A novel methodology for 3D deformable dosimetry
Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simula...
Saved in:
Published in | Medical physics (Lancaster) Vol. 39; no. 4; pp. 2203 - 2213 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association of Physicists in Medicine
01.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose:
Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms.
Methods:
A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT.
Results:
Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field.
Conclusions:
This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions. |
---|---|
AbstractList | Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms.PURPOSEInterfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms.A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT.METHODSA modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT.Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field.RESULTSReproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field.This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.CONCLUSIONSThis paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions. Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue‐equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. Methods: A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue‐equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Results: Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter‐FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field. Conclusions: This paper describes the first use of a tissue‐equivalent, 3D dose‐integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three‐dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions. Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field. This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions. Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. Methods: A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Results: Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field. Conclusions: This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions. |
Author | Taylor, M. L. Franich, R. D. Smith, R. L. Dunn, L. Yeo, U. J. Kron, T. |
Author_xml | – sequence: 1 givenname: U. J. surname: Yeo fullname: Yeo, U. J. organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia – sequence: 2 givenname: M. L. surname: Taylor fullname: Taylor, M. L. organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett Street, East Melbourne VIC 8006, Australia; and William Buckland Radiotherapy Centre, The Alfred Hospital, The Alfred, P.O. Box 315, Prahran VIC 3181, Australia – sequence: 3 givenname: L. surname: Dunn fullname: Dunn, L. organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia – sequence: 4 givenname: T. surname: Kron fullname: Kron, T. organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia and Physical Sciences, Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett Street, East Melbourne VIC 8006, Australia – sequence: 5 givenname: R. L. surname: Smith fullname: Smith, R. L. organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia and William Buckland Radiotherapy Centre, The Alfred Hospital, The Alfred, P.O. Box 315, Prahran VIC 3181, Australia – sequence: 6 givenname: R. D. surname: Franich fullname: Franich, R. D. email: rick.franich@rmit.edu.au organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22482642$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22100630$$D View this record in Osti.gov |
BookMark | eNqN0U1P3DAQBmALbcUuCwf-QBWph6pIYT2283XoYUVbWmkRHOBsOfa4BCXxYmep8u-bbZYKIbbqyXN43tF45ohMWtciIadAzwEgX8A5TwsBNDsgMyYyHgtGiwmZUVqImAmaTMlRCA-U0pQn9JBMGRM5SwWbkcUyat0T1lGD3b0zrnY_-8g6H_EvkcGhaFRZY2RcqAbh-2Pyzqo64MnunZO7b19vL77Hq-vLHxfLVawTQbNYCFSQAKScMmAmVww0IgqEUqgCNZY2MZkVNrc8MdqkCnhphUhpotPMKj4nH8a-LnSVDLrqUN9r17aoO8kYbL9CB_VxVGvvHjcYOtlUQWNdqxbdJsii4EBZXqSDfL-Tm7JBI9e-apTv5fMmBvBpBNq7EDzavwSo3G5ZgtxtebCLV3aYT3WVazuvqvrNRDwmflU19vtby6ubnf88-vDceX9mKf9cUL644JA_--_8v_CT8y-GWxvLfwMShbpR |
CODEN | MPHYA6 |
CitedBy_id | crossref_primary_10_1016_j_brachy_2022_06_006 crossref_primary_10_1016_j_radphyschem_2023_111009 crossref_primary_10_1088_1361_6560_aae7e7 crossref_primary_10_1088_1742_6596_847_1_012012 crossref_primary_10_1177_1533034615584120 crossref_primary_10_1088_1361_6463_ad0987 crossref_primary_10_1016_j_phro_2024_100647 crossref_primary_10_1002_acm2_12687 crossref_primary_10_1016_j_ejmp_2017_06_005 crossref_primary_10_1088_1742_6596_444_1_012077 crossref_primary_10_1088_1742_6596_444_1_012032 crossref_primary_10_1002_mp_13359 crossref_primary_10_1016_j_radphyschem_2019_108574 crossref_primary_10_1088_1361_6560_aab501 crossref_primary_10_6009_jjrt_2021_JSRT_77_7_733 crossref_primary_10_1088_0031_9155_61_14_R167 crossref_primary_10_1118_1_4811102 crossref_primary_10_1016_j_ejmp_2021_04_007 crossref_primary_10_1088_1742_6596_847_1_012062 crossref_primary_10_1088_0031_9155_59_3_597 crossref_primary_10_1021_acsapm_2c01972 crossref_primary_10_3938_jkps_67_218 crossref_primary_10_1088_1742_6596_1305_1_012055 crossref_primary_10_1118_1_4771962 crossref_primary_10_1016_j_ejmp_2023_102684 crossref_primary_10_1007_s13246_023_01365_x crossref_primary_10_1088_1742_6596_444_1_012081 crossref_primary_10_1016_j_radphyschem_2018_01_014 crossref_primary_10_1088_1742_6596_444_1_012080 crossref_primary_10_1088_1361_6560_ac1ca2 crossref_primary_10_1088_1361_6560_ac1ca1 crossref_primary_10_1016_j_radmeas_2024_107347 crossref_primary_10_1088_1742_6596_847_1_012006 crossref_primary_10_1007_s00253_016_7489_5 crossref_primary_10_1016_j_brachy_2013_11_006 crossref_primary_10_1088_1742_6596_1305_1_012048 crossref_primary_10_1016_j_radonc_2016_03_007 crossref_primary_10_4236_jmp_2018_913143 crossref_primary_10_1088_2057_1976_aaac68 crossref_primary_10_1088_0031_9155_59_7_1773 crossref_primary_10_1088_1742_6596_1305_1_012002 crossref_primary_10_1088_1361_6560_ad278f crossref_primary_10_3390_gels8090599 crossref_primary_10_1016_j_brachy_2020_02_002 crossref_primary_10_1088_1742_6596_444_1_012012 crossref_primary_10_1088_2057_1976_ab895a crossref_primary_10_1002_acm2_12348 crossref_primary_10_1016_j_canrad_2015_06_006 crossref_primary_10_3233_THC_161200 crossref_primary_10_1016_j_ejmp_2021_06_004 crossref_primary_10_6009_jjrt_2023_2153 crossref_primary_10_1016_j_ejmp_2015_01_007 crossref_primary_10_1016_j_prro_2015_01_011 crossref_primary_10_1093_jrr_rrt076 crossref_primary_10_1118_1_4769114 crossref_primary_10_1088_1361_6560_aa70cd crossref_primary_10_1016_j_ijrobp_2013_05_045 crossref_primary_10_1016_j_ejmp_2017_03_016 crossref_primary_10_1118_1_4736534 crossref_primary_10_1016_j_meddos_2017_08_004 crossref_primary_10_1088_1361_6560_ab9456 crossref_primary_10_1118_1_4819945 crossref_primary_10_1016_j_radmeas_2024_107321 crossref_primary_10_1120_jacmp_v17i2_5778 crossref_primary_10_1118_1_4873682 crossref_primary_10_1088_1742_6596_444_1_012107 crossref_primary_10_1120_jacmp_v15i6_4978 crossref_primary_10_1002_acm2_13890 crossref_primary_10_1088_1361_6560_ac9fa2 crossref_primary_10_1088_1742_6596_573_1_012024 |
Cites_doi | 10.1016/j.ijrobp.2008.07.023 10.1088/0031-9155/47/17/309 10.1088/0031-9155/55/10/003 10.1088/0031-9155/52/10/017 10.1038/nrc2288 10.1667/RR1438.1 10.1088/0031-9155/51/3/012 10.1088/0031-9155/53/3/013 10.1016/0004-3702(81)90024-2 10.1118/1.1881812 10.1088/0031-9155/42/1/008 10.1016/j.ijrobp.2004.07.677 10.3109/0284186X.2010.551665 10.1016/S1361-8415(98)80022-4 10.1118/1.1539039 10.1118/1.3013563 10.1016/j.radonc.2010.07.023 10.1118/1.3496356 10.1118/1.3194750 10.1118/1.2960219 10.1088/0031-9155/53/20/004 10.1118/1.1949749 10.1118/1.2188820 10.1088/0031-9155/49/5/010 10.1088/0031-9155/49/14/003 10.1118/1.3095777 10.1118/1.2192908 10.1088/0031-9155/52/13/022 10.1118/1.1380430 10.1016/j.media.2005.03.003 10.1016/j.ijrobp.2005.10.027 10.1007/BF03178587 10.1109/TNS.2009.2015315 10.1118/1.2836417 10.1007/BF01420984 10.1088/0031-9155/56/5/003 10.1088/0031-9155/50/12/011 10.1118/1.2739812 10.1088/0031-9155/51/11/006 10.1093/rpd/nci225 10.1088/0031-9155/53/20/N02 10.1088/0031-9155/55/5/R01 10.1088/0031-9155/54/2/007 10.1088/0031-9155/57/11/3359 |
ContentType | Journal Article |
Copyright | American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine |
Copyright_xml | – notice: American Association of Physicists in Medicine – notice: 2012 American Association of Physicists in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI |
DOI | 10.1118/1.3694107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 |
EndPage | 2213 |
ExternalDocumentID | 22100630 22482642 10_1118_1_3694107 MP4107 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 476 53G 5GY 5RE 5VS AAHHS AANLZ AAQQT AASGY AAXRX AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACSMX ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P G8K HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAHQN AAIPD AAMNL AAYCA ABDPE AFWVQ AITYG ALVPJ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY AAJUZ AAPBV ABCVL ABPTK ADDAD AEUQT OTOTI |
ID | FETCH-LOGICAL-c5407-44ea1511630212d8a21ceee4e1b4a9ecebf5d7f4f8f35dcd6a13bf44605c67fa3 |
ISSN | 0094-2405 |
IngestDate | Thu May 18 18:35:47 EDT 2023 Fri Jul 11 08:42:09 EDT 2025 Thu Apr 03 06:58:50 EDT 2025 Tue Jul 01 02:38:30 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Wed Jan 22 16:22:56 EST 2025 Fri Jun 21 00:20:00 EDT 2024 Fri Jun 21 00:28:32 EDT 2024 Sun Jul 14 10:05:20 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | organ deformation dose deformation optical CT 3D gel dosimetry |
Language | English |
License | 0094-2405/2012/39(4)/2203/11/$30.00 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5407-44ea1511630212d8a21ceee4e1b4a9ecebf5d7f4f8f35dcd6a13bf44605c67fa3 |
Notes | Author to whom correspondence should be addressed. Electronic mail Telephone: ++61 3 9925 3390; Fax: ++61 3 9925 5290. rick.franich@rmit.edu.au ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22482642 |
PQID | 993102896 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | scitation_primary_10_1118_1_3694107 scitation_primary_10_1118_1_3694107A_novel_methodology osti_scitechconnect_22100630 pubmed_primary_22482642 wiley_primary_10_1118_1_3694107_MP4107 proquest_miscellaneous_993102896 crossref_primary_10_1118_1_3694107 crossref_citationtrail_10_1118_1_3694107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2012 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2012 |
Publisher | American Association of Physicists in Medicine |
Publisher_xml | – name: American Association of Physicists in Medicine |
References | Verellen, De Ridder, Linthout, Tournel, Soete, Storme (c17) 2007; 7 Kron, Wong, Rolfo, Pham, Cramb, Foroudi (c20) 2010; 97 Rosu, Chetty, Balter, Kessler, McShan, Ten Haken (c8) 2005; 32 Taylor, Franich, Trapp, Johnston (c33) 2008; 31 Serban, Heath, Stroian, Collins, Seuntjens (c23) 2008; 35 Godley, Ahunbay, Peng, Li (c16) 2009; 36 Horn, Schunck (c1) 1981; 17 Olding, Holmes, Schreiner (c40) 2010; 55 Kashani (c12) 2008; 35 Keall, Baldock (c32) 1999; 22 Brock, Dawson, Sharpe, Moseley, Jaffray (c15) 2006; 64 Rogelj, Kovačič (c5) 2006; 10 Flampouri, Jiang, Sharp, Wolfgang, Patel, Choi (c9) 2006; 51 Taylor, Franich, Trapp, Johnston (c36) 2009; 56 Duan, Shen, Fiveash, Popple, Brezovich (c25) 2006; 33 Bosi, Naseri, Puran, Davies, Baldock (c39) 2007; 52 Lu, Chen, Olivera, Ruchala, Mackie (c3) 2004; 49 Brock, McShan, Ten Haken, Hollister, Dawson, Balter (c7) 2003; 30 Kashani, Hub, Kessler, Balter (c11) 2007; 34 Janssens, de Xivry, Fekkes, Dekker, Macq, Lambin, van Elmpt (c21) 2009; 36 Schaly, Kempe, Bauman, Battista, Dyk (c6) 2004; 49 Olding, Schreiner (c41) 2011; 56 Wang, Dong, Lii, Lee, de Crevoisier, Mohan, Cox, Kuban, Cheung (c14) 2005; 61 Guerrero, Zhang, Segars, Huang, Bilton, Ibbott, Dong, Forster, Lin (c10) 2005; 115 Wang (c13) 2005; 50 Deene, Vergote, Claeys, Wagter (c30) 2006; 51 Oldham, Siewerdsen, Shetty, Jaffray (c37) 2001; 28 Seco (c24) 2010; 37 Barron, Fleet, Beauchemin (c2) 1994; 12 Kerkhof, Van der Put, Raaymakers, Lagendijk (c44) 2008; 53 Bosi, Brown, Sarabipour, De Deene, Baldock (c42) 2009; 54 Lopatiuk-Tirpak, Langen, Meeks, Kupelian, Zeidan, Maryanski (c27) 2008; 35 Yan, Vicini, Wong, Martinez (c18) 1997; 42 Taylor, Franich, Trapp, Johnston (c34) 2009; 171 van der Wielen, Mutanga, Incrocci, Kirkels, Vasquez Osorio, Hoogeman, Heijmen, de Boer (c45) 2008; 72 Zhong, Weiss, Siebers (c22) 2008; 53 Venning, Nitschke, Keall, Baldock (c31) 2005; 32 Thirion (c4) 1998; 2 Baldock, Deene, Doran, Ibbott, Jirasek, Lepage, McAuley, Oldham, Schreiner (c28) 2010; 55 Taylor, Franich, Johnston, Millar, Trapp (c35) 2007; 52 Wu, Jeraj, Olivera, Mackie (c19) 2002; 47 Taylor, Kron, Franich (c29) 2011; 50 Wuu, Xu (c38) 2006; 33 Ceberg, Karlsson, Gustavsson, Wittgren, Bäck (c26) 2008; 53 Kashani, R.; Hub, M.; Kessler, M.; Balter, J.M. 2007; 34 Schaly, B.; Kempe, J.; Bauman, G.; Battista, J.; Dyk, J. 2004; 49 Wang, H. 2005; 50 Oldham, M.; Siewerdsen, J.; Shetty, A.; Jaffray, D. 2001; 28 Brock, K.; McShan, D.; Ten Haken, R.; Hollister, S.; Dawson, L.; Balter, J. 2003; 30 Rosu, M.; Chetty, I.; Balter, J.; Kessler, M.; McShan, D.; Ten Haken, R. 2005; 32 Wuu, C.; Xu, Y. 2006; 33 van der Wielen, G.; Mutanga, T.; Incrocci, L.; Kirkels, W.; Vasquez Osorio, E.; Hoogeman, M.; Heijmen, B.; de Boer, H. 2008; 72 Keall, P.; Baldock, C. 1999; 22 Bosi, S.; Naseri, P.; Puran, A.; Davies, J.; Baldock, C. 2007; 52 Brock, K.; Dawson, L.; Sharpe, M.; Moseley, D.; Jaffray, D. 2006; 64 Seco, J. 2010; 37 Horn, B.; Schunck, B. 1981; 17 Wang, H.; Dong, L.; Lii, M.; Lee, A.; de Crevoisier, R.; Mohan, R.; Cox, J.; Kuban, D.; Cheung, R. 2005; 61 Rogelj, P.; Kovačič, S. 2006; 10 Taylor, M.; Kron, T.; Franich, R. 2011; 50 Taylor, M.; Franich, R.; Trapp, J.; Johnston, P. 2009; 56 Serban, M.; Heath, E.; Stroian, G.; Collins, D.; Seuntjens, J. 2008; 35 Godley, A.; Ahunbay, E.; Peng, C.; Li, X. 2009; 36 Barron, J.; Fleet, D.; Beauchemin, S. 1994; 12 Guerrero, T.; Zhang, G.; Segars, W.; Huang, T.; Bilton, S.; Ibbott, G.; Dong, L.; Forster, K.; Lin, K. 2005; 115 Wu, C.; Jeraj, R.; Olivera, G.; Mackie, T. 2002; 47 Taylor, M.; Franich, R.; Trapp, J.; Johnston, P. 2008; 31 Flampouri, S.; Jiang, S.; Sharp, G.; Wolfgang, J.; Patel, A.; Choi, N. 2006; 51 Lopatiuk-Tirpak, O.; Langen, K.; Meeks, S.; Kupelian, P.; Zeidan, O.; Maryanski, M. 2008; 35 Taylor, M.; Franich, R.; Trapp, J.; Johnston, P. 2009; 171 Janssens, G.; de Xivry, J.; Fekkes, S.; Dekker, A.; Macq, B.; Lambin, P.; van Elmpt, W. 2009; 36 Olding, T.; Holmes, O.; Schreiner, L. 2010; 55 Olding, T.; Schreiner, L. 2011; 56 Kerkhof, E.; Van der Put, R.; Raaymakers, B.; Lagendijk, J. 2008; 53 Ceberg, S.; Karlsson, A.; Gustavsson, H.; Wittgren, L.; Bäck, S. 2008; 53 Thirion, J. 1998; 2 Verellen, D.; De Ridder, M.; Linthout, N.; Tournel, K.; Soete, G.; Storme, G. 2007; 7 Yan, D.; Vicini, F.; Wong, J.; Martinez, A. 1997; 42 Kron, T.; Wong, J.; Rolfo, A.; Pham, D.; Cramb, J.; Foroudi, F. 2010; 97 Kashani, R. 2008; 35 Bosi, S.; Brown, S.; Sarabipour, S.; De Deene, Y.; Baldock, C. 2009; 54 Zhong, H.; Weiss, E.; Siebers, J. 2008; 53 Venning, A.; Nitschke, K.; Keall, P.; Baldock, C. 2005; 32 Lu, W.; Chen, M.; Olivera, G.; Ruchala, K.; Mackie, T. 2004; 49 Baldock, C.; Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K.; Oldham, M.; Schreiner, L. 2010; 55 Duan, J.; Shen, S.; Fiveash, J.; Popple, R.; Brezovich, I. 2006; 33 Taylor, M.; Franich, R.; Johnston, P.; Millar, R.; Trapp, J. 2007; 52 Deene, Y.; Vergote, K.; Claeys, C.; Wagter, C. 2006; 51 2010; 55 2010; 97 2010; 37 2006; 51 2011 2004; 49 2006; 10 1997; 42 2006; 33 2005; 115 1999; 22 2008; 35 2011; 56 2001; 28 2005; 61 2008; 53 2008; 31 2007; 52 2008; 72 2003; 30 2007; 34 2009; 56 2009; 36 2002; 47 2006; 64 2009; 54 2009; 171 2011; 50 1994; 12 2005; 32 2007; 7 1981; 17 1998; 2 2005; 50 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 Keall P. (e_1_2_8_33_1) 1999; 22 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 10 start-page: 484 year: 2006 ident: c5 article-title: Symmetric image registration publication-title: Med. Image Anal. – volume: 47 start-page: 3181 year: 2002 ident: c19 article-title: Re-optimization in adaptive radiotherapy publication-title: Phys. Med. Biol. – volume: 33 start-page: 1412 year: 2006 ident: c38 article-title: Three-dimensional dose verification for intensity modulated radiation therapy using optical CT based polymer gel dosimetry publication-title: Med. Phys. – volume: 31 start-page: 131 year: 2008 ident: c33 article-title: The effective atomic number of dosimetric gels publication-title: Australas. Phys. Eng. Sci. Med. – volume: 53 start-page: N387 year: 2008 ident: c26 article-title: Verification of dynamic radiotherapy: The potential for 3D dosimetry under respiratory-like motion using polymer gel publication-title: Phys. Med. Biol. – volume: 34 start-page: 2785 year: 2007 ident: c11 article-title: Technical note: A physical phantom for assessment of accuracy of deformable alignment algorithms publication-title: Med. Phys. – volume: 22 start-page: 85 year: 1999 ident: c32 article-title: A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry publication-title: Australas. Phys. Eng. Sci. Med. – volume: 51 start-page: 653 year: 2006 ident: c30 article-title: The fundamental radiation properties of normoxic polymer gel dosimeters: A comparison between a methacrylic acid based gel and acrylamide based gels publication-title: Phys. Med. Biol. – volume: 61 start-page: 725 year: 2005 ident: c14 article-title: Implementation and validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 32 start-page: 1047 year: 2005 ident: c31 article-title: Radiological properties of normoxic polymer gel dosimeters publication-title: Med. Phys. – volume: 56 start-page: 1259 year: 2011 ident: c41 article-title: Cone-beam optical computed tomography for gel dosimetry II: Imaging protocols publication-title: Phys. Med. Biol. – volume: 36 start-page: 4268 year: 2009 ident: c21 article-title: Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy publication-title: Med. Phys. – volume: 171 start-page: 123 year: 2009 ident: c34 article-title: Electron interaction with gel dosimeters: Effective atomic numbers for collisional, radiative and total interaction processes publication-title: Radiat. Res. – volume: 35 start-page: 3847 year: 2008 ident: c27 article-title: Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries publication-title: Med. Phys. – volume: 50 start-page: 483 year: 2011 ident: c29 article-title: A contemporary review of stereotactic radiotherapy: Inherent dosimetric complexities and the potential for detriment publication-title: Acta. Oncol. – volume: 97 start-page: 485 year: 2010 ident: c20 article-title: Adaptive radiotherapy for bladder cancer reduces integral dose despite daily volumetric imaging publication-title: Radiat. Oncol. – volume: 7 start-page: 949 year: 2007 ident: c17 article-title: Innovations in image-guided radiotherapy publication-title: Nat. Rev. Cancer – volume: 72 start-page: 1604 year: 2008 ident: c45 article-title: Deformation of prostate and seminal vesicles relative to intraprostatic fiducial markers publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 35 start-page: 1094 year: 2008 ident: c23 article-title: A deformable phantom for 4D radiotherapy verification: Design and image registration evaluation publication-title: Med. Phys. – volume: 49 start-page: 3067 year: 2004 ident: c3 article-title: Fast free-form deformable registration via calculus of variations publication-title: Phys. Med. Biol. – volume: 12 start-page: 43 year: 1994 ident: c2 article-title: Performance of optical flow techniques publication-title: Int. J. Comput. Vis – volume: 2 start-page: 243 year: 1998 ident: c4 article-title: Image matching as a diffusion process: An analogy with Maxwell’s demons publication-title: Med. Image Anal. – volume: 51 start-page: 2763 year: 2006 ident: c9 article-title: Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations publication-title: Phys. Med. Biol. – volume: 49 start-page: 791 year: 2004 ident: c6 article-title: Tracking the dose distribution in radiation therapy by accounting for variable anatomy publication-title: Phys. Med. Biol. – volume: 28 start-page: 1436 year: 2001 ident: c37 article-title: High resolution gel-dosimetry by optical-CT and MR scanning publication-title: Med. Phys. – volume: 55 start-page: 2819 year: 2010 ident: c40 article-title: Cone beam optical computed tomography for gel dosimetry I: Scanner characterization publication-title: Phys. Med. Biol. – volume: 50 start-page: 2887 year: 2005 ident: c13 article-title: Validation of an accelerated’demons’ algorithm for deformable image registration in radiation therapy publication-title: Phys. Med. Biol. – volume: 42 start-page: 123 year: 1997 ident: c18 article-title: Adaptive radiation therapy publication-title: Phys. Med. Biol. – volume: 30 start-page: 290 year: 2003 ident: c7 article-title: Inclusion of organ deformation in dose calculations publication-title: Med. Phys. – volume: 35 start-page: 5944 year: 2008 ident: c12 article-title: Objective assessment of deformable image registration in radiotherapy: A multi-institution study publication-title: Med. Phys. – volume: 53 start-page: 719 year: 2008 ident: c22 article-title: Assessment of dose reconstruction errors in image-guided radiation therapy publication-title: Phys. Med. Biol. – volume: 17 start-page: 185 year: 1981 ident: c1 article-title: Determining optical flow publication-title: Artif. Intell. – volume: 37 start-page: 5850 year: 2010 ident: c24 article-title: Use of a realistic breathing lung phantom to evaluate dose delivery errors publication-title: Med. Phys. – volume: 53 start-page: 5623 year: 2008 ident: c44 article-title: Variation in target and rectum doses due to prostate deformation: An assessment by repeated MR imaging and treatment planning publication-title: Phys. Med. Biol. – volume: 115 start-page: 497 year: 2005 ident: c10 article-title: Elastic image mapping for 4-D dose estimation in thoracic radiotherapy publication-title: Radiat. Prot. Dosim. – volume: 52 start-page: 3991 year: 2007 ident: c35 article-title: Systematic variations in polymer gel dosimeter calibration due to container influence and deviations from water equivalence publication-title: Phys. Med. Biol. – volume: 33 start-page: 1380 year: 2006 ident: c25 article-title: Dosimetric and radiobiological impact of dose fractionation on respiratory motion induced IMRT delivery errors: A volumetric dose measurement study publication-title: Med. Phys. – volume: 56 start-page: 429 year: 2009 ident: c36 article-title: A comparative study on the effect of calibration conditions on the water equivalence of a range of gel dosimeters publication-title: IEEE Trans. Nucl. Sci. – volume: 64 start-page: 1245 year: 2006 ident: c15 article-title: Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 52 start-page: 2893 year: 2007 ident: c39 article-title: Initial investigation of a novel light-scattering gel phantom for evaluation of optical CT scanners for radiotherapy gel dosimetry publication-title: Phys. Med. Biol. – volume: 36 start-page: 1433 year: 2009 ident: c16 article-title: Automated registration of large deformations for adaptive radiation therapy of prostate cancer publication-title: Med. Phys. – volume: 54 start-page: 275 year: 2009 ident: c42 article-title: Modelling optical scattering artefacts for varying pathlength in a gel dosimeter phantom publication-title: Phys. Med. Biol. – volume: 32 start-page: 2487 year: 2005 ident: c8 article-title: Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications publication-title: Med. Phys. – volume: 55 start-page: R1 year: 2010 ident: c28 article-title: Polymer gel dosimetry publication-title: Phys. Med. Biol. – volume: 72 start-page: 1604-1611 year: 2008 publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/j.ijrobp.2008.07.023 – volume: 47 start-page: 3181-3195 year: 2002 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/47/17/309 – volume: 55 start-page: 2819-2840 year: 2010 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/55/10/003 – volume: 52 start-page: 2893-2903 year: 2007 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/52/10/017 – volume: 7 start-page: 949-960 year: 2007 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2288 – volume: 171 start-page: 123-126 year: 2009 publication-title: Radiat. Res. doi: 10.1667/RR1438.1 – volume: 51 start-page: 653-673 year: 2006 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/3/012 – volume: 53 start-page: 719-737 year: 2008 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/3/013 – volume: 17 start-page: 185-203 year: 1981 publication-title: Artif. Intell. doi: 10.1016/0004-3702(81)90024-2 – volume: 32 start-page: 1047-1053 year: 2005 publication-title: Med. Phys. doi: 10.1118/1.1881812 – volume: 42 start-page: 123-132 year: 1997 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/42/1/008 – volume: 61 start-page: 725-735 year: 2005 publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/j.ijrobp.2004.07.677 – volume: 50 start-page: 483-508 year: 2011 publication-title: Acta. Oncol. doi: 10.3109/0284186X.2010.551665 – volume: 22 start-page: 85-91 year: 1999 publication-title: Australas. Phys. Eng. Sci. Med. – volume: 2 start-page: 243-260 year: 1998 publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(98)80022-4 – volume: 30 start-page: 290-295 year: 2003 publication-title: Med. Phys. doi: 10.1118/1.1539039 – volume: 35 start-page: 5944-5953 year: 2008 publication-title: Med. Phys. doi: 10.1118/1.3013563 – volume: 97 start-page: 485-487 year: 2010 publication-title: Radiat. Oncol. doi: 10.1016/j.radonc.2010.07.023 – volume: 37 start-page: 5850-5857 year: 2010 publication-title: Med. Phys. doi: 10.1118/1.3496356 – volume: 36 start-page: 4268-4276 year: 2009 publication-title: Med. Phys. doi: 10.1118/1.3194750 – volume: 35 start-page: 3847-3859 year: 2008 publication-title: Med. Phys. doi: 10.1118/1.2960219 – volume: 53 start-page: 5623-5634 year: 2008 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/20/004 – volume: 32 start-page: 2487-2495 year: 2005 publication-title: Med. Phys. doi: 10.1118/1.1949749 – volume: 33 start-page: 1412-1419 year: 2006 publication-title: Med. Phys. doi: 10.1118/1.2188820 – volume: 49 start-page: 791-805 year: 2004 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/49/5/010 – volume: 49 start-page: 3067-3087 year: 2004 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/49/14/003 – volume: 36 start-page: 1433-1441 year: 2009 publication-title: Med. Phys. doi: 10.1118/1.3095777 – volume: 33 start-page: 1380-1387 year: 2006 publication-title: Med. Phys. doi: 10.1118/1.2192908 – volume: 52 start-page: 3991-4005 year: 2007 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/52/13/022 – volume: 28 start-page: 1436-1445 year: 2001 publication-title: Med. Phys. doi: 10.1118/1.1380430 – volume: 10 start-page: 484-493 year: 2006 publication-title: Med. Image Anal. doi: 10.1016/j.media.2005.03.003 – volume: 64 start-page: 1245-1254 year: 2006 publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/j.ijrobp.2005.10.027 – volume: 31 start-page: 131-138 year: 2008 publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/BF03178587 – volume: 56 start-page: 429-436 year: 2009 publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2009.2015315 – volume: 35 start-page: 1094-1102 year: 2008 publication-title: Med. Phys. doi: 10.1118/1.2836417 – volume: 12 start-page: 43-77 year: 1994 publication-title: Int. J. Comput. Vis doi: 10.1007/BF01420984 – volume: 56 start-page: 1259-1279 year: 2011 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/5/003 – volume: 50 start-page: 2887-2905 year: 2005 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/50/12/011 – volume: 34 start-page: 2785-2788 year: 2007 publication-title: Med. Phys. doi: 10.1118/1.2739812 – volume: 51 start-page: 2763-2779 year: 2006 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/11/006 – volume: 115 start-page: 497-502 year: 2005 publication-title: Radiat. Prot. Dosim. doi: 10.1093/rpd/nci225 – volume: 53 start-page: N387-N396 year: 2008 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/20/N02 – volume: 55 start-page: R1-R63 year: 2010 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/55/5/R01 – volume: 54 start-page: 275-283 year: 2009 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/2/007 – volume: 47 start-page: 3181 year: 2002 end-page: 3195 article-title: Re‐optimization in adaptive radiotherapy publication-title: Phys. Med. Biol. – year: 2011 – volume: 50 start-page: 483 year: 2011 end-page: 508 article-title: A contemporary review of stereotactic radiotherapy: Inherent dosimetric complexities and the potential for detriment publication-title: Acta. Oncol. – volume: 30 start-page: 290 year: 2003 end-page: 295 article-title: Inclusion of organ deformation in dose calculations publication-title: Med. Phys. – volume: 50 start-page: 2887 year: 2005 end-page: 2905 article-title: Validation of an accelerated'demons' algorithm for deformable image registration in radiation therapy publication-title: Phys. Med. Biol. – volume: 35 start-page: 5944 year: 2008 end-page: 5953 article-title: Objective assessment of deformable image registration in radiotherapy: A multi‐institution study publication-title: Med. Phys. – volume: 7 start-page: 949 year: 2007 end-page: 960 article-title: Innovations in image‐guided radiotherapy publication-title: Nat. Rev. Cancer – volume: 52 start-page: 2893 year: 2007 end-page: 2903 article-title: Initial investigation of a novel light‐scattering gel phantom for evaluation of optical CT scanners for radiotherapy gel dosimetry publication-title: Phys. Med. Biol. – volume: 53 start-page: 5623 year: 2008 end-page: 5634 article-title: Variation in target and rectum doses due to prostate deformation: An assessment by repeated MR imaging and treatment planning publication-title: Phys. Med. Biol. – volume: 12 start-page: 43 year: 1994 end-page: 77 article-title: Performance of optical flow techniques publication-title: Int. J. Comput. Vis – volume: 53 start-page: 719 year: 2008 end-page: 737 article-title: Assessment of dose reconstruction errors in image‐guided radiation therapy publication-title: Phys. Med. Biol. – volume: 32 start-page: 1047 year: 2005 end-page: 1053 article-title: Radiological properties of normoxic polymer gel dosimeters publication-title: Med. Phys. – volume: 34 start-page: 2785 year: 2007 end-page: 2788 article-title: Technical note: A physical phantom for assessment of accuracy of deformable alignment algorithms publication-title: Med. Phys. – volume: 36 start-page: 1433 year: 2009 end-page: 1441 article-title: Automated registration of large deformations for adaptive radiation therapy of prostate cancer publication-title: Med. Phys. – volume: 33 start-page: 1380 year: 2006 end-page: 1387 article-title: Dosimetric and radiobiological impact of dose fractionation on respiratory motion induced IMRT delivery errors: A volumetric dose measurement study publication-title: Med. Phys. – volume: 55 start-page: 2819 year: 2010 end-page: 2840 article-title: Cone beam optical computed tomography for gel dosimetry I: Scanner characterization publication-title: Phys. Med. Biol. – volume: 72 start-page: 1604 year: 2008 end-page: 1611 article-title: Deformation of prostate and seminal vesicles relative to intraprostatic fiducial markers publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 36 start-page: 4268 year: 2009 end-page: 4276 article-title: Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy publication-title: Med. Phys. – volume: 35 start-page: 3847 year: 2008 end-page: 3859 article-title: Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries publication-title: Med. Phys. – volume: 49 start-page: 3067 year: 2004 end-page: 3087 article-title: Fast free‐form deformable registration via calculus of variations publication-title: Phys. Med. Biol. – volume: 10 start-page: 484 year: 2006 end-page: 493 article-title: Symmetric image registration publication-title: Med. Image Anal. – volume: 64 start-page: 1245 year: 2006 end-page: 1254 article-title: Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 115 start-page: 497 year: 2005 end-page: 502 article-title: Elastic image mapping for 4‐D dose estimation in thoracic radiotherapy publication-title: Radiat. Prot. Dosim. – volume: 171 start-page: 123 year: 2009 end-page: 126 article-title: Electron interaction with gel dosimeters: Effective atomic numbers for collisional, radiative and total interaction processes publication-title: Radiat. Res. – volume: 32 start-page: 2487 year: 2005 end-page: 2495 article-title: Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications publication-title: Med. Phys. – volume: 55 start-page: R1 year: 2010 end-page: R63 article-title: Polymer gel dosimetry publication-title: Phys. Med. Biol. – volume: 42 start-page: 123 year: 1997 end-page: 132 article-title: Adaptive radiation therapy publication-title: Phys. Med. Biol. – volume: 35 start-page: 1094 year: 2008 end-page: 1102 article-title: A deformable phantom for 4D radiotherapy verification: Design and image registration evaluation publication-title: Med. Phys. – volume: 37 start-page: 5850 year: 2010 end-page: 5857 article-title: Use of a realistic breathing lung phantom to evaluate dose delivery errors publication-title: Med. Phys. – volume: 51 start-page: 653 year: 2006 end-page: 673 article-title: The fundamental radiation properties of normoxic polymer gel dosimeters: A comparison between a methacrylic acid based gel and acrylamide based gels publication-title: Phys. Med. Biol. – volume: 61 start-page: 725 year: 2005 end-page: 735 article-title: Implementation and validation of a three‐dimensional deformable registration algorithm for targeted prostate cancer radiotherapy publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 97 start-page: 485 year: 2010 end-page: 487 article-title: Adaptive radiotherapy for bladder cancer reduces integral dose despite daily volumetric imaging publication-title: Radiat. Oncol. – volume: 22 start-page: 85 year: 1999 end-page: 91 article-title: A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry publication-title: Australas. Phys. Eng. Sci. Med. – volume: 52 start-page: 3991 year: 2007 end-page: 4005 article-title: Systematic variations in polymer gel dosimeter calibration due to container influence and deviations from water equivalence publication-title: Phys. Med. Biol. – volume: 56 start-page: 429 year: 2009 end-page: 436 article-title: A comparative study on the effect of calibration conditions on the water equivalence of a range of gel dosimeters publication-title: IEEE Trans. Nucl. Sci. – volume: 28 start-page: 1436 year: 2001 end-page: 1445 article-title: High resolution gel‐dosimetry by optical‐CT and MR scanning publication-title: Med. Phys. – volume: 54 start-page: 275 year: 2009 end-page: 283 article-title: Modelling optical scattering artefacts for varying pathlength in a gel dosimeter phantom publication-title: Phys. Med. Biol. – volume: 33 start-page: 1412 year: 2006 end-page: 1419 article-title: Three‐dimensional dose verification for intensity modulated radiation therapy using optical CT based polymer gel dosimetry publication-title: Med. Phys. – volume: 53 start-page: N387 year: 2008 end-page: N396 article-title: Verification of dynamic radiotherapy: The potential for 3D dosimetry under respiratory‐like motion using polymer gel publication-title: Phys. Med. Biol. – volume: 17 start-page: 185 year: 1981 end-page: 203 article-title: Determining optical flow publication-title: Artif. Intell. – volume: 31 start-page: 131 year: 2008 end-page: 138 article-title: The effective atomic number of dosimetric gels publication-title: Australas. Phys. Eng. Sci. Med. – volume: 2 start-page: 243 year: 1998 end-page: 260 article-title: Image matching as a diffusion process: An analogy with Maxwell's demons publication-title: Med. Image Anal. – volume: 49 start-page: 791 year: 2004 end-page: 805 article-title: Tracking the dose distribution in radiation therapy by accounting for variable anatomy publication-title: Phys. Med. Biol. – volume: 56 start-page: 1259 year: 2011 end-page: 1279 article-title: Cone‐beam optical computed tomography for gel dosimetry II: Imaging protocols publication-title: Phys. Med. Biol. – volume: 51 start-page: 2763 year: 2006 end-page: 2779 article-title: Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D‐CT data and Monte Carlo simulations publication-title: Phys. Med. Biol. – ident: e_1_2_8_25_1 doi: 10.1118/1.3496356 – ident: e_1_2_8_4_1 doi: 10.1088/0031-9155/49/14/003 – ident: e_1_2_8_5_1 doi: 10.1016/S1361-8415(98)80022-4 – ident: e_1_2_8_20_1 doi: 10.1088/0031-9155/47/17/309 – ident: e_1_2_8_13_1 doi: 10.1118/1.3013563 – ident: e_1_2_8_34_1 doi: 10.1007/BF03178587 – ident: e_1_2_8_9_1 doi: 10.1118/1.1949749 – ident: e_1_2_8_28_1 doi: 10.1118/1.2960219 – ident: e_1_2_8_44_1 doi: 10.1088/0031-9155/57/11/3359 – ident: e_1_2_8_29_1 doi: 10.1088/0031-9155/55/5/R01 – ident: e_1_2_8_15_1 doi: 10.1016/j.ijrobp.2004.07.677 – ident: e_1_2_8_43_1 doi: 10.1088/0031-9155/54/2/007 – ident: e_1_2_8_8_1 doi: 10.1118/1.1539039 – ident: e_1_2_8_21_1 doi: 10.1016/j.radonc.2010.07.023 – ident: e_1_2_8_22_1 doi: 10.1118/1.3194750 – ident: e_1_2_8_11_1 doi: 10.1093/rpd/nci225 – ident: e_1_2_8_41_1 doi: 10.1088/0031-9155/55/10/003 – ident: e_1_2_8_46_1 doi: 10.1016/j.ijrobp.2008.07.023 – ident: e_1_2_8_7_1 doi: 10.1088/0031-9155/49/5/010 – ident: e_1_2_8_2_1 doi: 10.1016/0004-3702(81)90024-2 – ident: e_1_2_8_10_1 doi: 10.1088/0031-9155/51/11/006 – ident: e_1_2_8_14_1 doi: 10.1088/0031-9155/50/12/011 – ident: e_1_2_8_16_1 doi: 10.1016/j.ijrobp.2005.10.027 – volume: 22 start-page: 85 year: 1999 ident: e_1_2_8_33_1 article-title: A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry publication-title: Australas. Phys. Eng. Sci. Med. – ident: e_1_2_8_24_1 doi: 10.1118/1.2836417 – ident: e_1_2_8_39_1 doi: 10.1118/1.2188820 – ident: e_1_2_8_26_1 doi: 10.1118/1.2192908 – ident: e_1_2_8_6_1 doi: 10.1016/j.media.2005.03.003 – ident: e_1_2_8_42_1 doi: 10.1088/0031-9155/56/5/003 – ident: e_1_2_8_3_1 doi: 10.1007/BF01420984 – ident: e_1_2_8_19_1 doi: 10.1088/0031-9155/42/1/008 – ident: e_1_2_8_31_1 doi: 10.1088/0031-9155/51/3/012 – ident: e_1_2_8_36_1 doi: 10.1088/0031-9155/52/13/022 – ident: e_1_2_8_12_1 doi: 10.1118/1.2739812 – ident: e_1_2_8_18_1 doi: 10.1038/nrc2288 – ident: e_1_2_8_40_1 doi: 10.1088/0031-9155/52/10/017 – ident: e_1_2_8_32_1 doi: 10.1118/1.1881812 – ident: e_1_2_8_30_1 doi: 10.3109/0284186X.2010.551665 – ident: e_1_2_8_27_1 doi: 10.1088/0031-9155/53/20/N02 – ident: e_1_2_8_23_1 doi: 10.1088/0031-9155/53/3/013 – ident: e_1_2_8_37_1 doi: 10.1109/TNS.2009.2015315 – ident: e_1_2_8_38_1 doi: 10.1118/1.1380430 – ident: e_1_2_8_35_1 doi: 10.1667/RR1438.1 – ident: e_1_2_8_45_1 doi: 10.1088/0031-9155/53/20/004 – ident: e_1_2_8_17_1 doi: 10.1118/1.3095777 |
SSID | ssj0006350 |
Score | 2.3206089 |
Snippet | Purpose:
Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work... Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to... Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work... |
SourceID | osti proquest pubmed crossref wiley scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2203 |
SubjectTerms | 3D gel dosimetry ALGORITHMS aluminium Anatomy biological organs biomechanics Calibration CAT SCANNING COMPRESSORS Computed tomography Computerised tomographs computerised tomography DEFORMATION DELIVERY Digital computing or data processing equipment or methods, specially adapted for specific applications DISTRIBUTION dose deformation DOSEMETERS dosimeters dosimetry Dosimetry/exposure assessment Elastic Modulus Electrical, thermal, and mechanical properties of biological matter GELS Gels - chemistry Gels - radiation effects HEALTH HAZARDS IRRADIATION Materials Testing Mechanical and electrical properties of tissues and organs medical computing Medical imaging MEMBRANES optical CT organ deformation PHANTOMS polymer gels Polymers Quantum dots Radiation Dosage RADIATION DOSE DISTRIBUTIONS RADIATION DOSES RADIATION PROTECTION AND DOSIMETRY radiation therapy RADIOLOGY AND NUCLEAR MEDICINE Radiometry - instrumentation RADIOTHERAPY READOUT SYSTEMS Reproducibility of Results Sensitivity and Specificity Tomography, X-Ray Computed - methods VERIFICATION |
Title | A novel methodology for 3D deformable dosimetry |
URI | http://dx.doi.org/10.1118/1.3694107 https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3694107 https://www.ncbi.nlm.nih.gov/pubmed/22482642 https://www.proquest.com/docview/993102896 https://www.osti.gov/biblio/22100630 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA4yi7o-iK6Xra5SVEQY2m2T9DKPg6Ms61YWnIF9C0maoLC0y-zsPvjrPblMp4NVRl_aEpI05EtPv5NzCULvaC2FlHkW8UKVESUigSetomSihRA8FaU2scPV1_xkQU8vsovNqYA2umQlYvlzMK7kf1CFMsDVRMn-A7Jdp1AAz4AvXAFhuO6E8XTctLfq0h8D7bIpGbdBMhvXyrJRGxfVXv-AGtuxz2sDjdvZsFuvJhyau4M6ut0Bv5W6iMen8e9KfhWPz7riNRXelHxZOpP-PO7vLRgnjc4lxcvLCTX2F2d3VrYM04JEFCeTvgx1CYn8WqF9gYgT0vu5YuwiTwcEtwlGSGNiAmtNdoA9DLwfj9DedFadfet-rsCPXFSRH5hPFgXNj7vGWxRj1IKoHFIfHqD7QDKcv8O2ZmKpxfwReuh1gnDqAH6M7qjmAN2rvNfDAbp77kB6go6noUU87CEeAtAhmYUbxMMO8ado8fnT_ONJ5I-8iKTJhBhRqjhwMCDJJvV-XXKcAotRVKWC8omSSuisLjTVpSZZLeucp0RoaozbMi80J8_QqGkbdYjCErhxWgKhxhmhOhU8KXghdZnIrE6xIgH6sJ4ltp4HcyzJJXN6YclS5ic0QG-6qlcuCcpQpSMz1cxMqpLfpfHTkisGiNu8bgEK1xAwkGDGLMUb1d5cM2DIhuVO8gA9d9B0LwF-CeovxQF622H1txHkO9SaMgsU6wE12P1tu9w0Yle1DtB7u0j-3DWrzs3txU6jfYn2N5_cERqtljfqFRDclXjtF_0v5V-cAA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+methodology+for+3D+deformable+dosimetry&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Yeo%2C+U.+J.&rft.au=Taylor%2C+M.+L.&rft.au=Dunn%2C+L.&rft.au=Kron%2C+T.&rft.date=2012-04-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=39&rft.issue=4&rft.spage=2203&rft.epage=2213&rft_id=info:doi/10.1118%2F1.3694107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |