The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies
Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensi...
Saved in:
Published in | Statistics in medicine Vol. 29; no. 20; pp. 2137 - 2148 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
10.09.2010
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensity score, propensity‐score matching, and inverse probability of treatment weighting (IPTW) using the propensity score. When outcomes are binary, the effect of treatment on the outcome can be described using odds ratios, relative risks, risk differences, or the number needed to treat. Several clinical commentators suggested that risk differences and numbers needed to treat are more meaningful for clinical decision making than are odds ratios or relative risks. However, there is a paucity of information about the relative performance of the different propensity‐score methods for estimating risk differences. We conducted a series of Monte Carlo simulations to examine this issue. We examined bias, variance estimation, coverage of confidence intervals, mean‐squared error (MSE), and type I error rates. A doubly robust version of IPTW had superior performance compared with the other propensity‐score methods. It resulted in unbiased estimation of risk differences, treatment effects with the lowest standard errors, confidence intervals with the correct coverage rates, and correct type I error rates. Stratification, matching on the propensity score, and covariate adjustment using the propensity score resulted in minor to modest bias in estimating risk differences. Estimators based on IPTW had lower MSE compared with other propensity‐score methods. Differences between IPTW and propensity‐score matching may reflect that these two methods estimate the average treatment effect and the average treatment effect for the treated, respectively. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensity score, propensity-score matching, and inverse probability of treatment weighting (IPTW) using the propensity score. When outcomes are binary, the effect of treatment on the outcome can be described using odds ratios, relative risks, risk differences, or the number needed to treat. Several clinical commentators suggested that risk differences and numbers needed to treat are more meaningful for clinical decision making than are odds ratios or relative risks. However, there is a paucity of information about the relative performance of the different propensity-score methods for estimating risk differences. We conducted a series of Monte Carlo simulations to examine this issue. We examined bias, variance estimation, coverage of confidence intervals, mean-squared error (MSE), and type I error rates. A doubly robust version of IPTW had superior performance compared with the other propensity-score methods. It resulted in unbiased estimation of risk differences, treatment effects with the lowest standard errors, confidence intervals with the correct coverage rates, and correct type I error rates. Stratification, matching on the propensity score, and covariate adjustment using the propensity score resulted in minor to modest bias in estimating risk differences. Estimators based on IPTW had lower MSE compared with other propensity-score methods. Differences between IPTW and propensity-score matching may reflect that these two methods estimate the average treatment effect and the average treatment effect for the treated, respectively. Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensity score, propensity-score matching, and inverse probability of treatment weighting (IPTW) using the propensity score. When outcomes are binary, the effect of treatment on the outcome can be described using odds ratios, relative risks, risk differences, or the number needed to treat. Several clinical commentators suggested that risk differences and numbers needed to treat are more meaningful for clinical decision making than are odds ratios or relative risks. However, there is a paucity of information about the relative performance of the different propensity-score methods for estimating risk differences. We conducted a series of Monte Carlo simulations to examine this issue. We examined bias, variance estimation, coverage of confidence intervals, mean-squared error (MSE), and type I error rates. A doubly robust version of IPTW had superior performance compared with the other propensity-score methods. It resulted in unbiased estimation of risk differences, treatment effects with the lowest standard errors, confidence intervals with the correct coverage rates, and correct type I error rates. Stratification, matching on the propensity score, and covariate adjustment using the propensity score resulted in minor to modest bias in estimating risk differences. Estimators based on IPTW had lower MSE compared with other propensity-score methods. Differences between IPTW and propensity-score matching may reflect that these two methods estimate the average treatment effect and the average treatment effect for the treated, respectively. Copyright © 2010 John Wiley & Sons, Ltd. Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensity score, propensity-score matching, and inverse probability of treatment weighting (IPTW) using the propensity score. When outcomes are binary, the effect of treatment on the outcome can be described using odds ratios, relative risks, risk differences, or the number needed to treat. Several clinical commentators suggested that risk differences and numbers needed to treat are more meaningful for clinical decision making than are odds ratios or relative risks. However, there is a paucity of information about the relative performance of the different propensity-score methods for estimating risk differences. We conducted a series of Monte Carlo simulations to examine this issue. We examined bias, variance estimation, coverage of confidence intervals, mean-squared error (MSE), and type I error rates. A doubly robust version of IPTW had superior performance compared with the other propensity-score methods. It resulted in unbiased estimation of risk differences, treatment effects with the lowest standard errors, confidence intervals with the correct coverage rates, and correct type I error rates. Stratification, matching on the propensity score, and covariate adjustment using the propensity score resulted in minor to modest bias in estimating risk differences. Estimators based on IPTW had lower MSE compared with other propensity-score methods. Differences between IPTW and propensity-score matching may reflect that these two methods estimate the average treatment effect and the average treatment effect for the treated, respectively. [PUBLICATION ABSTRACT] Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensity score, propensity-score matching, and inverse probability of treatment weighting (IPTW) using the propensity score. When outcomes are binary, the effect of treatment on the outcome can be described using odds ratios, relative risks, risk differences, or the number needed to treat. Several clinical commentators suggested that risk differences and numbers needed to treat are more meaningful for clinical decision making than are odds ratios or relative risks. However, there is a paucity of information about the relative performance of the different propensity-score methods for estimating risk differences. We conducted a series of Monte Carlo simulations to examine this issue. We examined bias, variance estimation, coverage of confidence intervals, mean-squared error (MSE), and type I error rates. A doubly robust version of IPTW had superior performance compared with the other propensity-score methods. It resulted in unbiased estimation of risk differences, treatment effects with the lowest standard errors, confidence intervals with the correct coverage rates, and correct type I error rates. Stratification, matching on the propensity score, and covariate adjustment using the propensity score resulted in minor to modest bias in estimating risk differences. Estimators based on IPTW had lower MSE compared with other propensity-score methods. Differences between IPTW and propensity-score matching may reflect that these two methods estimate the average treatment effect and the average treatment effect for the treated, respectively.Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensity score, propensity-score matching, and inverse probability of treatment weighting (IPTW) using the propensity score. When outcomes are binary, the effect of treatment on the outcome can be described using odds ratios, relative risks, risk differences, or the number needed to treat. Several clinical commentators suggested that risk differences and numbers needed to treat are more meaningful for clinical decision making than are odds ratios or relative risks. However, there is a paucity of information about the relative performance of the different propensity-score methods for estimating risk differences. We conducted a series of Monte Carlo simulations to examine this issue. We examined bias, variance estimation, coverage of confidence intervals, mean-squared error (MSE), and type I error rates. A doubly robust version of IPTW had superior performance compared with the other propensity-score methods. It resulted in unbiased estimation of risk differences, treatment effects with the lowest standard errors, confidence intervals with the correct coverage rates, and correct type I error rates. Stratification, matching on the propensity score, and covariate adjustment using the propensity score resulted in minor to modest bias in estimating risk differences. Estimators based on IPTW had lower MSE compared with other propensity-score methods. Differences between IPTW and propensity-score matching may reflect that these two methods estimate the average treatment effect and the average treatment effect for the treated, respectively. |
Author | Austin, Peter C. |
AuthorAffiliation | a Institute for Clinical Evaluative Sciences Toronto, ON, Canada b Department of Health Management, Policy and Evaluation, University of Toronto ON, Canada |
AuthorAffiliation_xml | – name: a Institute for Clinical Evaluative Sciences Toronto, ON, Canada – name: b Department of Health Management, Policy and Evaluation, University of Toronto ON, Canada |
Author_xml | – sequence: 1 givenname: Peter C. surname: Austin fullname: Austin, Peter C. email: peter.austin@ices.on.ca organization: Institute for Clinical Evaluative Sciences, Toronto, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20108233$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ktFu0zAUhi00xLqBxBMgixvGRYodx3FyMwlNdAxtIMQQl5brHK_ekjjYzrY-Ea-J246KTnBlyef7f5_z-xygvd71gNBLSqaUkPxdsN2UVbx4giaU1CIjOa_20ITkQmSloHwfHYRwTQilPBfP0H5OKKlyxibo1-UC8ADeON-pXgN2BjfWGPDQRzx4N0AfbFxmQTsPuIO4cE3ACccQou1UtP3VVqEhYNuvZc5H6_qAj7wNNztAkqp5cO0YAa-LHppRr-m3K7WbB_C3anWhWhzi2FgIz9FTo9oALx7OQ_R99uHy5GN2_uX07OT9eaZ5QYqsqgXjrNa0KrmouJg3NC-avBCmBMOhyk2lmFZMzOuqbEpWphSK2pQlZ9BQaNghOt74DuO8g0anFLxq5eDTqH4pnbJyt9Lbhbxyt5KR5FWTZPDmwcC7n2PKSHY2aGhb1YMbgxSpT5KeE4l8_Yi8dqNPMyeoqAtR56RI0Ku_-9k28ucHE3C0AbR3IXgwW4QSuVoOmZZDrpYjodNHqLZxnXOaxLb_EmQbwZ1tYflfY_nt7GKXtyHC_ZZX_kaWggkuf3w-lbOvrK5mF58kZb8BC7_d8g |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1002_pst_1948 crossref_primary_10_1161_CIRCINTERVENTIONS_113_000110 crossref_primary_10_1056_NEJMsa1501738 crossref_primary_10_2106_JBJS_17_01405 crossref_primary_10_1080_07853890_2023_2187875 crossref_primary_10_1136_postgradmedj_2021_140341 crossref_primary_10_1111_imig_13143 crossref_primary_10_1097_JOM_0000000000001367 crossref_primary_10_3171_2017_8_JNS171142 crossref_primary_10_1016_j_arth_2023_01_053 crossref_primary_10_3390_cancers15010252 crossref_primary_10_3390_nu8100624 crossref_primary_10_1016_j_euo_2023_11_016 crossref_primary_10_1001_jamaoto_2018_1919 crossref_primary_10_1093_annonc_mdv238 crossref_primary_10_1136_bmjsit_2019_000018 crossref_primary_10_1097_WON_0b013e31827bcc4f crossref_primary_10_1080_00036846_2023_2203453 crossref_primary_10_1097_EDE_0000000000001308 crossref_primary_10_1177_1532440014567858 crossref_primary_10_1093_ndt_gfz175 crossref_primary_10_1002_sim_8862 crossref_primary_10_1016_j_euo_2024_01_014 crossref_primary_10_1080_10543406_2018_1559855 crossref_primary_10_1111_j_1360_0443_2012_03933_x crossref_primary_10_1002_sim_8502 crossref_primary_10_1097_SLA_0000000000004647 crossref_primary_10_1111_dom_14324 crossref_primary_10_1164_rccm_201801_0118PP crossref_primary_10_1016_j_urology_2016_10_019 crossref_primary_10_1080_02664763_2018_1523375 crossref_primary_10_1515_jci_2012_0012 crossref_primary_10_1007_s12630_018_1250_8 crossref_primary_10_1097_NHH_0000000000000012 crossref_primary_10_1245_s10434_020_09202_1 crossref_primary_10_1056_NEJMoa1912035 crossref_primary_10_1093_ndt_gfy317 crossref_primary_10_1002_cam4_6922 crossref_primary_10_1080_07418825_2011_561804 crossref_primary_10_1007_s11605_019_04304_y crossref_primary_10_1186_s12874_016_0135_1 crossref_primary_10_1007_s00423_024_03564_w crossref_primary_10_1186_s12874_022_01623_8 crossref_primary_10_1016_j_arth_2023_03_013 crossref_primary_10_1016_j_ygyno_2019_08_030 crossref_primary_10_1038_s41598_020_65917_x crossref_primary_10_3389_ti_2023_10816 crossref_primary_10_1177_0962280216658920 crossref_primary_10_1016_j_euf_2021_10_004 crossref_primary_10_1136_rmdopen_2023_003865 crossref_primary_10_1161_JAHA_120_017870 crossref_primary_10_1093_ofid_ofac669 crossref_primary_10_1080_13816810_2022_2051191 crossref_primary_10_1016_j_athoracsur_2011_12_061 crossref_primary_10_1161_CIRCHEARTFAILURE_112_000075 crossref_primary_10_1016_j_mmm_2021_02_013 crossref_primary_10_1080_03610926_2016_1217017 crossref_primary_10_1093_biomtc_ujae070 crossref_primary_10_1111_jep_12714 crossref_primary_10_1080_00273171_2011_568786 crossref_primary_10_1177_2151459320976531 crossref_primary_10_1371_journal_pmed_1004486 crossref_primary_10_1097_NHH_0000000000000030 crossref_primary_10_1371_journal_pone_0246029 crossref_primary_10_1080_00949655_2013_806923 crossref_primary_10_1097_TA_0000000000002366 crossref_primary_10_1371_journal_pone_0190139 crossref_primary_10_1002_sim_9628 crossref_primary_10_1080_02664763_2021_1911966 crossref_primary_10_1007_s41060_018_0109_y crossref_primary_10_1177_1062860617752054 crossref_primary_10_3892_mco_2019_1843 crossref_primary_10_1002_jae_2724 crossref_primary_10_1097_MAT_0000000000001462 crossref_primary_10_1002_sim_5705 crossref_primary_10_1093_aje_kwu253 crossref_primary_10_1200_JCO_23_02718 crossref_primary_10_1093_ehjcvp_pvad041 crossref_primary_10_1007_s00404_023_07002_y crossref_primary_10_1111_1471_0528_16663 crossref_primary_10_1513_AnnalsATS_202303_275OC crossref_primary_10_1111_2041_210X_13111 crossref_primary_10_1080_14740338_2018_1462333 crossref_primary_10_1177_0962280216682055 crossref_primary_10_1016_j_athoracsur_2011_01_025 crossref_primary_10_1002_jcph_98 crossref_primary_10_1016_j_ijantimicag_2021_106429 crossref_primary_10_1200_OP_21_00307 crossref_primary_10_1253_circj_CJ_14_0939 crossref_primary_10_1016_j_amjsurg_2012_07_042 crossref_primary_10_1016_j_ygyno_2020_10_027 crossref_primary_10_1093_ofid_ofae306 crossref_primary_10_15707_disem_2014_24_4_010 crossref_primary_10_5217_ir_2022_00116 crossref_primary_10_1080_19466315_2021_1994460 crossref_primary_10_1111_1471_0528_16892 crossref_primary_10_1007_s40140_016_0174_5 crossref_primary_10_1177_0730888413480893 crossref_primary_10_1161_JAHA_118_009745 crossref_primary_10_1016_j_jjcc_2018_11_006 crossref_primary_10_1080_00220973_2017_1409179 crossref_primary_10_1186_1471_2474_15_39 crossref_primary_10_1016_j_jss_2017_12_035 crossref_primary_10_1016_j_eclinm_2023_102065 crossref_primary_10_1016_j_ijcard_2018_10_062 crossref_primary_10_1177_0962280220921909 crossref_primary_10_1093_bja_aes002 crossref_primary_10_1111_dom_14577 crossref_primary_10_1177_0962280215601134 crossref_primary_10_1080_00273171_2011_540480 crossref_primary_10_1001_jamasurg_2023_0284 crossref_primary_10_1080_03007995_2018_1532884 crossref_primary_10_1177_02676591241261330 crossref_primary_10_6004_jnccn_2022_7083 crossref_primary_10_1177_0962280213507034 crossref_primary_10_4251_wjgo_v9_i6_257 crossref_primary_10_1007_s00068_017_0794_6 crossref_primary_10_1016_j_radonc_2013_03_012 crossref_primary_10_1016_j_amjms_2022_01_026 crossref_primary_10_1016_j_ejso_2024_108309 crossref_primary_10_1002_bimj_201700305 crossref_primary_10_1002_pds_4002 crossref_primary_10_1002_sim_4400 crossref_primary_10_1097_TP_0000000000002804 crossref_primary_10_3390_jcm13247715 crossref_primary_10_1097_TP_0000000000000507 crossref_primary_10_1007_s40257_019_00443_9 crossref_primary_10_1038_s41598_022_14713_w crossref_primary_10_1016_j_ejca_2012_03_020 crossref_primary_10_1177_0004865813504769 crossref_primary_10_1111_add_14623 crossref_primary_10_2139_ssrn_3315211 crossref_primary_10_1016_j_chest_2022_10_024 crossref_primary_10_1016_j_jss_2018_07_072 crossref_primary_10_3233_JAD_220361 crossref_primary_10_1002_sim_6276 crossref_primary_10_18332_tid_132833 crossref_primary_10_1002_nau_23513 crossref_primary_10_1002_sim_5984 crossref_primary_10_1097_WON_0b013e3182850831 crossref_primary_10_1093_ckj_sfaa278 crossref_primary_10_1007_s10742_022_00289_5 crossref_primary_10_1007_s11739_013_0944_8 crossref_primary_10_4274_tjps_galenos_2021_05873 crossref_primary_10_1016_j_cjca_2012_10_012 crossref_primary_10_1002_bjs5_50154 crossref_primary_10_1253_circj_CJ_16_0216 crossref_primary_10_1002_sim_6602 crossref_primary_10_1002_sim_70009 crossref_primary_10_1016_j_childyouth_2016_09_001 crossref_primary_10_1177_0962280213519716 crossref_primary_10_1097_QMH_0000000000000276 crossref_primary_10_3389_fsurg_2022_944395 crossref_primary_10_1001_jamanetworkopen_2022_47426 crossref_primary_10_1186_s12913_015_0925_x crossref_primary_10_1016_j_jclinepi_2011_02_009 crossref_primary_10_1111_1471_0528_16179 crossref_primary_10_1002_jcph_1989 crossref_primary_10_1513_AnnalsATS_202203_201OC crossref_primary_10_3390_jcm8010100 crossref_primary_10_1007_s40620_020_00781_6 crossref_primary_10_1080_10543406_2021_2011743 crossref_primary_10_3233_JAD_221231 crossref_primary_10_1001_jamanetworkopen_2021_33388 crossref_primary_10_1093_pm_pny027 crossref_primary_10_1016_j_dss_2025_114435 crossref_primary_10_1377_hlthaff_2016_1658 crossref_primary_10_1016_j_jclinane_2023_111143 crossref_primary_10_46778_goputeb_1312865 crossref_primary_10_1186_s13019_020_01322_9 crossref_primary_10_1186_s12874_021_01454_z crossref_primary_10_1016_j_diabet_2020_10_001 crossref_primary_10_2146_ajhp140219 crossref_primary_10_1053_j_ajkd_2012_03_014 crossref_primary_10_2337_dc14_1306 crossref_primary_10_1111_jmwh_12710 crossref_primary_10_1097_TA_0b013e31825b85f1 crossref_primary_10_1016_j_jinf_2024_106352 crossref_primary_10_1186_s13104_024_06695_x crossref_primary_10_1002_pst_2051 crossref_primary_10_1007_s12630_022_02197_1 crossref_primary_10_1186_s12877_022_03139_8 crossref_primary_10_1016_j_ajog_2019_12_273 crossref_primary_10_1097_NNR_0000000000000189 crossref_primary_10_1111_ele_70053 crossref_primary_10_62347_VCDJ1296 crossref_primary_10_1016_j_jaci_2024_07_029 crossref_primary_10_1080_10511482_2012_697911 crossref_primary_10_1016_j_jacc_2021_11_056 crossref_primary_10_1097_SLA_0b013e31828b8bc8 crossref_primary_10_1002_sim_4200 crossref_primary_10_1002_sim_8008 crossref_primary_10_1002_sim_5532 crossref_primary_10_1016_j_archger_2025_105813 crossref_primary_10_1016_j_vaccine_2015_09_070 crossref_primary_10_1007_s10742_017_0174_z crossref_primary_10_1038_srep23222 crossref_primary_10_1002_sim_6185 crossref_primary_10_1177_09622802241247742 crossref_primary_10_1002_jrsm_1511 crossref_primary_10_1186_1471_2288_11_132 crossref_primary_10_3390_jcm12185828 crossref_primary_10_1111_jch_12368 crossref_primary_10_1053_j_ajkd_2011_06_024 crossref_primary_10_1253_circj_CJ_15_0783 crossref_primary_10_1080_00949655_2012_663375 crossref_primary_10_1111_den_14151 crossref_primary_10_1016_j_cct_2020_106213 crossref_primary_10_1016_j_ajog_2023_11_1241 crossref_primary_10_3390_jcm12113827 crossref_primary_10_2105_AJPH_2015_302795 crossref_primary_10_1371_journal_pone_0192960 crossref_primary_10_1002_sim_6768 crossref_primary_10_1002_sim_7615 crossref_primary_10_1097_SLA_0000000000005660 crossref_primary_10_1002_cncr_30939 crossref_primary_10_1186_s12913_017_2188_1 crossref_primary_10_1001_jamasurg_2018_5248 crossref_primary_10_1513_AnnalsATS_202303_258ST crossref_primary_10_3389_fpubh_2022_840145 crossref_primary_10_1093_neuonc_noae005 crossref_primary_10_1111_imj_13167 crossref_primary_10_1002_sim_7170 crossref_primary_10_1002_pst_2436 crossref_primary_10_1097_CM9_0000000000002280 crossref_primary_10_1177_000313481408000107 crossref_primary_10_1007_s12630_014_0305_8 crossref_primary_10_1097_PCC_0000000000002692 crossref_primary_10_1136_annrheumdis_2019_216802 crossref_primary_10_1038_s41523_020_00199_0 crossref_primary_10_1093_ejcts_ezx101 crossref_primary_10_1136_annrheumdis_2021_221650 crossref_primary_10_1002_jso_26344 crossref_primary_10_1371_journal_pone_0243371 crossref_primary_10_1016_j_chest_2021_11_007 crossref_primary_10_1016_j_jinf_2018_01_003 crossref_primary_10_1080_09273948_2024_2411299 crossref_primary_10_1007_s12020_021_02746_6 crossref_primary_10_1002_sam_11233 crossref_primary_10_1186_s12889_020_09772_5 crossref_primary_10_1007_s10620_013_2774_y crossref_primary_10_2215_CJN_09510817 crossref_primary_10_1097_MD_0000000000016953 crossref_primary_10_1093_jnci_djt059 crossref_primary_10_3928_01477447_20190221_01 crossref_primary_10_3389_fendo_2024_1402575 crossref_primary_10_1016_j_mayocp_2015_04_021 crossref_primary_10_54724_lc_2022_e18 crossref_primary_10_1016_j_diabet_2020_101216 crossref_primary_10_1080_09362835_2014_986608 crossref_primary_10_1080_09540121_2017_1307925 crossref_primary_10_1213_ANE_0000000000005221 crossref_primary_10_1007_s40266_012_0013_4 crossref_primary_10_1016_j_jvir_2014_10_019 crossref_primary_10_1016_j_jtcvs_2013_09_067 crossref_primary_10_1097_SLA_0000000000002369 crossref_primary_10_1515_em_2022_0131 crossref_primary_10_1097_SLA_0b013e3182a5cf36 crossref_primary_10_1002_pst_433 crossref_primary_10_1001_jama_2018_4462 crossref_primary_10_1002_jcsm_12423 crossref_primary_10_1213_ANE_0000000000001425 |
Cites_doi | 10.1002/sim.3697 10.1002/sim.1589 10.1002/pds.968 10.1016/j.jclinepi.2004.10.016 10.1080/00031305.1986.10475403 10.1016/j.jclinepi.2009.06.002 10.1046/J.1524-4733.2002.55150.x 10.1002/bimj.200810488 10.1016/0895-4356(94)90191-0 10.1162/003465304323023651 10.1002/sim.3150 10.1080/03610910801942430 10.2202/1557-4679.1146 10.1080/01621459.1987.10478441 10.1002/sim.2781 10.1093/biomet/70.1.41 10.1002/sim.2618 10.1016/j.jtcvs.2007.07.021 10.1177/0272989X09341755 10.1007/978-1-4899-3242-6 10.1002/sim.2580 10.1001/jama.290.19.2581 10.1093/oxfordjournals.aje.a114593 10.1136/bmj.310.6977.452 10.1002/sim.2328 10.1016/j.jclinepi.2007.07.011 10.1002/sim.1903 10.1080/01621459.1984.10478078 10.1002/pds.969 |
ContentType | Journal Article |
Copyright | Copyright © 2010 John Wiley & Sons, Ltd. Copyright John Wiley and Sons, Limited Sep 10, 2010 |
Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: Copyright John Wiley and Sons, Limited Sep 10, 2010 |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.3854 |
DatabaseName | Istex Wiley Online Library Journals (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2148 |
ExternalDocumentID | PMC3068290 2129756301 20108233 10_1002_sim_3854 SIM3854 ark_67375_WNG_FQ398FMJ_1 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research (CIHR) funderid: MOP 86508 – fundername: Ontario Ministry of Health and Long‐Term Care (MOHLTC) – fundername: Heart and Stroke Foundation of Ontario – fundername: Re‐use of this article is permitted in accordance with the Terms and Conditions set out at [http://wileyonlinelibrary.com/author resources/onlineopen.html] – fundername: Canadian Institutes of Health Research grantid: MOP 86508 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT 24P AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5404-8973539c18657857bd124d247f6ef5e82f8a3ca37b986d63682349f6653ed1ed3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 13:35:25 EDT 2025 Fri Jul 11 08:03:09 EDT 2025 Fri Jul 25 07:41:06 EDT 2025 Mon Jul 21 05:38:15 EDT 2025 Tue Jul 01 04:33:22 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Wed Jan 22 16:51:26 EST 2025 Wed Oct 30 09:55:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5404-8973539c18657857bd124d247f6ef5e82f8a3ca37b986d63682349f6653ed1ed3 |
Notes | Ontario Ministry of Health and Long-Term Care (MOHLTC) istex:F35DF484E290CC7DDDDDFB338941DEA457ABEA02 ArticleID:SIM3854 Heart and Stroke Foundation of Ontario Re-use of this article is permitted in accordance with the Terms and Conditions set out at [http://wileyonlinelibrary.com/author resources/onlineopen.html] ark:/67375/WNG-FQ398FMJ-1 Canadian Institutes of Health Research (CIHR) - No. MOP 86508 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 E-mail: peter.austin@ices.on.ca Contract/grant sponsor: Canadian Institutes of Health Research (CIHR); contract/grant number: MOP 86508 Contract/grant sponsor: Ontario Ministry of Health and Long-Term Care (MOHLTC) Contract/grant sponsor: Heart and Stroke Foundation of Ontario |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.3854 |
PMID | 20108233 |
PQID | 749479204 |
PQPubID | 48361 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3068290 proquest_miscellaneous_754006537 proquest_journals_749479204 pubmed_primary_20108233 crossref_primary_10_1002_sim_3854 crossref_citationtrail_10_1002_sim_3854 wiley_primary_10_1002_sim_3854_SIM3854 istex_primary_ark_67375_WNG_FQ398FMJ_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 September 2010 |
PublicationDateYYYYMMDD | 2010-09-10 |
PublicationDate_xml | – month: 09 year: 2010 text: 10 September 2010 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2010 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Austin PC. A data-generation process for data with specified risk differences or numbers needed to treat. Communications in Statistics-Simulation and Computation, in press. Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiology and Drug Safety 2004; 13:841-853. Sinclair JC, Bracken MB. Clinically useful measures of effect in binary analyses of randomized trials. Journal of Clinical Epidemiology 1994; 47:881-889. Austin PC. The performance of different propensity score methods for estimating relative risks. Journal of Clinical Epidemiology 2008; 61:537-545. Austin PC. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal 2009; 51:171-184. Austin PC. A report card on propensity-score matching in the cardiology literature from 2004-2006: results of a systematic review. Circulation: Cardiovascular Quality and Outcomes 2008; 1:62-67. Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. American Journal of Epidemiology 1987; 125:761-768. Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63:142-153. DOI: 10.1016/j.jclinepi.2009.06.002. Austin PC. The relative ability of different propensity-score methods to balance measured covariates between treated and untreated subjects in observational studies. Medical Decision Making 2009; 29:661-677. Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26:734-753. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. Journal of the American Medical Association 2003; 290:2581-2587. Jaeschke R, Guyatt G, Shannon H, Walter S, Cook D, Heddle N. Basis statistics for clinicians 3: assessing the effects of treatment: measures of association. Canadian Medical Association Journal 1995; 152:351-357. Rubin DB. On principles for modeling propensity scores in medical research. Pharmacoepidemiology and Drug Safety 2004; 13:885-887. Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23:2937-2960. Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79:516-524. Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods give similar results to traditional regression modeling in observational studies: a systematic review. Journal of Clinical Epidemiology 2005; 58:550-559. Imbens GW. Nonparametric estimation of average treatment effects under exogeneity: a review. The Review of Economics and Statistics 2004; 86:4-29. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Statistics in Medicine 2009; 28:3083-3107. Austin PC. A critical appraisal of propensity score matching in the medical literature from 1996 to 2003. Statistics in Medicine 2008; 27:2037-2049. Agresti A, Min Y. Effects and non-effects of paired identical observations in comparing proportions with binary matched-pairs data. Statistics in Medicine 2004; 23:65-75. Cook RJ, Sackett DL. The number needed to treat: a clinically useful measure of treatment effect. British Medical Journal 1995; 310:452-454. Rosenbaum PR. Model-based direct adjustment. The Journal of the American Statistician 1987; 82:387-394. Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 2007; 26:3078-3094. Austin PC, Stafford J. The performance of two data-generation processes for data with specified marginal treatment odds ratios. Communications in Statistics-Simulation and Computation 2008; 37:1039-1051. Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25:2084-2106. Schechtman E. Odds ratio, relative risk, absolute risk reduction, and the number needed to treat-which of these should we use? Value in Health 2002; 5:431-436. Flury BK, Riedwyl H. Standard distance in univariate and multivariate analysis. The American Statistician 1986; 40:249-251. Austin PC, Grootendorst P, Normand SLT, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26:754-768. Austin PC. Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses. The International Journal of Biostatistics 2009; 5:Article 13. DOI: 10.2202/1557-4679.1146. McCullagh N, Nelder JA. Generalized Linear Models (2nd edn). Chapman & Hall: London, 1989. Austin PC. Propensity-score matching in the cardiovascular surgery literature from 2004-2006: a systematic review and suggestions for improvement. Journal of Thoracic and Cardiovascular Surgery 2007; 134:1128-1135. 2004; 86 1987; 125 2002; 5 2004; 23 2008 2008; 37 1994; 47 2003; 290 2004 1995; 310 1983; 70 2008; 1 1995; 152 2010; 63 2009; 29 2009; 28 2007; 134 2009; 51 1986; 40 1987; 82 2008; 27 2006; 25 1984; 79 2004; 13 2009; 5 2008; 61 2007; 26 1989 2005; 58 10.1002/sim.3854-BIB5|cit5 Austin (10.1002/sim.3854-BIB25|cit25) 2006; 25 Imbens (10.1002/sim.3854-BIB34|cit34) 2004; 86 Lee (10.1002/sim.3854-BIB27|cit27) 2003; 290 Austin (10.1002/sim.3854-BIB8|cit8) 2008; 61 Austin (10.1002/sim.3854-BIB32|cit32) 2009; 28 Rosenbaum (10.1002/sim.3854-BIB11|cit11) 1987; 82 McCullagh (10.1002/sim.3854-BIB21|cit21) 1989 Jaeschke (10.1002/sim.3854-BIB3|cit3) 1995; 152 Austin (10.1002/sim.3854-BIB15|cit15) 2009; 51 Austin (10.1002/sim.3854-BIB23|cit23) Shah (10.1002/sim.3854-BIB20|cit20) 2005; 58 Agresti (10.1002/sim.3854-BIB17|cit17) 2004; 23 Rosenbaum (10.1002/sim.3854-BIB9|cit9) 1983; 70 Austin (10.1002/sim.3854-BIB16|cit16) 2009; 5 Rosenbaum (10.1002/sim.3854-BIB10|cit10) 1984; 79 Flury (10.1002/sim.3854-BIB29|cit29) 1986; 40 Austin (10.1002/sim.3854-BIB7|cit7) 2007; 26 Austin (10.1002/sim.3854-BIB13|cit13) 2007; 134 Sinclair (10.1002/sim.3854-BIB4|cit4) 1994; 47 Greenland (10.1002/sim.3854-BIB22|cit22) 1987; 125 Austin (10.1002/sim.3854-BIB26|cit26) 2007; 26 Austin (10.1002/sim.3854-BIB30|cit30) 2010; 63 Lunceford (10.1002/sim.3854-BIB18|cit18) 2004; 23 Austin (10.1002/sim.3854-BIB14|cit14) 2008; 1 10.1002/sim.3854-BIB28|cit28 Austin (10.1002/sim.3854-BIB24|cit24) 2008; 37 Austin (10.1002/sim.3854-BIB12|cit12) 2008; 27 Weitzen (10.1002/sim.3854-BIB19|cit19) 2004; 13 Cook (10.1002/sim.3854-BIB2|cit2) 1995; 310 Austin (10.1002/sim.3854-BIB31|cit31) 2009; 29 Austin (10.1002/sim.3854-BIB6|cit6) 2007; 26 Rubin (10.1002/sim.3854-BIB33|cit33) 2004; 13 Schechtman (10.1002/sim.3854-BIB1|cit1) 2002; 5 12201860 - Value Health. 2002 Sep-Oct;5(5):431-6 19197955 - Biom J. 2009 Feb;51(1):171-84 7730891 - J Clin Epidemiol. 1994 Aug;47(8):881-9 17976439 - J Thorac Cardiovasc Surg. 2007 Nov;134(5):1128-35 19757444 - Stat Med. 2009 Nov 10;28(25):3083-107 19716262 - J Clin Epidemiol. 2010 Feb;63(2):142-53 20031790 - Circ Cardiovasc Qual Outcomes. 2008 Sep;1(1):62-7 18038446 - Stat Med. 2008 May 30;27(12):2037-49 15386709 - Pharmacoepidemiol Drug Saf. 2004 Dec;13(12):841-53 15386710 - Pharmacoepidemiol Drug Saf. 2004 Dec;13(12):855-7 16220490 - Stat Med. 2006 Jun 30;25(12):2084-106 7828099 - CMAJ. 1995 Feb 1;152(3):351-7 15878468 - J Clin Epidemiol. 2005 Jun;58(6):550-9 18471657 - J Clin Epidemiol. 2008 Jun;61(6):537-45 15351954 - Stat Med. 2004 Oct 15;23(19):2937-60 14695640 - Stat Med. 2004 Jan 15;23(1):65-75 3551588 - Am J Epidemiol. 1987 May;125(5):761-8 19684288 - Med Decis Making. 2009 Nov-Dec;29(6):661-77 20949126 - Int J Biostat. 2009;5(1):Article 13 16783757 - Stat Med. 2007 Feb 20;26(4):754-68 16708349 - Stat Med. 2007 Feb 20;26(4):734-53 17187347 - Stat Med. 2007 Jul 20;26(16):3078-94 14625335 - JAMA. 2003 Nov 19;290(19):2581-7 7873954 - BMJ. 1995 Feb 18;310(6977):452-4 |
References_xml | – reference: Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Statistics in Medicine 2009; 28:3083-3107. – reference: Austin PC. Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses. The International Journal of Biostatistics 2009; 5:Article 13. DOI: 10.2202/1557-4679.1146. – reference: Jaeschke R, Guyatt G, Shannon H, Walter S, Cook D, Heddle N. Basis statistics for clinicians 3: assessing the effects of treatment: measures of association. Canadian Medical Association Journal 1995; 152:351-357. – reference: Austin PC. The relative ability of different propensity-score methods to balance measured covariates between treated and untreated subjects in observational studies. Medical Decision Making 2009; 29:661-677. – reference: Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 2007; 26:3078-3094. – reference: Sinclair JC, Bracken MB. Clinically useful measures of effect in binary analyses of randomized trials. Journal of Clinical Epidemiology 1994; 47:881-889. – reference: Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63:142-153. DOI: 10.1016/j.jclinepi.2009.06.002. – reference: Austin PC. A report card on propensity-score matching in the cardiology literature from 2004-2006: results of a systematic review. Circulation: Cardiovascular Quality and Outcomes 2008; 1:62-67. – reference: Flury BK, Riedwyl H. Standard distance in univariate and multivariate analysis. The American Statistician 1986; 40:249-251. – reference: Rosenbaum PR. Model-based direct adjustment. The Journal of the American Statistician 1987; 82:387-394. – reference: Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods give similar results to traditional regression modeling in observational studies: a systematic review. Journal of Clinical Epidemiology 2005; 58:550-559. – reference: McCullagh N, Nelder JA. Generalized Linear Models (2nd edn). Chapman & Hall: London, 1989. – reference: Austin PC, Grootendorst P, Normand SLT, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26:754-768. – reference: Austin PC. The performance of different propensity score methods for estimating relative risks. Journal of Clinical Epidemiology 2008; 61:537-545. – reference: Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23:2937-2960. – reference: Austin PC. Propensity-score matching in the cardiovascular surgery literature from 2004-2006: a systematic review and suggestions for improvement. Journal of Thoracic and Cardiovascular Surgery 2007; 134:1128-1135. – reference: Imbens GW. Nonparametric estimation of average treatment effects under exogeneity: a review. The Review of Economics and Statistics 2004; 86:4-29. – reference: Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55. – reference: Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79:516-524. – reference: Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26:734-753. – reference: Cook RJ, Sackett DL. The number needed to treat: a clinically useful measure of treatment effect. British Medical Journal 1995; 310:452-454. – reference: Austin PC, Stafford J. The performance of two data-generation processes for data with specified marginal treatment odds ratios. Communications in Statistics-Simulation and Computation 2008; 37:1039-1051. – reference: Austin PC. A critical appraisal of propensity score matching in the medical literature from 1996 to 2003. Statistics in Medicine 2008; 27:2037-2049. – reference: Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiology and Drug Safety 2004; 13:841-853. – reference: Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25:2084-2106. – reference: Schechtman E. Odds ratio, relative risk, absolute risk reduction, and the number needed to treat-which of these should we use? Value in Health 2002; 5:431-436. – reference: Austin PC. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal 2009; 51:171-184. – reference: Agresti A, Min Y. Effects and non-effects of paired identical observations in comparing proportions with binary matched-pairs data. Statistics in Medicine 2004; 23:65-75. – reference: Austin PC. A data-generation process for data with specified risk differences or numbers needed to treat. Communications in Statistics-Simulation and Computation, in press. – reference: Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. American Journal of Epidemiology 1987; 125:761-768. – reference: Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. Journal of the American Medical Association 2003; 290:2581-2587. – reference: Rubin DB. On principles for modeling propensity scores in medical research. Pharmacoepidemiology and Drug Safety 2004; 13:885-887. – volume: 58 start-page: 550 year: 2005 end-page: 559 article-title: Propensity score methods give similar results to traditional regression modeling in observational studies: a systematic review publication-title: Journal of Clinical Epidemiology – volume: 40 start-page: 249 year: 1986 end-page: 251 article-title: Standard distance in univariate and multivariate analysis publication-title: The American Statistician – article-title: A data‐generation process for data with specified risk differences or numbers needed to treat publication-title: Communications in Statistics—Simulation and Computation – volume: 5 year: 2009 article-title: Type I error rates, coverage of confidence intervals, and variance estimation in propensity‐score matched analyses publication-title: The International Journal of Biostatistics – year: 1989 – volume: 290 start-page: 2581 year: 2003 end-page: 2587 article-title: Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model publication-title: Journal of the American Medical Association – volume: 70 start-page: 41 year: 1983 end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – volume: 25 start-page: 2084 year: 2006 end-page: 2106 article-title: A comparison of propensity score methods: a case‐study estimating the effectiveness of post‐AMI statin use publication-title: Statistics in Medicine – volume: 134 start-page: 1128 year: 2007 end-page: 1135 article-title: Propensity‐score matching in the cardiovascular surgery literature from 2004–2006: a systematic review and suggestions for improvement publication-title: Journal of Thoracic and Cardiovascular Surgery – volume: 37 start-page: 1039 year: 2008 end-page: 1051 article-title: The performance of two data‐generation processes for data with specified marginal treatment odds ratios publication-title: Communications in Statistics—Simulation and Computation – volume: 5 start-page: 431 year: 2002 end-page: 436 article-title: Odds ratio, relative risk, absolute risk reduction, and the number needed to treat—which of these should we use? publication-title: Value in Health – volume: 26 start-page: 754 year: 2007 end-page: 768 article-title: Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study publication-title: Statistics in Medicine – volume: 82 start-page: 387 year: 1987 end-page: 394 article-title: Model‐based direct adjustment publication-title: The Journal of the American Statistician – volume: 51 start-page: 171 year: 2009 end-page: 184 article-title: Some methods of propensity‐score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations publication-title: Biometrical Journal – volume: 23 start-page: 2937 year: 2004 end-page: 2960 article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study publication-title: Statistics in Medicine – volume: 23 start-page: 65 year: 2004 end-page: 75 article-title: Effects and non‐effects of paired identical observations in comparing proportions with binary matched–pairs data publication-title: Statistics in Medicine – volume: 47 start-page: 881 year: 1994 end-page: 889 article-title: Clinically useful measures of effect in binary analyses of randomized trials publication-title: Journal of Clinical Epidemiology – volume: 86 start-page: 4 year: 2004 end-page: 29 article-title: Nonparametric estimation of average treatment effects under exogeneity: a review publication-title: The Review of Economics and Statistics – year: 2008 – volume: 27 start-page: 2037 year: 2008 end-page: 2049 article-title: A critical appraisal of propensity score matching in the medical literature from 1996 to 2003 publication-title: Statistics in Medicine – year: 2004 – volume: 26 start-page: 734 year: 2007 end-page: 753 article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study publication-title: Statistics in Medicine – volume: 13 start-page: 841 year: 2004 end-page: 853 article-title: Principles for modeling propensity scores in medical research: a systematic literature review publication-title: Pharmacoepidemiology and Drug Safety – volume: 61 start-page: 537 year: 2008 end-page: 545 article-title: The performance of different propensity score methods for estimating relative risks publication-title: Journal of Clinical Epidemiology – volume: 1 start-page: 62 year: 2008 end-page: 67 article-title: A report card on propensity‐score matching in the cardiology literature from 2004–2006: results of a systematic review publication-title: Circulation: Cardiovascular Quality and Outcomes – volume: 125 start-page: 761 year: 1987 end-page: 768 article-title: Interpretation and choice of effect measures in epidemiologic analyses publication-title: American Journal of Epidemiology – volume: 13 start-page: 885 year: 2004 end-page: 887 article-title: On principles for modeling propensity scores in medical research publication-title: Pharmacoepidemiology and Drug Safety – volume: 28 start-page: 3083 year: 2009 end-page: 3107 article-title: Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity‐score matched samples publication-title: Statistics in Medicine – volume: 29 start-page: 661 year: 2009 end-page: 677 article-title: The relative ability of different propensity‐score methods to balance measured covariates between treated and untreated subjects in observational studies publication-title: Medical Decision Making – volume: 63 start-page: 142 year: 2010 end-page: 153 article-title: A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals publication-title: Journal of Clinical Epidemiology – volume: 310 start-page: 452 year: 1995 end-page: 454 article-title: The number needed to treat: a clinically useful measure of treatment effect publication-title: British Medical Journal – volume: 152 start-page: 351 year: 1995 end-page: 357 article-title: Basis statistics for clinicians 3: assessing the effects of treatment: measures of association publication-title: Canadian Medical Association Journal – volume: 26 start-page: 3078 year: 2007 end-page: 3094 article-title: The performance of different propensity score methods for estimating marginal odds ratios publication-title: Statistics in Medicine – volume: 79 start-page: 516 year: 1984 end-page: 524 article-title: Reducing bias in observational studies using subclassification on the propensity score publication-title: Journal of the American Statistical Association – ident: 10.1002/sim.3854-BIB23|cit23 article-title: A data-generation process for data with specified risk differences or numbers needed to treat publication-title: Communications in Statistics-Simulation and Computation – volume: 28 start-page: 3083 year: 2009 ident: 10.1002/sim.3854-BIB32|cit32 article-title: Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples publication-title: Statistics in Medicine doi: 10.1002/sim.3697 – volume: 23 start-page: 65 year: 2004 ident: 10.1002/sim.3854-BIB17|cit17 article-title: Effects and non-effects of paired identical observations in comparing proportions with binary matched-pairs data publication-title: Statistics in Medicine doi: 10.1002/sim.1589 – volume: 13 start-page: 885 year: 2004 ident: 10.1002/sim.3854-BIB33|cit33 article-title: On principles for modeling propensity scores in medical research publication-title: Pharmacoepidemiology and Drug Safety doi: 10.1002/pds.968 – volume: 58 start-page: 550 year: 2005 ident: 10.1002/sim.3854-BIB20|cit20 article-title: Propensity score methods give similar results to traditional regression modeling in observational studies: a systematic review publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2004.10.016 – volume: 40 start-page: 249 year: 1986 ident: 10.1002/sim.3854-BIB29|cit29 article-title: Standard distance in univariate and multivariate analysis publication-title: The American Statistician doi: 10.1080/00031305.1986.10475403 – volume: 63 start-page: 142 year: 2010 ident: 10.1002/sim.3854-BIB30|cit30 article-title: A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2009.06.002 – volume: 5 start-page: 431 year: 2002 ident: 10.1002/sim.3854-BIB1|cit1 article-title: Odds ratio, relative risk, absolute risk reduction, and the number needed to treat-which of these should we use? publication-title: Value in Health doi: 10.1046/J.1524-4733.2002.55150.x – volume: 51 start-page: 171 year: 2009 ident: 10.1002/sim.3854-BIB15|cit15 article-title: Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations publication-title: Biometrical Journal doi: 10.1002/bimj.200810488 – volume: 47 start-page: 881 year: 1994 ident: 10.1002/sim.3854-BIB4|cit4 article-title: Clinically useful measures of effect in binary analyses of randomized trials publication-title: Journal of Clinical Epidemiology doi: 10.1016/0895-4356(94)90191-0 – volume: 86 start-page: 4 year: 2004 ident: 10.1002/sim.3854-BIB34|cit34 article-title: Nonparametric estimation of average treatment effects under exogeneity: a review publication-title: The Review of Economics and Statistics doi: 10.1162/003465304323023651 – volume: 27 start-page: 2037 year: 2008 ident: 10.1002/sim.3854-BIB12|cit12 article-title: A critical appraisal of propensity score matching in the medical literature from 1996 to 2003 publication-title: Statistics in Medicine doi: 10.1002/sim.3150 – ident: 10.1002/sim.3854-BIB5|cit5 – volume: 37 start-page: 1039 year: 2008 ident: 10.1002/sim.3854-BIB24|cit24 article-title: The performance of two data-generation processes for data with specified marginal treatment odds ratios publication-title: Communications in Statistics-Simulation and Computation doi: 10.1080/03610910801942430 – volume: 5 year: 2009 ident: 10.1002/sim.3854-BIB16|cit16 article-title: Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses publication-title: The International Journal of Biostatistics doi: 10.2202/1557-4679.1146 – ident: 10.1002/sim.3854-BIB28|cit28 – volume: 82 start-page: 387 year: 1987 ident: 10.1002/sim.3854-BIB11|cit11 article-title: Model-based direct adjustment publication-title: The Journal of the American Statistician doi: 10.1080/01621459.1987.10478441 – volume: 26 start-page: 3078 year: 2007 ident: 10.1002/sim.3854-BIB7|cit7 article-title: The performance of different propensity score methods for estimating marginal odds ratios publication-title: Statistics in Medicine doi: 10.1002/sim.2781 – volume: 70 start-page: 41 year: 1983 ident: 10.1002/sim.3854-BIB9|cit9 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika doi: 10.1093/biomet/70.1.41 – volume: 26 start-page: 754 year: 2007 ident: 10.1002/sim.3854-BIB6|cit6 article-title: Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study publication-title: Statistics in Medicine doi: 10.1002/sim.2618 – volume: 134 start-page: 1128 year: 2007 ident: 10.1002/sim.3854-BIB13|cit13 article-title: Propensity-score matching in the cardiovascular surgery literature from 2004-2006: a systematic review and suggestions for improvement publication-title: Journal of Thoracic and Cardiovascular Surgery doi: 10.1016/j.jtcvs.2007.07.021 – volume: 29 start-page: 661 year: 2009 ident: 10.1002/sim.3854-BIB31|cit31 article-title: The relative ability of different propensity-score methods to balance measured covariates between treated and untreated subjects in observational studies publication-title: Medical Decision Making doi: 10.1177/0272989X09341755 – volume-title: Generalized Linear Models year: 1989 ident: 10.1002/sim.3854-BIB21|cit21 doi: 10.1007/978-1-4899-3242-6 – volume: 26 start-page: 734 year: 2007 ident: 10.1002/sim.3854-BIB26|cit26 article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study publication-title: Statistics in Medicine doi: 10.1002/sim.2580 – volume: 290 start-page: 2581 year: 2003 ident: 10.1002/sim.3854-BIB27|cit27 article-title: Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model publication-title: Journal of the American Medical Association doi: 10.1001/jama.290.19.2581 – volume: 125 start-page: 761 year: 1987 ident: 10.1002/sim.3854-BIB22|cit22 article-title: Interpretation and choice of effect measures in epidemiologic analyses publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a114593 – volume: 310 start-page: 452 year: 1995 ident: 10.1002/sim.3854-BIB2|cit2 article-title: The number needed to treat: a clinically useful measure of treatment effect publication-title: British Medical Journal doi: 10.1136/bmj.310.6977.452 – volume: 25 start-page: 2084 year: 2006 ident: 10.1002/sim.3854-BIB25|cit25 article-title: A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use publication-title: Statistics in Medicine doi: 10.1002/sim.2328 – volume: 61 start-page: 537 year: 2008 ident: 10.1002/sim.3854-BIB8|cit8 article-title: The performance of different propensity score methods for estimating relative risks publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2007.07.011 – volume: 1 start-page: 62 year: 2008 ident: 10.1002/sim.3854-BIB14|cit14 article-title: A report card on propensity-score matching in the cardiology literature from 2004-2006: results of a systematic review publication-title: Circulation: Cardiovascular Quality and Outcomes – volume: 23 start-page: 2937 year: 2004 ident: 10.1002/sim.3854-BIB18|cit18 article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study publication-title: Statistics in Medicine doi: 10.1002/sim.1903 – volume: 79 start-page: 516 year: 1984 ident: 10.1002/sim.3854-BIB10|cit10 article-title: Reducing bias in observational studies using subclassification on the propensity score publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1984.10478078 – volume: 13 start-page: 841 year: 2004 ident: 10.1002/sim.3854-BIB19|cit19 article-title: Principles for modeling propensity scores in medical research: a systematic literature review publication-title: Pharmacoepidemiology and Drug Safety doi: 10.1002/pds.969 – volume: 152 start-page: 351 year: 1995 ident: 10.1002/sim.3854-BIB3|cit3 article-title: Basis statistics for clinicians 3: assessing the effects of treatment: measures of association publication-title: Canadian Medical Association Journal – reference: 7873954 - BMJ. 1995 Feb 18;310(6977):452-4 – reference: 19757444 - Stat Med. 2009 Nov 10;28(25):3083-107 – reference: 15386710 - Pharmacoepidemiol Drug Saf. 2004 Dec;13(12):855-7 – reference: 14625335 - JAMA. 2003 Nov 19;290(19):2581-7 – reference: 7730891 - J Clin Epidemiol. 1994 Aug;47(8):881-9 – reference: 7828099 - CMAJ. 1995 Feb 1;152(3):351-7 – reference: 20031790 - Circ Cardiovasc Qual Outcomes. 2008 Sep;1(1):62-7 – reference: 17187347 - Stat Med. 2007 Jul 20;26(16):3078-94 – reference: 15878468 - J Clin Epidemiol. 2005 Jun;58(6):550-9 – reference: 18471657 - J Clin Epidemiol. 2008 Jun;61(6):537-45 – reference: 19197955 - Biom J. 2009 Feb;51(1):171-84 – reference: 18038446 - Stat Med. 2008 May 30;27(12):2037-49 – reference: 17976439 - J Thorac Cardiovasc Surg. 2007 Nov;134(5):1128-35 – reference: 14695640 - Stat Med. 2004 Jan 15;23(1):65-75 – reference: 12201860 - Value Health. 2002 Sep-Oct;5(5):431-6 – reference: 20949126 - Int J Biostat. 2009;5(1):Article 13 – reference: 19684288 - Med Decis Making. 2009 Nov-Dec;29(6):661-77 – reference: 3551588 - Am J Epidemiol. 1987 May;125(5):761-8 – reference: 19716262 - J Clin Epidemiol. 2010 Feb;63(2):142-53 – reference: 16708349 - Stat Med. 2007 Feb 20;26(4):734-53 – reference: 15386709 - Pharmacoepidemiol Drug Saf. 2004 Dec;13(12):841-53 – reference: 15351954 - Stat Med. 2004 Oct 15;23(19):2937-60 – reference: 16220490 - Stat Med. 2006 Jun 30;25(12):2084-106 – reference: 16783757 - Stat Med. 2007 Feb 20;26(4):754-68 |
SSID | ssj0011527 |
Score | 2.4758673 |
Snippet | Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2137 |
SubjectTerms | Adrenergic beta-Antagonists - therapeutic use Analysis of Variance Bias binary data Biostatistics Clinical outcomes Confidence Intervals Databases, Factual Differences Heart Failure - drug therapy Heart Failure - mortality Humans inverse probability of treatment weighting IPTW matching Medical statistics Models, Statistical Monte Carlo Method Monte Carlo simulation number needed to treat observational study Odds Ratio Propensity Score propensity-score matching Risk Risk assessment risk difference |
Title | The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies |
URI | https://api.istex.fr/ark:/67375/WNG-FQ398FMJ-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.3854 https://www.ncbi.nlm.nih.gov/pubmed/20108233 https://www.proquest.com/docview/749479204 https://www.proquest.com/docview/754006537 https://pubmed.ncbi.nlm.nih.gov/PMC3068290 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSGgS4lJuZTAZCXF5SLf47keEKGNSJ24Tk3iw4sSBapBWTSshnvgJ_A3-Fr-Ec-IkozAkxFMffE5SO-fYn-3Pnwm5x0sYxbyQCVISElGUReINTFY8C7k0BYYVrndMDtTeodg_kkctqxLPwkR9iH7BDTOj6a8xwTNf75yIhtbTTyNuJEqBIlUL8dCrXjkq7W5rxR1KpVPZ6c7usp3OcW0kOoeN-vk0mPknW_JXFNsMQ-NL5F1Xgcg-OR6tln6Uf_lN2_H_aniZXGzRKX0cw-kKOROqATk_afffB-RCXOWj8fDSgGwiVo1Sz1fJdwg5Oj85iEBnJe3uX1nSOa76V8gA-fH1W43imTTeXl1TcKAo9oHguXrf-0APRqdV4whzBEwP-hCZ8GsG4ArVwfwJtClcoBZtY_0IvWe-X3aGitWRNXmNHI6fvnmyl7Q3QSQ5IEqRGKu55DZPjUJxHu0LgCUFE7pUoZTBsNJkPM-49taoQnFlGBe2VEryUKSh4NfJRjWrwk1COQBQAInBF8ziZNYKVWYeJk2SmZTLfEgedFHh8lYmHW_r-OiiwDNz8FkcfpYhudtbzqM0yCk295vA6g2yxTFS6bR0bw-eufFLbs14su_SIdnqIs-1vUjttLBCW7YLj6F9KaQ_7ulkVZitwATaB-WF9ZDciGHavwp5DtAOfEj0WgD3Bqgsvl5STT80CuMwj8QNdvj3TXz-tXru9fMJ_t76V8MtshnpFxbG_9tkY7lYhTuA6pZ-m5xl4sV2k8U_ATVMT4Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VVoJKiJ-FllB-jISgHLJt4jhxxAkBy7Y0KwGt6AHJihMHVoXsarMrIU48Aq_Ba_EkzMRJykKREKc9eCZZO5_tmfH4G4D7vMBdTAfCpZQEN8iL3NUSnRXtm0zInGBF8Y5kFA6Pgv1jcbwCj9u7MJYfogu40cyo12ua4BSQ3jllDa3Gn_pciuAcrFFBbyLOf_a6447y2nqtdEYZRp5omWd3_Z1Wc2kvWqNh_XyWoflnvuSvdmy9EQ0uw7u2Czb_5KS_mOt-9uU3dsf_7OMVuNQYqOyJRdRVWDFlD84nzRF8Dy7aQB-z95d6sE7mqmV7vgbfEXVsenoXgU0K1pZgmbMpBf5LSgL58fVbRfyZzBawrhgqMOL7IPu5fN_p4CLGxmWtiG4CzRC2TcnwSwKomup6ChlWN86IjraWfkTaE91FnrFjlU2cvA5Hg-eHT4duUwzCzdCoDFwZR1zwOPNkSPw8kc7RMsn9ICpCUwgj_UKmPEt5pGMZ5iEPpc-DuAhDwU3umZxvwGo5Kc0NYBxtUMSL0bkfkz8bB2GRavSbhC89LjIHHrawUFnDlE4FOz4qy_HsK_wsij6LA_c6yallBzlD5kGNrE4gnZ1QNl0k1NvRCzV4xWM5SPaV58BWCz3VLCSVioI4iGJ_Fx_DulZcAehYJy3NZIEiOD7EMBw5sGlx2r2KUh1wHLgD0RKCOwEiF19uKccfapJxdCXpjB3_fQ3Qv3ZPvdlL6PfmvwrehQvDw-RAHeyNXm7Bus3GiNEcuAWr89nC3EYjb67v1JP5JwRnUss |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwEB1BK1WVEILlFsrFSIjLQ9rGl9h5REBoC7sqgoq-Wbk4dFXIrjZbiUc-gd_gt_gSZuIkZUWReNoHz-xuPOP4eGZ8BuCxqHAXy6UKqSQhlGVVhrnBw0rOXaFMSW5F8Y7xJN47kgfH6rirqqS7MJ4fYgi40cpo39e0wOdltXNOGtpMv24Lo-RlWKdcH5VzcXk4ZBD6dq2Uoox1pHri2V2-02uubEXrNKvfLsKZf5dL_glj230ovQZXOwDJXniLX4dLrh7BxrhLkY_gig_EMX-_aASbBCc9G_MN-IlewebndwXYrGJ9i5Qlm1NgvqYijV_ffzTEb8l8g-mGoQIjPg7Ct_XnQQdfMmxat4oI48mD2TMqVl8RQNUsb13csXZwQXSxrfRz0p7lQ2QYH6zxhY034Sh9_fHlXtg1awgLBH0yNIkWSiRFZGLiz9F5icih5FJXsauUM7wymSgyofPExGUsYsOFTKo4VsKVkSvFLVirZ7W7A0wgRkQc5_KSJ3TeTGRcZTmeaxQ3kVBFAE97u9miYzKnhhpfrOdg5hYtbMnCATwaJOeeveMCmSet6QeBbHFK1W5a2U-TNzZ9LxKTjg9sFMBW7xu2W-iN1TKROuG7-DVsGMUVSmmXrHazMxTB-SEGYB3Abe9Iw09RKQLOgwhAr7jYIEDk36sj9fSkJQHHox7lwPHft874z8ezH_bH9Hn3fwUfwsbhq9S-25-83YJNXyyR4G59D9aWizN3HzHYMn_QLrbfwgAxbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+performance+of+different+propensity-score+methods+for+estimating+differences+in+proportions+%28risk+differences+or+absolute+risk+reductions%29+in+observational+studies&rft.jtitle=Statistics+in+medicine&rft.au=Austin%2C+Peter+C.&rft.date=2010-09-10&rft.issn=0277-6715&rft.volume=29&rft.issue=20&rft.spage=2137&rft.epage=2148&rft_id=info:doi/10.1002%2Fsim.3854&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_3854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |