Iron acquisition within host cells and the pathogenicity of Leishmania
Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, becaus...
Saved in:
Published in | Cellular microbiology Vol. 10; no. 2; pp. 293 - 300 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.02.2008
Blackwell Publishing Ltd Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe²⁺ and Mn²⁺ ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania, indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens. Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron-poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe²⁺ transporter that is required for intracellular growth and virulence. |
---|---|
AbstractList | Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe2+ and Mn2+ ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania , indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens. Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron-poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe2+ transporter that is required for intracellular growth and virulence. Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe²⁺ and Mn²⁺ ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania, indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens. Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron-poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe²⁺ transporter that is required for intracellular growth and virulence. Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe 2+ and Mn 2+ ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania , indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens. Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron-poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe 2+ transporter that is required for intracellular growth and virulence. Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe(2+) and Mn(2+) ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania, indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens. Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron-poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe(2+) transporter that is required for intracellular growth and virulence. Summary Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe2+ and Mn2+ ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania, indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens. Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron‐poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe2+ transporter that is required for intracellular growth and virulence. |
Author | Andrews, Norma W Huynh, Chau |
Author_xml | – sequence: 1 fullname: Huynh, Chau – sequence: 2 fullname: Andrews, Norma W |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18070118$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkVuP0zAQhS20iL3AX4CIB94axtc4DyChil0qFfEA-zxyEqdxldrdOGG3_34dupSLX3yk881oZs4lOfPBW0IyCjlN7_02p0KxhdSM5QygyIFCKfOHZ-TiZJydNBXn5DLGLQBVBaUvyDnVUACl-oJcr4bgM1PfTS660SV978bO-awLccxq2_cxM77Jxs5mezN2YWO9q914yEKbra2L3c54Z16S563po3319F-R2-vPP5ZfFutvN6vlp_WilgLkgimt6lYozaisVKmrhraF1EbXHBrGDatUJZVgymrLWGNFS8uWV1xWphCCW35FPh777qdqZ5va-nEwPe4HtzPDAYNx-K_jXYeb8BMZV6osdWrw7qnBEO4mG0fcuTivabwNU8QCGPB0ngS-_Q_chmnwaTlMhFQcRJGg13-Pc5rj930T8OEI3LveHv74gHOOuMU5IpzjwjlH_JUjPuDy62pWqf7Nsb41Ac1mcBFvvzOgHEALyUHxR47Wm4I |
CitedBy_id | crossref_primary_10_36233_0372_9311_2018_2_3_9 crossref_primary_10_1007_s12033_012_9495_x crossref_primary_10_1111_jsap_12172 crossref_primary_10_1186_s12864_015_1928_z crossref_primary_10_1016_j_molbiopara_2008_12_012 crossref_primary_10_15446_abc_v21n1Supl_50885 crossref_primary_10_1007_s12639_016_0864_4 crossref_primary_10_1186_s13567_020_0734_z crossref_primary_10_3390_antiox12050984 crossref_primary_10_1016_j_vetmic_2017_01_027 crossref_primary_10_3762_bjnano_14_73 crossref_primary_10_1016_j_bcp_2019_113737 crossref_primary_10_3389_fmicb_2018_00883 crossref_primary_10_1039_c3mt20220h crossref_primary_10_3390_microorganisms8040560 crossref_primary_10_2478_acve_2020_0023 crossref_primary_10_1111_iep_12080 crossref_primary_10_1099_mic_0_000123 crossref_primary_10_2217_fmb_11_140 crossref_primary_10_1111_j_1471_4159_2011_07536_x crossref_primary_10_1016_j_ijpara_2021_05_009 crossref_primary_10_1111_j_1462_5822_2010_01529_x crossref_primary_10_1016_j_vetmic_2013_11_027 crossref_primary_10_1371_journal_pntd_0007206 crossref_primary_10_1016_j_ejmech_2019_111895 crossref_primary_10_1007_s00253_019_09757_4 crossref_primary_10_3389_fcimb_2021_789401 crossref_primary_10_1016_j_exppara_2020_107962 crossref_primary_10_1016_j_jbc_2023_105064 crossref_primary_10_1016_j_pt_2013_07_007 crossref_primary_10_1371_journal_pntd_0007991 crossref_primary_10_1371_journal_pone_0216078 crossref_primary_10_1007_s10534_009_9236_1 crossref_primary_10_1016_j_ijpharm_2014_03_039 crossref_primary_10_3389_fcimb_2021_624009 crossref_primary_10_1016_j_micpath_2018_12_013 crossref_primary_10_1038_nrmicro2608 crossref_primary_10_1016_j_actatropica_2022_106522 crossref_primary_10_1111_j_1462_5822_2009_01375_x crossref_primary_10_1016_j_jorganchem_2013_07_044 crossref_primary_10_1016_j_it_2011_03_007 crossref_primary_10_1093_infdis_jiae157 crossref_primary_10_1021_bi900606y crossref_primary_10_1111_j_1365_2761_2010_01232_x crossref_primary_10_3389_fmicb_2018_01279 crossref_primary_10_1016_j_exppara_2010_11_010 crossref_primary_10_1128_EC_00287_10 crossref_primary_10_1016_j_mib_2013_07_018 crossref_primary_10_1186_1297_9716_42_39 crossref_primary_10_15252_emmm_201403868 crossref_primary_10_1371_journal_pone_0007472 crossref_primary_10_1371_journal_pone_0127506 crossref_primary_10_1111_j_1462_5822_2009_01337_x crossref_primary_10_1016_j_jprot_2020_104077 crossref_primary_10_1021_acsinfecdis_2c00457 crossref_primary_10_1074_jbc_M111_229674 crossref_primary_10_1080_10715762_2021_1939325 crossref_primary_10_1186_s13567_021_00919_9 crossref_primary_10_12688_f1000research_6724_1 crossref_primary_10_1016_j_aquaculture_2023_740361 |
ContentType | Journal Article |
Copyright | 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltd |
DBID | FBQ CGR CUY CVF ECM EIF NPM 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1111/j.1462-5822.2007.01095.x |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-5822 |
EndPage | 300 |
ExternalDocumentID | 1409911721 18070118 CMI1095 US201300845306 |
Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI067979-01A2 – fundername: NIAID NIH HHS grantid: R01 AI067979 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHHS AAJEY AAONW AAVGM AAZKR ABCQN ABCUV ABDBF ABEML ABHUG ABPTK ABPVW ABWRO ACAHQ ACCFJ ACFBH ACGFS ACMXC ACPOU ACPRK ACSCC ACXME ADAWD ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADOZA ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIACR AIWBW AJAOE AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EBD EBS EDH EJD EMB EMK EMOBN ESTFP ESX F00 F01 F04 F5P FBQ FIJ FUBAC G-S G.N GODZA GROUPED_DOAJ H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MM. MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RHX ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WQJ WRC WXI WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT ACXQS ADZMN AIURR OIG CGR CUY CVF ECM EIF NPM 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c5405-2686cf468215b698bd1f758a8c30d23a2b6b56426e8e22de4f19f3b35ba7443e3 |
IEDL.DBID | DR2 |
ISSN | 1462-5814 |
IngestDate | Tue Sep 17 21:24:53 EDT 2024 Fri Oct 25 07:32:22 EDT 2024 Thu Oct 10 15:56:51 EDT 2024 Sat Sep 28 07:51:17 EDT 2024 Sat Aug 24 00:49:01 EDT 2024 Wed Dec 27 19:17:06 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5405-2686cf468215b698bd1f758a8c30d23a2b6b56426e8e22de4f19f3b35ba7443e3 |
Notes | http://dx.doi.org/10.1111/j.1462-5822.2007.01095.x ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1462-5822.2007.01095.x |
PMID | 18070118 |
PQID | 203563047 |
PQPubID | 46747 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2366998 proquest_miscellaneous_70203180 proquest_journals_203563047 pubmed_primary_18070118 wiley_primary_10_1111_j_1462_5822_2007_01095_x_CMI1095 fao_agris_US201300845306 |
PublicationCentury | 2000 |
PublicationDate | February 2008 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 02 year: 2008 text: February 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Cellular microbiology |
PublicationTitleAlternate | Cell Microbiol |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Hindawi Limited |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Hindawi Limited |
References | 2007; 39 2002; 14 2004; 201 2002; 111 2002; 277 2004; 2 1995; 131 1998; 84 2003; 278 1992; 50 1994; 62 1997; 90 2003; 369 1994; 180 2002; 100 2000; 97 2005; 309 1998; 166 2005; 37 2006; 203 1998; 443 2000; 1465 1998; 14 1999; 190 1990; 38 2005; 115 1992; 267 2006; 14 2002; 32 2000; 20 1996; 93 2002; 2 2000; 275 2000; 110 1999; 189 2003; 71 2003; 74 2007; 15 2004; 2 2006; 113 2000; 192 2001; 276 2001; 354 2004; 432 2000; 346 2000; 35 2007; 154 2002; 21 2001; 9 2002; 66 1999; 274 1996; 271 2001; 3 2002; 70 1978; 201 1999; 397 2007; 85 1998; 6 2003; 102 2003; 100 9807783 - Trends Microbiol. 1998 Oct;6(10):392-401 11035780 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12356-60 7520477 - J Exp Med. 1994 Sep 1;180(3):969-76 11237855 - Biochem J. 2001 Mar 15;354(Pt 3):511-9 15550940 - Nat Rev Microbiol. 2004 Dec;2(12):946-53 16227996 - Nat Genet. 2005 Nov;37(11):1264-9 12117920 - Infect Immun. 2002 Aug;70(8):4124-31 8663340 - J Biol Chem. 1996 Jul 19;271(29):17081-90 12084831 - Plant Cell. 2002 Jun;14(6):1347-57 17524502 - Mol Biochem Parasitol. 2007 Jul;154(1):62-9 10655517 - Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1252-7 15361243 - Immunol Rev. 2004 Oct;201:206-24 10692416 - J Biol Chem. 2000 Mar 3;275(9):6220-6 10067892 - Nature. 1999 Feb 25;397(6721):694-7 11953307 - EMBO J. 2002 Apr 15;21(8):1881-8 12379679 - Infect Immun. 2002 Nov;70(11):6032-42 15849611 - J Clin Invest. 2005 May;115(5):1258-66 9797066 - Parasitol Res. 1998 Oct;84(10):811-22 9781352 - Adv Exp Med Biol. 1998;443:135-40 12655053 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3677-82 11067873 - J Exp Med. 2000 Nov 6;192(9):1237-48 10942769 - J Biol Chem. 2000 Nov 17;275(46):35738-45 17146466 - Immunol Cell Biol. 2007 Feb-Mar;85(2):138-47 8522581 - J Cell Biol. 1995 Dec;131(5):1173-82 12040125 - Microbiol Mol Biol Rev. 2002 Jun;66(2):223-49 16020728 - Science. 2005 Jul 15;309(5733):436-42 2183049 - Mol Biochem Parasitol. 1990 Jan 15;38(2):245-52 1560730 - Life Sci. 1992;50(18):1289-97 10677350 - Biochem J. 2000 Mar 1;346 Pt 2:329-36 16516199 - Exp Parasitol. 2006 Aug;113(4):221-6 14500512 - Infect Immun. 2003 Oct;71(10):5910-20 11886435 - Eur J Clin Invest. 2002 Mar;32 Suppl 1:70-8 12893829 - J Biol Chem. 2003 Oct 10;278(41):39558-64 12464171 - Cell. 2002 Nov 27;111(5):603-6 17572675 - Nat Genet. 2007 Jul;39(7):839-47 12173405 - Exp Parasitol. 2002 Mar;100(3):196-207 10748254 - Biochim Biophys Acta. 2000 May 1;1465(1-2):190-8 15531878 - Nature. 2004 Dec 16;432(7019):917-21 16759864 - Trends Microbiol. 2006 Jul;14(7):320-7 9915807 - J Biol Chem. 1999 Jan 29;274(5):2758-65 9784581 - J Membr Biol. 1998 Nov 1;166(1):1-7 11598129 - J Biol Chem. 2001 Dec 21;276(51):47922-9 17257847 - Trends Microbiol. 2007 Mar;15(3):93-5 10940329 - Annu Rev Nutr. 2000;20:129-51 11736990 - Cell Microbiol. 2001 Dec;3(12):773-84 12885946 - J Leukoc Biol. 2003 Aug;74(2):287-94 12750164 - Blood. 2003 Sep 1;102(5):1884-92 210504 - Science. 1978 Sep 8;201(4359):875-80 10477555 - J Exp Med. 1999 Sep 6;190(5):717-24 11912202 - J Biol Chem. 2002 May 31;277(22):19511-20 11071288 - Mol Biochem Parasitol. 2000 Oct;110(2):345-57 8643627 - Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624-8 9497044 - Mol Biochem Parasitol. 1997 Dec 1;90(1):203-21 17000865 - J Exp Med. 2006 Oct 2;203(10):2363-75 12415308 - Nat Rev Immunol. 2002 Nov;2(11):845-58 15378046 - Nat Rev Microbiol. 2004 Oct;2(10):820-32 12459037 - Biochem J. 2003 Feb 1;369(Pt 3):447-52 10712695 - Mol Microbiol. 2000 Mar;35(5):1146-55 14638784 - Infect Immun. 2003 Dec;71(12):6953-61 17040815 - Parasitol Today. 1998 Sep;14(9):348-53 12084823 - Plant Cell. 2002 Jun;14(6):1223-33 1577747 - J Biol Chem. 1992 May 5;267(13):9112-7 8039896 - Infect Immun. 1994 Aug;62(8):3262-9 11514223 - Trends Microbiol. 2001 Aug;9(8):397-403 10049947 - J Exp Med. 1999 Mar 1;189(5):831-41 |
References_xml | – volume: 201 start-page: 875 year: 1978 end-page: 880 article-title: The biology of oxygen radicals publication-title: Science – volume: 32 start-page: 70 issue: Suppl. 1 year: 2002 end-page: 78 article-title: Iron and immunity: a double‐edged sword publication-title: Eur J Clin Invest – volume: 21 start-page: 1881 year: 2002 end-page: 1888 article-title: Life without transcriptional control? From fly to man and back again publication-title: EMBO J – volume: 15 start-page: 93 year: 2007 end-page: 95 article-title: Intracellular : your iron or mine? publication-title: Trends Microbiol – volume: 113 start-page: 221 year: 2006 end-page: 226 article-title: : strain identification and characterization of superoxide dismutase‐B genes publication-title: Exp Parasitol – volume: 203 start-page: 2363 year: 2006 end-page: 2375 article-title: A ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes publication-title: J Exp Med – volume: 97 start-page: 1252 year: 2000 end-page: 1257 article-title: The salicylate‐derived mycobactin siderophores of are essential for growth in macrophages publication-title: Proc Natl Acad Sci USA – volume: 154 start-page: 62 year: 2007 end-page: 69 article-title: iron superoxide dismutase A is targeted to the mitochondria by its N‐terminal positively charged amino acids publication-title: Mol Biochem Parasitol – volume: 110 start-page: 345 year: 2000 end-page: 357 article-title: A new developmentally regulated gene family in encoding a homolog of amastin surface proteins publication-title: Mol Biochem Parasitol – volume: 14 start-page: 1347 year: 2002 end-page: 1357 article-title: Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation publication-title: Plant Cell – volume: 70 start-page: 6032 year: 2002 end-page: 6042 article-title: Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of serovar Typhimurium publication-title: Infect Immun – volume: 443 start-page: 135 year: 1998 end-page: 140 article-title: Evidence for the existence of a surface receptor for ferriclactoferrin and ferrictransferrin associated with the plasma membrane of the protozoan parasite publication-title: Adv Exp Med Biol – volume: 71 start-page: 5910 year: 2003 end-page: 5920 article-title: Iron superoxide dismutases targeted to the glycosomes of are important for survival publication-title: Infect Immun – volume: 267 start-page: 9112 year: 1992 end-page: 9117 article-title: Identification and isolation of the transferrin receptor publication-title: J Biol Chem – volume: 66 start-page: 223 year: 2002 end-page: 249 article-title: Genetics and assembly line enzymology of siderophore biosynthesis in bacteria publication-title: Microbiol Mol Biol Rev – volume: 1465 start-page: 190 year: 2000 end-page: 198 article-title: The ZIP family of metal transporters publication-title: Biochim Biophys Acta – volume: 100 start-page: 196 year: 2002 end-page: 207 article-title: : uptake of iron bound to lactoferrin or transferrin requires an iron reductase publication-title: Exp Parasitol – volume: 38 start-page: 245 year: 1990 end-page: 252 article-title: receptors for human transferrin and their role publication-title: Mol Biochem Parasitol – volume: 271 start-page: 17081 year: 1996 end-page: 17090 article-title: The developmental expression of A2 amastigote‐specific genes is post‐transcriptionally mediated and involves elements located in the 3′‐untranslated region publication-title: J Biol Chem – volume: 35 start-page: 1146 year: 2000 end-page: 1155 article-title: The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of publication-title: Mol Microbiol – volume: 70 start-page: 4124 year: 2002 end-page: 4131 article-title: Disruption of the gene homologous to mammalian Nramp1 in does not affect virulence in mice publication-title: Infect Immun – volume: 309 start-page: 436 year: 2005 end-page: 442 article-title: The genome of the kinetoplastid parasite, publication-title: Science – volume: 14 start-page: 1223 year: 2002 end-page: 1233 article-title: IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth publication-title: Plant Cell – volume: 354 start-page: 511 year: 2001 end-page: 519 article-title: Natural‐resistance‐associated macrophage protein 1 is an H+/bivalent cation antiporter publication-title: Biochem J – volume: 14 start-page: 320 year: 2006 end-page: 327 article-title: Control of iron metabolism in publication-title: Trends Microbiol – volume: 102 start-page: 1884 year: 2003 end-page: 1892 article-title: Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane publication-title: Blood – volume: 278 start-page: 39558 year: 2003 end-page: 39564 article-title: A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post‐translational inactivation in response to zinc and cadmium publication-title: J Biol Chem – volume: 397 start-page: 694 year: 1999 end-page: 697 article-title: A ferric‐chelate reductase for iron uptake from soils publication-title: Nature – volume: 2 start-page: 820 year: 2004 end-page: 832 article-title: Antimicrobial reactive oxygen and nitrogen species: concepts and controversies publication-title: Nat Rev Microbiol – volume: 369 start-page: 447 year: 2003 end-page: 452 article-title: Role of superoxide dismutase in survival of within the macrophage publication-title: Biochem J – volume: 180 start-page: 969 year: 1994 end-page: 976 article-title: Iron regulates nitric oxide synthase activity by controlling nuclear transcription publication-title: J Exp Med – volume: 85 start-page: 138 year: 2007 end-page: 147 article-title: Balancing immunity and pathology in visceral leishmaniasis publication-title: Immunol Cell Biol – volume: 50 start-page: 1289 year: 1992 end-page: 1297 article-title: Iron depletion: a defense against intracellular infection and neoplasia publication-title: Life Sci – volume: 111 start-page: 603 year: 2002 end-page: 606 article-title: Mechanisms of cellular iron acquisition: another iron in the fire publication-title: Cell – volume: 14 start-page: 348 year: 1998 end-page: 353 article-title: Iron acquisition by parasitic protozoa publication-title: Parasitol Today – volume: 277 start-page: 19511 year: 2002 end-page: 19520 article-title: A common mechanism of stage‐regulated gene expression in mediated by a conserved 3′‐untranslated region element publication-title: J Biol Chem – volume: 190 start-page: 717 year: 1999 end-page: 724 article-title: expresses a novel pH‐dependent divalent cation transporter belonging to the Nramp family publication-title: J Exp Med – volume: 346 start-page: 329 issue: Part 2 year: 2000 end-page: 336 article-title: Zinc‐regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter publication-title: Biochem J – volume: 100 start-page: 3677 year: 2003 end-page: 3682 article-title: Salmochelins, siderophores of and uropathogenic strains, are recognized by the outer membrane receptor IroN publication-title: Proc Natl Acad Sci USA – volume: 276 start-page: 47922 year: 2001 end-page: 47929 article-title: Developmental regulation of heat shock protein 83 in . 3′ processing and mRNA stability control transcript abundance, and translation id directed by a determinant in the 3′‐untranslated region publication-title: J Biol Chem – volume: 115 start-page: 1258 year: 2005 end-page: 1266 article-title: Slc11a2 is required for intestinal iron absorption and erythropoiesis but dis pensable in placenta and liver publication-title: J Clin Invest – volume: 9 start-page: 397 year: 2001 end-page: 403 article-title: Divalent‐metal transport by NRAMP proteins at the interface of host–pathogen interactions publication-title: Trends Microbiol – volume: 166 start-page: 1 year: 1998 end-page: 7 article-title: Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins publication-title: J Membr Biol – volume: 6 start-page: 392 year: 1998 end-page: 401 article-title: The biogenesis and properties of the parasitophorous vacuoles that harbour in murine macrophages publication-title: Trends Microbiol – volume: 275 start-page: 6220 year: 2000 end-page: 6226 article-title: Effects of interferon‐gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide‐induced degradation of iron regulatory protein 2 publication-title: J Biol Chem – volume: 201 start-page: 206 year: 2004 end-page: 224 article-title: Does the paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? publication-title: Immunol Rev – volume: 84 start-page: 811 year: 1998 end-page: 822 article-title: Subverted transferrin trafficking in ‐infected macrophages publication-title: Parasitol Res – volume: 39 start-page: 839 year: 2007 end-page: 847 article-title: Comparative genomic analysis of three species that cause diverse human disease publication-title: Nat Genet – volume: 20 start-page: 129 year: 2000 end-page: 151 article-title: Iron transport publication-title: Annu Rev Nutr – volume: 274 start-page: 2758 year: 1999 end-page: 2765 article-title: Hemoglobin endocytosis in is mediated through a 46‐kDa protein located in the flagellar pocket publication-title: J Biol Chem – volume: 93 start-page: 5624 year: 1996 end-page: 5628 article-title: A novel iron‐regulated metal transporter from plants identified by functional expression in yeast publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: 12356 year: 2000 end-page: 12360 article-title: Altered selectivity in an Arabidopsis metal transporter publication-title: Proc Natl Acad Sci USA – volume: 2 start-page: 845 year: 2002 end-page: 858 article-title: The immunology of susceptibility and resistance to in mice publication-title: Nat Rev Immunol – volume: 3 start-page: 773 year: 2001 end-page: 784 article-title: SLC11A1 (formerly NRAMP1) and disease resistance publication-title: Cell Microbiol – volume: 131 start-page: 1173 year: 1995 end-page: 1182 article-title: Transferrin‐binding protein complex is the receptor for transferrin uptake in publication-title: J Cell Biol – volume: 90 start-page: 203 year: 1997 end-page: 221 article-title: Cloning, characterization and overexpression of two iron superoxide dismutase cDNAs from : role in pathogenesis publication-title: Mol Biochem Parasitol – volume: 62 start-page: 3262 year: 1994 end-page: 3269 article-title: Acquisition of iron from transferrin and lactoferrin by the protozoan publication-title: Infect Immun – volume: 192 start-page: 1237 year: 2000 end-page: 1248 article-title: Natural resistance to intracellular infections: natural resistance‐associated macrophage protein 1 (Nramp1) functions as a pH‐dependent manganese transporter at the phagosomal membrane publication-title: J Exp Med – volume: 275 start-page: 35738 year: 2000 end-page: 35745 article-title: Nramp 2 (DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein‐accessible cytoplasmic pool publication-title: J Biol Chem – volume: 432 start-page: 917 year: 2004 end-page: 921 article-title: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron publication-title: Nature – volume: 71 start-page: 6953 year: 2003 end-page: 6961 article-title: Role of receptor proteins for enterobactin and 2,3‐dihydroxybenzoylserine in virulence of publication-title: Infect Immun – volume: 189 start-page: 831 year: 1999 end-page: 841 article-title: The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes publication-title: J Exp Med – volume: 74 start-page: 287 year: 2003 end-page: 294 article-title: Pathways for the regulation of interferon‐gamma‐inducible genes by iron in human monocytic cells publication-title: J Leukoc Biol – volume: 2 start-page: 946 year: 2004 end-page: 953 article-title: Iron and microbial infection publication-title: Nat Rev Microbiol – volume: 37 start-page: 1264 year: 2005 end-page: 1269 article-title: Identification of a ferrireductase required for efficient transferrin‐dependent iron uptake in erythroid cells publication-title: Nat Genet |
SSID | ssj0016711 |
Score | 2.218448 |
SecondaryResourceType | review_article |
Snippet | Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition... Summary Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron... |
SourceID | pubmedcentral proquest pubmed wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 293 |
SubjectTerms | Animals Biological Transport - genetics Biological Transport - physiology Cell Membrane - metabolism Iron - metabolism Leishmania - genetics Leishmania - metabolism Leishmania - pathogenicity Models, Biological Proton Pumps - genetics Proton Pumps - metabolism Proton Pumps - physiology Protozoan Proteins - genetics Protozoan Proteins - metabolism Protozoan Proteins - physiology Siderophores - metabolism Siderophores - physiology |
Title | Iron acquisition within host cells and the pathogenicity of Leishmania |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-5822.2007.01095.x https://www.ncbi.nlm.nih.gov/pubmed/18070118 https://www.proquest.com/docview/203563047 https://search.proquest.com/docview/70203180 https://pubmed.ncbi.nlm.nih.gov/PMC2366998 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hKqRe-t0SoNSHXrPa2I6dPQJlBVXh0HYlbpbt2CVCSijZlYBf35kkLCzlVPUWxbEla2Y8b-KZNwCf44Sut0qeOu18KlXQqQtqknqX44CKPkoqTj45VUcz-fUsPxvyn6gWpueHWP5wI8vozmsycOvax0aOgRR6uIGJMEO4MCI8Sbx6hI--L5mkMqW7VrzDlEyuJvU8uRB6m2ibp5Dn3wmUD4Ft55mmL-Hibk99QsrFaDF3I3_7iO7x_2z6FbwYACzb6zXuNayF-g1s9C0tb97C9PiqqZn1vxdVnw3G6E9vVTOqJmF0TdAyW5cMcSejbsgNKnDlMRRgTWTfQtWeEyGHfQez6eHPg6N06NWQesJ8KVeFQrmqAiGEU5PClVnEUMQWXoxLLix3yuUY66hQBM7LIGM2icKJ3FktpQjiPazXTR02gSEAdZnIolW4tLXSFZ4HnaOzLUsVS5HAJsrF2F94CprZD053r-NC5hj8JLB9Jywz2GJrUBeJBE3qBD4tR9GIaMu2Ds2iNZoUNivGCXzoBWsue64Pgy81FecmoFdEvvyA6LlXR-rqvKPp5kIpDGYTUJ1E75d8GHZxQ7KkZqDadLI01-bg5Jietv514jY877NaKOlmB9bnV4vwEaHT3O3Cs739L_vT3c44_gBIdgvy |
link.rule.ids | 230,315,786,790,891,1382,27955,27956,46327,46751 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH5CQwgujN_LBswHrqka27HTIxqrWmh3gFXazbIdm0VDCaytBPz1vJdk3Tp2QtyiOLFkfe_Z37OfvwfwLo7oeKvkqdPOp1IFnbqgRql3OTao6KOky8nzEzVZyI9n-VlfDojuwnT6EJsNN_KMdr4mB6cN6dtejpEULnG9FGGGfGGAhPI-en9OXvrh80ZLKlO6Lcbb_5PJ7bSeO3vC9Sba5i7u-XcK5U1q265N4134djWqLiXlYrBeuYH_fUvw8T8N-wk87jkse98Z3VO4F-pn8KCravnrOYynl03NrP-xrrqEMEabvVXN6EIJo5OCJbN1yZB6MiqI3KANVx6jAdZENgvV8pw0OewLWIyPT48maV-uIfVE-1KuCoXQqgJZhFOjwpVZxGjEFl4MSy4sd8rlGO6oUATOyyBjNorCidxZLaUI4iXs1E0d9oAhB3WZyKJV2LW10hWeB4QUOypVLEUCewiMsV9xIjSLL5yOX4eFzDH-SeDgCi3Tu-PSoDmSDprUCRxuWtGPaMi2Ds16aTTZbFYME3jVIWu-d3IfBl9qup-bgN7CfPMBKXRvt9TVeavUzYVSGM8moFpIr7u8GXlxQ1hSPVBtWizNT3M0n9LT_r_-eAgPJ6fzmZlNTz4dwKMuyYVycF7DzupyHd4gk1q5t62H_AGvgw6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIhAX3tBQoD5wzWpjO3b2iFpWXWgrBKzUm-VnG1VKSndXAn49M0m6dEtPiFsUx5asmfF8E898A_AuTeh6K_DcaedzqaLOXVST3LsSB1TySVJx8tGxOpjLjyflyZD_RLUwPT_E-ocbWUZ3XpOBX4R008gxkEIPNzARFggXRogn70olOAVi-1_WVFKF0l0v3mFOITezem5dCd1Nsu1t0PPvDMrryLZzTdNHcH61qT4j5Xy0WrqR_3WD7_H_7PoxPBwQLHvfq9wTuBObp3Cv72n58xlMZ5dtw6z_vqr7dDBGv3rrhlE5CaN7ggWzTWAIPBm1Q25Rg2uPsQBrEzuM9eKMGDnsc5hPP3zbO8iHZg25J9CXc1UpFKyqEEM4NalcKBLGIrbyYhy4sNwpV2Kwo2IVOQ9RpmKShBOls1pKEcUL2GraJm4DQwTqClEkq3Bpa6WrPI-6RG8bgkpBZLCNcjH2FI9BM__K6fJ1XMkSo58Mdq6EZQZjXBhURmJBkzqD3fUoWhFt2TaxXS2MJo0tqnEGL3vBmoue7MPgS03VuRnoDZGvPyB-7s2Rpj7reLq5UAqj2QxUJ9E_S16Pu7ghWVI3UG06WZofZu9oRk-v_nXiLtz_vD81h7PjTzvwoM9woQSc17C1vFzFNwijlu5tZx-_AWnpDU8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron+acquisition+within+host+cells+and+the+pathogenicity+of+Leishmania&rft.jtitle=Cellular+microbiology&rft.au=Huynh%2C+Chau&rft.au=Andrews%2C+Norma+W&rft.date=2008-02-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=1462-5814&rft.eissn=1462-5822&rft.volume=10&rft.issue=2&rft.spage=293&rft.epage=300&rft_id=info:doi/10.1111%2Fj.1462-5822.2007.01095.x&rft.externalDocID=US201300845306 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-5814&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-5814&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-5814&client=summon |