A novel methodology for 3D deformable dosimetry

Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simula...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 39; no. 4; pp. 2203 - 2213
Main Authors Yeo, U. J., Taylor, M. L., Dunn, L., Kron, T., Smith, R. L., Franich, R. D.
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. Methods: A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Results: Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field. Conclusions: This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.
AbstractList Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms.PURPOSEInterfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms.A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT.METHODSA modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT.Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field.RESULTSReproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field.This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.CONCLUSIONSThis paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.
Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue‐equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. Methods: A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue‐equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Results: Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter‐FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field. Conclusions: This paper describes the first use of a tissue‐equivalent, 3D dose‐integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three‐dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.
Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field. This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.
Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. Methods: A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Results: Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field. Conclusions: This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.
Author Taylor, M. L.
Franich, R. D.
Smith, R. L.
Dunn, L.
Yeo, U. J.
Kron, T.
Author_xml – sequence: 1
  givenname: U. J.
  surname: Yeo
  fullname: Yeo, U. J.
  organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
– sequence: 2
  givenname: M. L.
  surname: Taylor
  fullname: Taylor, M. L.
  organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett Street, East Melbourne VIC 8006, Australia; and William Buckland Radiotherapy Centre, The Alfred Hospital, The Alfred, P.O. Box 315, Prahran VIC 3181, Australia
– sequence: 3
  givenname: L.
  surname: Dunn
  fullname: Dunn, L.
  organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
– sequence: 4
  givenname: T.
  surname: Kron
  fullname: Kron, T.
  organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia and Physical Sciences, Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett Street, East Melbourne VIC 8006, Australia
– sequence: 5
  givenname: R. L.
  surname: Smith
  fullname: Smith, R. L.
  organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia and William Buckland Radiotherapy Centre, The Alfred Hospital, The Alfred, P.O. Box 315, Prahran VIC 3181, Australia
– sequence: 6
  givenname: R. D.
  surname: Franich
  fullname: Franich, R. D.
  email: rick.franich@rmit.edu.au
  organization: School of Applied Sciences and Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22482642$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22100630$$D View this record in Osti.gov
BookMark eNqN0U1P3DAQBmALbcUuCwf-QBWph6pIYT2283XoYUVbWmkRHOBsOfa4BCXxYmep8u-bbZYKIbbqyXN43tF45ohMWtciIadAzwEgX8A5TwsBNDsgMyYyHgtGiwmZUVqImAmaTMlRCA-U0pQn9JBMGRM5SwWbkcUyat0T1lGD3b0zrnY_-8g6H_EvkcGhaFRZY2RcqAbh-2Pyzqo64MnunZO7b19vL77Hq-vLHxfLVawTQbNYCFSQAKScMmAmVww0IgqEUqgCNZY2MZkVNrc8MdqkCnhphUhpotPMKj4nH8a-LnSVDLrqUN9r17aoO8kYbL9CB_VxVGvvHjcYOtlUQWNdqxbdJsii4EBZXqSDfL-Tm7JBI9e-apTv5fMmBvBpBNq7EDzavwSo3G5ZgtxtebCLV3aYT3WVazuvqvrNRDwmflU19vtby6ubnf88-vDceX9mKf9cUL644JA_--_8v_CT8y-GWxvLfwMShbpR
CODEN MPHYA6
CitedBy_id crossref_primary_10_1016_j_brachy_2022_06_006
crossref_primary_10_1016_j_radphyschem_2023_111009
crossref_primary_10_1088_1361_6560_aae7e7
crossref_primary_10_1088_1742_6596_847_1_012012
crossref_primary_10_1177_1533034615584120
crossref_primary_10_1088_1361_6463_ad0987
crossref_primary_10_1016_j_phro_2024_100647
crossref_primary_10_1002_acm2_12687
crossref_primary_10_1016_j_ejmp_2017_06_005
crossref_primary_10_1088_1742_6596_444_1_012077
crossref_primary_10_1088_1742_6596_444_1_012032
crossref_primary_10_1002_mp_13359
crossref_primary_10_1016_j_radphyschem_2019_108574
crossref_primary_10_1088_1361_6560_aab501
crossref_primary_10_6009_jjrt_2021_JSRT_77_7_733
crossref_primary_10_1088_0031_9155_61_14_R167
crossref_primary_10_1118_1_4811102
crossref_primary_10_1016_j_ejmp_2021_04_007
crossref_primary_10_1088_1742_6596_847_1_012062
crossref_primary_10_1088_0031_9155_59_3_597
crossref_primary_10_1021_acsapm_2c01972
crossref_primary_10_3938_jkps_67_218
crossref_primary_10_1088_1742_6596_1305_1_012055
crossref_primary_10_1118_1_4771962
crossref_primary_10_1016_j_ejmp_2023_102684
crossref_primary_10_1007_s13246_023_01365_x
crossref_primary_10_1088_1742_6596_444_1_012081
crossref_primary_10_1016_j_radphyschem_2018_01_014
crossref_primary_10_1088_1742_6596_444_1_012080
crossref_primary_10_1088_1361_6560_ac1ca2
crossref_primary_10_1088_1361_6560_ac1ca1
crossref_primary_10_1016_j_radmeas_2024_107347
crossref_primary_10_1088_1742_6596_847_1_012006
crossref_primary_10_1007_s00253_016_7489_5
crossref_primary_10_1016_j_brachy_2013_11_006
crossref_primary_10_1088_1742_6596_1305_1_012048
crossref_primary_10_1016_j_radonc_2016_03_007
crossref_primary_10_4236_jmp_2018_913143
crossref_primary_10_1088_2057_1976_aaac68
crossref_primary_10_1088_0031_9155_59_7_1773
crossref_primary_10_1088_1742_6596_1305_1_012002
crossref_primary_10_1088_1361_6560_ad278f
crossref_primary_10_3390_gels8090599
crossref_primary_10_1016_j_brachy_2020_02_002
crossref_primary_10_1088_1742_6596_444_1_012012
crossref_primary_10_1088_2057_1976_ab895a
crossref_primary_10_1002_acm2_12348
crossref_primary_10_1016_j_canrad_2015_06_006
crossref_primary_10_3233_THC_161200
crossref_primary_10_1016_j_ejmp_2021_06_004
crossref_primary_10_6009_jjrt_2023_2153
crossref_primary_10_1016_j_ejmp_2015_01_007
crossref_primary_10_1016_j_prro_2015_01_011
crossref_primary_10_1093_jrr_rrt076
crossref_primary_10_1118_1_4769114
crossref_primary_10_1088_1361_6560_aa70cd
crossref_primary_10_1016_j_ijrobp_2013_05_045
crossref_primary_10_1016_j_ejmp_2017_03_016
crossref_primary_10_1118_1_4736534
crossref_primary_10_1016_j_meddos_2017_08_004
crossref_primary_10_1088_1361_6560_ab9456
crossref_primary_10_1118_1_4819945
crossref_primary_10_1016_j_radmeas_2024_107321
crossref_primary_10_1120_jacmp_v17i2_5778
crossref_primary_10_1118_1_4873682
crossref_primary_10_1088_1742_6596_444_1_012107
crossref_primary_10_1120_jacmp_v15i6_4978
crossref_primary_10_1002_acm2_13890
crossref_primary_10_1088_1361_6560_ac9fa2
crossref_primary_10_1088_1742_6596_573_1_012024
Cites_doi 10.1016/j.ijrobp.2008.07.023
10.1088/0031-9155/47/17/309
10.1088/0031-9155/55/10/003
10.1088/0031-9155/52/10/017
10.1038/nrc2288
10.1667/RR1438.1
10.1088/0031-9155/51/3/012
10.1088/0031-9155/53/3/013
10.1016/0004-3702(81)90024-2
10.1118/1.1881812
10.1088/0031-9155/42/1/008
10.1016/j.ijrobp.2004.07.677
10.3109/0284186X.2010.551665
10.1016/S1361-8415(98)80022-4
10.1118/1.1539039
10.1118/1.3013563
10.1016/j.radonc.2010.07.023
10.1118/1.3496356
10.1118/1.3194750
10.1118/1.2960219
10.1088/0031-9155/53/20/004
10.1118/1.1949749
10.1118/1.2188820
10.1088/0031-9155/49/5/010
10.1088/0031-9155/49/14/003
10.1118/1.3095777
10.1118/1.2192908
10.1088/0031-9155/52/13/022
10.1118/1.1380430
10.1016/j.media.2005.03.003
10.1016/j.ijrobp.2005.10.027
10.1007/BF03178587
10.1109/TNS.2009.2015315
10.1118/1.2836417
10.1007/BF01420984
10.1088/0031-9155/56/5/003
10.1088/0031-9155/50/12/011
10.1118/1.2739812
10.1088/0031-9155/51/11/006
10.1093/rpd/nci225
10.1088/0031-9155/53/20/N02
10.1088/0031-9155/55/5/R01
10.1088/0031-9155/54/2/007
10.1088/0031-9155/57/11/3359
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2012 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2012 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
DOI 10.1118/1.3694107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 2213
ExternalDocumentID 22100630
22482642
10_1118_1_3694107
MP4107
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
ID FETCH-LOGICAL-c5407-44ea1511630212d8a21ceee4e1b4a9ecebf5d7f4f8f35dcd6a13bf44605c67fa3
ISSN 0094-2405
IngestDate Thu May 18 18:35:47 EDT 2023
Fri Jul 11 08:42:09 EDT 2025
Thu Apr 03 06:58:50 EDT 2025
Tue Jul 01 02:38:30 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Wed Jan 22 16:22:56 EST 2025
Fri Jun 21 00:20:00 EDT 2024
Fri Jun 21 00:28:32 EDT 2024
Sun Jul 14 10:05:20 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords organ deformation
dose deformation
optical CT
3D gel dosimetry
Language English
License 0094-2405/2012/39(4)/2203/11/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5407-44ea1511630212d8a21ceee4e1b4a9ecebf5d7f4f8f35dcd6a13bf44605c67fa3
Notes Author to whom correspondence should be addressed. Electronic mail
Telephone: ++61 3 9925 3390; Fax: ++61 3 9925 5290.
rick.franich@rmit.edu.au
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22482642
PQID 993102896
PQPubID 23479
PageCount 11
ParticipantIDs scitation_primary_10_1118_1_3694107
scitation_primary_10_1118_1_3694107A_novel_methodology
osti_scitechconnect_22100630
pubmed_primary_22482642
wiley_primary_10_1118_1_3694107_MP4107
proquest_miscellaneous_993102896
crossref_primary_10_1118_1_3694107
crossref_citationtrail_10_1118_1_3694107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2012
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Verellen, De Ridder, Linthout, Tournel, Soete, Storme (c17) 2007; 7
Kron, Wong, Rolfo, Pham, Cramb, Foroudi (c20) 2010; 97
Rosu, Chetty, Balter, Kessler, McShan, Ten Haken (c8) 2005; 32
Taylor, Franich, Trapp, Johnston (c33) 2008; 31
Serban, Heath, Stroian, Collins, Seuntjens (c23) 2008; 35
Godley, Ahunbay, Peng, Li (c16) 2009; 36
Horn, Schunck (c1) 1981; 17
Olding, Holmes, Schreiner (c40) 2010; 55
Kashani (c12) 2008; 35
Keall, Baldock (c32) 1999; 22
Brock, Dawson, Sharpe, Moseley, Jaffray (c15) 2006; 64
Rogelj, Kovačič (c5) 2006; 10
Flampouri, Jiang, Sharp, Wolfgang, Patel, Choi (c9) 2006; 51
Taylor, Franich, Trapp, Johnston (c36) 2009; 56
Duan, Shen, Fiveash, Popple, Brezovich (c25) 2006; 33
Bosi, Naseri, Puran, Davies, Baldock (c39) 2007; 52
Lu, Chen, Olivera, Ruchala, Mackie (c3) 2004; 49
Brock, McShan, Ten Haken, Hollister, Dawson, Balter (c7) 2003; 30
Kashani, Hub, Kessler, Balter (c11) 2007; 34
Janssens, de Xivry, Fekkes, Dekker, Macq, Lambin, van Elmpt (c21) 2009; 36
Schaly, Kempe, Bauman, Battista, Dyk (c6) 2004; 49
Olding, Schreiner (c41) 2011; 56
Wang, Dong, Lii, Lee, de Crevoisier, Mohan, Cox, Kuban, Cheung (c14) 2005; 61
Guerrero, Zhang, Segars, Huang, Bilton, Ibbott, Dong, Forster, Lin (c10) 2005; 115
Wang (c13) 2005; 50
Deene, Vergote, Claeys, Wagter (c30) 2006; 51
Oldham, Siewerdsen, Shetty, Jaffray (c37) 2001; 28
Seco (c24) 2010; 37
Barron, Fleet, Beauchemin (c2) 1994; 12
Kerkhof, Van der Put, Raaymakers, Lagendijk (c44) 2008; 53
Bosi, Brown, Sarabipour, De Deene, Baldock (c42) 2009; 54
Lopatiuk-Tirpak, Langen, Meeks, Kupelian, Zeidan, Maryanski (c27) 2008; 35
Yan, Vicini, Wong, Martinez (c18) 1997; 42
Taylor, Franich, Trapp, Johnston (c34) 2009; 171
van der Wielen, Mutanga, Incrocci, Kirkels, Vasquez Osorio, Hoogeman, Heijmen, de Boer (c45) 2008; 72
Zhong, Weiss, Siebers (c22) 2008; 53
Venning, Nitschke, Keall, Baldock (c31) 2005; 32
Thirion (c4) 1998; 2
Baldock, Deene, Doran, Ibbott, Jirasek, Lepage, McAuley, Oldham, Schreiner (c28) 2010; 55
Taylor, Franich, Johnston, Millar, Trapp (c35) 2007; 52
Wu, Jeraj, Olivera, Mackie (c19) 2002; 47
Taylor, Kron, Franich (c29) 2011; 50
Wuu, Xu (c38) 2006; 33
Ceberg, Karlsson, Gustavsson, Wittgren, Bäck (c26) 2008; 53
Kashani, R.; Hub, M.; Kessler, M.; Balter, J.M. 2007; 34
Schaly, B.; Kempe, J.; Bauman, G.; Battista, J.; Dyk, J. 2004; 49
Wang, H. 2005; 50
Oldham, M.; Siewerdsen, J.; Shetty, A.; Jaffray, D. 2001; 28
Brock, K.; McShan, D.; Ten Haken, R.; Hollister, S.; Dawson, L.; Balter, J. 2003; 30
Rosu, M.; Chetty, I.; Balter, J.; Kessler, M.; McShan, D.; Ten Haken, R. 2005; 32
Wuu, C.; Xu, Y. 2006; 33
van der Wielen, G.; Mutanga, T.; Incrocci, L.; Kirkels, W.; Vasquez Osorio, E.; Hoogeman, M.; Heijmen, B.; de Boer, H. 2008; 72
Keall, P.; Baldock, C. 1999; 22
Bosi, S.; Naseri, P.; Puran, A.; Davies, J.; Baldock, C. 2007; 52
Brock, K.; Dawson, L.; Sharpe, M.; Moseley, D.; Jaffray, D. 2006; 64
Seco, J. 2010; 37
Horn, B.; Schunck, B. 1981; 17
Wang, H.; Dong, L.; Lii, M.; Lee, A.; de Crevoisier, R.; Mohan, R.; Cox, J.; Kuban, D.; Cheung, R. 2005; 61
Rogelj, P.; Kovačič, S. 2006; 10
Taylor, M.; Kron, T.; Franich, R. 2011; 50
Taylor, M.; Franich, R.; Trapp, J.; Johnston, P. 2009; 56
Serban, M.; Heath, E.; Stroian, G.; Collins, D.; Seuntjens, J. 2008; 35
Godley, A.; Ahunbay, E.; Peng, C.; Li, X. 2009; 36
Barron, J.; Fleet, D.; Beauchemin, S. 1994; 12
Guerrero, T.; Zhang, G.; Segars, W.; Huang, T.; Bilton, S.; Ibbott, G.; Dong, L.; Forster, K.; Lin, K. 2005; 115
Wu, C.; Jeraj, R.; Olivera, G.; Mackie, T. 2002; 47
Taylor, M.; Franich, R.; Trapp, J.; Johnston, P. 2008; 31
Flampouri, S.; Jiang, S.; Sharp, G.; Wolfgang, J.; Patel, A.; Choi, N. 2006; 51
Lopatiuk-Tirpak, O.; Langen, K.; Meeks, S.; Kupelian, P.; Zeidan, O.; Maryanski, M. 2008; 35
Taylor, M.; Franich, R.; Trapp, J.; Johnston, P. 2009; 171
Janssens, G.; de Xivry, J.; Fekkes, S.; Dekker, A.; Macq, B.; Lambin, P.; van Elmpt, W. 2009; 36
Olding, T.; Holmes, O.; Schreiner, L. 2010; 55
Olding, T.; Schreiner, L. 2011; 56
Kerkhof, E.; Van der Put, R.; Raaymakers, B.; Lagendijk, J. 2008; 53
Ceberg, S.; Karlsson, A.; Gustavsson, H.; Wittgren, L.; Bäck, S. 2008; 53
Thirion, J. 1998; 2
Verellen, D.; De Ridder, M.; Linthout, N.; Tournel, K.; Soete, G.; Storme, G. 2007; 7
Yan, D.; Vicini, F.; Wong, J.; Martinez, A. 1997; 42
Kron, T.; Wong, J.; Rolfo, A.; Pham, D.; Cramb, J.; Foroudi, F. 2010; 97
Kashani, R. 2008; 35
Bosi, S.; Brown, S.; Sarabipour, S.; De Deene, Y.; Baldock, C. 2009; 54
Zhong, H.; Weiss, E.; Siebers, J. 2008; 53
Venning, A.; Nitschke, K.; Keall, P.; Baldock, C. 2005; 32
Lu, W.; Chen, M.; Olivera, G.; Ruchala, K.; Mackie, T. 2004; 49
Baldock, C.; Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K.; Oldham, M.; Schreiner, L. 2010; 55
Duan, J.; Shen, S.; Fiveash, J.; Popple, R.; Brezovich, I. 2006; 33
Taylor, M.; Franich, R.; Johnston, P.; Millar, R.; Trapp, J. 2007; 52
Deene, Y.; Vergote, K.; Claeys, C.; Wagter, C. 2006; 51
2010; 55
2010; 97
2010; 37
2006; 51
2011
2004; 49
2006; 10
1997; 42
2006; 33
2005; 115
1999; 22
2008; 35
2011; 56
2001; 28
2005; 61
2008; 53
2008; 31
2007; 52
2008; 72
2003; 30
2007; 34
2009; 56
2009; 36
2002; 47
2006; 64
2009; 54
2009; 171
2011; 50
1994; 12
2005; 32
2007; 7
1981; 17
1998; 2
2005; 50
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
Keall P. (e_1_2_8_33_1) 1999; 22
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 10
  start-page: 484
  year: 2006
  ident: c5
  article-title: Symmetric image registration
  publication-title: Med. Image Anal.
– volume: 47
  start-page: 3181
  year: 2002
  ident: c19
  article-title: Re-optimization in adaptive radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 33
  start-page: 1412
  year: 2006
  ident: c38
  article-title: Three-dimensional dose verification for intensity modulated radiation therapy using optical CT based polymer gel dosimetry
  publication-title: Med. Phys.
– volume: 31
  start-page: 131
  year: 2008
  ident: c33
  article-title: The effective atomic number of dosimetric gels
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 53
  start-page: N387
  year: 2008
  ident: c26
  article-title: Verification of dynamic radiotherapy: The potential for 3D dosimetry under respiratory-like motion using polymer gel
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 2785
  year: 2007
  ident: c11
  article-title: Technical note: A physical phantom for assessment of accuracy of deformable alignment algorithms
  publication-title: Med. Phys.
– volume: 22
  start-page: 85
  year: 1999
  ident: c32
  article-title: A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 51
  start-page: 653
  year: 2006
  ident: c30
  article-title: The fundamental radiation properties of normoxic polymer gel dosimeters: A comparison between a methacrylic acid based gel and acrylamide based gels
  publication-title: Phys. Med. Biol.
– volume: 61
  start-page: 725
  year: 2005
  ident: c14
  article-title: Implementation and validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 32
  start-page: 1047
  year: 2005
  ident: c31
  article-title: Radiological properties of normoxic polymer gel dosimeters
  publication-title: Med. Phys.
– volume: 56
  start-page: 1259
  year: 2011
  ident: c41
  article-title: Cone-beam optical computed tomography for gel dosimetry II: Imaging protocols
  publication-title: Phys. Med. Biol.
– volume: 36
  start-page: 4268
  year: 2009
  ident: c21
  article-title: Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy
  publication-title: Med. Phys.
– volume: 171
  start-page: 123
  year: 2009
  ident: c34
  article-title: Electron interaction with gel dosimeters: Effective atomic numbers for collisional, radiative and total interaction processes
  publication-title: Radiat. Res.
– volume: 35
  start-page: 3847
  year: 2008
  ident: c27
  article-title: Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries
  publication-title: Med. Phys.
– volume: 50
  start-page: 483
  year: 2011
  ident: c29
  article-title: A contemporary review of stereotactic radiotherapy: Inherent dosimetric complexities and the potential for detriment
  publication-title: Acta. Oncol.
– volume: 97
  start-page: 485
  year: 2010
  ident: c20
  article-title: Adaptive radiotherapy for bladder cancer reduces integral dose despite daily volumetric imaging
  publication-title: Radiat. Oncol.
– volume: 7
  start-page: 949
  year: 2007
  ident: c17
  article-title: Innovations in image-guided radiotherapy
  publication-title: Nat. Rev. Cancer
– volume: 72
  start-page: 1604
  year: 2008
  ident: c45
  article-title: Deformation of prostate and seminal vesicles relative to intraprostatic fiducial markers
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 35
  start-page: 1094
  year: 2008
  ident: c23
  article-title: A deformable phantom for 4D radiotherapy verification: Design and image registration evaluation
  publication-title: Med. Phys.
– volume: 49
  start-page: 3067
  year: 2004
  ident: c3
  article-title: Fast free-form deformable registration via calculus of variations
  publication-title: Phys. Med. Biol.
– volume: 12
  start-page: 43
  year: 1994
  ident: c2
  article-title: Performance of optical flow techniques
  publication-title: Int. J. Comput. Vis
– volume: 2
  start-page: 243
  year: 1998
  ident: c4
  article-title: Image matching as a diffusion process: An analogy with Maxwell’s demons
  publication-title: Med. Image Anal.
– volume: 51
  start-page: 2763
  year: 2006
  ident: c9
  article-title: Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations
  publication-title: Phys. Med. Biol.
– volume: 49
  start-page: 791
  year: 2004
  ident: c6
  article-title: Tracking the dose distribution in radiation therapy by accounting for variable anatomy
  publication-title: Phys. Med. Biol.
– volume: 28
  start-page: 1436
  year: 2001
  ident: c37
  article-title: High resolution gel-dosimetry by optical-CT and MR scanning
  publication-title: Med. Phys.
– volume: 55
  start-page: 2819
  year: 2010
  ident: c40
  article-title: Cone beam optical computed tomography for gel dosimetry I: Scanner characterization
  publication-title: Phys. Med. Biol.
– volume: 50
  start-page: 2887
  year: 2005
  ident: c13
  article-title: Validation of an accelerated’demons’ algorithm for deformable image registration in radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 42
  start-page: 123
  year: 1997
  ident: c18
  article-title: Adaptive radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 30
  start-page: 290
  year: 2003
  ident: c7
  article-title: Inclusion of organ deformation in dose calculations
  publication-title: Med. Phys.
– volume: 35
  start-page: 5944
  year: 2008
  ident: c12
  article-title: Objective assessment of deformable image registration in radiotherapy: A multi-institution study
  publication-title: Med. Phys.
– volume: 53
  start-page: 719
  year: 2008
  ident: c22
  article-title: Assessment of dose reconstruction errors in image-guided radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 17
  start-page: 185
  year: 1981
  ident: c1
  article-title: Determining optical flow
  publication-title: Artif. Intell.
– volume: 37
  start-page: 5850
  year: 2010
  ident: c24
  article-title: Use of a realistic breathing lung phantom to evaluate dose delivery errors
  publication-title: Med. Phys.
– volume: 53
  start-page: 5623
  year: 2008
  ident: c44
  article-title: Variation in target and rectum doses due to prostate deformation: An assessment by repeated MR imaging and treatment planning
  publication-title: Phys. Med. Biol.
– volume: 115
  start-page: 497
  year: 2005
  ident: c10
  article-title: Elastic image mapping for 4-D dose estimation in thoracic radiotherapy
  publication-title: Radiat. Prot. Dosim.
– volume: 52
  start-page: 3991
  year: 2007
  ident: c35
  article-title: Systematic variations in polymer gel dosimeter calibration due to container influence and deviations from water equivalence
  publication-title: Phys. Med. Biol.
– volume: 33
  start-page: 1380
  year: 2006
  ident: c25
  article-title: Dosimetric and radiobiological impact of dose fractionation on respiratory motion induced IMRT delivery errors: A volumetric dose measurement study
  publication-title: Med. Phys.
– volume: 56
  start-page: 429
  year: 2009
  ident: c36
  article-title: A comparative study on the effect of calibration conditions on the water equivalence of a range of gel dosimeters
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 64
  start-page: 1245
  year: 2006
  ident: c15
  article-title: Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 52
  start-page: 2893
  year: 2007
  ident: c39
  article-title: Initial investigation of a novel light-scattering gel phantom for evaluation of optical CT scanners for radiotherapy gel dosimetry
  publication-title: Phys. Med. Biol.
– volume: 36
  start-page: 1433
  year: 2009
  ident: c16
  article-title: Automated registration of large deformations for adaptive radiation therapy of prostate cancer
  publication-title: Med. Phys.
– volume: 54
  start-page: 275
  year: 2009
  ident: c42
  article-title: Modelling optical scattering artefacts for varying pathlength in a gel dosimeter phantom
  publication-title: Phys. Med. Biol.
– volume: 32
  start-page: 2487
  year: 2005
  ident: c8
  article-title: Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications
  publication-title: Med. Phys.
– volume: 55
  start-page: R1
  year: 2010
  ident: c28
  article-title: Polymer gel dosimetry
  publication-title: Phys. Med. Biol.
– volume: 72
  start-page: 1604-1611
  year: 2008
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
  doi: 10.1016/j.ijrobp.2008.07.023
– volume: 47
  start-page: 3181-3195
  year: 2002
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/47/17/309
– volume: 55
  start-page: 2819-2840
  year: 2010
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/10/003
– volume: 52
  start-page: 2893-2903
  year: 2007
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/10/017
– volume: 7
  start-page: 949-960
  year: 2007
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2288
– volume: 171
  start-page: 123-126
  year: 2009
  publication-title: Radiat. Res.
  doi: 10.1667/RR1438.1
– volume: 51
  start-page: 653-673
  year: 2006
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/3/012
– volume: 53
  start-page: 719-737
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/3/013
– volume: 17
  start-page: 185-203
  year: 1981
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(81)90024-2
– volume: 32
  start-page: 1047-1053
  year: 2005
  publication-title: Med. Phys.
  doi: 10.1118/1.1881812
– volume: 42
  start-page: 123-132
  year: 1997
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/42/1/008
– volume: 61
  start-page: 725-735
  year: 2005
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
  doi: 10.1016/j.ijrobp.2004.07.677
– volume: 50
  start-page: 483-508
  year: 2011
  publication-title: Acta. Oncol.
  doi: 10.3109/0284186X.2010.551665
– volume: 22
  start-page: 85-91
  year: 1999
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 2
  start-page: 243-260
  year: 1998
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(98)80022-4
– volume: 30
  start-page: 290-295
  year: 2003
  publication-title: Med. Phys.
  doi: 10.1118/1.1539039
– volume: 35
  start-page: 5944-5953
  year: 2008
  publication-title: Med. Phys.
  doi: 10.1118/1.3013563
– volume: 97
  start-page: 485-487
  year: 2010
  publication-title: Radiat. Oncol.
  doi: 10.1016/j.radonc.2010.07.023
– volume: 37
  start-page: 5850-5857
  year: 2010
  publication-title: Med. Phys.
  doi: 10.1118/1.3496356
– volume: 36
  start-page: 4268-4276
  year: 2009
  publication-title: Med. Phys.
  doi: 10.1118/1.3194750
– volume: 35
  start-page: 3847-3859
  year: 2008
  publication-title: Med. Phys.
  doi: 10.1118/1.2960219
– volume: 53
  start-page: 5623-5634
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/20/004
– volume: 32
  start-page: 2487-2495
  year: 2005
  publication-title: Med. Phys.
  doi: 10.1118/1.1949749
– volume: 33
  start-page: 1412-1419
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2188820
– volume: 49
  start-page: 791-805
  year: 2004
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/49/5/010
– volume: 49
  start-page: 3067-3087
  year: 2004
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/49/14/003
– volume: 36
  start-page: 1433-1441
  year: 2009
  publication-title: Med. Phys.
  doi: 10.1118/1.3095777
– volume: 33
  start-page: 1380-1387
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2192908
– volume: 52
  start-page: 3991-4005
  year: 2007
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/13/022
– volume: 28
  start-page: 1436-1445
  year: 2001
  publication-title: Med. Phys.
  doi: 10.1118/1.1380430
– volume: 10
  start-page: 484-493
  year: 2006
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2005.03.003
– volume: 64
  start-page: 1245-1254
  year: 2006
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
  doi: 10.1016/j.ijrobp.2005.10.027
– volume: 31
  start-page: 131-138
  year: 2008
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/BF03178587
– volume: 56
  start-page: 429-436
  year: 2009
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2009.2015315
– volume: 35
  start-page: 1094-1102
  year: 2008
  publication-title: Med. Phys.
  doi: 10.1118/1.2836417
– volume: 12
  start-page: 43-77
  year: 1994
  publication-title: Int. J. Comput. Vis
  doi: 10.1007/BF01420984
– volume: 56
  start-page: 1259-1279
  year: 2011
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/5/003
– volume: 50
  start-page: 2887-2905
  year: 2005
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/50/12/011
– volume: 34
  start-page: 2785-2788
  year: 2007
  publication-title: Med. Phys.
  doi: 10.1118/1.2739812
– volume: 51
  start-page: 2763-2779
  year: 2006
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/11/006
– volume: 115
  start-page: 497-502
  year: 2005
  publication-title: Radiat. Prot. Dosim.
  doi: 10.1093/rpd/nci225
– volume: 53
  start-page: N387-N396
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/20/N02
– volume: 55
  start-page: R1-R63
  year: 2010
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/5/R01
– volume: 54
  start-page: 275-283
  year: 2009
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/2/007
– volume: 47
  start-page: 3181
  year: 2002
  end-page: 3195
  article-title: Re‐optimization in adaptive radiotherapy
  publication-title: Phys. Med. Biol.
– year: 2011
– volume: 50
  start-page: 483
  year: 2011
  end-page: 508
  article-title: A contemporary review of stereotactic radiotherapy: Inherent dosimetric complexities and the potential for detriment
  publication-title: Acta. Oncol.
– volume: 30
  start-page: 290
  year: 2003
  end-page: 295
  article-title: Inclusion of organ deformation in dose calculations
  publication-title: Med. Phys.
– volume: 50
  start-page: 2887
  year: 2005
  end-page: 2905
  article-title: Validation of an accelerated'demons' algorithm for deformable image registration in radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 35
  start-page: 5944
  year: 2008
  end-page: 5953
  article-title: Objective assessment of deformable image registration in radiotherapy: A multi‐institution study
  publication-title: Med. Phys.
– volume: 7
  start-page: 949
  year: 2007
  end-page: 960
  article-title: Innovations in image‐guided radiotherapy
  publication-title: Nat. Rev. Cancer
– volume: 52
  start-page: 2893
  year: 2007
  end-page: 2903
  article-title: Initial investigation of a novel light‐scattering gel phantom for evaluation of optical CT scanners for radiotherapy gel dosimetry
  publication-title: Phys. Med. Biol.
– volume: 53
  start-page: 5623
  year: 2008
  end-page: 5634
  article-title: Variation in target and rectum doses due to prostate deformation: An assessment by repeated MR imaging and treatment planning
  publication-title: Phys. Med. Biol.
– volume: 12
  start-page: 43
  year: 1994
  end-page: 77
  article-title: Performance of optical flow techniques
  publication-title: Int. J. Comput. Vis
– volume: 53
  start-page: 719
  year: 2008
  end-page: 737
  article-title: Assessment of dose reconstruction errors in image‐guided radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 32
  start-page: 1047
  year: 2005
  end-page: 1053
  article-title: Radiological properties of normoxic polymer gel dosimeters
  publication-title: Med. Phys.
– volume: 34
  start-page: 2785
  year: 2007
  end-page: 2788
  article-title: Technical note: A physical phantom for assessment of accuracy of deformable alignment algorithms
  publication-title: Med. Phys.
– volume: 36
  start-page: 1433
  year: 2009
  end-page: 1441
  article-title: Automated registration of large deformations for adaptive radiation therapy of prostate cancer
  publication-title: Med. Phys.
– volume: 33
  start-page: 1380
  year: 2006
  end-page: 1387
  article-title: Dosimetric and radiobiological impact of dose fractionation on respiratory motion induced IMRT delivery errors: A volumetric dose measurement study
  publication-title: Med. Phys.
– volume: 55
  start-page: 2819
  year: 2010
  end-page: 2840
  article-title: Cone beam optical computed tomography for gel dosimetry I: Scanner characterization
  publication-title: Phys. Med. Biol.
– volume: 72
  start-page: 1604
  year: 2008
  end-page: 1611
  article-title: Deformation of prostate and seminal vesicles relative to intraprostatic fiducial markers
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 36
  start-page: 4268
  year: 2009
  end-page: 4276
  article-title: Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy
  publication-title: Med. Phys.
– volume: 35
  start-page: 3847
  year: 2008
  end-page: 3859
  article-title: Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries
  publication-title: Med. Phys.
– volume: 49
  start-page: 3067
  year: 2004
  end-page: 3087
  article-title: Fast free‐form deformable registration via calculus of variations
  publication-title: Phys. Med. Biol.
– volume: 10
  start-page: 484
  year: 2006
  end-page: 493
  article-title: Symmetric image registration
  publication-title: Med. Image Anal.
– volume: 64
  start-page: 1245
  year: 2006
  end-page: 1254
  article-title: Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 115
  start-page: 497
  year: 2005
  end-page: 502
  article-title: Elastic image mapping for 4‐D dose estimation in thoracic radiotherapy
  publication-title: Radiat. Prot. Dosim.
– volume: 171
  start-page: 123
  year: 2009
  end-page: 126
  article-title: Electron interaction with gel dosimeters: Effective atomic numbers for collisional, radiative and total interaction processes
  publication-title: Radiat. Res.
– volume: 32
  start-page: 2487
  year: 2005
  end-page: 2495
  article-title: Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications
  publication-title: Med. Phys.
– volume: 55
  start-page: R1
  year: 2010
  end-page: R63
  article-title: Polymer gel dosimetry
  publication-title: Phys. Med. Biol.
– volume: 42
  start-page: 123
  year: 1997
  end-page: 132
  article-title: Adaptive radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 35
  start-page: 1094
  year: 2008
  end-page: 1102
  article-title: A deformable phantom for 4D radiotherapy verification: Design and image registration evaluation
  publication-title: Med. Phys.
– volume: 37
  start-page: 5850
  year: 2010
  end-page: 5857
  article-title: Use of a realistic breathing lung phantom to evaluate dose delivery errors
  publication-title: Med. Phys.
– volume: 51
  start-page: 653
  year: 2006
  end-page: 673
  article-title: The fundamental radiation properties of normoxic polymer gel dosimeters: A comparison between a methacrylic acid based gel and acrylamide based gels
  publication-title: Phys. Med. Biol.
– volume: 61
  start-page: 725
  year: 2005
  end-page: 735
  article-title: Implementation and validation of a three‐dimensional deformable registration algorithm for targeted prostate cancer radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 97
  start-page: 485
  year: 2010
  end-page: 487
  article-title: Adaptive radiotherapy for bladder cancer reduces integral dose despite daily volumetric imaging
  publication-title: Radiat. Oncol.
– volume: 22
  start-page: 85
  year: 1999
  end-page: 91
  article-title: A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 52
  start-page: 3991
  year: 2007
  end-page: 4005
  article-title: Systematic variations in polymer gel dosimeter calibration due to container influence and deviations from water equivalence
  publication-title: Phys. Med. Biol.
– volume: 56
  start-page: 429
  year: 2009
  end-page: 436
  article-title: A comparative study on the effect of calibration conditions on the water equivalence of a range of gel dosimeters
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 28
  start-page: 1436
  year: 2001
  end-page: 1445
  article-title: High resolution gel‐dosimetry by optical‐CT and MR scanning
  publication-title: Med. Phys.
– volume: 54
  start-page: 275
  year: 2009
  end-page: 283
  article-title: Modelling optical scattering artefacts for varying pathlength in a gel dosimeter phantom
  publication-title: Phys. Med. Biol.
– volume: 33
  start-page: 1412
  year: 2006
  end-page: 1419
  article-title: Three‐dimensional dose verification for intensity modulated radiation therapy using optical CT based polymer gel dosimetry
  publication-title: Med. Phys.
– volume: 53
  start-page: N387
  year: 2008
  end-page: N396
  article-title: Verification of dynamic radiotherapy: The potential for 3D dosimetry under respiratory‐like motion using polymer gel
  publication-title: Phys. Med. Biol.
– volume: 17
  start-page: 185
  year: 1981
  end-page: 203
  article-title: Determining optical flow
  publication-title: Artif. Intell.
– volume: 31
  start-page: 131
  year: 2008
  end-page: 138
  article-title: The effective atomic number of dosimetric gels
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 2
  start-page: 243
  year: 1998
  end-page: 260
  article-title: Image matching as a diffusion process: An analogy with Maxwell's demons
  publication-title: Med. Image Anal.
– volume: 49
  start-page: 791
  year: 2004
  end-page: 805
  article-title: Tracking the dose distribution in radiation therapy by accounting for variable anatomy
  publication-title: Phys. Med. Biol.
– volume: 56
  start-page: 1259
  year: 2011
  end-page: 1279
  article-title: Cone‐beam optical computed tomography for gel dosimetry II: Imaging protocols
  publication-title: Phys. Med. Biol.
– volume: 51
  start-page: 2763
  year: 2006
  end-page: 2779
  article-title: Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D‐CT data and Monte Carlo simulations
  publication-title: Phys. Med. Biol.
– ident: e_1_2_8_25_1
  doi: 10.1118/1.3496356
– ident: e_1_2_8_4_1
  doi: 10.1088/0031-9155/49/14/003
– ident: e_1_2_8_5_1
  doi: 10.1016/S1361-8415(98)80022-4
– ident: e_1_2_8_20_1
  doi: 10.1088/0031-9155/47/17/309
– ident: e_1_2_8_13_1
  doi: 10.1118/1.3013563
– ident: e_1_2_8_34_1
  doi: 10.1007/BF03178587
– ident: e_1_2_8_9_1
  doi: 10.1118/1.1949749
– ident: e_1_2_8_28_1
  doi: 10.1118/1.2960219
– ident: e_1_2_8_44_1
  doi: 10.1088/0031-9155/57/11/3359
– ident: e_1_2_8_29_1
  doi: 10.1088/0031-9155/55/5/R01
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ijrobp.2004.07.677
– ident: e_1_2_8_43_1
  doi: 10.1088/0031-9155/54/2/007
– ident: e_1_2_8_8_1
  doi: 10.1118/1.1539039
– ident: e_1_2_8_21_1
  doi: 10.1016/j.radonc.2010.07.023
– ident: e_1_2_8_22_1
  doi: 10.1118/1.3194750
– ident: e_1_2_8_11_1
  doi: 10.1093/rpd/nci225
– ident: e_1_2_8_41_1
  doi: 10.1088/0031-9155/55/10/003
– ident: e_1_2_8_46_1
  doi: 10.1016/j.ijrobp.2008.07.023
– ident: e_1_2_8_7_1
  doi: 10.1088/0031-9155/49/5/010
– ident: e_1_2_8_2_1
  doi: 10.1016/0004-3702(81)90024-2
– ident: e_1_2_8_10_1
  doi: 10.1088/0031-9155/51/11/006
– ident: e_1_2_8_14_1
  doi: 10.1088/0031-9155/50/12/011
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ijrobp.2005.10.027
– volume: 22
  start-page: 85
  year: 1999
  ident: e_1_2_8_33_1
  article-title: A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry
  publication-title: Australas. Phys. Eng. Sci. Med.
– ident: e_1_2_8_24_1
  doi: 10.1118/1.2836417
– ident: e_1_2_8_39_1
  doi: 10.1118/1.2188820
– ident: e_1_2_8_26_1
  doi: 10.1118/1.2192908
– ident: e_1_2_8_6_1
  doi: 10.1016/j.media.2005.03.003
– ident: e_1_2_8_42_1
  doi: 10.1088/0031-9155/56/5/003
– ident: e_1_2_8_3_1
  doi: 10.1007/BF01420984
– ident: e_1_2_8_19_1
  doi: 10.1088/0031-9155/42/1/008
– ident: e_1_2_8_31_1
  doi: 10.1088/0031-9155/51/3/012
– ident: e_1_2_8_36_1
  doi: 10.1088/0031-9155/52/13/022
– ident: e_1_2_8_12_1
  doi: 10.1118/1.2739812
– ident: e_1_2_8_18_1
  doi: 10.1038/nrc2288
– ident: e_1_2_8_40_1
  doi: 10.1088/0031-9155/52/10/017
– ident: e_1_2_8_32_1
  doi: 10.1118/1.1881812
– ident: e_1_2_8_30_1
  doi: 10.3109/0284186X.2010.551665
– ident: e_1_2_8_27_1
  doi: 10.1088/0031-9155/53/20/N02
– ident: e_1_2_8_23_1
  doi: 10.1088/0031-9155/53/3/013
– ident: e_1_2_8_37_1
  doi: 10.1109/TNS.2009.2015315
– ident: e_1_2_8_38_1
  doi: 10.1118/1.1380430
– ident: e_1_2_8_35_1
  doi: 10.1667/RR1438.1
– ident: e_1_2_8_45_1
  doi: 10.1088/0031-9155/53/20/004
– ident: e_1_2_8_17_1
  doi: 10.1118/1.3095777
SSID ssj0006350
Score 2.3206089
Snippet Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work...
Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to...
Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work...
SourceID osti
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2203
SubjectTerms 3D gel dosimetry
ALGORITHMS
aluminium
Anatomy
biological organs
biomechanics
Calibration
CAT SCANNING
COMPRESSORS
Computed tomography
Computerised tomographs
computerised tomography
DEFORMATION
DELIVERY
Digital computing or data processing equipment or methods, specially adapted for specific applications
DISTRIBUTION
dose deformation
DOSEMETERS
dosimeters
dosimetry
Dosimetry/exposure assessment
Elastic Modulus
Electrical, thermal, and mechanical properties of biological matter
GELS
Gels - chemistry
Gels - radiation effects
HEALTH HAZARDS
IRRADIATION
Materials Testing
Mechanical and electrical properties of tissues and organs
medical computing
Medical imaging
MEMBRANES
optical CT
organ deformation
PHANTOMS
polymer gels
Polymers
Quantum dots
Radiation Dosage
RADIATION DOSE DISTRIBUTIONS
RADIATION DOSES
RADIATION PROTECTION AND DOSIMETRY
radiation therapy
RADIOLOGY AND NUCLEAR MEDICINE
Radiometry - instrumentation
RADIOTHERAPY
READOUT SYSTEMS
Reproducibility of Results
Sensitivity and Specificity
Tomography, X-Ray Computed - methods
VERIFICATION
Title A novel methodology for 3D deformable dosimetry
URI http://dx.doi.org/10.1118/1.3694107
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3694107
https://www.ncbi.nlm.nih.gov/pubmed/22482642
https://www.proquest.com/docview/993102896
https://www.osti.gov/biblio/22100630
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA4yi7o-iK6Xra5SVEQY2m2T9DKPg6Ms61YWnIF9C0maoLC0y-zsPvjrPblMp4NVRl_aEpI05EtPv5NzCULvaC2FlHkW8UKVESUigSetomSihRA8FaU2scPV1_xkQU8vsovNqYA2umQlYvlzMK7kf1CFMsDVRMn-A7Jdp1AAz4AvXAFhuO6E8XTctLfq0h8D7bIpGbdBMhvXyrJRGxfVXv-AGtuxz2sDjdvZsFuvJhyau4M6ut0Bv5W6iMen8e9KfhWPz7riNRXelHxZOpP-PO7vLRgnjc4lxcvLCTX2F2d3VrYM04JEFCeTvgx1CYn8WqF9gYgT0vu5YuwiTwcEtwlGSGNiAmtNdoA9DLwfj9DedFadfet-rsCPXFSRH5hPFgXNj7vGWxRj1IKoHFIfHqD7QDKcv8O2ZmKpxfwReuh1gnDqAH6M7qjmAN2rvNfDAbp77kB6go6noUU87CEeAtAhmYUbxMMO8ado8fnT_ONJ5I-8iKTJhBhRqjhwMCDJJvV-XXKcAotRVKWC8omSSuisLjTVpSZZLeucp0RoaozbMi80J8_QqGkbdYjCErhxWgKhxhmhOhU8KXghdZnIrE6xIgH6sJ4ltp4HcyzJJXN6YclS5ic0QG-6qlcuCcpQpSMz1cxMqpLfpfHTkisGiNu8bgEK1xAwkGDGLMUb1d5cM2DIhuVO8gA9d9B0LwF-CeovxQF622H1txHkO9SaMgsU6wE12P1tu9w0Yle1DtB7u0j-3DWrzs3txU6jfYn2N5_cERqtljfqFRDclXjtF_0v5V-cAA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+methodology+for+3D+deformable+dosimetry&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Yeo%2C+U.+J.&rft.au=Taylor%2C+M.+L.&rft.au=Dunn%2C+L.&rft.au=Kron%2C+T.&rft.date=2012-04-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=39&rft.issue=4&rft.spage=2203&rft.epage=2213&rft_id=info:doi/10.1118%2F1.3694107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon