Engineering Gold Nanotubes with Controlled Length and Near-Infrared Absorption for Theranostic Applications

Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been expl...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 25; no. 14; pp. 2117 - 2127
Main Authors Ye, Sunjie, Marston, Gemma, McLaughlan, James R., Sigle, Daniel O., Ingram, Nicola, Freear, Steven, Baumberg, Jeremy J., Bushby, Richard J., Markham, Alexander F., Critchley, Kevin, Coletta, Patricia Louise, Evans, Stephen D.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 08.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length‐controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well‐defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4‐styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS‐coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS‐coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes. Gold nanotubes with controlled length and tunable absorption in the near‐infrared region are developed. The present work represents the first in vitro and in vivo study of gold nanotubes and demonstrates their effectiveness as novel agents for photoacoustic imaging and photothermal therapy with potential for drug delivery.
AbstractList Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near-infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length-controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well-defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4-styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS-coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS-coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes. Gold nanotubes with controlled length and tunable absorption in the near-infrared region are developed. The present work represents the first in vitro and in vivo study of gold nanotubes and demonstrates their effectiveness as novel agents for photoacoustic imaging and photothermal therapy with potential for drug delivery.
Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length‐controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well‐defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4‐styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS‐coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS‐coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes.
Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length‐controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well‐defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4‐styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS‐coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS‐coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes. Gold nanotubes with controlled length and tunable absorption in the near‐infrared region are developed. The present work represents the first in vitro and in vivo study of gold nanotubes and demonstrates their effectiveness as novel agents for photoacoustic imaging and photothermal therapy with potential for drug delivery.
Author Critchley, Kevin
Baumberg, Jeremy J.
Ingram, Nicola
Evans, Stephen D.
Ye, Sunjie
McLaughlan, James R.
Markham, Alexander F.
Freear, Steven
Sigle, Daniel O.
Coletta, Patricia Louise
Bushby, Richard J.
Marston, Gemma
Author_xml – sequence: 1
  givenname: Sunjie
  surname: Ye
  fullname: Ye, Sunjie
  organization: School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK
– sequence: 2
  givenname: Gemma
  surname: Marston
  fullname: Marston, Gemma
  organization: Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, LS9 7TF, Leeds, UK
– sequence: 3
  givenname: James R.
  surname: McLaughlan
  fullname: McLaughlan, James R.
  organization: School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, Leeds, UK
– sequence: 4
  givenname: Daniel O.
  surname: Sigle
  fullname: Sigle, Daniel O.
  organization: NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, CB3 0HE, Cambridge, UK
– sequence: 5
  givenname: Nicola
  surname: Ingram
  fullname: Ingram, Nicola
  organization: Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, LS9 7TF, Leeds, UK
– sequence: 6
  givenname: Steven
  surname: Freear
  fullname: Freear, Steven
  organization: School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, Leeds, UK
– sequence: 7
  givenname: Jeremy J.
  surname: Baumberg
  fullname: Baumberg, Jeremy J.
  organization: NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, CB3 0HE, Cambridge, UK
– sequence: 8
  givenname: Richard J.
  surname: Bushby
  fullname: Bushby, Richard J.
  organization: School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK
– sequence: 9
  givenname: Alexander F.
  surname: Markham
  fullname: Markham, Alexander F.
  organization: Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, LS9 7TF, Leeds, UK
– sequence: 10
  givenname: Kevin
  surname: Critchley
  fullname: Critchley, Kevin
  organization: School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK
– sequence: 11
  givenname: Patricia Louise
  surname: Coletta
  fullname: Coletta, Patricia Louise
  organization: Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, LS9 7TF, Leeds, UK
– sequence: 12
  givenname: Stephen D.
  surname: Evans
  fullname: Evans, Stephen D.
  email: S.D.Evans@leeds.ac.uk
  organization: School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK
BookMark eNqFkD1PwzAQhi0EEqWwMmdkSfFHHCdjVdryUQpIBbpZrnMphtQOdirovydVUcXGdKd7n-eG9wQdWmcBoXOCewRjeqmKctWjmCQ4YTw7QB2SkjRmmGaH-53Mj9FJCO8YEyFY0kEfQ7s0FsAbu4zGriqiqbKuWS8gRF-meYsGzjbeVRUU0QTssr0o20KgfHxjS698G_QXwfm6Mc5GpfPR7A18-yQ0Rkf9uq6MVtssnKKjUlUBzn5nFz2PhrPBdTx5GN8M-pNY8wRncUJVqbN8ISjlac6TXBRZzqlOocSaLggXinJNREYEYwXkDFogoVgVSVnQPGVddLH7W3v3uYbQyJUJGqpKWXDrIEma8QxzSlmL9nao9i4ED6WsvVkpv5EEy22rctuq3LfaCvlO-DIVbP6hZf9qdP_XjXeuCQ18713lP2QqmODydTqW06u7-ePL7ZOcsx_PM42o
CitedBy_id crossref_primary_10_1002_wnan_1542
crossref_primary_10_2217_nnm_2018_0409
crossref_primary_10_1016_j_colsurfa_2016_08_036
crossref_primary_10_1080_09506608_2018_1554991
crossref_primary_10_1002_adfm_201603758
crossref_primary_10_1002_ange_201601276
crossref_primary_10_1002_adhm_201500720
crossref_primary_10_3390_pharmaceutics11050216
crossref_primary_10_1002_smll_201600635
crossref_primary_10_1016_j_jcis_2023_02_078
crossref_primary_10_1039_C8NJ04024A
crossref_primary_10_1021_acs_chemrev_3c00159
crossref_primary_10_1134_S0036023623601897
crossref_primary_10_1016_j_physe_2019_113686
crossref_primary_10_1007_s11082_023_05088_x
crossref_primary_10_1016_j_energy_2017_09_059
crossref_primary_10_1088_1361_6528_aaa99d
crossref_primary_10_1002_advs_201903441
crossref_primary_10_1016_j_jconrel_2017_04_003
crossref_primary_10_1039_C5RA23652E
crossref_primary_10_1021_acs_analchem_7b04765
crossref_primary_10_1007_s00604_020_04460_y
crossref_primary_10_1021_acs_jpcc_6b06393
crossref_primary_10_1088_1361_6528_ac18a1
crossref_primary_10_1007_s11468_024_02387_1
crossref_primary_10_1080_17425247_2024_2375400
crossref_primary_10_3390_ijms19113318
crossref_primary_10_1002_celc_201901939
crossref_primary_10_1002_smll_202006797
crossref_primary_10_1039_D2CC06654H
crossref_primary_10_1016_j_snb_2022_132766
crossref_primary_10_1088_1361_6560_aa97e9
crossref_primary_10_1002_smll_201702037
crossref_primary_10_1158_1078_0432_CCR_15_0314
crossref_primary_10_1088_1361_6463_ac7f66
crossref_primary_10_1007_s12274_016_1011_3
crossref_primary_10_1002_adom_201800436
crossref_primary_10_1002_anie_201601276
crossref_primary_10_1021_acsaelm_3c01549
crossref_primary_10_3390_s17061400
crossref_primary_10_1002_adma_201806024
crossref_primary_10_1088_1742_6596_1151_1_012018
crossref_primary_10_1016_j_jconrel_2016_01_020
crossref_primary_10_1039_C8NA00075A
crossref_primary_10_1088_0957_4484_27_17_175102
crossref_primary_10_1002_adfm_202003147
crossref_primary_10_1021_acs_langmuir_7b03868
crossref_primary_10_14529_mmph220408
crossref_primary_10_1016_j_saa_2022_121037
crossref_primary_10_1134_S0036023622020036
crossref_primary_10_1021_acs_jpcc_9b07610
crossref_primary_10_1134_S0036023620070074
crossref_primary_10_1016_j_cplett_2020_137542
crossref_primary_10_1021_acs_jpcc_1c01424
crossref_primary_10_1002_chem_201904675
crossref_primary_10_1039_D0NH00244E
crossref_primary_10_1002_smll_201906780
crossref_primary_10_1515_nanoph_2016_0124
crossref_primary_10_1002_adhm_201700073
crossref_primary_10_1021_acs_analchem_5b03036
crossref_primary_10_1021_acs_chemrev_8b00341
crossref_primary_10_1002_adfm_201807960
crossref_primary_10_1021_acsnano_8b00770
crossref_primary_10_1021_acsami_6b12591
crossref_primary_10_1016_j_jece_2015_12_033
crossref_primary_10_1039_C6NR04045D
crossref_primary_10_1016_j_cplett_2021_139032
crossref_primary_10_1021_acsomega_0c00167
crossref_primary_10_1021_acsbiomaterials_9b00946
Cites_doi 10.1002/adma.200802789
10.1021/jp810192f
10.1039/c0nr00258e
10.1002/adma.201400831
10.1002/smll.201200333
10.1021/nn2027837
10.1016/j.biomaterials.2010.03.048
10.1073/pnas.1308345110
10.1021/ar200061q
10.1007/s11060-010-0511-3
10.1038/nnano.2009.231
10.1039/c0cs00180e
10.1021/la903893n
10.1021/ja039734c
10.1021/nn404833b
10.1021/nl202538q
10.1039/c0nr00239a
10.1038/nmat3780
10.1021/nn901146y
10.1021/ar200023x
10.1002/anie.201107304
10.1039/b200953f
10.1021/ja411457r
10.1126/science.1212822
10.1021/jp048023d
10.1021/cr9002566
10.1038/nrd988
10.1039/b100521i
10.1039/C1CS15237H
10.1021/nl034312m
10.1021/ar200022e
10.1021/nn405663h
10.1021/nn900099t
10.1088/0957-4484/19/27/275306
10.1039/C2NR33187J
10.1148/radiol.11111646
10.1002/adfm.201001329
10.1002/mrm.22779
10.1039/B607116C
10.1021/la203423n
10.1021/nl802746w
10.1021/nn800466c
10.1021/nl025531v
10.1021/jp990387w
10.1021/nl402305n
10.1038/nprot.2007.326
10.1021/nl0802741
10.1002/adma.200702786
10.1002/adfm.201301555
10.1021/cm048297d
10.1021/nn500299p
10.1016/j.biomaterials.2009.11.079
10.1021/nn403202w
10.1021/nl034765r
10.7150/thno.3463
10.1016/j.jcis.2009.10.075
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201404358
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 2127
ExternalDocumentID 10_1002_adfm_201404358
ADFM201404358
ark_67375_WNG_NDKXPVJQ_X
Genre article
GrantInformation_xml – fundername: EPSRC
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c5408-42afc89b7225695497d8952c6ef0c2b157a25c1781733de93e7d8420ad4fd2963
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Dec 04 00:46:41 EST 2024
Fri Dec 06 00:56:42 EST 2024
Sat Aug 24 00:54:51 EDT 2024
Wed Oct 30 09:49:23 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5408-42afc89b7225695497d8952c6ef0c2b157a25c1781733de93e7d8420ad4fd2963
Notes EPSRC
ark:/67375/WNG-NDKXPVJQ-X
ArticleID:ADFM201404358
istex:B3118F9EACCFB98F6F8505327A42FDF41D3B0AA3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://eprints.whiterose.ac.uk/87036/1/Revised%20Manuscript%20of%20adfm.%20201404358.pdf
PQID 1685805223
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1685805223
crossref_primary_10_1002_adfm_201404358
wiley_primary_10_1002_adfm_201404358_ADFM201404358
istex_primary_ark_67375_WNG_NDKXPVJQ_X
PublicationCentury 2000
PublicationDate April 8, 2015
PublicationDateYYYYMMDD 2015-04-08
PublicationDate_xml – month: 04
  year: 2015
  text: April 8, 2015
  day: 08
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References K. H. Song, C. Kim, C. M. Cobley, Y. Xia, L. V. Wang, Nano Lett. 2009, 9, 183.
Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914.
A. Gole, C. J. Murphy, Chem. Mater. 2005, 17, 1325.
L. Vigderman, P. Manna, E. R. Zubarev, Angew. Chem. Int. Ed. 2012, 51, 636.
N. R. Sieb, N.-C. Wu, E. Majidi, R. Kukreja, N. R. Branda, B. D. Gates, ACS Nano 2009, 3, 1365.
H. Gong, L. Cheng, J. Xiang, H. Xu, L. Feng, X. Shi, Z. Liu, Adv. Funct. Mater. 2013, 23, 6059.
J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, Y. Xia, Adv. Funct. Mater. 2010, 20, 3684.
C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, J. Mater. Chem. 2002, 12, 1765.
S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, W.-Y. Ong, Biomaterials 2010, 31, 2034.
E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, M. A. El-Sayed, Chem. Soc. Rev. 2011, 40, 3391.
M. K. Yu, J. Park, S. Jon, Theranostics 2012, 2, 3.
R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, P. N. Prasad, ACS Nano 2010, 4, 699.
Y. G. Sun, Y. Wang, Nano Lett. 2011, 11, 4386.
A. P. Leonov, J. Zheng, J. D. Clogston, S. T. Stern, A. K. Patri, A. Wei, ACS Nano 2008, 2, 2481.
Y. Sun, Nanoscale 2010, 2, 1626.
M. A. Mahmoud, M. A. El-Sayed, J. Gao, U. Landman, Nano Lett. 2013, 13, 4739.
R. Weissleder, M. Nahrendorf, M. J. Pittet, Nat. Mater. 2014, 13, 125.
L. Guo, I. Panderi, D. D. Yan, K. Szulak, Y. Li, Y.-T. Chen, H. Ma, D. B. Niesen, N. Seeram, A. Ahmed, B. Yan, D. Pantazatos, W. Lu, ACS Nano 2013, 7, 8780.
S. H. Han, J.-S. Lee, Langmuir 2012, 28, 828.
J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, V. P. Zharov, Nat. Nanotechnol. 2009, 4, 688.
J. Zhu, J. Phys. Chem. C 2009, 113, 3164.
S. E. Skrabalak, L. Au, X. Li, Y. Xia, Nat. Protoc. 2007, 2, 2182.
H. Y. Chen, Y. Gao, H. R. Zhang, L. B. Liu, H. C. Yu, H. F. Tian, S. S. Xie, J. Q. Li, J. Phys. Chem. B 2004, 108, 12038.
Y. G. Sun, B. Mayers, T. Herricks, Y. N. Xia, Nano Lett. 2003, 3, 955.
Y. G. Sun, Y. N. Xia, J. Am. Chem. Soc. 2004, 126, 3892.
C. R. Martin, P. Kohli, Nat. Rev. Drug Discovery 2003, 2, 29.
E. C. Dreaden, S. C. Mwakwari, L. A. Austin, M. J. Kieffer, A. K. Oyelere, M. A. El-Sayed, Small 2012, 8, 2819.
X. Huang, S. Neretina, M. A. El-Sayed, Adv. Mater. 2009, 21, 4880.
R. Becker, B. Liedberg, P.-O. Kall, J. Colloid Interface Sci. 2010, 343, 25.
Y. G. Sun, B. T. Mayers, Y. N. Xia, Nano Lett. 2002, 2, 481.
N. Y. Rapoport, Z. Gao, P. Kamaev, D. A. Christensen, Therapeutic Ultrasound, Vol. 829, (Eds: G. T. Clement, N. J. McDannold, K. Hynynen), American Institute of Physics, New York, USA 2006, p 481.
D. Fava, Z. Nie, M. A. Winnik, E. Kumacheva, Adv. Mater. 2008, 20, 4318.
J. S. Souris, C.-H. Lee, S.-H. Cheng, C.-T. Chen, C.-S. Yang, J.-A. A. Ho, C.-Y. Mou, L.-W. Lo, Biomaterials 2010, 31, 5564.
S. Link, Z. L. Wang, M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 3529.
Y. Bi, G. Lu, Nanotechnology 2008, 19, 275306.
A. Nan, X. Bai, S. J. Son, S. B. Lee, H. Ghandehari, Nano Lett. 2008, 8, 2150.
J. S. Burre, S. Walker-Samuel, L. C. J. Baker, J. K. R. Boult, A. J. Ryan, J. C. Waterton, J. Haiday, S. P. Robinson, Magn. Reson. Med. 2011, 66, 227.
E. Herzog, A. Taruttis, N. Beziere, A. A. Lutich, D. Razansky, V. Ntziachristos, Radiology 2012, 263, 461.
E. Gonzalez, J. Arbiol, V. F. Puntes, Science 2011, 334, 1377.
V. Ntziachristos, D. Razansky, Chem. Rev. 2010, 110, 2783.
R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, B. Liu, Langmuir 2010, 26, 5428.
R. Bardhan, S. Lal, A. Joshi, N. J. Halas, Acc. Chem. Res. 2011, 44, 936.
M. P. Melancon, M. Zhou, C. Li, Acc. Chem. Res. 2011, 44, 947.
W. Wu, W. Driessen, X. Jiang, J. Am. Chem. Soc. 2014, 136, 3145.
X. Huang, X. Peng, Y. Wang, Y. Wang, D. M. Shin, M. A. El-Sayed, S. Nie, ACS Nano 2011, 5, 6765.
Y. G. Sun, Y. N. Xia, Nano Lett. 2003, 3, 1569.
P. Kolhar, A. C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian, E. Ruoslahti, S. Mitragotri, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 10753.
E. A. Sykes, J. Chen, G. Zheng, W. C. W. Chan, ACS Nano 2014, 8, 5696.
A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, N. J. Halas, ACS Nano 2014, 8, 3222.
H.-N. Xie, I. A. Larmour, Y.-C. Chen, A. W. Wark, V. Tileli, D. W. McComb, K. Faulds, D. Graham, Nanoscale 2013, 5, 765.
E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, M. A. El-Sayed, Chem. Soc. Rev. 2012, 41, 2740.
E. Carbo-Argibay, B. Rodriguez-Gonzalez, I. Pastoriza-Santos, J. Perez-Juste, L. M. Liz-Marzan, Nanoscale 2010, 2, 2377.
N. R. Jana, L. Gearheart, C. J. Murphy, Chem. Commun. 2001, 617.
S. E. Hunyadi, C. J. Murphy, J. Mater. Chem. 2006, 16, 3929.
S. K. Maji, S. Sreejith, J. Joseph, M. Lin, T. He, Y. Tong, H. Sun, S. W.-K. Yu, Y. Zhao, Adv. Mater. 2014, 26, 5633.
H. Jang, Y.-K. Kim, H. Huh, D.-H. Min, ACS Nano 2014, 8, 467.
S.-K. Baek, A. R. Makkouk, T. Krasieva, C.-H. Sun, S. J. Madsen, H. Hirschberg, J. Neurooncol. 2011, 104, 439.
2004; 126
2013; 23
2002; 12
2010; 343
2014; 26
2011; 11
2008; 8
2009; 113
2013; 7
2008; 2
2013; 5
2014; 136
2012; 51
2010; 20
2010; 26
2001
2013; 13
2010; 110
2003; 2
2003; 3
2011; 66
2014; 13
2012; 28
2013; 110
2007; 2
2008; 20
2014; 8
2010; 2
2010; 4
2011; 334
2010; 31
2012; 263
2009; 21
2006; 16
2008; 19
2011; 40
2002; 2
1999; 103
2004; 108
2011; 5
2011; 104
2006; 829
2012; 2
2009; 9
2011; 44
2009; 4
2009; 3
2005; 17
2012; 41
2012; 8
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
Rapoport N. Y. (e_1_2_6_53_1) 2006
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 103
  start-page: 3529
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 108
  start-page: 12038
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 104
  start-page: 439
  year: 2011
  publication-title: J. Neurooncol.
– volume: 3
  start-page: 955
  year: 2003
  publication-title: Nano Lett.
– volume: 8
  start-page: 5696
  year: 2014
  publication-title: ACS Nano
– volume: 51
  start-page: 636
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 263
  start-page: 461
  year: 2012
  publication-title: Radiology
– volume: 8
  start-page: 3222
  year: 2014
  publication-title: ACS Nano
– volume: 829
  start-page: 481
  year: 2006
– start-page: 617
  year: 2001
  publication-title: Chem. Commun.
– volume: 26
  start-page: 5633
  year: 2014
  publication-title: Adv. Mater.
– volume: 2
  start-page: 481
  year: 2002
  publication-title: Nano Lett.
– volume: 20
  start-page: 4318
  year: 2008
  publication-title: Adv. Mater.
– volume: 4
  start-page: 688
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 6765
  year: 2011
  publication-title: ACS Nano
– volume: 3
  start-page: 1569
  year: 2003
  publication-title: Nano Lett.
– volume: 110
  start-page: 10753
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 66
  start-page: 227
  year: 2011
  publication-title: Magn. Reson. Med.
– volume: 113
  start-page: 3164
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 1626
  year: 2010
  publication-title: Nanoscale
– volume: 2
  start-page: 3
  year: 2012
  publication-title: Theranostics
– volume: 11
  start-page: 4386
  year: 2011
  publication-title: Nano Lett.
– volume: 2
  start-page: 2481
  year: 2008
  publication-title: ACS Nano
– volume: 7
  start-page: 8780
  year: 2013
  publication-title: ACS Nano
– volume: 40
  start-page: 3391
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 1365
  year: 2009
  publication-title: ACS Nano
– volume: 17
  start-page: 1325
  year: 2005
  publication-title: Chem. Mater.
– volume: 31
  start-page: 5564
  year: 2010
  publication-title: Biomaterials
– volume: 20
  start-page: 3684
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 29
  year: 2003
  publication-title: Nat. Rev. Drug Discovery
– volume: 5
  start-page: 765
  year: 2013
  publication-title: Nanoscale
– volume: 13
  start-page: 4739
  year: 2013
  publication-title: Nano Lett.
– volume: 28
  start-page: 828
  year: 2012
  publication-title: Langmuir
– volume: 19
  start-page: 275306
  year: 2008
  publication-title: Nanotechnology
– volume: 41
  start-page: 2740
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 914
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 13
  start-page: 125
  year: 2014
  publication-title: Nat. Mater.
– volume: 9
  start-page: 183
  year: 2009
  publication-title: Nano Lett.
– volume: 21
  start-page: 4880
  year: 2009
  publication-title: Adv. Mater.
– volume: 136
  start-page: 3145
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2819
  year: 2012
  publication-title: Small
– volume: 44
  start-page: 947
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 2150
  year: 2008
  publication-title: Nano Lett.
– volume: 334
  start-page: 1377
  year: 2011
  publication-title: Science
– volume: 12
  start-page: 1765
  year: 2002
  publication-title: J. Mater. Chem.
– volume: 23
  start-page: 6059
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 2377
  year: 2010
  publication-title: Nanoscale
– volume: 343
  start-page: 25
  year: 2010
  publication-title: J. Colloid Interface Sci.
– volume: 126
  start-page: 3892
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 699
  year: 2010
  publication-title: ACS Nano
– volume: 8
  start-page: 467
  year: 2014
  publication-title: ACS Nano
– volume: 44
  start-page: 936
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 110
  start-page: 2783
  year: 2010
  publication-title: Chem. Rev.
– volume: 2
  start-page: 2182
  year: 2007
  publication-title: Nat. Protoc.
– volume: 31
  start-page: 2034
  year: 2010
  publication-title: Biomaterials
– volume: 16
  start-page: 3929
  year: 2006
  publication-title: J. Mater. Chem.
– volume: 26
  start-page: 5428
  year: 2010
  publication-title: Langmuir
– ident: e_1_2_6_7_1
  doi: 10.1002/adma.200802789
– ident: e_1_2_6_37_1
  doi: 10.1021/jp810192f
– ident: e_1_2_6_57_1
  doi: 10.1039/c0nr00258e
– ident: e_1_2_6_1_1
  doi: 10.1002/adma.201400831
– ident: e_1_2_6_46_1
  doi: 10.1002/smll.201200333
– ident: e_1_2_6_14_1
  doi: 10.1021/nn2027837
– ident: e_1_2_6_55_1
  doi: 10.1016/j.biomaterials.2010.03.048
– ident: e_1_2_6_15_1
  doi: 10.1073/pnas.1308345110
– ident: e_1_2_6_10_1
  doi: 10.1021/ar200061q
– ident: e_1_2_6_47_1
  doi: 10.1007/s11060-010-0511-3
– ident: e_1_2_6_13_1
  doi: 10.1038/nnano.2009.231
– ident: e_1_2_6_16_1
  doi: 10.1039/c0cs00180e
– ident: e_1_2_6_45_1
  doi: 10.1021/la903893n
– ident: e_1_2_6_35_1
  doi: 10.1021/ja039734c
– ident: e_1_2_6_20_1
  doi: 10.1021/nn404833b
– ident: e_1_2_6_39_1
  doi: 10.1021/nl202538q
– ident: e_1_2_6_30_1
  doi: 10.1039/c0nr00239a
– ident: e_1_2_6_44_1
  doi: 10.1038/nmat3780
– ident: e_1_2_6_56_1
  doi: 10.1021/nn901146y
– ident: e_1_2_6_8_1
  doi: 10.1021/ar200023x
– ident: e_1_2_6_41_1
  doi: 10.1002/anie.201107304
– ident: e_1_2_6_29_1
  doi: 10.1039/b200953f
– ident: e_1_2_6_50_1
  doi: 10.1021/ja411457r
– start-page: 481
  volume-title: Therapeutic Ultrasound
  year: 2006
  ident: e_1_2_6_53_1
  contributor:
    fullname: Rapoport N. Y.
– ident: e_1_2_6_27_1
  doi: 10.1126/science.1212822
– ident: e_1_2_6_31_1
  doi: 10.1021/jp048023d
– ident: e_1_2_6_2_1
  doi: 10.1021/cr9002566
– ident: e_1_2_6_11_1
  doi: 10.1038/nrd988
– ident: e_1_2_6_22_1
  doi: 10.1039/b100521i
– ident: e_1_2_6_5_1
  doi: 10.1039/C1CS15237H
– ident: e_1_2_6_32_1
  doi: 10.1021/nl034312m
– ident: e_1_2_6_9_1
  doi: 10.1021/ar200022e
– ident: e_1_2_6_48_1
– ident: e_1_2_6_28_1
  doi: 10.1021/nn405663h
– ident: e_1_2_6_40_1
  doi: 10.1021/nn900099t
– ident: e_1_2_6_25_1
  doi: 10.1088/0957-4484/19/27/275306
– ident: e_1_2_6_33_1
  doi: 10.1039/C2NR33187J
– ident: e_1_2_6_49_1
  doi: 10.1148/radiol.11111646
– ident: e_1_2_6_4_1
  doi: 10.1002/adfm.201001329
– ident: e_1_2_6_54_1
  doi: 10.1002/mrm.22779
– ident: e_1_2_6_58_1
  doi: 10.1039/B607116C
– ident: e_1_2_6_21_1
  doi: 10.1021/la203423n
– ident: e_1_2_6_6_1
  doi: 10.1021/nl802746w
– ident: e_1_2_6_42_1
  doi: 10.1021/nn800466c
– ident: e_1_2_6_19_1
  doi: 10.1021/nl025531v
– ident: e_1_2_6_36_1
  doi: 10.1021/jp990387w
– ident: e_1_2_6_23_1
  doi: 10.1021/nl402305n
– ident: e_1_2_6_34_1
  doi: 10.1038/nprot.2007.326
– ident: e_1_2_6_12_1
  doi: 10.1021/nl0802741
– ident: e_1_2_6_26_1
  doi: 10.1002/adma.200702786
– ident: e_1_2_6_3_1
  doi: 10.1002/adfm.201301555
– ident: e_1_2_6_43_1
  doi: 10.1021/cm048297d
– ident: e_1_2_6_51_1
  doi: 10.1021/nn500299p
– ident: e_1_2_6_17_1
  doi: 10.1016/j.biomaterials.2009.11.079
– ident: e_1_2_6_18_1
  doi: 10.1021/nn403202w
– ident: e_1_2_6_38_1
  doi: 10.1021/nl034765r
– ident: e_1_2_6_52_1
  doi: 10.7150/thno.3463
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jcis.2009.10.075
SSID ssj0017734
Score 2.4857352
Snippet Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity,...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 2117
SubjectTerms Biocompatibility
Biomedical materials
Gold
gold nanotubes
Imaging
In vivo testing
In vivo tests
Nanotubes
photoacoustic imaging
photothermal cell ablation
Photothermal conversion
surface plasmon resonance
Surgical implants
Title Engineering Gold Nanotubes with Controlled Length and Near-Infrared Absorption for Theranostic Applications
URI https://api.istex.fr/ark:/67375/WNG-NDKXPVJQ-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201404358
https://search.proquest.com/docview/1685805223
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucABykssFGQkBKe0sRPHznHV7bYUugLUQm6WX-mhJUH7kBAnfgK_kV_SGacbslyQ4BZH4zw8nvEXz8wXQl4GQN2IhOHbhNVJnjmWKGdcksraO-mCUJF28WRWHJ3lx5WoBlX8HT9Ev-GGlhH9NRq4sYu936ShxtdYSR7pYQRW-7JMYk7f5GPPH8Wk7MLKBcMEL1atWRtTvrfZfWNVuokD_G0Dcg6Ba1x5pneJWT9zl3Bysbta2l33_Q86x_95qW1y5xqW0nE3j-6RG6G5T24PyAofkC-DFj1sLz0Fz9wuVzYsKO7m0v0u6_0yePouNOdwxjQgBKb068fPN009x1x3OraLdh79FAW8TE-x_qtpkS2ajgfB9IfkbHpwun-UXP-sIXEA-kDX3NROlVaCgygwdii9KgV3RahTxy0T0nDhmFRMZpkPZRZAIOep8XntObiBR2SraZvwmNBCplaVznnl81xwW9ZFAKet8DpWZmJEXq-Vpb92nBy6Y1_mGgdQ9wM4Iq-iLnsxM7_ATDYp9OfZoZ5N3lbvPx1_0NWIvFgrW4N9YdDENKFdLTRDgv4UUGo2Ijyq7i_31OPJ9KRvPfmXTk_JLTgWMUFI7ZCt5XwVngH2WdrncX5fAaAF_F8
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CdgEseCOGp5EQrNLGThw7y1GH6bSdGQGawuys-BEWbZNqHhJixSfwjXwJvk4TZtggwdKWnYev7_WJ7_EJwGvnUTciYf9tQssoTQyNpClMFIvSGmEcl0F2cTLNRqfp8Zy3bEI8C9PoQ3QbbugZIV6jg-OG9P5v1dDClniUPOjDcHkddr3PU2R1DT52ClJUiCaxnFGkeNF5q9sYs_3t_lvr0i4O8dct0LkJXcPaM7wDun3qhnJytrde6T3z7Q9Bx_96rbtw-wqZkn4zle7BNVfdh1sbeoUP4GKjRA7rc0t8cK5Xa-2WBDd0yUFDfD93loxd9cXXFJVv5L3p5_cfR1W5QLo76etlvQihinjITGZ4BKyqUTCa9Dfy6Q_hdPhudjCKrv7XEBmP-7y5WVEamWvhY0SG6UNhZc6ZyVwZG6YpFwXjhgpJRZJYlyfON0hZXNi0tMxHgkewU9WVewwkE7GWuTFW2jTlTOdl5nzclngdLRLeg7ettdRlI8uhGgFmpnAAVTeAPXgTjNk1KxZnSGYTXH2eHqrp4GT-_tPxBzXvwavW2sq7GOZNisrV66WiqNEfe6Ca9IAF2_3lnqo_GE660pN_6fQSboxmk7EaH01PnsJNX88DX0g-g53VYu2eeyi00i_CZP8Fds8Ajw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE48EYsUDASglPa2Ilj57jqdvteFdRCbpafHFqSah8S4sRP4Df2l9R2uiHLBQmOtuw8ZjzjL56ZLwDvrEfdAQn7bxPskjzTOOFa6iRlzmimLeWRdvF4Uuyd5QcVrXpV_C0_RHfgFiwj-utg4JfGbf0mDZXGhUrySA9D-W1YzwtSBvb80aeOQAoz1saVCxwyvHC1pG1Mydbq_JVtaT1I-PsK5uwj17j1jB-AXD50m3FyvrmYq0394w8-x_95q4dw_waXomG7kB7BLVs_hns9tsIn8K3XQrvNhUHeNTfzhbIzFI5z0Xab9n5hDTqy9VffI2s_yNvS1c9f-7WbhmR3NFSzZhodFfKAGZ2GArC6CXTRaNiLpj-Fs_HO6fZecvO3hkR71OeVTaTTvFTMe4giBA-Z4SUlurAu1URhyiShGjOOWZYZW2bWD8hJKk3uDPF-4Bms1U1tnwMqWKp4qbXhJs8pUaUrrPfaPFxHsYwO4MNSWeKyJeUQLf0yEUGAohPgAN5HXXbD5PQ8pLIxKr5MdsVkdFidfD74KKoBvF0qW3gDC1ETWdtmMRM4MPSnHqZmAyBRdX-5pxiOxsdd68W_THoDd05GY3G0Pzl8CXd9N43JQvwVrM2nC7vhcdBcvY5L_Rp0Pv8v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Gold+Nanotubes+with+Controlled+Length+and+Near%E2%80%90Infrared+Absorption+for+Theranostic+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Ye%2C+Sunjie&rft.au=Marston%2C+Gemma&rft.au=McLaughlan%2C+James+R.&rft.au=Sigle%2C+Daniel+O.&rft.date=2015-04-08&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=14&rft.spage=2117&rft.epage=2127&rft_id=info:doi/10.1002%2Fadfm.201404358&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201404358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon