Engineering Gold Nanotubes with Controlled Length and Near-Infrared Absorption for Theranostic Applications
Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been expl...
Saved in:
Published in | Advanced functional materials Vol. 25; no. 14; pp. 2117 - 2127 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
08.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length‐controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well‐defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4‐styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS‐coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS‐coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes.
Gold nanotubes with controlled length and tunable absorption in the near‐infrared region are developed. The present work represents the first in vitro and in vivo study of gold nanotubes and demonstrates their effectiveness as novel agents for photoacoustic imaging and photothermal therapy with potential for drug delivery. |
---|---|
AbstractList | Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near-infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length-controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well-defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4-styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS-coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS-coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes. Gold nanotubes with controlled length and tunable absorption in the near-infrared region are developed. The present work represents the first in vitro and in vivo study of gold nanotubes and demonstrates their effectiveness as novel agents for photoacoustic imaging and photothermal therapy with potential for drug delivery. Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length‐controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well‐defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4‐styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS‐coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS‐coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes. Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length‐controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well‐defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4‐styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS‐coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS‐coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes. Gold nanotubes with controlled length and tunable absorption in the near‐infrared region are developed. The present work represents the first in vitro and in vivo study of gold nanotubes and demonstrates their effectiveness as novel agents for photoacoustic imaging and photothermal therapy with potential for drug delivery. |
Author | Critchley, Kevin Baumberg, Jeremy J. Ingram, Nicola Evans, Stephen D. Ye, Sunjie McLaughlan, James R. Markham, Alexander F. Freear, Steven Sigle, Daniel O. Coletta, Patricia Louise Bushby, Richard J. Marston, Gemma |
Author_xml | – sequence: 1 givenname: Sunjie surname: Ye fullname: Ye, Sunjie organization: School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK – sequence: 2 givenname: Gemma surname: Marston fullname: Marston, Gemma organization: Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, LS9 7TF, Leeds, UK – sequence: 3 givenname: James R. surname: McLaughlan fullname: McLaughlan, James R. organization: School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, Leeds, UK – sequence: 4 givenname: Daniel O. surname: Sigle fullname: Sigle, Daniel O. organization: NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, CB3 0HE, Cambridge, UK – sequence: 5 givenname: Nicola surname: Ingram fullname: Ingram, Nicola organization: Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, LS9 7TF, Leeds, UK – sequence: 6 givenname: Steven surname: Freear fullname: Freear, Steven organization: School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, Leeds, UK – sequence: 7 givenname: Jeremy J. surname: Baumberg fullname: Baumberg, Jeremy J. organization: NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, CB3 0HE, Cambridge, UK – sequence: 8 givenname: Richard J. surname: Bushby fullname: Bushby, Richard J. organization: School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK – sequence: 9 givenname: Alexander F. surname: Markham fullname: Markham, Alexander F. organization: Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, LS9 7TF, Leeds, UK – sequence: 10 givenname: Kevin surname: Critchley fullname: Critchley, Kevin organization: School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK – sequence: 11 givenname: Patricia Louise surname: Coletta fullname: Coletta, Patricia Louise organization: Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, LS9 7TF, Leeds, UK – sequence: 12 givenname: Stephen D. surname: Evans fullname: Evans, Stephen D. email: S.D.Evans@leeds.ac.uk organization: School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK |
BookMark | eNqFkD1PwzAQhi0EEqWwMmdkSfFHHCdjVdryUQpIBbpZrnMphtQOdirovydVUcXGdKd7n-eG9wQdWmcBoXOCewRjeqmKctWjmCQ4YTw7QB2SkjRmmGaH-53Mj9FJCO8YEyFY0kEfQ7s0FsAbu4zGriqiqbKuWS8gRF-meYsGzjbeVRUU0QTssr0o20KgfHxjS698G_QXwfm6Mc5GpfPR7A18-yQ0Rkf9uq6MVtssnKKjUlUBzn5nFz2PhrPBdTx5GN8M-pNY8wRncUJVqbN8ISjlac6TXBRZzqlOocSaLggXinJNREYEYwXkDFogoVgVSVnQPGVddLH7W3v3uYbQyJUJGqpKWXDrIEma8QxzSlmL9nao9i4ED6WsvVkpv5EEy22rctuq3LfaCvlO-DIVbP6hZf9qdP_XjXeuCQ18713lP2QqmODydTqW06u7-ePL7ZOcsx_PM42o |
CitedBy_id | crossref_primary_10_1002_wnan_1542 crossref_primary_10_2217_nnm_2018_0409 crossref_primary_10_1016_j_colsurfa_2016_08_036 crossref_primary_10_1080_09506608_2018_1554991 crossref_primary_10_1002_adfm_201603758 crossref_primary_10_1002_ange_201601276 crossref_primary_10_1002_adhm_201500720 crossref_primary_10_3390_pharmaceutics11050216 crossref_primary_10_1002_smll_201600635 crossref_primary_10_1016_j_jcis_2023_02_078 crossref_primary_10_1039_C8NJ04024A crossref_primary_10_1021_acs_chemrev_3c00159 crossref_primary_10_1134_S0036023623601897 crossref_primary_10_1016_j_physe_2019_113686 crossref_primary_10_1007_s11082_023_05088_x crossref_primary_10_1016_j_energy_2017_09_059 crossref_primary_10_1088_1361_6528_aaa99d crossref_primary_10_1002_advs_201903441 crossref_primary_10_1016_j_jconrel_2017_04_003 crossref_primary_10_1039_C5RA23652E crossref_primary_10_1021_acs_analchem_7b04765 crossref_primary_10_1007_s00604_020_04460_y crossref_primary_10_1021_acs_jpcc_6b06393 crossref_primary_10_1088_1361_6528_ac18a1 crossref_primary_10_1007_s11468_024_02387_1 crossref_primary_10_1080_17425247_2024_2375400 crossref_primary_10_3390_ijms19113318 crossref_primary_10_1002_celc_201901939 crossref_primary_10_1002_smll_202006797 crossref_primary_10_1039_D2CC06654H crossref_primary_10_1016_j_snb_2022_132766 crossref_primary_10_1088_1361_6560_aa97e9 crossref_primary_10_1002_smll_201702037 crossref_primary_10_1158_1078_0432_CCR_15_0314 crossref_primary_10_1088_1361_6463_ac7f66 crossref_primary_10_1007_s12274_016_1011_3 crossref_primary_10_1002_adom_201800436 crossref_primary_10_1002_anie_201601276 crossref_primary_10_1021_acsaelm_3c01549 crossref_primary_10_3390_s17061400 crossref_primary_10_1002_adma_201806024 crossref_primary_10_1088_1742_6596_1151_1_012018 crossref_primary_10_1016_j_jconrel_2016_01_020 crossref_primary_10_1039_C8NA00075A crossref_primary_10_1088_0957_4484_27_17_175102 crossref_primary_10_1002_adfm_202003147 crossref_primary_10_1021_acs_langmuir_7b03868 crossref_primary_10_14529_mmph220408 crossref_primary_10_1016_j_saa_2022_121037 crossref_primary_10_1134_S0036023622020036 crossref_primary_10_1021_acs_jpcc_9b07610 crossref_primary_10_1134_S0036023620070074 crossref_primary_10_1016_j_cplett_2020_137542 crossref_primary_10_1021_acs_jpcc_1c01424 crossref_primary_10_1002_chem_201904675 crossref_primary_10_1039_D0NH00244E crossref_primary_10_1002_smll_201906780 crossref_primary_10_1515_nanoph_2016_0124 crossref_primary_10_1002_adhm_201700073 crossref_primary_10_1021_acs_analchem_5b03036 crossref_primary_10_1021_acs_chemrev_8b00341 crossref_primary_10_1002_adfm_201807960 crossref_primary_10_1021_acsnano_8b00770 crossref_primary_10_1021_acsami_6b12591 crossref_primary_10_1016_j_jece_2015_12_033 crossref_primary_10_1039_C6NR04045D crossref_primary_10_1016_j_cplett_2021_139032 crossref_primary_10_1021_acsomega_0c00167 crossref_primary_10_1021_acsbiomaterials_9b00946 |
Cites_doi | 10.1002/adma.200802789 10.1021/jp810192f 10.1039/c0nr00258e 10.1002/adma.201400831 10.1002/smll.201200333 10.1021/nn2027837 10.1016/j.biomaterials.2010.03.048 10.1073/pnas.1308345110 10.1021/ar200061q 10.1007/s11060-010-0511-3 10.1038/nnano.2009.231 10.1039/c0cs00180e 10.1021/la903893n 10.1021/ja039734c 10.1021/nn404833b 10.1021/nl202538q 10.1039/c0nr00239a 10.1038/nmat3780 10.1021/nn901146y 10.1021/ar200023x 10.1002/anie.201107304 10.1039/b200953f 10.1021/ja411457r 10.1126/science.1212822 10.1021/jp048023d 10.1021/cr9002566 10.1038/nrd988 10.1039/b100521i 10.1039/C1CS15237H 10.1021/nl034312m 10.1021/ar200022e 10.1021/nn405663h 10.1021/nn900099t 10.1088/0957-4484/19/27/275306 10.1039/C2NR33187J 10.1148/radiol.11111646 10.1002/adfm.201001329 10.1002/mrm.22779 10.1039/B607116C 10.1021/la203423n 10.1021/nl802746w 10.1021/nn800466c 10.1021/nl025531v 10.1021/jp990387w 10.1021/nl402305n 10.1038/nprot.2007.326 10.1021/nl0802741 10.1002/adma.200702786 10.1002/adfm.201301555 10.1021/cm048297d 10.1021/nn500299p 10.1016/j.biomaterials.2009.11.079 10.1021/nn403202w 10.1021/nl034765r 10.7150/thno.3463 10.1016/j.jcis.2009.10.075 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201404358 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 2127 |
ExternalDocumentID | 10_1002_adfm_201404358 ADFM201404358 ark_67375_WNG_NDKXPVJQ_X |
Genre | article |
GrantInformation_xml | – fundername: EPSRC |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAMNL AAYXX ACRPL ACYXJ CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5408-42afc89b7225695497d8952c6ef0c2b157a25c1781733de93e7d8420ad4fd2963 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Dec 04 00:46:41 EST 2024 Fri Dec 06 00:56:42 EST 2024 Sat Aug 24 00:54:51 EDT 2024 Wed Oct 30 09:49:23 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5408-42afc89b7225695497d8952c6ef0c2b157a25c1781733de93e7d8420ad4fd2963 |
Notes | EPSRC ark:/67375/WNG-NDKXPVJQ-X ArticleID:ADFM201404358 istex:B3118F9EACCFB98F6F8505327A42FDF41D3B0AA3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://eprints.whiterose.ac.uk/87036/1/Revised%20Manuscript%20of%20adfm.%20201404358.pdf |
PQID | 1685805223 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1685805223 crossref_primary_10_1002_adfm_201404358 wiley_primary_10_1002_adfm_201404358_ADFM201404358 istex_primary_ark_67375_WNG_NDKXPVJQ_X |
PublicationCentury | 2000 |
PublicationDate | April 8, 2015 |
PublicationDateYYYYMMDD | 2015-04-08 |
PublicationDate_xml | – month: 04 year: 2015 text: April 8, 2015 day: 08 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | K. H. Song, C. Kim, C. M. Cobley, Y. Xia, L. V. Wang, Nano Lett. 2009, 9, 183. Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914. A. Gole, C. J. Murphy, Chem. Mater. 2005, 17, 1325. L. Vigderman, P. Manna, E. R. Zubarev, Angew. Chem. Int. Ed. 2012, 51, 636. N. R. Sieb, N.-C. Wu, E. Majidi, R. Kukreja, N. R. Branda, B. D. Gates, ACS Nano 2009, 3, 1365. H. Gong, L. Cheng, J. Xiang, H. Xu, L. Feng, X. Shi, Z. Liu, Adv. Funct. Mater. 2013, 23, 6059. J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, Y. Xia, Adv. Funct. Mater. 2010, 20, 3684. C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, J. Mater. Chem. 2002, 12, 1765. S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, W.-Y. Ong, Biomaterials 2010, 31, 2034. E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, M. A. El-Sayed, Chem. Soc. Rev. 2011, 40, 3391. M. K. Yu, J. Park, S. Jon, Theranostics 2012, 2, 3. R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, P. N. Prasad, ACS Nano 2010, 4, 699. Y. G. Sun, Y. Wang, Nano Lett. 2011, 11, 4386. A. P. Leonov, J. Zheng, J. D. Clogston, S. T. Stern, A. K. Patri, A. Wei, ACS Nano 2008, 2, 2481. Y. Sun, Nanoscale 2010, 2, 1626. M. A. Mahmoud, M. A. El-Sayed, J. Gao, U. Landman, Nano Lett. 2013, 13, 4739. R. Weissleder, M. Nahrendorf, M. J. Pittet, Nat. Mater. 2014, 13, 125. L. Guo, I. Panderi, D. D. Yan, K. Szulak, Y. Li, Y.-T. Chen, H. Ma, D. B. Niesen, N. Seeram, A. Ahmed, B. Yan, D. Pantazatos, W. Lu, ACS Nano 2013, 7, 8780. S. H. Han, J.-S. Lee, Langmuir 2012, 28, 828. J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, V. P. Zharov, Nat. Nanotechnol. 2009, 4, 688. J. Zhu, J. Phys. Chem. C 2009, 113, 3164. S. E. Skrabalak, L. Au, X. Li, Y. Xia, Nat. Protoc. 2007, 2, 2182. H. Y. Chen, Y. Gao, H. R. Zhang, L. B. Liu, H. C. Yu, H. F. Tian, S. S. Xie, J. Q. Li, J. Phys. Chem. B 2004, 108, 12038. Y. G. Sun, B. Mayers, T. Herricks, Y. N. Xia, Nano Lett. 2003, 3, 955. Y. G. Sun, Y. N. Xia, J. Am. Chem. Soc. 2004, 126, 3892. C. R. Martin, P. Kohli, Nat. Rev. Drug Discovery 2003, 2, 29. E. C. Dreaden, S. C. Mwakwari, L. A. Austin, M. J. Kieffer, A. K. Oyelere, M. A. El-Sayed, Small 2012, 8, 2819. X. Huang, S. Neretina, M. A. El-Sayed, Adv. Mater. 2009, 21, 4880. R. Becker, B. Liedberg, P.-O. Kall, J. Colloid Interface Sci. 2010, 343, 25. Y. G. Sun, B. T. Mayers, Y. N. Xia, Nano Lett. 2002, 2, 481. N. Y. Rapoport, Z. Gao, P. Kamaev, D. A. Christensen, Therapeutic Ultrasound, Vol. 829, (Eds: G. T. Clement, N. J. McDannold, K. Hynynen), American Institute of Physics, New York, USA 2006, p 481. D. Fava, Z. Nie, M. A. Winnik, E. Kumacheva, Adv. Mater. 2008, 20, 4318. J. S. Souris, C.-H. Lee, S.-H. Cheng, C.-T. Chen, C.-S. Yang, J.-A. A. Ho, C.-Y. Mou, L.-W. Lo, Biomaterials 2010, 31, 5564. S. Link, Z. L. Wang, M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 3529. Y. Bi, G. Lu, Nanotechnology 2008, 19, 275306. A. Nan, X. Bai, S. J. Son, S. B. Lee, H. Ghandehari, Nano Lett. 2008, 8, 2150. J. S. Burre, S. Walker-Samuel, L. C. J. Baker, J. K. R. Boult, A. J. Ryan, J. C. Waterton, J. Haiday, S. P. Robinson, Magn. Reson. Med. 2011, 66, 227. E. Herzog, A. Taruttis, N. Beziere, A. A. Lutich, D. Razansky, V. Ntziachristos, Radiology 2012, 263, 461. E. Gonzalez, J. Arbiol, V. F. Puntes, Science 2011, 334, 1377. V. Ntziachristos, D. Razansky, Chem. Rev. 2010, 110, 2783. R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, B. Liu, Langmuir 2010, 26, 5428. R. Bardhan, S. Lal, A. Joshi, N. J. Halas, Acc. Chem. Res. 2011, 44, 936. M. P. Melancon, M. Zhou, C. Li, Acc. Chem. Res. 2011, 44, 947. W. Wu, W. Driessen, X. Jiang, J. Am. Chem. Soc. 2014, 136, 3145. X. Huang, X. Peng, Y. Wang, Y. Wang, D. M. Shin, M. A. El-Sayed, S. Nie, ACS Nano 2011, 5, 6765. Y. G. Sun, Y. N. Xia, Nano Lett. 2003, 3, 1569. P. Kolhar, A. C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian, E. Ruoslahti, S. Mitragotri, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 10753. E. A. Sykes, J. Chen, G. Zheng, W. C. W. Chan, ACS Nano 2014, 8, 5696. A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, N. J. Halas, ACS Nano 2014, 8, 3222. H.-N. Xie, I. A. Larmour, Y.-C. Chen, A. W. Wark, V. Tileli, D. W. McComb, K. Faulds, D. Graham, Nanoscale 2013, 5, 765. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, M. A. El-Sayed, Chem. Soc. Rev. 2012, 41, 2740. E. Carbo-Argibay, B. Rodriguez-Gonzalez, I. Pastoriza-Santos, J. Perez-Juste, L. M. Liz-Marzan, Nanoscale 2010, 2, 2377. N. R. Jana, L. Gearheart, C. J. Murphy, Chem. Commun. 2001, 617. S. E. Hunyadi, C. J. Murphy, J. Mater. Chem. 2006, 16, 3929. S. K. Maji, S. Sreejith, J. Joseph, M. Lin, T. He, Y. Tong, H. Sun, S. W.-K. Yu, Y. Zhao, Adv. Mater. 2014, 26, 5633. H. Jang, Y.-K. Kim, H. Huh, D.-H. Min, ACS Nano 2014, 8, 467. S.-K. Baek, A. R. Makkouk, T. Krasieva, C.-H. Sun, S. J. Madsen, H. Hirschberg, J. Neurooncol. 2011, 104, 439. 2004; 126 2013; 23 2002; 12 2010; 343 2014; 26 2011; 11 2008; 8 2009; 113 2013; 7 2008; 2 2013; 5 2014; 136 2012; 51 2010; 20 2010; 26 2001 2013; 13 2010; 110 2003; 2 2003; 3 2011; 66 2014; 13 2012; 28 2013; 110 2007; 2 2008; 20 2014; 8 2010; 2 2010; 4 2011; 334 2010; 31 2012; 263 2009; 21 2006; 16 2008; 19 2011; 40 2002; 2 1999; 103 2004; 108 2011; 5 2011; 104 2006; 829 2012; 2 2009; 9 2011; 44 2009; 4 2009; 3 2005; 17 2012; 41 2012; 8 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 Rapoport N. Y. (e_1_2_6_53_1) 2006 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 103 start-page: 3529 year: 1999 publication-title: J. Phys. Chem. B – volume: 108 start-page: 12038 year: 2004 publication-title: J. Phys. Chem. B – volume: 104 start-page: 439 year: 2011 publication-title: J. Neurooncol. – volume: 3 start-page: 955 year: 2003 publication-title: Nano Lett. – volume: 8 start-page: 5696 year: 2014 publication-title: ACS Nano – volume: 51 start-page: 636 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 263 start-page: 461 year: 2012 publication-title: Radiology – volume: 8 start-page: 3222 year: 2014 publication-title: ACS Nano – volume: 829 start-page: 481 year: 2006 – start-page: 617 year: 2001 publication-title: Chem. Commun. – volume: 26 start-page: 5633 year: 2014 publication-title: Adv. Mater. – volume: 2 start-page: 481 year: 2002 publication-title: Nano Lett. – volume: 20 start-page: 4318 year: 2008 publication-title: Adv. Mater. – volume: 4 start-page: 688 year: 2009 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 6765 year: 2011 publication-title: ACS Nano – volume: 3 start-page: 1569 year: 2003 publication-title: Nano Lett. – volume: 110 start-page: 10753 year: 2013 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 66 start-page: 227 year: 2011 publication-title: Magn. Reson. Med. – volume: 113 start-page: 3164 year: 2009 publication-title: J. Phys. Chem. C – volume: 2 start-page: 1626 year: 2010 publication-title: Nanoscale – volume: 2 start-page: 3 year: 2012 publication-title: Theranostics – volume: 11 start-page: 4386 year: 2011 publication-title: Nano Lett. – volume: 2 start-page: 2481 year: 2008 publication-title: ACS Nano – volume: 7 start-page: 8780 year: 2013 publication-title: ACS Nano – volume: 40 start-page: 3391 year: 2011 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1365 year: 2009 publication-title: ACS Nano – volume: 17 start-page: 1325 year: 2005 publication-title: Chem. Mater. – volume: 31 start-page: 5564 year: 2010 publication-title: Biomaterials – volume: 20 start-page: 3684 year: 2010 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 29 year: 2003 publication-title: Nat. Rev. Drug Discovery – volume: 5 start-page: 765 year: 2013 publication-title: Nanoscale – volume: 13 start-page: 4739 year: 2013 publication-title: Nano Lett. – volume: 28 start-page: 828 year: 2012 publication-title: Langmuir – volume: 19 start-page: 275306 year: 2008 publication-title: Nanotechnology – volume: 41 start-page: 2740 year: 2012 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 914 year: 2011 publication-title: Acc. Chem. Res. – volume: 13 start-page: 125 year: 2014 publication-title: Nat. Mater. – volume: 9 start-page: 183 year: 2009 publication-title: Nano Lett. – volume: 21 start-page: 4880 year: 2009 publication-title: Adv. Mater. – volume: 136 start-page: 3145 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2819 year: 2012 publication-title: Small – volume: 44 start-page: 947 year: 2011 publication-title: Acc. Chem. Res. – volume: 8 start-page: 2150 year: 2008 publication-title: Nano Lett. – volume: 334 start-page: 1377 year: 2011 publication-title: Science – volume: 12 start-page: 1765 year: 2002 publication-title: J. Mater. Chem. – volume: 23 start-page: 6059 year: 2013 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 2377 year: 2010 publication-title: Nanoscale – volume: 343 start-page: 25 year: 2010 publication-title: J. Colloid Interface Sci. – volume: 126 start-page: 3892 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 699 year: 2010 publication-title: ACS Nano – volume: 8 start-page: 467 year: 2014 publication-title: ACS Nano – volume: 44 start-page: 936 year: 2011 publication-title: Acc. Chem. Res. – volume: 110 start-page: 2783 year: 2010 publication-title: Chem. Rev. – volume: 2 start-page: 2182 year: 2007 publication-title: Nat. Protoc. – volume: 31 start-page: 2034 year: 2010 publication-title: Biomaterials – volume: 16 start-page: 3929 year: 2006 publication-title: J. Mater. Chem. – volume: 26 start-page: 5428 year: 2010 publication-title: Langmuir – ident: e_1_2_6_7_1 doi: 10.1002/adma.200802789 – ident: e_1_2_6_37_1 doi: 10.1021/jp810192f – ident: e_1_2_6_57_1 doi: 10.1039/c0nr00258e – ident: e_1_2_6_1_1 doi: 10.1002/adma.201400831 – ident: e_1_2_6_46_1 doi: 10.1002/smll.201200333 – ident: e_1_2_6_14_1 doi: 10.1021/nn2027837 – ident: e_1_2_6_55_1 doi: 10.1016/j.biomaterials.2010.03.048 – ident: e_1_2_6_15_1 doi: 10.1073/pnas.1308345110 – ident: e_1_2_6_10_1 doi: 10.1021/ar200061q – ident: e_1_2_6_47_1 doi: 10.1007/s11060-010-0511-3 – ident: e_1_2_6_13_1 doi: 10.1038/nnano.2009.231 – ident: e_1_2_6_16_1 doi: 10.1039/c0cs00180e – ident: e_1_2_6_45_1 doi: 10.1021/la903893n – ident: e_1_2_6_35_1 doi: 10.1021/ja039734c – ident: e_1_2_6_20_1 doi: 10.1021/nn404833b – ident: e_1_2_6_39_1 doi: 10.1021/nl202538q – ident: e_1_2_6_30_1 doi: 10.1039/c0nr00239a – ident: e_1_2_6_44_1 doi: 10.1038/nmat3780 – ident: e_1_2_6_56_1 doi: 10.1021/nn901146y – ident: e_1_2_6_8_1 doi: 10.1021/ar200023x – ident: e_1_2_6_41_1 doi: 10.1002/anie.201107304 – ident: e_1_2_6_29_1 doi: 10.1039/b200953f – ident: e_1_2_6_50_1 doi: 10.1021/ja411457r – start-page: 481 volume-title: Therapeutic Ultrasound year: 2006 ident: e_1_2_6_53_1 contributor: fullname: Rapoport N. Y. – ident: e_1_2_6_27_1 doi: 10.1126/science.1212822 – ident: e_1_2_6_31_1 doi: 10.1021/jp048023d – ident: e_1_2_6_2_1 doi: 10.1021/cr9002566 – ident: e_1_2_6_11_1 doi: 10.1038/nrd988 – ident: e_1_2_6_22_1 doi: 10.1039/b100521i – ident: e_1_2_6_5_1 doi: 10.1039/C1CS15237H – ident: e_1_2_6_32_1 doi: 10.1021/nl034312m – ident: e_1_2_6_9_1 doi: 10.1021/ar200022e – ident: e_1_2_6_48_1 – ident: e_1_2_6_28_1 doi: 10.1021/nn405663h – ident: e_1_2_6_40_1 doi: 10.1021/nn900099t – ident: e_1_2_6_25_1 doi: 10.1088/0957-4484/19/27/275306 – ident: e_1_2_6_33_1 doi: 10.1039/C2NR33187J – ident: e_1_2_6_49_1 doi: 10.1148/radiol.11111646 – ident: e_1_2_6_4_1 doi: 10.1002/adfm.201001329 – ident: e_1_2_6_54_1 doi: 10.1002/mrm.22779 – ident: e_1_2_6_58_1 doi: 10.1039/B607116C – ident: e_1_2_6_21_1 doi: 10.1021/la203423n – ident: e_1_2_6_6_1 doi: 10.1021/nl802746w – ident: e_1_2_6_42_1 doi: 10.1021/nn800466c – ident: e_1_2_6_19_1 doi: 10.1021/nl025531v – ident: e_1_2_6_36_1 doi: 10.1021/jp990387w – ident: e_1_2_6_23_1 doi: 10.1021/nl402305n – ident: e_1_2_6_34_1 doi: 10.1038/nprot.2007.326 – ident: e_1_2_6_12_1 doi: 10.1021/nl0802741 – ident: e_1_2_6_26_1 doi: 10.1002/adma.200702786 – ident: e_1_2_6_3_1 doi: 10.1002/adfm.201301555 – ident: e_1_2_6_43_1 doi: 10.1021/cm048297d – ident: e_1_2_6_51_1 doi: 10.1021/nn500299p – ident: e_1_2_6_17_1 doi: 10.1016/j.biomaterials.2009.11.079 – ident: e_1_2_6_18_1 doi: 10.1021/nn403202w – ident: e_1_2_6_38_1 doi: 10.1021/nl034765r – ident: e_1_2_6_52_1 doi: 10.7150/thno.3463 – ident: e_1_2_6_24_1 doi: 10.1016/j.jcis.2009.10.075 |
SSID | ssj0017734 |
Score | 2.4857352 |
Snippet | Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity,... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 2117 |
SubjectTerms | Biocompatibility Biomedical materials Gold gold nanotubes Imaging In vivo testing In vivo tests Nanotubes photoacoustic imaging photothermal cell ablation Photothermal conversion surface plasmon resonance Surgical implants |
Title | Engineering Gold Nanotubes with Controlled Length and Near-Infrared Absorption for Theranostic Applications |
URI | https://api.istex.fr/ark:/67375/WNG-NDKXPVJQ-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201404358 https://search.proquest.com/docview/1685805223 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucABykssFGQkBKe0sRPHznHV7bYUugLUQm6WX-mhJUH7kBAnfgK_kV_SGacbslyQ4BZH4zw8nvEXz8wXQl4GQN2IhOHbhNVJnjmWKGdcksraO-mCUJF28WRWHJ3lx5WoBlX8HT9Ev-GGlhH9NRq4sYu936ShxtdYSR7pYQRW-7JMYk7f5GPPH8Wk7MLKBcMEL1atWRtTvrfZfWNVuokD_G0Dcg6Ba1x5pneJWT9zl3Bysbta2l33_Q86x_95qW1y5xqW0nE3j-6RG6G5T24PyAofkC-DFj1sLz0Fz9wuVzYsKO7m0v0u6_0yePouNOdwxjQgBKb068fPN009x1x3OraLdh79FAW8TE-x_qtpkS2ajgfB9IfkbHpwun-UXP-sIXEA-kDX3NROlVaCgygwdii9KgV3RahTxy0T0nDhmFRMZpkPZRZAIOep8XntObiBR2SraZvwmNBCplaVznnl81xwW9ZFAKet8DpWZmJEXq-Vpb92nBy6Y1_mGgdQ9wM4Iq-iLnsxM7_ATDYp9OfZoZ5N3lbvPx1_0NWIvFgrW4N9YdDENKFdLTRDgv4UUGo2Ijyq7i_31OPJ9KRvPfmXTk_JLTgWMUFI7ZCt5XwVngH2WdrncX5fAaAF_F8 |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CdgEseCOGp5EQrNLGThw7y1GH6bSdGQGawuys-BEWbZNqHhJixSfwjXwJvk4TZtggwdKWnYev7_WJ7_EJwGvnUTciYf9tQssoTQyNpClMFIvSGmEcl0F2cTLNRqfp8Zy3bEI8C9PoQ3QbbugZIV6jg-OG9P5v1dDClniUPOjDcHkddr3PU2R1DT52ClJUiCaxnFGkeNF5q9sYs_3t_lvr0i4O8dct0LkJXcPaM7wDun3qhnJytrde6T3z7Q9Bx_96rbtw-wqZkn4zle7BNVfdh1sbeoUP4GKjRA7rc0t8cK5Xa-2WBDd0yUFDfD93loxd9cXXFJVv5L3p5_cfR1W5QLo76etlvQihinjITGZ4BKyqUTCa9Dfy6Q_hdPhudjCKrv7XEBmP-7y5WVEamWvhY0SG6UNhZc6ZyVwZG6YpFwXjhgpJRZJYlyfON0hZXNi0tMxHgkewU9WVewwkE7GWuTFW2jTlTOdl5nzclngdLRLeg7ettdRlI8uhGgFmpnAAVTeAPXgTjNk1KxZnSGYTXH2eHqrp4GT-_tPxBzXvwavW2sq7GOZNisrV66WiqNEfe6Ca9IAF2_3lnqo_GE660pN_6fQSboxmk7EaH01PnsJNX88DX0g-g53VYu2eeyi00i_CZP8Fds8Ajw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE48EYsUDASglPa2Ilj57jqdvteFdRCbpafHFqSah8S4sRP4Df2l9R2uiHLBQmOtuw8ZjzjL56ZLwDvrEfdAQn7bxPskjzTOOFa6iRlzmimLeWRdvF4Uuyd5QcVrXpV_C0_RHfgFiwj-utg4JfGbf0mDZXGhUrySA9D-W1YzwtSBvb80aeOQAoz1saVCxwyvHC1pG1Mydbq_JVtaT1I-PsK5uwj17j1jB-AXD50m3FyvrmYq0394w8-x_95q4dw_waXomG7kB7BLVs_hns9tsIn8K3XQrvNhUHeNTfzhbIzFI5z0Xab9n5hDTqy9VffI2s_yNvS1c9f-7WbhmR3NFSzZhodFfKAGZ2GArC6CXTRaNiLpj-Fs_HO6fZecvO3hkR71OeVTaTTvFTMe4giBA-Z4SUlurAu1URhyiShGjOOWZYZW2bWD8hJKk3uDPF-4Bms1U1tnwMqWKp4qbXhJs8pUaUrrPfaPFxHsYwO4MNSWeKyJeUQLf0yEUGAohPgAN5HXXbD5PQ8pLIxKr5MdsVkdFidfD74KKoBvF0qW3gDC1ETWdtmMRM4MPSnHqZmAyBRdX-5pxiOxsdd68W_THoDd05GY3G0Pzl8CXd9N43JQvwVrM2nC7vhcdBcvY5L_Rp0Pv8v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Gold+Nanotubes+with+Controlled+Length+and+Near%E2%80%90Infrared+Absorption+for+Theranostic+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Ye%2C+Sunjie&rft.au=Marston%2C+Gemma&rft.au=McLaughlan%2C+James+R.&rft.au=Sigle%2C+Daniel+O.&rft.date=2015-04-08&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=14&rft.spage=2117&rft.epage=2127&rft_id=info:doi/10.1002%2Fadfm.201404358&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201404358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |