Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review
We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non‐glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America an...
Saved in:
Published in | Hydrological processes Vol. 29; no. 16; pp. 3475 - 3490 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Blackwell Publishing Ltd
30.07.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non‐glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer‐based hydrograph separations, derivation of transit time distributions and tracer‐aided rainfall‐runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer‐aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
AbstractList | We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non‐glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer‐based hydrograph separations, derivation of transit time distributions and tracer‐aided rainfall‐runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer‐aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change. Copyright © 2014 John Wiley & Sons, Ltd. Abstract We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non‐glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer‐based hydrograph separations, derivation of transit time distributions and tracer‐aided rainfall‐runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer‐aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change. Copyright © 2014 John Wiley & Sons, Ltd. We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non-glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer-based hydrograph separations, derivation of transit time distributions and tracer-aided rainfall-runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer-aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change. We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non-glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer-based hydrograph separations, derivation of transit time distributions and tracer-aided rainfall-runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer-aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change. Copyright (c) 2014 John Wiley & Sons, Ltd. |
Author | Buttle, Jim Laudon, Hjalmar McGuire, Kevin Soulsby, Chris Tetzlaff, Doerthe Carey, Sean K. |
Author_xml | – sequence: 1 givenname: Doerthe surname: Tetzlaff fullname: Tetzlaff, Doerthe email: Correspondence to: Doerthe Tetzlaff, University of Aberdeen, Northern Rivers Institute, School of Geosciences, Aberdeen, AB24 3UF, United Kingdom., d.tetzlaff@abdn.ac.uk organization: Northern Rivers Institute, School of Geosciences, University of Aberdeen, AB24 3UF, Aberdeen, UK – sequence: 2 givenname: Jim surname: Buttle fullname: Buttle, Jim organization: Department of Geography, Trent University, 1600 West Bank Drive, Ontario, Peterborough, Canada – sequence: 3 givenname: Sean K. surname: Carey fullname: Carey, Sean K. organization: School of Geography and Earth Sciences, McMaster University, 1280 Main St. W, Ontario, L8S 4 K1, Hamilton, Canada – sequence: 4 givenname: Kevin surname: McGuire fullname: McGuire, Kevin organization: Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, 24061, Blacksburg, VA, USA – sequence: 5 givenname: Hjalmar surname: Laudon fullname: Laudon, Hjalmar organization: Swedish University of Agricultural Sciences, Department of Forest Ecology and Management, SE-90183, Umeå, Sweden – sequence: 6 givenname: Chris surname: Soulsby fullname: Soulsby, Chris organization: School of Geosciences, University of Aberdeen, AB24 3UF, Aberdeen, UK |
BackLink | https://res.slu.se/id/publ/68470$$DView record from Swedish Publication Index |
BookMark | eNqN0U1v1DAQBmALtRLblgP_wBIXkEhrx3Fsc0MVtEVV4VDEx8VynHE3JWsHT9Lt_nuybOkBCYnT-PDMaMbvAdmLKQIhzzk75oyVJ8vNMD8qXj4hC86MKTjTco8smNayqJlWT8kB4i1jrGKaLQhcZ-chF41DaKlDBMQVxJGmQEOf1nRw4xJfUxxTdjdAXWxpnmIKgd5AhOzGLkXaRRpTHpeQI_Vu9MvtCHxDHc1w18H6iOwH1yM8e6iH5PP7d9en58Xlx7OL07eXhZcVKwunuGuM9Aa0N1pUui4Z-EoqJnkQjWmkaFUTWlWHtg0GjAiCexlMHXjthBaHpNjNxTUMU2OH3K1c3tjkOov91Li8LRbB1rpSbPYvd37I6ecEONpVhx763kVIE1quuDaqrEz5H5RJZrjgaqYv_qK3acpxPtzy2ighjNFb9WqnfE6IGcLjtpzZbZZ2ztL-znK2Jzu77nrY_Bva82-f_nQ8_ESHI9w_drj8w9ZKKGm_XJ3Z6kqW-oP5br-KX-5hsbc |
CitedBy_id | crossref_primary_10_1007_s10040_019_01942_z crossref_primary_10_1002_hyp_14824 crossref_primary_10_1016_j_jhydrol_2023_129177 crossref_primary_10_1080_02626667_2020_1751847 crossref_primary_10_1088_1748_9326_aaa4fe crossref_primary_10_1002_hyp_11396 crossref_primary_10_1016_j_jhydrol_2020_124966 crossref_primary_10_7717_peerj_7146 crossref_primary_10_1002_hyp_11158 crossref_primary_10_5194_hess_24_673_2020 crossref_primary_10_1002_2016WR020117 crossref_primary_10_1002_hyp_10740 crossref_primary_10_1002_2017WR020650 crossref_primary_10_1002_2016WR019804 crossref_primary_10_1002_vzj2_20022 crossref_primary_10_1186_s40562_021_00193_9 crossref_primary_10_5194_hess_23_1867_2019 crossref_primary_10_1002_hyp_14023 crossref_primary_10_1002_wat2_1260 crossref_primary_10_1016_j_jhydrol_2022_128926 crossref_primary_10_5194_bg_18_3015_2021 crossref_primary_10_3389_frwa_2023_1243114 crossref_primary_10_1016_j_jhydrol_2021_126054 crossref_primary_10_1002_wat2_1311 crossref_primary_10_1016_j_jhydrol_2016_01_079 crossref_primary_10_1002_hyp_13627 crossref_primary_10_1002_hyp_13746 crossref_primary_10_1002_hyp_10515 crossref_primary_10_1002_hyp_10516 crossref_primary_10_1139_as_2022_0038 crossref_primary_10_1002_hyp_13584 crossref_primary_10_1002_hyp_14278 crossref_primary_10_1016_j_jhydrol_2024_131020 crossref_primary_10_1146_annurev_environ_012220_125703 crossref_primary_10_1016_j_scitotenv_2018_04_059 crossref_primary_10_3390_hydrology7010006 crossref_primary_10_1002_ppp_1865 crossref_primary_10_1016_j_watres_2022_118860 crossref_primary_10_3389_frwa_2021_740044 crossref_primary_10_1029_2019WR025093 crossref_primary_10_1002_hyp_13914 crossref_primary_10_1016_j_jhydrol_2024_131632 crossref_primary_10_1134_S0097807821040187 crossref_primary_10_1016_j_jhydrol_2019_03_050 crossref_primary_10_1002_hyp_11213 crossref_primary_10_1002_hyp_13238 crossref_primary_10_1029_2022WR033101 crossref_primary_10_1002_hyp_10883 crossref_primary_10_1002_hyp_14845 crossref_primary_10_2136_vzj2016_01_0010 crossref_primary_10_2134_jeq2018_07_0280 crossref_primary_10_1029_2018WR023894 crossref_primary_10_5194_hess_23_2507_2019 crossref_primary_10_1002_2015JG003131 crossref_primary_10_3390_hydrology10030055 crossref_primary_10_1016_j_jhydrol_2020_124834 crossref_primary_10_1029_2020GB006671 crossref_primary_10_5194_hess_25_735_2021 crossref_primary_10_2166_nh_2018_086 crossref_primary_10_1016_j_catena_2023_107765 crossref_primary_10_3390_hydrology3030028 crossref_primary_10_3390_hydrology9020024 crossref_primary_10_1029_2023GL104147 crossref_primary_10_1016_j_jhydrol_2023_129134 crossref_primary_10_3390_atmos12020150 crossref_primary_10_1002_2015WR017888 crossref_primary_10_1016_j_earscirev_2016_06_014 crossref_primary_10_1029_2020WR027714 crossref_primary_10_1016_j_geoderma_2022_116277 crossref_primary_10_1016_j_jhydrol_2017_09_053 crossref_primary_10_1002_hyp_13135 crossref_primary_10_1002_hyp_11351 crossref_primary_10_1029_2023WR034752 crossref_primary_10_1029_2023WR036412 crossref_primary_10_1002_2015WR018463 crossref_primary_10_5194_hess_25_2169_2021 crossref_primary_10_1002_2017WR021718 crossref_primary_10_1002_hyp_10300 crossref_primary_10_1016_j_foreco_2022_120468 crossref_primary_10_1002_hyp_11194 crossref_primary_10_1029_2019WR025828 crossref_primary_10_1029_2017WR022403 crossref_primary_10_1029_2019WR024908 crossref_primary_10_5194_hess_23_2041_2019 crossref_primary_10_1016_j_jhydrol_2023_130478 crossref_primary_10_1002_2017GL075067 crossref_primary_10_1051_e3sconf_202016305015 crossref_primary_10_1002_hyp_10710 crossref_primary_10_1029_2017WR022362 crossref_primary_10_1007_s10661_020_08414_y crossref_primary_10_1002_hyp_14516 crossref_primary_10_1016_j_jhydrol_2023_129881 crossref_primary_10_1016_j_jhydrol_2024_131621 crossref_primary_10_1002_hyp_10835 crossref_primary_10_1016_j_jhydrol_2017_11_024 crossref_primary_10_1029_2019WR026010 crossref_primary_10_1029_2020WR028479 crossref_primary_10_3390_w9060418 crossref_primary_10_1002_2017WR021689 crossref_primary_10_1002_hyp_13146 crossref_primary_10_1002_hyp_13664 crossref_primary_10_1002_2016WR019437 crossref_primary_10_1029_2019WR025677 crossref_primary_10_1002_hyp_10434 crossref_primary_10_1016_j_jhydrol_2020_125226 crossref_primary_10_1029_2018GB006030 crossref_primary_10_1016_j_jhydrol_2021_126685 crossref_primary_10_1002_2016JG003387 crossref_primary_10_1016_j_ejrh_2015_12_062 crossref_primary_10_1002_wat2_1727 crossref_primary_10_1016_j_ejrh_2023_101398 crossref_primary_10_1016_j_jhydrol_2017_07_022 crossref_primary_10_3389_fenvs_2023_1304347 crossref_primary_10_1002_hyp_10566 crossref_primary_10_1016_j_jhydrol_2015_05_019 crossref_primary_10_5194_hess_21_5089_2017 crossref_primary_10_1029_2021JG006281 crossref_primary_10_5194_hess_21_2595_2017 crossref_primary_10_1016_j_jhydrol_2018_04_022 crossref_primary_10_1002_hyp_11491 crossref_primary_10_1016_j_scitotenv_2023_168561 crossref_primary_10_1080_07011784_2023_2224280 crossref_primary_10_1016_j_jhydrol_2016_01_055 crossref_primary_10_1016_j_jhydrol_2022_128236 crossref_primary_10_1080_10256016_2021_1877701 crossref_primary_10_1002_hyp_13609 crossref_primary_10_5194_hess_20_1069_2016 crossref_primary_10_1016_j_envsoft_2018_01_001 crossref_primary_10_1016_j_scitotenv_2020_144799 crossref_primary_10_3390_w13182529 crossref_primary_10_1002_hyp_14775 crossref_primary_10_2343_geochemj_2_0469 crossref_primary_10_1016_j_scitotenv_2023_167999 crossref_primary_10_1002_hyp_14811 crossref_primary_10_1029_2020GB006871 crossref_primary_10_1002_eco_2208 crossref_primary_10_5194_hess_25_2133_2021 crossref_primary_10_1016_j_jhydrol_2022_128878 crossref_primary_10_1002_hyp_13280 crossref_primary_10_1002_hyp_13440 |
Cites_doi | 10.1002/hyp.7577 10.1016/j.jhydrol.2005.09.016 10.1002/hyp.262 10.1016/j.jhydrol.2008.03.013 10.1029/97WR01033 10.1029/2011WR011293 10.1002/hyp.7763 10.1002/hyp.5132 10.1080/07055900.1986.9649248 10.1023/A:1013039830323 10.2166/nh.2010.146 10.1029/2009WR008818 10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-HYP879>3.0.CO;2-G 10.1002/hyp.6117 10.1002/hyp.7049 10.1002/hyp.3360090206 10.1029/2003WR002765 10.1029/WR006i005p01296 10.5194/hess-17-533-2013 10.1890/11-1498.1 10.1080/10889379909377670 10.2151/jmsj.84.821 10.1029/2008WR006912 10.1029/2002WR001510 10.1016/j.jhydrol.2013.09.006 10.1017/S0022143000007140 10.1029/2003WR002455 10.1007/s10040-012-0920-9 10.2166/nh.1998.0022 10.1002/hyp.7692 10.1007/s11269-012-0016-2 10.1029/2011WR011595 10.1002/hyp.1130 10.1016/j.jhydrol.2012.11.021 10.1002/wrcr.20469 10.1016/0022-1694(91)90181-G 10.1002/hyp.7318 10.1002/hyp.7796 10.1016/j.jhydrol.2010.07.049 10.1002/hyp.7326 10.1016/j.jhydrol.2006.04.020 10.1002/2013WR014147 10.1029/2011WR011543 10.1016/j.jhydrol.2009.03.031 10.1002/hyp.8324 10.1016/0022-1694(83)90193-2 10.2166/nh.1981.0002 10.1029/2001GB001839 10.1023/A:1013036803050 10.1002/(SICI)1099-1085(19980615)12:7<1111::AID-HYP633>3.0.CO;2-2 10.1002/hyp.3360080406 10.1002/hyp.1033 10.1016/0022-1694(79)90164-1 10.1002/hyp.9700 10.2166/nh.1993.0023 10.1029/WR026i012p02959 10.1017/CBO9780511535666.040 10.1016/B978-0-444-81546-0.50019-7 10.1029/2011GL047666 10.1007/BF00279517 10.1002/hyp.5881 10.2166/nh.1986.0024 10.1038/nature04141 10.1002/hyp.8201 10.1029/WR022i010p01444 10.1002/hyp.5008 10.1016/S0022-1694(97)00030-9 10.1002/rra.2740 10.1016/j.jhydrol.2005.10.024 10.1016/j.jhydrol.2003.12.042 10.1029/WR006i001p00110 10.1016/j.jhydrol.2006.08.016 10.1002/hyp.9817 10.1002/hyp.7501 10.1002/hyp.5956 10.1002/hyp.3360010104 10.1002/hyp.6073 10.1029/2000WR900030 10.1002/hyp.6519 10.1029/2006WR005286 10.1002/hyp.8396 10.1080/02626667909491834 10.1023/A:1007997422237 10.1002/2013GL058716 10.1139/e84-073 10.1016/S0022-1694(01)00487-5 10.1002/hyp.1232 10.1080/04353676.1980.11879998 10.1007/s13157-010-0123-x 10.1002/hyp.7164 10.1029/2003WR002331 10.1016/j.geoderma.2014.02.017 10.1002/hyp.7478 10.1002/hyp.7068 10.1029/95WR01806 10.1002/hyp.9695 10.1002/hyp.7576 10.1002/2013WR014925 10.1016/0309-1708(93)90036-F 10.1002/hyp.8113 10.1002/hyp.1180 10.1002/hyp.6205 10.1002/hyp.5764 10.1016/S0022-1694(03)00175-6 10.5194/hess-14-729-2010 10.2166/nh.2004.0023 10.1038/35000537 10.1029/2010WR009547 10.1016/j.jhydrol.2009.01.001 10.1029/94WR03286 10.1029/91WR02518 10.1002/hyp.7676 10.1002/hyp.7718 10.1029/2008WR006983 10.1016/S0022-1694(02)00287-1 10.2307/1551821 10.1016/j.jhydrol.2007.07.010 10.1016/j.jhydrol.2005.07.046 10.1029/2010WR009148 10.1016/0022-1694(89)90185-6 10.1016/S0022-1694(99)00059-1 10.1002/(SICI)1099-1085(199705)11:6<557::AID-HYP477>3.0.CO;2-Y 10.1111/j.1749-8198.2010.00390.x 10.1007/BF00482751 10.1002/(SICI)1099-1085(199911)13:16<2563::AID-HYP942>3.0.CO;2-D 10.1029/91WR01243 10.1002/hyp.312 10.1029/WR026i003p00455 10.1046/j.1440-1703.2002.00506.x 10.1002/hyp.9686 10.1016/0022-1694(90)90114-D 10.1002/hyp.7201 10.1177/030913339401800102 10.1029/1999WR900296 10.1002/(SICI)1099-1085(199909)13:12/13<1827::AID-HYP896>3.0.CO;2-D 10.1016/0022-1694(92)90080-F |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | BSCLL AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7U6 ADTPV AOWAS |
DOI | 10.1002/hyp.10412 |
DatabaseName | Istex CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Sustainability Science Abstracts SwePub SwePub Articles |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Sustainability Science Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Civil Engineering Abstracts Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1099-1085 |
EndPage | 3490 |
ExternalDocumentID | oai_slubar_slu_se_68470 3747930931 10_1002_hyp_10412 HYP10412 ark_67375_WNG_4N528J9Z_X |
Genre | article |
GeographicLocations | North America ANE, Europe |
GeographicLocations_xml | – name: North America – name: ANE, Europe |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WWD WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7U6 .Y3 31~ ABEML ABTAH ACSCC ADTPV AI. AOWAS ASPBG AVWKF AZFZN BDRZF DDYGU FEDTE HF~ HVGLF M62 RIWAO RJQFR SAMSI VH1 ZY4 |
ID | FETCH-LOGICAL-c5402-a71ab95c9e8c98348620ec457051f3b9b53d7bfd76fddf9e93f31c5f96f16a383 |
IEDL.DBID | DR2 |
ISSN | 0885-6087 1099-1085 |
IngestDate | Sat Aug 24 00:48:10 EDT 2024 Fri Aug 16 01:00:39 EDT 2024 Sat Aug 17 00:20:06 EDT 2024 Thu Oct 10 22:57:19 EDT 2024 Fri Aug 23 01:53:21 EDT 2024 Sat Aug 24 00:53:06 EDT 2024 Wed Oct 30 09:49:51 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5402-a71ab95c9e8c98348620ec457051f3b9b53d7bfd76fddf9e93f31c5f96f16a383 |
Notes | ArticleID:HYP10412 istex:B7EAF23D4056D6DD7AB055862914396FB6DBC615 ark:/67375/WNG-4N528J9Z-X ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aura.abdn.ac.uk/bitstream/2164/6285/1/Tetzlaff_revision2_Northern_paper_final.pdf |
PQID | 1697339987 |
PQPubID | 2034139 |
PageCount | 16 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_68470 proquest_miscellaneous_1718972492 proquest_miscellaneous_1705091317 proquest_journals_1697339987 crossref_primary_10_1002_hyp_10412 wiley_primary_10_1002_hyp_10412_HYP10412 istex_primary_ark_67375_WNG_4N528J9Z_X |
PublicationCentury | 2000 |
PublicationDate | 30 July 2015 |
PublicationDateYYYYMMDD | 2015-07-30 |
PublicationDate_xml | – month: 07 year: 2015 text: 30 July 2015 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Hydrological processes |
PublicationTitleAlternate | Hydrol. Process |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Buttle JM. 1994. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Progress in Physical Geography 18: 16-41. Buttle JM, Hazlett PW, Murray CD, Creed IF, Jeffries DS, Semkin R. 2001. Prediction of groundwater characteristics in forested and harvested basins during spring snowmelt using a topographic index. Hydrological Processes 15: 3389-3407. Davies J, Beven K, Nyberg L, Rodhe A. 2011. A discrete particle representation of hillslope hydrology: hypothesis testing reproducing a tracer experiment at Gardsjon, Sweden, Hydrological. Processes 25: 3602-3612. Hubbard DE, Linder RL. 1986. Spring runoff retention in prairie pothole wetlands. Journal of Soil and Water Conservation 41: 122-125. Ali GA, Roy AG, Turmel M-C, Courchesne F. 2010. Source-to-stream connectivity assessment through end-member mixing analysis. Journal of Hydrology DOI: 10.1016/j.jhydrol.2010.07.049 Carey SK, Boucher JL, Duarte CM. 2013b. Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost environment (Yukon, Canada). Hydrogeology Journal 21: 67-77. Surfleet CG, Tullos D. 2013. Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate. Journal of Hydrology 479: 24-34. Laudon H, Tetzlaff D, Soulsby C, Carey S, Seibert J, Buttle J, Shanley J, McDonnell J, McGuire K. 2013. Change in winter climate will affect dissolved organic carbon and water fluxes in mid-to-high latitude catchments. Hydrological Processes 27: 700-709. Birkel C, Soulsby C, Tetzlaff D. 2011b. Modelling catchment-scale water storage dynamics: reconciling dynamic storage with tracer-inferred passive storage. Hydrological Processes 25: 3924-3936. Soulsby C, Neal C, Laudon H, Burns DA, Merot P, Bonell M, Dunn SM, Tetzlaff D. 2008. Catchment data for process conceptualization: simply not enough? Hydrological Processes 22: 2057-2061. Cooper LW, Olsen CR, Solomon DK, Larsen IL, Cook RB, Grebmeier JM. 1991. Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an Arctic watershed. Water Resources Research 27: 2171-2179. Lyon SW, Desilet SLW, Troch PA. 2009. A tale of two isotopes: differences in hydrograph separation for a runoff event when using δD versus δ18O. Hydrological Processes 23: 2095-2101. Hrachowitz M, Soulsby C, Tetzlaff D, Dawson JJC, Dunn SM, Malcolm IA. 2009. Using long-term data sets to understand transit times in contrasting headwater catchments. Journal of Hydrology 367: 237-248. Shanley JB, Chalmers A. 1999. The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont. Hydrological Processes 13: 1843-1857. Burns DA. 2002. Stormflow-hydrograph separation based on isotopes: the thrill is gone - what's next? Hydrological Processes 16: 1515-1517. Soulsby C, Chen M, Ferrier RC, Jenkins A, Harriman R. 1998. Hydrogeochemistry of shallow groundwater in a Scottish catchment. Hydrological Processes 12: 1111-1127. Soulsby C, Birkel C, Tetzlaff D. 2014. Assessing urbanization impacts on catchment transit times. Geophysical Research Letters 41. DOI: 10.1002/2013GL058716 McDonnell JJ. 2003. Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrological Processes 17: 1869-1875. McDonnell JJ, Bonell M, Stewart MK, Pearce AJ. 1990. Deuterium variations in storm rainfall: implications for stream separation. Water Resources Research 26: 455-458. Buttle J. 2006. Mapping first-order controls on streamflow from drainage basins: the T3 template. Hydrological Processes 20: 3415-3422. Maloszewski P, Zuber A. 1993. Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers. Advances in Water Resources 16: 173-190. Kendall KA, Shanley JB, McDonnell JJ. 1999. A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt. Journal of Hydrology 219: 188-205. Soulsby C, Tetzlaff D, Hrachowitz M. 2009. Tracers and transit times: windows for viewing catchment scale storage? Hydrological Processes 23 : 3503-3507. DOI: 10.1002/hyp.7501 Bishop KH, Laudon H, Köhler S. 2000. Separating the natural and anthropogenic components of spring flood pH decline: a method for areas that are not chronically acidified. Water Resources Research 36: 1873-1884. Bishop KH, Buffam I, Erlandsson M, Fölster J, Laudon H, Seibert J, Temnerud J. 2008. Aqua Incognita: the unknown headwaters. Hydrological Processes 22: 1239-1242. Carey SK, Woo MK. 1998. Snowmelt hydrology of two subarctic slopes, southern Yukon, Canada. Nordic Hydrology 29: 331-346. Buttle JM, Sami K. 1992. Testing the groundwater ridging hypothesis of streamflow generation during snowmelt in a forested catchment. Journal of Hydrology 135: 53-72. Buttle JM, Peters DL. 1997. Inferring hydrological processes in a temperate basin using isotopic and geochemical hydrograph separation: a re-evaluation. Hydrological Processes 11: 557-573. Siegel DI, Glaser PH, So J, Janecky DR. 2006. The dynamic balance between organic acids and circumneutral groundwater in a large boreal peat basin. Journal of Hydrology 320: 421-431. Jencso KG, McGlynn BL, Gooseff MN, Bencala KE, Wondzell SM. 2010. Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources. Water Resources Research 46: W10524. DOI: 10.1029/2009WR008818 McEachern P, Prepas EE, Chanasyk DS. 2006. Landscape control of water chemistry in northern boreal streams of Alberta. Journal of Hydrology 323: 303-324. Birkel C, Tetzlaff D, Dunn SM, Soulsby C. 2011a. Using time domain and geographic source tracers to conceptualise streamflow generation processes in lumped rainfall-runoff models. Water Resources Research 47: W02515. DOI: 10.1029/2010WR009547 Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J. 1999. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography 23: 132-154. DOI: 10.1080/10889379909377670 Adam JC, Hamlet A, Lettenmaier DP. 2009. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological Processes 23: 962-972. Metcalfe RA, Buttle JM. 2001. Soil partitioning and surface store controls on spring runoff from a boreal forest peatland basin in north-central Manitoba, Canada. Hydrological Processes 15: 2305-2324. Moore RD. 1989. Tracing runoff sources with deuterium and oxygen-18 during spring melt in a headwater catchment, southern Laurentians, Quebec. Journal of Hydrology 112: 135-148. Bowden WB. 2010. Climate change in the Arctic - Permafrost, thermokarst, and why they matter to the non-Arctic world. Geography Compass 4: 1553-1566. Tetzlaff D, Birkel C, Dick J, Soulsby C. 2014. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation and the evolution of catchment transit time distributions. Water Resources Research. DOI: 10.1002/2013WR014147 Klaus J, McDonnell JJ. 2013. Hydrograph separation using stable isotopes: review and evaluation. Journal of Hydrology 505: 47-64. Carey SK, Quinton WL. 2005. Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment. Hydrological Processes 19: 95-114. Tetzlaff D, Soulsby C, Buttle J, Capell R, Carey SK, Kruitbos L, Laudon H, McDonnell J, McGuire K, Seibert S, Shanley J. 2013. Catchments on the Cusp? Structural and functional change in northern ecohydrological systems. Hydrological Processes 27: 766-774. Monteith SS, Buttle JM, Hazlett PW, Beall FD, Semkin RG, Jeffries DS. 2006b. Paired-basin comparison of hydrological response in harvested and undisturbed hardwood forests during snowmelt in central Ontario: II. Streamflow sources and groundwater residence times. Hydrological Processes 20: 1117-1136. Soulsby C, Rogers P, Petry J, Hannah D, Dunn SM, Malcolm IA. 2004. Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland. Journal of Hydrology 291: 172-294. Soulsby C, Tetzlaff D, van den Bedem N, Malcolm IA, Bason PJ, Youngson AF. 2007. Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters. Journal of Hydrology 333: 199-213. Kirchner JW, Feng X, Neal C. 2000. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403: 524-527. DOI: 10.1038/35000537 Woo M-k, Thorne R. 2006. Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrological Processes 20: 2129-2139. Botter G, Bertuzzo E, Rinaldo A. 2011. Catchment residence and travel time distributions: The master equation. Geophysical Research Letters 38. DOI: 10.1029/2011GL047666 Jenkins A, Ferrier RC, Ogunkoya RO. 1994. A case study in hydrochemistry: conflicting interpretations from hydrological and chemical observations. Hydrological Processes 8: 335-349. Lyon SW, Laudon H, Seibert J, Mörth M, Tetzlaff D, Bishop KH. 2010. Controls on snowmelt water mean transit times in northern boreal catchments. Hydrological Processes 24: 1672-1684. Dunne T, Moore T, Taylor CH. 1975. Recognition and prediction of runoff-producing zones in humid regions Hydrological Sciences Bulletin 20: 305-327. McNamara JP, Tetzlaff D, Bishop K, Soulsby C, Seyfried M, Peters N, Hooper R. 2011. Storage as a metric of catchment comparison. Hydrological Processes 25: 3364-3371. Soulsby C, Piegat K, Seibert J, Tezlaff D. 2011. Catchment scale estimates of flow path partitioning and water storage based on transit time and runoff modelling. Hydrological Processes. DOI: 10.1002/hyp.8324 Stadnyk TA, Kouwen N, Edwards TWD. 2013. Mesoscale model validation and calibration using stable water isotopes: the isoWATFLOOD model. Hydrological Processes. DOI: 10.1002/hyp.9695 Devito K, Creek I, Gan T, Me 2002; 16 1995; 31 1993; 25 2002; 17 1993; 24 2007; 344 2006b; 20 2010; 14 1989; 112 2003; 270 2006; 330 2003; 279 2001; 254 1986; 1 2007; 333 1979; 24 2006; 20 2010; 24 1990 2004; 291 1990; 49 2000; 403 2013; 479 2004; 35 1987 2008; 22 2008; 357 2012; 26 2006; 325 2001; 56 2010; 2 2010; 4 2009; 367 1998; 12 2006; 320 2006; 323 1999; 219 1995; 9 2004; 40 2013; 505 2011b; 25 1998 1980; 62A 1986; 17 1999; 23 2003; 39 2013a 2014; 41 2010; 41 1997; 201 1990; 116 2005; 19 2010; 46 1990; 26 1997; 33 2010a; 24 1986; 22 1992; 135 1986; 24 1992; 28 1975; 20 2008; 44 1994; 18 2012; 48 1981; 12 2009; 45 1970; 6 2013; 27 2013; 23 1984; 21 1988; 34 2003; 17 1996; 32 2013; 17 1997; 11 1986; 41 1999; 13 1997; 18 2001; 15 2011; 25 2006a; 20 1983; 66 2009; 23 2002; 38 1998; 29 2011 2010 2011; 31 2005; 438 2005 2009; 373 2011; 38 1994; 8 1991; 27 2006; 84 1993; 16 1991; 122 2000; 36 2013b; 21 2015 2014 2013 2007; 42 1992; 65 2007; 43 1979; 43 2010b; 24 2011a; 47 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 Kirchner JW (e_1_2_9_62_1) 2007; 42 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Verry ES (e_1_2_9_133_1) 2011 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 Sklash MG (e_1_2_9_109_1) 1990 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 Davies J (e_1_2_9_37_1) 2011; 25 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 Woo M‐K (e_1_2_9_140_1) 1980; 62 Hubbard DE (e_1_2_9_58_1) 1986; 41 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 Dunne T (e_1_2_9_42_1) 1975; 20 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 42 year: 2007 article-title: Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology publication-title: Water Resources Research – volume: 11 start-page: 557 year: 1997 end-page: 573 article-title: Inferring hydrological processes in a temperate basin using isotopic and geochemical hydrograph separation: a re‐evaluation publication-title: Hydrological Processes – volume: 27 start-page: 700 year: 2013 end-page: 709 article-title: Change in winter climate will affect dissolved organic carbon and water fluxes in mid‐to‐high latitude catchments publication-title: Hydrological Processes – volume: 27 start-page: 2691 year: 2013 end-page: 2698 article-title: Is ‘Centre of Volume’ a robust indicator of changes in snowmelt timing? publication-title: Hydrological Processes – volume: 19 start-page: 1705 year: 2005 end-page: 1714 article-title: A framework for broad‐scale classification of hydrologic response units on the Boreal Plain: is topography the last thing to consider? publication-title: Hydrological Processes – volume: 122 start-page: 253 year: 1991 end-page: 274 article-title: Hydrograph separation: a comparison of geochemical and isotopic tracers publication-title: Journal of Hydrology – year: 2013 article-title: Mesoscale model validation and calibration using stable water isotopes: the isoWATFLOOD model publication-title: Hydrological Processes – volume: 479 start-page: 24 year: 2013 end-page: 34 article-title: Variability in effect of climate change on rain‐on‐snow peak flow events in a temperate climate publication-title: Journal of Hydrology – start-page: 193 year: 2011 end-page: 213 – volume: 34 start-page: 358 year: 1988 end-page: 362 article-title: Measurement of outflow from a snowbank with basal ice publication-title: Journal of Glaciology – volume: 27 start-page: 2171 year: 1991 end-page: 2179 article-title: Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an Arctic watershed publication-title: Water Resources Research – volume: 62A start-page: 37 year: 1980 end-page: 56 article-title: Channel development in snow‐filled valleys, Resolute, N.W.T., Canada publication-title: Geografiska Annaler – volume: 24 start-page: 260 year: 2010b end-page: 275 article-title: Towards a simple dynamic process conceptualization in rainfall‐runoff models using multi‐criteria calibration and tracers in temperate, upland catchments publication-title: Hydrological Processes – volume: 18 start-page: 16 year: 1994 end-page: 41 article-title: Isotope hydrograph separations and rapid delivery of pre‐event water from drainage basins publication-title: Progress in Physical Geography – volume: 219 start-page: 188 year: 1999 end-page: 205 article-title: A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt publication-title: Journal of Hydrology – volume: 325 start-page: 197 year: 2006 end-page: 221 article-title: Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: an initial evaluation publication-title: Journal of Hydrology – volume: 12 start-page: 21 year: 1981 end-page: 30 article-title: Spring flood: meltwater or groundwater? publication-title: Nordic Hydrology – year: 2011 article-title: Catchment scale estimates of flow path partitioning and water storage based on transit time and runoff modelling publication-title: Hydrological Processes – volume: 26 start-page: 455 year: 1990 end-page: 458 article-title: Deuterium variations in storm rainfall: implications for stream separation publication-title: Water Resources Research – volume: 17 start-page: 379 year: 2003 end-page: 390 article-title: Simulating interactions between saturated and unsaturated storage in a conceptual runoff model publication-title: Hydrological Processes – volume: 15 start-page: 3389 year: 2001 end-page: 3407 article-title: Prediction of groundwater characteristics in forested and harvested basins during spring snowmelt using a topographic index publication-title: Hydrological Processes – volume: 26 start-page: 2959 year: 1990 end-page: 2970 article-title: Hydrologic flow path definition and partitioning of spring meltwater publication-title: Water Resources Research – year: 2014 article-title: Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment publication-title: Geoderma – volume: 330 start-page: 543 year: 2006 end-page: 563 article-title: A review and evaluation of catchment transit time modeling publication-title: Journal of Hydrology – volume: 18 start-page: 283 year: 1997 end-page: 291 article-title: Hydrologic control on the oxygen‐isotope relation between sediment cellulose and lake water, western Taimyr Peninsula, Russia: implications for the use of surface‐sediment calibrations in paleolimnology publication-title: Journal of Paleolimnology – volume: 29 start-page: 331 year: 1998 end-page: 346 article-title: Snowmelt hydrology of two subarctic slopes, southern Yukon, Canada publication-title: Nordic Hydrology – volume: 41 start-page: 506 year: 2010 end-page: 519 article-title: Exploring runoff processes using chemical, isotopic and hydrometric data in a discontinuous permafrost catchment publication-title: Hydrology Research – volume: 135 start-page: 53 year: 1992 end-page: 72 article-title: Testing the groundwater ridging hypothesis of streamflow generation during snowmelt in a forested catchment publication-title: Journal of Hydrology – volume: 25 start-page: 247 year: 1993 end-page: 255 article-title: Application of oxygen‐18 tracer techniques to Arctic hydrological processes publication-title: Arctic Alpine Research – volume: 47 year: 2011a article-title: Using time domain and geographic source tracers to conceptualise streamflow generation processes in lumped rainfall‐runoff models publication-title: Water Resources Research – volume: 48 year: 2012 article-title: The master transit time distribution of variable flow systems publication-title: Water Resources Research – volume: 43 start-page: 45 year: 1979 end-page: 65 article-title: The role of groundwater in storm runoff publication-title: Journal of Hydrology – year: 2010 article-title: Source‐to‐stream connectivity assessment through end‐member mixing analysis publication-title: Journal of Hydrology – year: 2013a article-title: Use of color maps and wavelet coherence to discern short and longer‐term climate influences on streamflow variability in northern catchments publication-title: Water Resources Research – volume: 24 start-page: 43 year: 1979 end-page: 69 article-title: A physically based, variable contributing area model of basin hydrology publication-title: Hydrological Sciences Bulletin – volume: 19 start-page: 95 year: 2005 end-page: 114 article-title: Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment publication-title: Hydrological Processes – volume: 25 start-page: 3364 year: 2011 end-page: 3371 article-title: Storage as a metric of catchment comparison publication-title: Hydrological Processes – volume: 17 start-page: 1073 year: 2003 end-page: 1092 article-title: Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water publication-title: Hydrological Processes – volume: 270 start-page: 214 year: 2003 end-page: 229 article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions publication-title: Journal of Hydrology – volume: 13 start-page: 2563 year: 1999 end-page: 2581 article-title: A conceptual framework for runo€ generation in a permafrost environment publication-title: Hydrological Processes – volume: 31 start-page: 1291 year: 1995 end-page: 1304 article-title: Runoff production in a forested, shallow soil, Canadian Shield basin publication-title: Water Resources Research – volume: 24 start-page: 1745 year: 2010 end-page: 1754 article-title: How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis publication-title: Hydrological Processes – year: 2014 article-title: Developing a consistent process‐based conceptualization of catchment functioning using measurements of internal state variables publication-title: Water Resources Research – volume: 44 year: 2008 article-title: Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest publication-title: Water Resources Research – volume: 20 start-page: 987 year: 2006 end-page: 1000 article-title: Snowmelt runoff processes in a headwater lake and its catchment, subarctic Canadian Shield publication-title: Hydrological Processes – volume: 39 issue: 11 year: 2003 article-title: How does rainfall become runoff? A combined tracer and runoff transfer function approach publication-title: Water Resources Research – volume: 36 start-page: 1873 year: 2000 end-page: 1884 article-title: Separating the natural and anthropogenic components of spring flood pH decline: a method for areas that are not chronically acidified publication-title: Water Resources Research – year: 1987 – volume: 367 start-page: 237 year: 2009 end-page: 248 article-title: Using long‐term data sets to understand transit times in contrasting headwater catchments publication-title: Journal of Hydrology – volume: 201 start-page: 82 year: 1997 end-page: 101 article-title: Hydrograph separation using stable isotopes, silica and electrical conductivity: an alpine example publication-title: Journal of Hydrology – volume: 41 year: 2014 article-title: Assessing urbanization impacts on catchment transit times publication-title: Geophysical Research Letters – volume: 35 start-page: 309 year: 2004 end-page: 324 article-title: Evaluating snowmelt runoff generation in a discontinuous permafrost catchment using stable isotope, hydrochemical and hydrometric data publication-title: Nordic Hydrology – volume: 22 start-page: 1444 year: 1986 end-page: 1454 article-title: A comparison of chemical and isotopic hydrograph separation publication-title: Water Resources Research – volume: 279 start-page: 151 year: 2003 end-page: 166 article-title: Hydrology of subarctic Canadian shield: soil‐filled valleys publication-title: Journal of Hydrology – volume: 24 start-page: 1672 year: 2010 end-page: 1684 article-title: Controls on snowmelt water mean transit times in northern boreal catchments publication-title: Hydrological Processes – volume: 22 start-page: 2057 year: 2008 end-page: 2061 article-title: Catchment data for process conceptualization: simply not enough? publication-title: Hydrological Processes – volume: 112 start-page: 135 year: 1989 end-page: 148 article-title: Tracing runoff sources with deuterium and oxygen‐18 during spring melt in a headwater catchment, southern Laurentians, Quebec publication-title: Journal of Hydrology – volume: 16 year: 2002 article-title: Regional surface water balance and evaporation‐transpiration partitioning from a stable isotope survey of lakes in northern Canada publication-title: Global Biogeochemical Cycles – volume: 20 start-page: 305 year: 1975 end-page: 327 article-title: Recognition and prediction of runoff‐producing zones in humid regions publication-title: Hydrological Sciences Bulletin – volume: 17 start-page: 1869 year: 2003 end-page: 1875 article-title: Where does water go when it rains? Moving beyond the variable source area concept of rainfall‐runoff response publication-title: Hydrological Processes – volume: 403 start-page: 524 year: 2000 end-page: 527 article-title: Fractal stream chemistry and its implications for contaminant transport in catchments publication-title: Nature – volume: 4 start-page: 1553 year: 2010 end-page: 1566 article-title: Climate change in the Arctic – Permafrost, thermokarst, and why they matter to the non‐Arctic world publication-title: Geography Compass – volume: 40 year: 2004 article-title: Solute transport through the integrated groundwater‐stream system of a catchment publication-title: Water Resources Research – volume: 21 start-page: 669 year: 1984 end-page: 677 article-title: Snowmelt infiltration to frozen prairie soils publication-title: Canadian Journal of Earth Sciences – volume: 12 start-page: 1111 year: 1998 end-page: 1127 article-title: Hydrogeochemistry of shallow groundwater in a Scottish catchment publication-title: Hydrological Processes – volume: 15 start-page: 2305 year: 2001 end-page: 2324 article-title: Soil partitioning and surface store controls on spring runoff from a boreal forest peatland basin in north‐central Manitoba, Canada publication-title: Hydrological Processes – start-page: 401 year: 1990 end-page: 435 – volume: 84 start-page: 821 year: 2006 end-page: 833 article-title: Decreasing soil‐frost depth and its relation to climate change in Tokachi, Hokkaido, Japan publication-title: Journal of the Meteorological Society of Japan – volume: 23 start-page: 1837 year: 2013 end-page: 1868 article-title: Trajectory of the Arctic as an integrated system publication-title: Ecological Applications – volume: 291 start-page: 172 year: 2004 end-page: 294 article-title: Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland publication-title: Journal of Hydrology – volume: 45 year: 2009 article-title: Catchments as simple dynamical systems: catchment characterization, rainfall‐runoff modeling, and doing hydrology backward publication-title: Water Resources Research – volume: 438 start-page: 303 issue: 7066 year: 2005 end-page: 309 article-title: Potential impacts of a warming climate on water availability in snow‐dominated regions publication-title: Nature – volume: 66 start-page: 319 year: 1983 end-page: 330 article-title: Application of flow models in an alpine catchment area using tritium and deuterium data publication-title: Journal of Hydrology – volume: 40 year: 2004 article-title: Hydrological flow paths during the spring flood: congruence between hydrometric measurements and oxygen‐18 in snow melt, soil water, and runoff publication-title: Water Resources Research – volume: 46 year: 2010 article-title: Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources publication-title: Water Resources Research – volume: 20 start-page: 1095 year: 2006a end-page: 1116 article-title: Paired‐basin comparison of hydrological response in harvested and undisturbed hardwood forests during snowmelt in central Ontario: I. Streamflow, groundwater and flow path behaviour publication-title: Hydrological Processes – volume: 323 start-page: 303 year: 2006 end-page: 324 article-title: Landscape control of water chemistry in northern boreal streams of Alberta publication-title: Journal of Hydrology – volume: 2 start-page: 1646 year: 2010 end-page: 1659 article-title: Truncation of stream residence time: how the use of stable isotopes has skewed our concept of streamwater age and origin publication-title: Hydrological Processes – volume: 8 start-page: 335 year: 1994 end-page: 349 article-title: A case study in hydrochemistry: conflicting interpretations from hydrological and chemical observations publication-title: Hydrological Processes – volume: 357 start-page: 11 issue: 1–2 year: 2008 end-page: 28 article-title: Tracing biogeochemical processes in stream water and groundwater using non‐linear statistics publication-title: Journal of Hydrology – volume: 333 start-page: 199 year: 2007 end-page: 213 article-title: Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters publication-title: Journal of Hydrology – volume: 116 start-page: 35 year: 1990 end-page: 61 article-title: The origins of acid runoff in a hillslope during storm events publication-title: Journal of Hydrology – volume: 36 start-page: 63 year: 2000 end-page: 75 article-title: Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain National Park, Colorado publication-title: Water Resources Research – volume: 20 start-page: 3415 year: 2006 end-page: 3422 article-title: Mapping first‐order controls on streamflow from drainage basins: the T3 template publication-title: Hydrological Processes – volume: 6 start-page: 110 year: 1970 end-page: 124 article-title: Snowmelt runoff from measurements of tritium and oxygen‐18 publication-title: Water Resources Research – volume: 23 start-page: 132 year: 1999 end-page: 154 article-title: Statistics and characteristics of permafrost and ground‐ice distribution in the Northern Hemisphere publication-title: Polar Geography – volume: 31 start-page: 75 year: 2011 end-page: 85 article-title: The hydrological functions of a boreal wetland publication-title: Wetlands – volume: 23 start-page: 2095 year: 2009 end-page: 2101 article-title: A tale of two isotopes: differences in hydrograph separation for a runoff event when using δD δ O publication-title: Hydrological Processes – volume: 13 start-page: 1843 year: 1999 end-page: 1857 article-title: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont publication-title: Hydrological Processes – volume: 27 start-page: 766 year: 2013 end-page: 774 article-title: Catchments on the Cusp? Structural and functional change in northern ecohydrological systems publication-title: Hydrological Processes – volume: 22 start-page: 1239 year: 2008 end-page: 1242 article-title: Aqua Incognita: the unknown headwaters publication-title: Hydrological Processes – volume: 9 start-page: 197 year: 1995 end-page: 211 article-title: Applicability of isotopic hydrograph separation in a suburban basin during snowmelt publication-title: Hydrological Processes – volume: 6 start-page: 1296 year: 1970 end-page: 1311 article-title: Partial area contributions to storm runoff in a small New England watershed publication-title: Water Resources Research – volume: 254 start-page: 82 year: 2001 end-page: 101 article-title: Catchment‐scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations publication-title: Journal of Hydrology – volume: 33 start-page: 1707 year: 1997 end-page: 1719 article-title: Hydrograph separations in an Arctic watershed using mixing model and graphical techniques publication-title: Water Resources Research – volume: 24 start-page: 1985 year: 2010 end-page: 1993 article-title: The contribution of rain‐on‐snow events to nitrate export in the forested landscape of south‐central Canada publication-title: Hydrological Processes – volume: 17 start-page: 493 year: 2002 end-page: 503 article-title: Importance of permafrost as a source of water for plants in east Siberian taiga publication-title: Ecological Research – volume: 17 start-page: 325 year: 1986 end-page: 334 article-title: Modelling water exchange and transit times in till basins using oxygen‐18 publication-title: Nordic Hydrology – year: 2014 article-title: Storage dynamics in hydropedological units control hillslope connectivity, runoff generation and the evolution of catchment transit time distributions publication-title: Water Resources Research – volume: 24 start-page: 201 year: 1986 end-page: 234 article-title: Permafrost hydrology in North America publication-title: Atmosphere – Ocean – volume: 1 start-page: 15 year: 1986 end-page: 30 article-title: An isotopic and geochemical student of snowmelt runoff in a small arctic watershed publication-title: Hydrological Processes – volume: 25 start-page: 3831 year: 2011 end-page: 3835 article-title: Measurements and modelling of storage dynamics across scales publication-title: Hydrological Processes – volume: 24 start-page: 213 year: 1993 end-page: 224 article-title: Runoff generation in a high boreal wetland in northern Canada publication-title: Nordic Hydrology – volume: 56 start-page: 135 year: 2001 end-page: 150 article-title: Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem publication-title: Biogeochemistry – volume: 24 start-page: 2335 year: 2010a end-page: 2348 article-title: Assessing the value of high‐resolution isotope tracer data in the stepwise development of a lumped conceptual rainfall‐runoff model publication-title: Hydrological Processes – volume: 20 start-page: 2129 year: 2006 end-page: 2139 article-title: Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada publication-title: Hydrological Processes – volume: 28 start-page: 99 year: 1992 end-page: 107 article-title: Multivariate analysis of stream water chemical data: the use of principal components analysis for the end‐member mixing problem publication-title: Water Resources Research – volume: 26 start-page: 3053 year: 2012 end-page: 3076 article-title: Modelling the potential impacts of climate change on snowpack in the North Saskatchewan River Watershed, Alberta publication-title: Water Resources Management – volume: 20 start-page: 1117 year: 2006b end-page: 1136 article-title: Paired‐basin comparison of hydrological response in harvested and undisturbed hardwood forests during snowmelt in central Ontario: II. Streamflow sources and groundwater residence times publication-title: Hydrological Processes – volume: 48 year: 2012 article-title: Influence of permafrost distribution on groundwater flow in the context of climate‐driven permafrost thaw: example from Yukon Flats Basin, Alaska, United States publication-title: Water Resources Research – volume: 16 start-page: 1515 year: 2002 end-page: 1517 article-title: Stormflow‐hydrograph separation based on isotopes: the thrill is gone – what's next? publication-title: Hydrological Processes – volume: 320 start-page: 421 year: 2006 end-page: 431 article-title: The dynamic balance between organic acids and circumneutral groundwater in a large boreal peat basin publication-title: Journal of Hydrology – volume: 505 start-page: 47 year: 2013 end-page: 64 article-title: Hydrograph separation using stable isotopes: review and evaluation publication-title: Journal of Hydrology – volume: 43 issue: 6 year: 2007 article-title: Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach publication-title: Water Resources Research – volume: 23 start-page: 3503 year: 2009 end-page: 3507 article-title: Tracers and transit times: windows for viewing catchment scale storage? publication-title: Hydrological Processes – volume: 21 start-page: 67 year: 2013b end-page: 77 article-title: Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost environment (Yukon, Canada) publication-title: Hydrogeology Journal – volume: 24 start-page: 1537 year: 2010 end-page: 1547 article-title: Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological process models publication-title: Hydrological Processes – volume: 22 start-page: 4949 year: 2008 end-page: 4653 article-title: Towards an energy based runoff generation theory for tundra landscapes publication-title: Hydrological Processes – volume: 16 start-page: 589 year: 2002 end-page: 609 article-title: Controls on old and new water contributions to stream flow at some nested catchments in Vermont, U.S.A publication-title: Hydrological Processes – volume: 23 start-page: 1874 year: 2009 end-page: 1886 article-title: Inter‐catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province; the Cairngorm mountains, Scotland publication-title: Hydrological Processes – volume: 16 start-page: 173 year: 1993 end-page: 190 article-title: Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers publication-title: Advances in Water Resources – volume: 24 start-page: 1631 year: 2010 end-page: 1645 article-title: Comparing chloride and water isotopes as hydrological tracers in two Scottish catchments publication-title: Hydrological Processes – volume: 38 start-page: 40–1 year: 2002 end-page: 40–10 article-title: Oxygen 18 fractionation during snowmelt: implications for spring flood hydrograph separation publication-title: Water Resources Research – volume: 49 start-page: 139 year: 1990 end-page: 158 article-title: Urban storm water transport and wash‐off of caesium‐137 after the Chernobyl accident publication-title: Water, Air, and Soil Pollution – volume: 14 start-page: 729 year: 2010 end-page: 750 article-title: Comparison of algorithms and parameterisations for infiltration into organic‐covered permafrost soils publication-title: Hydrology and Earth Systems Science – volume: 13 start-page: 1827 year: 1999 end-page: 1842 article-title: Estimating snowmelt infiltration into frozen soils publication-title: Hydrological Processes – volume: 46 year: 2010 article-title: Gamma distribution models for transit time estimation in catchments: physical interpretation of parameters and implications for time‐variant transit time assessment publication-title: Water Resources Research – volume: 17 start-page: 533 year: 2013 end-page: 564 article-title: What can flux tracking teach us about water age distribution patterns and their temporal dynamics? publication-title: Hydrology and Earth Systems Science – volume: 41 start-page: 122 year: 1986 end-page: 125 article-title: Spring runoff retention in prairie pothole wetlands publication-title: Journal of Soil and Water Conservation – year: 2015 article-title: The isotope hydrology of a large river system regulated for hydropower publication-title: Rivers Research Applications – start-page: 770 year: 2005 end-page: 789 – volume: 25 start-page: 3602 year: 2011 end-page: 3612 article-title: A discrete particle representation of hillslope hydrology: hypothesis testing reproducing a tracer experiment at Gardsjon, Sweden, Hydrological publication-title: Processes – volume: 25 start-page: 3924 year: 2011b end-page: 3936 article-title: Modelling catchment‐scale water storage dynamics: reconciling dynamic storage with tracer‐inferred passive storage publication-title: Hydrological Processes – volume: 373 start-page: 15 year: 2009 end-page: 23 article-title: Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model publication-title: Journal of Hydrology – volume: 65 start-page: 83 year: 1992 end-page: 100 article-title: Transit times of water in soil lysimeters from modelling of oxygen‐18 publication-title: Water, Air and Soil Polllution – volume: 32 start-page: 3497 year: 1996 end-page: 3511 article-title: Transit times for water in a small till catchment from a step shift in oxygen‐18 content of the water input publication-title: Water Resources Research – volume: 23 start-page: 962 year: 2009 end-page: 972 article-title: Implications of global climate change for snowmelt hydrology in the twenty‐first century publication-title: Hydrological Processes – volume: 38 year: 2011 article-title: Catchment residence and travel time distributions: The master equation publication-title: Geophysical Research Letters – volume: 16 start-page: 3683 year: 2002 end-page: 3690 article-title: How isotopic fractionation of snowmelt affects hydrograph separation publication-title: Hydrological Processes – volume: 344 start-page: 198 year: 2007 end-page: 209 article-title: The role of catchment scale and landscape characteristics for runoff generation of boreal streams publication-title: Journal of Hydrology – volume: 56 start-page: 151 year: 2001 end-page: 174 article-title: Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest publication-title: Biogeochemistry – volume: 48 year: 2012 article-title: Can time domain and source area tracers reduce uncertainty in rainfall‐runoff models in larger heterogeneous catchments? publication-title: Water Resources Research – start-page: 391 year: 1998 end-page: 434 – ident: e_1_2_9_78_1 doi: 10.1002/hyp.7577 – ident: e_1_2_9_86_1 doi: 10.1016/j.jhydrol.2005.09.016 – ident: e_1_2_9_90_1 doi: 10.1002/hyp.262 – ident: e_1_2_9_76_1 doi: 10.1016/j.jhydrol.2008.03.013 – ident: e_1_2_9_88_1 doi: 10.1029/97WR01033 – ident: e_1_2_9_51_1 doi: 10.1029/2011WR011293 – ident: e_1_2_9_8_1 doi: 10.1002/hyp.7763 – ident: e_1_2_9_83_1 doi: 10.1002/hyp.5132 – ident: e_1_2_9_139_1 doi: 10.1080/07055900.1986.9649248 – ident: e_1_2_9_47_1 doi: 10.1023/A:1013039830323 – ident: e_1_2_9_17_1 doi: 10.2166/nh.2010.146 – ident: e_1_2_9_59_1 doi: 10.1029/2009WR008818 – ident: e_1_2_9_106_1 doi: 10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-HYP879>3.0.CO;2-G – ident: e_1_2_9_91_1 doi: 10.1002/hyp.6117 – volume: 25 start-page: 3602 year: 2011 ident: e_1_2_9_37_1 article-title: A discrete particle representation of hillslope hydrology: hypothesis testing reproducing a tracer experiment at Gardsjon, Sweden, Hydrological publication-title: Processes contributor: fullname: Davies J – ident: e_1_2_9_13_1 doi: 10.1002/hyp.7049 – ident: e_1_2_9_26_1 doi: 10.1002/hyp.3360090206 – ident: e_1_2_9_73_1 doi: 10.1029/2003WR002765 – ident: e_1_2_9_41_1 doi: 10.1029/WR006i005p01296 – ident: e_1_2_9_55_1 doi: 10.5194/hess-17-533-2013 – ident: e_1_2_9_52_1 doi: 10.1890/11-1498.1 – ident: e_1_2_9_143_1 doi: 10.1080/10889379909377670 – ident: e_1_2_9_53_1 doi: 10.2151/jmsj.84.821 – ident: e_1_2_9_63_1 doi: 10.1029/2008WR006912 – ident: e_1_2_9_68_1 doi: 10.1029/2002WR001510 – ident: e_1_2_9_67_1 doi: 10.1016/j.jhydrol.2013.09.006 – ident: e_1_2_9_142_1 doi: 10.1017/S0022143000007140 – ident: e_1_2_9_69_1 doi: 10.1029/2003WR002455 – ident: e_1_2_9_28_1 doi: 10.1007/s10040-012-0920-9 – ident: e_1_2_9_32_1 doi: 10.2166/nh.1998.0022 – ident: e_1_2_9_33_1 doi: 10.1002/hyp.7692 – ident: e_1_2_9_79_1 doi: 10.1007/s11269-012-0016-2 – ident: e_1_2_9_134_1 doi: 10.1029/2011WR011595 – ident: e_1_2_9_105_1 doi: 10.1002/hyp.1130 – ident: e_1_2_9_127_1 doi: 10.1016/j.jhydrol.2012.11.021 – start-page: 401 volume-title: Process Studies in Hillslope Hydrology year: 1990 ident: e_1_2_9_109_1 contributor: fullname: Sklash MG – ident: e_1_2_9_31_1 doi: 10.1002/wrcr.20469 – volume: 42 year: 2007 ident: e_1_2_9_62_1 article-title: Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology publication-title: Water Resources Research contributor: fullname: Kirchner JW – ident: e_1_2_9_136_1 doi: 10.1016/0022-1694(91)90181-G – ident: e_1_2_9_131_1 doi: 10.1002/hyp.7318 – ident: e_1_2_9_85_1 doi: 10.1002/hyp.7796 – ident: e_1_2_9_3_1 doi: 10.1016/j.jhydrol.2010.07.049 – ident: e_1_2_9_77_1 doi: 10.1002/hyp.7326 – ident: e_1_2_9_87_1 doi: 10.1016/j.jhydrol.2006.04.020 – ident: e_1_2_9_129_1 doi: 10.1002/2013WR014147 – ident: e_1_2_9_27_1 doi: 10.1029/2011WR011543 – start-page: 193 volume-title: Watershed Hydrology year: 2011 ident: e_1_2_9_133_1 contributor: fullname: Verry ES – ident: e_1_2_9_45_1 doi: 10.1016/j.jhydrol.2009.03.031 – ident: e_1_2_9_115_1 doi: 10.1002/hyp.8324 – ident: e_1_2_9_80_1 doi: 10.1016/0022-1694(83)90193-2 – ident: e_1_2_9_100_1 doi: 10.2166/nh.1981.0002 – ident: e_1_2_9_43_1 doi: 10.1029/2001GB001839 – ident: e_1_2_9_49_1 doi: 10.1023/A:1013036803050 – ident: e_1_2_9_113_1 doi: 10.1002/(SICI)1099-1085(19980615)12:7<1111::AID-HYP633>3.0.CO;2-2 – ident: e_1_2_9_60_1 doi: 10.1002/hyp.3360080406 – ident: e_1_2_9_22_1 doi: 10.1002/hyp.1033 – ident: e_1_2_9_110_1 doi: 10.1016/0022-1694(79)90164-1 – ident: e_1_2_9_132_1 doi: 10.1002/hyp.9700 – ident: e_1_2_9_44_1 doi: 10.2166/nh.1993.0023 – ident: e_1_2_9_82_1 doi: 10.1029/WR026i012p02959 – ident: e_1_2_9_23_1 doi: 10.1017/CBO9780511535666.040 – ident: e_1_2_9_102_1 doi: 10.1016/B978-0-444-81546-0.50019-7 – ident: e_1_2_9_16_1 doi: 10.1029/2011GL047666 – ident: e_1_2_9_48_1 doi: 10.1007/BF00279517 – ident: e_1_2_9_38_1 doi: 10.1002/hyp.5881 – ident: e_1_2_9_74_1 doi: 10.2166/nh.1986.0024 – ident: e_1_2_9_5_1 doi: 10.1038/nature04141 – ident: e_1_2_9_9_1 doi: 10.1002/hyp.8201 – ident: e_1_2_9_54_1 doi: 10.1029/WR022i010p01444 – ident: e_1_2_9_19_1 doi: 10.1002/hyp.5008 – ident: e_1_2_9_101_1 – ident: e_1_2_9_71_1 doi: 10.1016/S0022-1694(97)00030-9 – ident: e_1_2_9_111_1 doi: 10.1002/rra.2740 – ident: e_1_2_9_118_1 doi: 10.1016/j.jhydrol.2005.10.024 – ident: e_1_2_9_116_1 doi: 10.1016/j.jhydrol.2003.12.042 – ident: e_1_2_9_40_1 doi: 10.1029/WR006i001p00110 – ident: e_1_2_9_119_1 doi: 10.1016/j.jhydrol.2006.08.016 – ident: e_1_2_9_137_1 doi: 10.1002/hyp.9817 – ident: e_1_2_9_117_1 doi: 10.1002/hyp.7501 – ident: e_1_2_9_92_1 doi: 10.1002/hyp.5956 – ident: e_1_2_9_95_1 doi: 10.1002/hyp.3360010104 – ident: e_1_2_9_93_1 doi: 10.1002/hyp.6073 – ident: e_1_2_9_15_1 doi: 10.1029/2000WR900030 – ident: e_1_2_9_21_1 doi: 10.1002/hyp.6519 – ident: e_1_2_9_97_1 doi: 10.1029/2006WR005286 – ident: e_1_2_9_130_1 doi: 10.1002/hyp.8396 – ident: e_1_2_9_7_1 doi: 10.1080/02626667909491834 – ident: e_1_2_9_138_1 doi: 10.1023/A:1007997422237 – ident: e_1_2_9_112_1 doi: 10.1002/2013GL058716 – ident: e_1_2_9_46_1 doi: 10.1139/e84-073 – ident: e_1_2_9_65_1 doi: 10.1016/S0022-1694(01)00487-5 – ident: e_1_2_9_128_1 doi: 10.1002/hyp.1232 – volume: 62 start-page: 37 year: 1980 ident: e_1_2_9_140_1 article-title: Channel development in snow‐filled valleys, Resolute, N.W.T., Canada publication-title: Geografiska Annaler doi: 10.1080/04353676.1980.11879998 contributor: fullname: Woo M‐K – ident: e_1_2_9_120_1 doi: 10.1007/s13157-010-0123-x – ident: e_1_2_9_98_1 doi: 10.1002/hyp.7164 – ident: e_1_2_9_135_1 doi: 10.1029/2003WR002331 – ident: e_1_2_9_4_1 doi: 10.1016/j.geoderma.2014.02.017 – ident: e_1_2_9_11_1 doi: 10.1002/hyp.7478 – ident: e_1_2_9_39_1 doi: 10.1029/WR006i001p00110 – ident: e_1_2_9_114_1 doi: 10.1002/hyp.7068 – ident: e_1_2_9_103_1 doi: 10.1029/95WR01806 – ident: e_1_2_9_122_1 doi: 10.1002/hyp.9695 – ident: e_1_2_9_123_1 doi: 10.1002/hyp.7576 – ident: e_1_2_9_10_1 doi: 10.1002/2013WR014925 – volume: 20 start-page: 305 year: 1975 ident: e_1_2_9_42_1 article-title: Recognition and prediction of runoff‐producing zones in humid regions publication-title: Hydrological Sciences Bulletin contributor: fullname: Dunne T – ident: e_1_2_9_81_1 doi: 10.1016/0309-1708(93)90036-F – ident: e_1_2_9_89_1 doi: 10.1002/hyp.8113 – ident: e_1_2_9_126_1 doi: 10.1002/hyp.1180 – ident: e_1_2_9_141_1 doi: 10.1002/hyp.6205 – ident: e_1_2_9_30_1 doi: 10.1002/hyp.5764 – ident: e_1_2_9_121_1 doi: 10.1016/S0022-1694(03)00175-6 – ident: e_1_2_9_144_1 doi: 10.5194/hess-14-729-2010 – ident: e_1_2_9_29_1 doi: 10.2166/nh.2004.0023 – volume: 41 start-page: 122 year: 1986 ident: e_1_2_9_58_1 article-title: Spring runoff retention in prairie pothole wetlands publication-title: Journal of Soil and Water Conservation contributor: fullname: Hubbard DE – ident: e_1_2_9_64_1 doi: 10.1038/35000537 – ident: e_1_2_9_12_1 doi: 10.1029/2010WR009547 – ident: e_1_2_9_56_1 doi: 10.1016/j.jhydrol.2009.01.001 – ident: e_1_2_9_96_1 doi: 10.1029/94WR03286 – ident: e_1_2_9_34_1 doi: 10.1029/91WR02518 – ident: e_1_2_9_66_1 doi: 10.1002/hyp.7676 – ident: e_1_2_9_6_1 doi: 10.1002/hyp.7718 – ident: e_1_2_9_104_1 doi: 10.1029/2008WR006983 – ident: e_1_2_9_50_1 doi: 10.1016/S0022-1694(02)00287-1 – ident: e_1_2_9_36_1 doi: 10.2307/1551821 – ident: e_1_2_9_70_1 doi: 10.1016/j.jhydrol.2007.07.010 – ident: e_1_2_9_108_1 doi: 10.1016/j.jhydrol.2005.07.046 – ident: e_1_2_9_57_1 doi: 10.1029/2010WR009148 – ident: e_1_2_9_94_1 doi: 10.1016/0022-1694(89)90185-6 – ident: e_1_2_9_61_1 doi: 10.1016/S0022-1694(99)00059-1 – ident: e_1_2_9_24_1 doi: 10.1002/(SICI)1099-1085(199705)11:6<557::AID-HYP477>3.0.CO;2-Y – ident: e_1_2_9_18_1 doi: 10.1111/j.1749-8198.2010.00390.x – ident: e_1_2_9_75_1 doi: 10.1007/BF00482751 – ident: e_1_2_9_99_1 doi: 10.1002/(SICI)1099-1085(199911)13:16<2563::AID-HYP942>3.0.CO;2-D – ident: e_1_2_9_35_1 doi: 10.1029/91WR01243 – ident: e_1_2_9_107_1 doi: 10.1002/hyp.312 – ident: e_1_2_9_84_1 doi: 10.1029/WR026i003p00455 – ident: e_1_2_9_125_1 doi: 10.1046/j.1440-1703.2002.00506.x – ident: e_1_2_9_72_1 doi: 10.1002/hyp.9686 – ident: e_1_2_9_14_1 doi: 10.1016/0022-1694(90)90114-D – ident: e_1_2_9_2_1 doi: 10.1002/hyp.7201 – ident: e_1_2_9_20_1 doi: 10.1177/030913339401800102 – ident: e_1_2_9_124_1 doi: 10.1029/1999WR900296 – ident: e_1_2_9_145_1 doi: 10.1002/(SICI)1099-1085(199909)13:12/13<1827::AID-HYP896>3.0.CO;2-D – ident: e_1_2_9_25_1 doi: 10.1016/0022-1694(92)90080-F |
SSID | ssj0004080 |
Score | 2.5517464 |
Snippet | We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define... Abstract We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We... |
SourceID | swepub proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 3475 |
SubjectTerms | Assessments Catchments Empirical analysis Flow paths Forest Science Hydrology isotopes north Permafrost Policies runoff processes Skogsvetenskap snowmelt Tracers |
Title | Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review |
URI | https://api.istex.fr/ark:/67375/WNG-4N528J9Z-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.10412 https://www.proquest.com/docview/1697339987 https://search.proquest.com/docview/1705091317 https://search.proquest.com/docview/1718972492 https://res.slu.se/id/publ/68470 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFA9je9AX3fyDdXNEEfHBbk3bJI0-iTovAy8iDq8ihCRNdsdGO9pbdD75EfyMfhJP0tuOKyjiU0t7CklOTs_vJCe_g9BDoplWKtFxbnQOAQrxSQAJjW1ZZM4Sokng6X4zZZOj_HBGZ2vo2XAWpueHGBfcvGWE_7U3cKXb_UvS0PnFud-gDBWGScZ9OtfLd5fUUXkSqqaBEdGYJQUfWIWSdH_8csUXbfhh_boKNHvy0FXcGhzPwXX0eWhyn29yutct9J759hub43_2aRNdWwJS_LyfQVtozVY30JVlbfT5xU10DO7M2Obn9x_e45VYjVyeuHbYndVfsC9r3D7BPtESfk9YVSVuuqp2Dh8HVmuvfHxS4cpvEtmmwgYcwDwcrnuKFe6Pz9xCRwev3r-YxMvyDLEBmJfGihOlBTXCFkYUWQ6xUWJNTjnYucu00DQruXYlZ64snbAicxkx1AnmCFMQGd9G61Vd2TsIg7pcXhhFla-F7WO61FFdwlPGuEtIhB4MipLnPQuH7PmWUwljJsOYRehRUOEooZpTn7bGqfwwfS3zKU2LQ_FJziK0M-hYLi22lYQJngFaK3iE7o-vwdb8BoqqbN2BDPdsOQQg199kSCG452GE9vTzZ2yQp_JuzzqtGn-RrZUMwEESocdhUvy5a3Ly8W24ufvvotvoKoA7Gtahkx20vmg6ew8A1ELvBkv5BfLxGD8 |
link.rule.ids | 230,315,783,787,888,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq9lAufCMCBQxCiANp4yS2E8QFAWUp7QqhVmyRkGUndhe1SqrsRlBO_AR-I7-EGWeTapFAiFOixJFsj1_mjT_eEPKQGWG0jkyYFiaFAIXhJoCIh7bMEmcZM8zrdO-Nxegg3ZnwyQp51p-F6fQhhgk3RIb_XyPAcUJ661w1dHp2iiuUmGJ4DeCeICxfvj8Xj0ojnzcNYMRDEWWy1xWK4q3h0yVvtIYd-3WZanbyocvM1bue7UvkU1_pbsfJ8WY7N5vFt9_0HP-3VZfJxQUnpc-7QXSFrNjqKllfpEefnl0jR-DRCtv8_P4DnV5J9SDnSWtH3Un9hWJm49kTinst4Q9FdVXSpq1q5-iRF7ZG-9PPFa1wncg2FS3AB0z9-bqnVNPuBM11crD9av_FKFxkaAgLYHpxqCXTJudFbrMiz5IUwqPIFimXAHWXmNzwpJTGlVK4snS5zROXsIK7XDgmNATHN8hqVVf2JqFgL5dmheYa02FjWBc7bkp4KoR0EQvIg95S6rQT4lCd5HKsoM-U77OAPPI2HEro5hh3rkmuPoxfq3TM42wn_6gmAdnojawWoJ0pJnKZAGHLZEDuD68BbriGoitbt1BGomAOA9b1tzIsyyVKMUJ9ugE0VAjVvGcnrdENXtTMKgH8IArIYz8q_tw0NTp8529u_XvRe2R9tL-3q3bfjN_eJheA63E_LR1tkNV509o7wKfm5q6HzS9SixxY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqVgIu_CNSChiEEAfSxklsx3BCwLIUWFWIii1CsmzH7latklV2IygnHoFn5EkYO7upFgmEOCVKJpLtmcl8459vEHpANNNKJTrOjc4hQSF-E0BCY1sWmbOEaBJ4ut-N2HA_3x3T8Rp6ujwL0_FD9BNu3jPC_9o7-LR0O2ekoZPTqV-g9BWGN3IGpuoR0fsz7qg8CWXTwItozJKCL2mFknSn_3QlGG34cf26ijQ79tBV4Boiz-AS-rxsc7fh5Hi7nett8-03Osf_7NRldHGBSPGzzoSuoDVbXUXnF8XRJ6fX0CHEM2Obn99_-JBXYtWTeeLaYXdSf8G-rvHsMfY7LeH_hFVV4qataufwYaC19trHRxWu_CqRbSpsIAJMwum6J1jh7vzMdbQ_ePnh-TBe1GeIDeC8NFacKC2oEbYwoshySI4Sa3LKwdFdpoWmWcm1KzlzZemEFZnLiKFOMEeYgtT4Blqv6sreRBjU5fLCKKp8MWyf1KWO6hKeMsZdQiJ0f6koOe1oOGRHuJxKGDMZxixCD4MKewnVHPt9a5zKj6NXMh_RtNgVn-Q4QltLHcuFy84kYYJnANcKHqF7_WtwNr-CoipbtyDDPV0OAcz1NxlSCO6JGKE9nf30DfJc3rOTVqvGX-TMSgboIInQo2AUf-6aHB7shZvNfxe9i87tvRjIt69Hb26hCwD0aJiTTrbQ-rxp7W0AU3N9JzjNL_E9Gwc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracer-based+assessment+of+flow+paths%2C+storage+and+runoff+generation+in+northern+catchments%3A+a+review&rft.jtitle=Hydrological+processes&rft.au=Tetzlaff%2C+Doerthe&rft.au=Buttle%2C+Jim&rft.au=Carey%2C+Sean+K&rft.au=McGuire%2C+Kevin&rft.date=2015-07-30&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=29&rft.issue=16&rft.spage=3475&rft.epage=3490&rft_id=info:doi/10.1002%2Fhyp.10412&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |