO;2.
– reference: Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue (2006), High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: Methodology, verification, and sensitivity experiments, J. Appl. Meteorol. Climatol., 45, 63-86, doi:10.1175/JAM2322.1.
– reference: Giorgi, F. (2006), Regional climate modeling: Status and perspectives, J. Phys. IV, 139, 101-118, doi:10.1051/jp4:2006139008.
– reference: Lo, J. C.-F., Z.-L. Yang, and R. A. Pielke Sr. (2008), Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model, J. Geophys. Res., 113, D09112, doi:10.1029/2007JD009216.
– reference: Anthes, R. A., Y.-H. Kuo, E.-Y. Hsie, S. Low-Nam, and T. W. Bettge (1989), Estimation of skill and uncertainty in regional numerical models, Q. J. R. Meteorol. Soc., 115, 763-806, doi:10.1002/qj.49711548803.
– reference: Belu, R., and D. Koracin (2009), Wind characteristics and wind energy potential in western Nevada, Renewable Energy, 34, 2246-2251, doi:10.1016/j.renene.2009.02.024.
– reference: Feser, F. (2006), Enhanced detectability of added value in limited-area model results separated into different spatial scales, Mon. Weather Rev., 134, 2180-2190, doi:10.1175/MWR3183.1.
– reference: Stewart, J. Q., C. D. Whiteman, W. J. Steenburgh, and X. Bian (2002), A climatological study of thermally driven wind systems if the U.S. intermountain west, Bull. Am. Meteorol. Soc., 83, 699-708, doi:10.1175/1520-0477(2002)083<0699:ACSOTD>2.3.CO;2.
– reference: Hahmann, A. N., D. Rostkier-Edelstein, T. T. Warner, F. Vandenberghe, Y. Liu, R. Babarsky, and S. P. Swerdlin (2010), A reanalysis system for the generation of mesoscale climatographies, J. Appl. Meteorol. Climatol., 49, 954-972.
– reference: Cairns, M. M., and J. Corey (2003), Mesoscale model simulations of high-wind events in the complex terrain of western Nevada, Weather Forecast., 18, 249-263, doi:10.1175/1520-0434(2003)018<0249:MMSOHE>2.0.CO;2.
– reference: Warner, T. T., R. A. Peterson, and R. E. Treadon (1997), A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction, Bull. Am. Meteorol. Soc., 78, 2599-2617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.
– reference: Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco (2009), Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: Implications for wind energy, Wind Energy, 12, 81-90, doi:10.1002/we.288.
– reference: Pan, Z., E. Takle, W. Gutowski, and R. Turner (1999), Long simulation of regional climate as a sequence of short segments, Mon. Weather Rev., 127, 308-321, doi:10.1175/1520-0493(1999)127<0308:LSORCA>2.0.CO;2.
– reference: Takacs, L. L. (1985), A two-step scheme for the advection equation with minimized dissipation and dispersion errors, Mon. Weather Rev., 113, 1050-1065, doi:10.1175/1520-0493(1985)113<1050:ATSSFT>2.0.CO;2.
– reference: Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grummann, V. Koren, G. Gayno, and J. D. Tarpley (2003), Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res., 108(D22), 8851, doi:10.1029/2002JD003296.
– reference: Mesinger, F., et al. (2006), North American regional reanalysis, Bull. Am. Meteorol. Soc., 87, 343-360, doi:10.1175/BAMS-87-3-343.
– reference: Caldwell, P., H.-N. S. Chin, D. C. Bader, and G. Bala (2009), Evaluation of a WRF dynamical downscaling simulation over California, Clim. Change, 95, 499-521, doi:10.1007/s10584-009-9583-5.
– reference: Rife, D. L., C. A. Davis, and Y. Liu (2004), Predictability of low-level winds by mesoscale meteorological models, Mon. Weather Rev., 132, 2553-2569, doi:10.1175/MWR2801.1.
– reference: Koracin, D., and C. E. Dorman (2001), Marine atmospheric boundary layer divergence and clouds along California in June 1996, Mon. Weather Rev., 129, 2040-2056, doi:10.1175/1520-0493(2001)129<2040:MABLDA>2.0.CO;2.
– reference: Wyngaard, J. C. (2004), Toward numerical modeling in the "terra incognita," J. Atmos. Sci., 61, 1816-1826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.
– reference: Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan (2010), Global distribution and characteristics of diurnally varying low-level jets, J. Clim., 23, 5041-5064, doi:10.1175/2010JCLI3514.1.
– reference: Leung, L. R., Y. H. Kuo, and J. Tribbia (2006), Research needs and directions of regional climate modeling using WRF and CCSM, Bull. Am. Meteorol. Soc., 87, 1747-1751, doi:10.1175/BAMS-87-12-1747.
– reference: Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102(D14), 16,663-16,682, doi:10.1029/97JD00237.
– reference: Reisner, J., R. M. Rasmussen, and R. T. Bruintjes (1998), Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model, Q. J. R. Meteorol. Soc., 124, 1071-1107, doi:10.1002/qj.49712454804.
– reference: Belušić, D., M. Žagar, and B. Grisogono (2007), Numerical simulation of pulsations in the bora wind, Q. J. R. Meteorol. Soc., 133, 1371-1388, doi:10.1002/qj.129.
– reference: Mellor, G. L., and T. Yamada (1974), A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791-1806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.
– reference: Grubišić, V., et al. (2008), The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights, Bull. Am. Meteorol. Soc., 89, 1513-1533, doi:10.1175/2008BAMS2487.1.
– reference: Horvath, K., A. Bajić, and S. Ivatek-Šahdan (2011), Dynamical downscaling of wind speed in complex terrain prone to bora-type flows, J. Appl. Meteorol. Climatol., 50, 1676-1691, doi:10.1175/2011JAMC2638.1.
– reference: Welch, P. D. (1967), The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust., 15(2), 70-73, doi:10.1109/TAU.1967.1161901.
– reference: Cuxart, J., et al. (2006), Single-column model intercomparison for a stably stratified atmospheric boundary layer, Boundary Layer Meteorol., 118, 273-303, doi:10.1007/s10546-005-3780-1.
– reference: Thompson, G., R. M. Rasmussen, and K. Manning (2004), Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis, Mon. Weather Rev., 132, 519-542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.
– volume: 134
  start-page: 2180
  year: 2006
  end-page: 2190
  article-title: Enhanced detectability of added value in limited‐area model results separated into different spatial scales
  publication-title: Mon. Weather Rev.
– volume: 18
  start-page: 249
  year: 2003
  end-page: 263
  article-title: Mesoscale model simulations of high‐wind events in the complex terrain of western Nevada
  publication-title: Weather Forecast.
– volume: 133
  start-page: 3368
  year: 2005
  end-page: 3381
  article-title: Verification of temporal variations in mesoscale numerical wind forecasts
  publication-title: Mon. Weather Rev.
– volume: 108
  issue: D22
  year: 2003
  article-title: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model
  publication-title: J. Geophys. Res.
– volume: 87
  start-page: 1747
  year: 2006
  end-page: 1751
  article-title: Research needs and directions of regional climate modeling using WRF and CCSM
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 116
  start-page: 2417
  year: 1988
  end-page: 2424
  article-title: Skill scores based on the mean square error and their relationships to the correlation coefficient
  publication-title: Mon. Weather Rev.
– year: 2001
– volume: 132
  start-page: 368
  year: 2004
  end-page: 389
  article-title: Numerical simulations of the foehn in the Rhine valley on 24 October 1999 (MAP IOP 10)
  publication-title: Mon. Weather Rev.
– volume: 128
  start-page: 3664
  year: 2000
  end-page: 3673
  article-title: A spectral nudging technique for dynamical downscaling purposes
  publication-title: Mon. Weather Rev.
– volume: 34
  start-page: 2246
  year: 2009
  end-page: 2251
  article-title: Wind characteristics and wind energy potential in western Nevada
  publication-title: Renewable Energy
– volume: 127
  start-page: 308
  year: 1999
  end-page: 321
  article-title: Long simulation of regional climate as a sequence of short segments
  publication-title: Mon. Weather Rev.
– volume: 83
  start-page: 699
  year: 2002
  end-page: 708
  article-title: A climatological study of thermally driven wind systems if the U.S. intermountain west
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 126
  start-page: 28
  year: 1998
  end-page: 52
  article-title: Windstorms along the western side of the Washington Cascade Mountains. Part I: A high‐resolution observational and modeling study of the 12 February 1995 event
  publication-title: Mon. Weather Rev.
– year: 1994
– volume: 95
  start-page: 499
  year: 2009
  end-page: 521
  article-title: Evaluation of a WRF dynamical downscaling simulation over California
  publication-title: Clim. Change
– volume: 115
  start-page: 763
  year: 1989
  end-page: 806
  article-title: Estimation of skill and uncertainty in regional numerical models
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 23
  start-page: 5041
  year: 2010
  end-page: 5064
  article-title: Global distribution and characteristics of diurnally varying low‐level jets
  publication-title: J. Clim.
– volume: 87
  start-page: 343
  year: 2006
  end-page: 360
  article-title: North American regional reanalysis
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 45
  start-page: 63
  year: 2006
  end-page: 86
  article-title: High‐resolution large‐eddy simulations of flow in a steep alpine valley. Part I: Methodology, verification, and sensitivity experiments
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 132
  start-page: 2553
  year: 2004
  end-page: 2569
  article-title: Predictability of low‐level winds by mesoscale meteorological models
  publication-title: Mon. Weather Rev.
– year: 2008
– volume: 20
  start-page: 851
  year: 1982
  end-page: 875
  article-title: Development of a turbulence closure model for geophysical fluid problems
  publication-title: Rev. Geophys.
– volume: 46
  start-page: 3077
  year: 1989
  end-page: 3107
  article-title: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two‐dimensional model
  publication-title: J. Atmos. Sci.
– volume: 139
  start-page: 101
  year: 2006
  end-page: 118
  article-title: Regional climate modeling: Status and perspectives
  publication-title: J. Phys. IV
– volume: 118
  start-page: 273
  year: 2006
  end-page: 303
  article-title: Single‐column model intercomparison for a stably stratified atmospheric boundary layer
  publication-title: Boundary Layer Meteorol.
– volume: 102
  start-page: 16,663
  issue: D14
  year: 1997
  end-page: 16,682
  article-title: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated‐k model for the longwave
  publication-title: J. Geophys. Res.
– volume: 12
  start-page: 81
  year: 2009
  end-page: 90
  article-title: Evaluation of the Weather Research and Forecasting model on forecasting low‐level jets: Implications for wind energy
  publication-title: Wind Energy
– volume: 49
  start-page: 268
  year: 2010
  end-page: 287
  article-title: Surface wind regionalization over complex terrain: Evaluation and analysis of a high‐resolution WRF simulation
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 133
  start-page: 1371
  year: 2007
  end-page: 1388
  article-title: Numerical simulation of pulsations in the bora wind
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 83
  start-page: 407
  year: 2002
  end-page: 430
  article-title: Does increasing horizontal resolution produce more skillful forecast?
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 15
  start-page: 70
  issue: 2
  year: 1967
  end-page: 73
  article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
– volume: 124
  start-page: 1071
  year: 1998
  end-page: 1107
  article-title: Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 49
  start-page: 954
  year: 2010
  end-page: 972
  article-title: A reanalysis system for the generation of mesoscale climatographies
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 61
  start-page: 1816
  year: 2004
  end-page: 1826
  article-title: Toward numerical modeling in the “terra incognita,”
  publication-title: J. Atmos. Sci.
– year: 2007
– start-page: 165
  year: 1993
  end-page: 170
– year: 1996
– year: 2000
– volume: 43
  start-page: 170
  year: 2004
  end-page: 181
  article-title: The Kain‐Fritsch convective parameterization: An update
  publication-title: J. Appl. Meteorol.
– volume: 78
  start-page: 2599
  year: 1997
  end-page: 2617
  article-title: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 113
  year: 2008
  article-title: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model
  publication-title: J. Geophys. Res.
– volume: 113
  year: 2008
  article-title: Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models
  publication-title: J. Geophys. Res.
– volume: 31
  start-page: 1791
  year: 1974
  end-page: 1806
  article-title: A hierarchy of turbulence closure models for planetary boundary layers
  publication-title: J. Atmos. Sci.
– volume: 132
  start-page: 519
  year: 2004
  end-page: 542
  article-title: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis
  publication-title: Mon. Weather Rev.
– volume: 37
  start-page: 677
  year: 2011
  end-page: 688
  article-title: Regional climate of hazardous convective weather through high‐resolution dynamical downscaling
  publication-title: Clim. Dyn.
– volume: 19
  start-page: 4308
  year: 2006
  end-page: 4325
  article-title: Local regimes of atmospheric variability: A case study of Southern California
  publication-title: J. Clim.
– volume: 131
  start-page: 2857
  year: 2003
  end-page: 2874
  article-title: Reinitialized versus continuous simulations for regional climate downscaling
  publication-title: Mon. Weather. Rev.
– volume: 129
  start-page: 2040
  year: 2001
  end-page: 2056
  article-title: Marine atmospheric boundary layer divergence and clouds along California in June 1996
  publication-title: Mon. Weather Rev.
– volume: 89
  start-page: 1513
  year: 2008
  end-page: 1533
  article-title: The Terrain‐Induced Rotor Experiment: A field campaign overview including observational highlights
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 138
  start-page: 4035
  year: 2010
  end-page: 4053
  article-title: Multi‐reanalysis climatology of intermountain cyclones
  publication-title: Mon. Weather Rev.
– volume: 50
  start-page: 1676
  year: 2011
  end-page: 1691
  article-title: Dynamical downscaling of wind speed in complex terrain prone to bora‐type flows
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 58
  start-page: 445
  year: 2006
  end-page: 455
  article-title: Validation of mesoscale low‐level winds obtained by dynamical downscaling of ERA‐40 over complex terrain
  publication-title: Tellus, Ser. A
– volume: 113
  start-page: 1050
  year: 1985
  end-page: 1065
  article-title: A two‐step scheme for the advection equation with minimized dissipation and dispersion errors
  publication-title: Mon. Weather Rev.
– volume: 129
  start-page: 587
  year: 2001
  end-page: 604
  article-title: Coupling an advanced land surface‐hydrology model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary model validation
  publication-title: Mon. Weather Rev.
– volume: 120
  start-page: 197
  year: 1992
  end-page: 207
  article-title: The Euler equations of motion with hydrostatic pressure as an independent variable
  publication-title: Mon. Weather Rev.
– ident: e_1_2_9_17_1
  doi: 10.1175/2008BAMS2487.1
– ident: e_1_2_9_47_1
  doi: 10.1175/1520‐0493(1985)113<1050:ATSSFT>2.0.CO;2
– ident: e_1_2_9_45_1
  doi: 10.1175/1520‐0477(2002)083<0699:ACSOTD>2.3.CO;2
– ident: e_1_2_9_38_1
  doi: 10.1175/1520‐0493(2003)131<2857:RVCSFR>2.0.CO;2
– ident: e_1_2_9_16_1
– ident: e_1_2_9_14_1
  doi: 10.1175/MWR3183.1
– ident: e_1_2_9_23_1
  doi: 10.1175/2010MWR3432.1
– ident: e_1_2_9_49_1
  doi: 10.1007/s00382‐010‐0826‐y
– ident: e_1_2_9_10_1
  doi: 10.1175/JCLI3837.1
– ident: e_1_2_9_32_1
  doi: 10.1175/1520‐0469(1974)031<1791:AHOTCM>2.0.CO;2
– ident: e_1_2_9_25_1
  doi: 10.1175/1520‐0450(2004)043<0170:TKCPAU>2.0.CO;2
– ident: e_1_2_9_19_1
  doi: 10.1175/2011JAMC2638.1
– ident: e_1_2_9_51_1
  doi: 10.1175/1520‐0477(1997)078<2599:ATOLBC>2.0.CO;2
– ident: e_1_2_9_28_1
  doi: 10.1175/1520‐0493(1992)120<0197:TEEOMW>2.0.CO;2
– ident: e_1_2_9_54_1
  doi: 10.1175/1520‐0469(2004)061<1816:TNMITT>2.0.CO;2
– ident: e_1_2_9_29_1
  doi: 10.1175/BAMS‐87‐12‐1747
– ident: e_1_2_9_13_1
  doi: 10.1029/2002JD003296
– ident: e_1_2_9_44_1
– ident: e_1_2_9_46_1
  doi: 10.1002/we.288
– ident: e_1_2_9_34_1
  doi: 10.1175/BAMS‐87‐3‐343
– ident: e_1_2_9_43_1
  doi: 10.1029/2007JD009461
– ident: e_1_2_9_6_1
  doi: 10.1007/s10584‐009‐9583‐5
– ident: e_1_2_9_22_1
– ident: e_1_2_9_15_1
  doi: 10.1051/jp4:2006139008
– ident: e_1_2_9_48_1
  doi: 10.1175/1520‐0493(2004)132<0519:EFOWPU>2.0.CO;2
– ident: e_1_2_9_9_1
  doi: 10.1175/1520‐0493(1998)126<0028:WATWSO>2.0.CO;2
– ident: e_1_2_9_35_1
  doi: 10.1029/97JD00237
– ident: e_1_2_9_20_1
  doi: 10.1017/CBO9780511546013
– ident: e_1_2_9_55_1
  doi: 10.1111/j.1600-0870.2006.00186.x
– ident: e_1_2_9_53_1
  doi: 10.1093/oso/9780195132717.001.0001
– ident: e_1_2_9_27_1
  doi: 10.1175/1520‐0493(2001)129<2040:MABLDA>2.0.CO;2
– ident: e_1_2_9_42_1
  doi: 10.1175/2010JCLI3514.1
– ident: e_1_2_9_37_1
  doi: 10.1175/1520‐0493(1999)127<0308:LSORCA>2.0.CO;2
– ident: e_1_2_9_52_1
  doi: 10.1109/TAU.1967.1161901
– ident: e_1_2_9_2_1
  doi: 10.1002/qj.49711548803
– ident: e_1_2_9_18_1
  doi: 10.1175/2009JAMC2351.1
– ident: e_1_2_9_56_1
  doi: 10.1175/1520‐0493(2004)132<0368:NSOTFI>2.0.CO;2
– ident: e_1_2_9_4_1
  doi: 10.1002/qj.129
– ident: e_1_2_9_33_1
  doi: 10.1029/RG020i004p00851
– ident: e_1_2_9_40_1
  doi: 10.1175/MWR3052.1
– ident: e_1_2_9_21_1
– ident: e_1_2_9_31_1
  doi: 10.1175/1520‐0477(2002)083<0407:DIHRPM>2.3.CO;2
– ident: e_1_2_9_5_1
  doi: 10.1175/1520‐0434(2003)018<0249:MMSOHE>2.0.CO;2
– ident: e_1_2_9_11_1
  doi: 10.1007/s10546‐005‐3780‐1
– ident: e_1_2_9_7_1
  doi: 10.1175/1520‐0493(2001)129<0587:CAALSH>2.0.CO;2
– ident: e_1_2_9_8_1
  doi: 10.1175/JAM2322.1
– ident: e_1_2_9_26_1
  doi: 10.1007/978-1-935704-13-3_16
– ident: e_1_2_9_36_1
  doi: 10.1175/1520‐0493(1988)116<2417:SSBOTM>2.0.CO;2
– ident: e_1_2_9_30_1
  doi: 10.1029/2007JD009216
– ident: e_1_2_9_41_1
  doi: 10.1175/MWR2801.1
– ident: e_1_2_9_3_1
  doi: 10.1016/j.renene.2009.02.024
– ident: e_1_2_9_39_1
  doi: 10.1002/qj.49712454804
– ident: e_1_2_9_50_1
  doi: 10.1175/1520‐0493(2000)128<3664:ASNTFD>2.0.CO;2
– ident: e_1_2_9_12_1
  doi: 10.1175/1520‐0469(1989)046<3077:NSOCOD>2.0.CO;2
– ident: e_1_2_9_24_1
  doi: 10.1175/2009JAMC2175.1
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000803454
Score 2.365586
Snippet Sub‐kilometer dynamical downscaling was performed using the Weather Research and Forecasting (WRF) and Mesoscale Model Version 5 (MM5) models. The models were...
Sub-kilometer dynamical downscaling was performed using the Weather Research and Forecasting (WRF) and Mesoscale Model Version 5 (MM5) models. The models were...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Accuracy
Atmospheric boundary layer
Atmospheric sciences
Boundary conditions
Climate models
Climate science
Daytime
Dispersion
Diurnal
Domains
dynamical downscaling
Earth sciences
Earth, ocean, space
Eddies
Errors
Exact sciences and technology
Frequencies
Geophysics
Kinetic energy
Mean winds
Mesoclimatology
Mesoscale models
Mesoscale phenomena
Mixed layer
MM5
Model accuracy
Modelling
moment-based verification
Physics
Resolution
Spectra
spectral verification
Summer
Surface wind
Telescoping
Temporal variability
Temporal variations
Terrain
Verification
Vertical wind shear
Weather forecasting
Wind shear
Wind speed
Winds
WRF
Title Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models
URI https://api.istex.fr/ark:/67375/WNG-DSSNXR9P-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JD017432
https://www.proquest.com/docview/1020769359
https://www.proquest.com/docview/2626887487
https://www.proquest.com/docview/1024659920
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdr8rKXsU_mrQsabH3ZBLZsydZT2ZomIZBQ0pXmzeizhKZ2Fze0f_5OipM1sPXNxpKwdbq7353O-iH0JaU6NlIoYmLnCPhjTaQ2glgD2IDSWBWp_8F5MuWji2w8Z_M24da0ZZVbmxgMtam1z5GDdtPY8_YxcXz7m3jWKL-72lJoHKAumOCi6KDuz9Pp2WyXZQE8lGaBCo0mXJBC5PO2-j2mAgL_hI77sQfldM8vdf0UP_g6SdnAVLkNx8UeCH0MZYMvGrxEL1oQiX9spP4KPbPVaxRNAP_Wq5Amx0f4ZLkAMBru3qAa7AO5XizrG1_9gs2Ghh6GMD65DBfgwHDtcAXrnjTrlZPa4nsI1xu8qHAoO7cPGLp6Qgnsa-Wv8OVsgGVl8GTC8I1taj-MxYFZp3mLLganv05GpKVaIBogmyAyL5zMbZ5pG9uUZSoziiVOGfDvTmWJ1DmEmyo2iXUZgArNFdNSUyukEYzq9B3qVHVl3yPMck1N4VKeC5ZpXRSp4kmiuXUsjU3KI_RtO9Glbs8h93QYyzLsh1NRPhZLhL7uWt9uzt_4T7ujILNdI7m69jVrOSsvp8Oyf34-nc_EWTmKUG9PqLsOlKdgi6iI0OFWymWrz035d_X98zGFsBCsNQR_Efq8ewyK6ndfZGXrdRgi40wIGkfoe1g8T35QOR7O-v74NPHh6Rf6iJ77fr58LeGHqHO3WttPAJTuVA8dFINhr9WJP8KAD8Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXG9gAvaHyJsDGMxPYCFokdJ_EDQmil7bq1Qt2m9S04_kDVumQ0qzb-FL-RazctqwR721uqOFdprn3Pufa1D0LvGFWhlqIgOrSWAB4rIpUWxGjgBpSGRcbcBuf-IOmexr0RH62h34u9MK6schETfaDWlXJz5DC6aeh0-7j4fPmTONUot7q6kNCYd4tD8-saUrb600EL_LtLafvryX6XNKoCRAE7EUSmmZWpSWNlQsN4XMS64JEtNECZLeJIqhQyqyLUkbEx4KdKCq6kokZILThVDOw-QBsxAyR3O9PbneWcDrAvFnvhNRolgmQiHTW19iEVHwFqaa8VuhSArqDghnPojavKlDU4xs4VNVYo723i7JGvvYkeN5QVf5n3sSdozZRPUdAHtl1N_aQ83sP7kzFQX__rGaogGpHz8aS6cLU2WM9F78GEdlPZcAFwiSuLS_icpJ5NrVQGX49LXeNxiX2Ru7nB8KiTr8CuMv8HPhu2sSw17vc5vjB15cwY7HV86ufo9F5c8AKtl1VpXiLMU0V1ZlmSCh4rlWWsSKJIJcZyFmqWBOj94kPnqjn13IlvTHK_-k5FftstAdpdtr6cn_bxn3Z73mfLRnJ67irkUp6fDTp56_h4MBqKb3k3QDsrTl0-QBMGkY-KAG0vvJw30aPO__b1f96mkIQCNkCqGaC3y9sQFtxajyxNNfMm4oQLQcMAffCd584_lPc6w5Y7rE28uvuF3qCH3ZP-UX50MDjcQo-cDVc4FyXbaP1qOjOvgaJdFTt-XGD0_b4H4h9Tykvq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLZYK017mdhNy8aYJw1eNovEiZP4YZo2SillraoyRN-C48tUURJoqIC_tl-3YzftqLTxxlsiX5Tk2Od8x_7iD6GPIZW-EjwnyjeGQDyWREjFiVaADSj18zS0Pzj3-nHnOOqO2GgN_V78C2NplQuf6By1KqVdI4fZTX2r28f4jqlpEYNW--vFJbEKUnandSGnMR8ih_r2GtK36stBC2y9RWl77-duh9QKA0QCUuFEJKkRiU4iqX0dsiiPVM4CkysIayaPAiETyLJyXwXaRBBLZZwzKSTVXCjOqAyh30eomdisqIGa3_f6g-FyhQewWBg5GTYaxJykPBnVzHuf8h0IvLTb8m1CQFdiYtOa98ZyNEUFZjJzfY0VAHwXRrs42F5HT2sAi7_NR9wztKaL58jrAfYup26JHm_j3ckYgLC7e4FK8E3kbDwpzy3zBqvbQrgjCrCyC9twAcETlwYX8EFJNZsaITW-HheqwuMCO8q7vsHQ1IpZYMvT_4VPhm0sCoV7PYbPdVXabjR2qj7VS3T8IEZ4hRpFWejXCLNEUpWaME44i6RM0zCPg0DG2rDQV2HsoU-LD53J-gx0K8UxydxePOXZXbN4aGtZ-2J-9sd_6m07my0riemZ5cslLDvp72eto6P-aMgHWcdDmytGXTagcQh-kHIPbSysnNW-pMr-jvx_FlNISSFSQOLpoQ_LYnASdudHFLqcuS6imHFOfQ99doPn3hfKuvvDlj26jb-5_4Heo8cwCbMfB_3Dt-iJ7cKy6IJ4AzWupjP9DvDaVb5ZTwyMTh96Lv4BeB1RfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub-kilometer+dynamical+downscaling+of+near-surface+winds+in+complex+terrain+using+WRF+and+MM5+mesoscale+models&rft.jtitle=Journal+of+Geophysical+Research%3A+Atmospheres&rft.au=Horvath%2C+Kristian&rft.au=Koracin%2C+Darko&rft.au=Vellore%2C+Ramesh&rft.au=Jiang%2C+Jinhua&rft.date=2012-06-16&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=D11&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2012JD017432&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DSSNXR9P_H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon