Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review

We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non‐glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America an...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 29; no. 16; pp. 3475 - 3490
Main Authors Tetzlaff, Doerthe, Buttle, Jim, Carey, Sean K., McGuire, Kevin, Laudon, Hjalmar, Soulsby, Chris
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 30.07.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non‐glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer‐based hydrograph separations, derivation of transit time distributions and tracer‐aided rainfall‐runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer‐aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non‐glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer‐based hydrograph separations, derivation of transit time distributions and tracer‐aided rainfall‐runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer‐aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change. Copyright © 2014 John Wiley & Sons, Ltd.
Abstract We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non‐glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer‐based hydrograph separations, derivation of transit time distributions and tracer‐aided rainfall‐runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer‐aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change. Copyright © 2014 John Wiley & Sons, Ltd.
We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non-glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer-based hydrograph separations, derivation of transit time distributions and tracer-aided rainfall-runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer-aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change.
We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define northern catchments as non-glacial sites in the temperate conifer/boreal/permafrost zone, focussing our review mainly on sites in North America and Europe. Improved empirical and theoretical understanding of hydrological functioning has advanced the analytical tools available for tracer-based hydrograph separations, derivation of transit time distributions and tracer-aided rainfall-runoff models that are better able to link hydrological response to storage changes. However, the lack of comprehensive tracer data sets still hinders development of a generalized understanding of how northern catchments will respond to change. This paucity of empirical data leads to many outstanding research needs, particularly in rapidly changing areas that are already responding to climatic warming and economic development. To continually improve our understanding of hydrological processes in these regions our knowledge needs to be advanced using a range of techniques and approaches. Recent technological developments for improved monitoring, distributed hydrological sensor systems, more economic analysis of large sample numbers in conjunction with novel, tracer-aided modelling approaches and the use of remote sensing have the potential to help the understanding of the northern hydrological systems as well as inform policy at a time of rapid environmental change. Copyright (c) 2014 John Wiley & Sons, Ltd.
Author Buttle, Jim
Laudon, Hjalmar
McGuire, Kevin
Soulsby, Chris
Tetzlaff, Doerthe
Carey, Sean K.
Author_xml – sequence: 1
  givenname: Doerthe
  surname: Tetzlaff
  fullname: Tetzlaff, Doerthe
  email: Correspondence to: Doerthe Tetzlaff, University of Aberdeen, Northern Rivers Institute, School of Geosciences, Aberdeen, AB24 3UF, United Kingdom., d.tetzlaff@abdn.ac.uk
  organization: Northern Rivers Institute, School of Geosciences, University of Aberdeen, AB24 3UF, Aberdeen, UK
– sequence: 2
  givenname: Jim
  surname: Buttle
  fullname: Buttle, Jim
  organization: Department of Geography, Trent University, 1600 West Bank Drive, Ontario, Peterborough, Canada
– sequence: 3
  givenname: Sean K.
  surname: Carey
  fullname: Carey, Sean K.
  organization: School of Geography and Earth Sciences, McMaster University, 1280 Main St. W, Ontario, L8S 4 K1, Hamilton, Canada
– sequence: 4
  givenname: Kevin
  surname: McGuire
  fullname: McGuire, Kevin
  organization: Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, 24061, Blacksburg, VA, USA
– sequence: 5
  givenname: Hjalmar
  surname: Laudon
  fullname: Laudon, Hjalmar
  organization: Swedish University of Agricultural Sciences, Department of Forest Ecology and Management, SE-90183, Umeå, Sweden
– sequence: 6
  givenname: Chris
  surname: Soulsby
  fullname: Soulsby, Chris
  organization: School of Geosciences, University of Aberdeen, AB24 3UF, Aberdeen, UK
BackLink https://res.slu.se/id/publ/68470$$DView record from Swedish Publication Index
BookMark eNqN0U1v1DAQBmALtRLblgP_wBIXkEhrx3Fsc0MVtEVV4VDEx8VynHE3JWsHT9Lt_nuybOkBCYnT-PDMaMbvAdmLKQIhzzk75oyVJ8vNMD8qXj4hC86MKTjTco8smNayqJlWT8kB4i1jrGKaLQhcZ-chF41DaKlDBMQVxJGmQEOf1nRw4xJfUxxTdjdAXWxpnmIKgd5AhOzGLkXaRRpTHpeQI_Vu9MvtCHxDHc1w18H6iOwH1yM8e6iH5PP7d9en58Xlx7OL07eXhZcVKwunuGuM9Aa0N1pUui4Z-EoqJnkQjWmkaFUTWlWHtg0GjAiCexlMHXjthBaHpNjNxTUMU2OH3K1c3tjkOov91Li8LRbB1rpSbPYvd37I6ecEONpVhx763kVIE1quuDaqrEz5H5RJZrjgaqYv_qK3acpxPtzy2ighjNFb9WqnfE6IGcLjtpzZbZZ2ztL-znK2Jzu77nrY_Bva82-f_nQ8_ESHI9w_drj8w9ZKKGm_XJ3Z6kqW-oP5br-KX-5hsbc
CitedBy_id crossref_primary_10_1007_s10040_019_01942_z
crossref_primary_10_1002_hyp_14824
crossref_primary_10_1016_j_jhydrol_2023_129177
crossref_primary_10_1080_02626667_2020_1751847
crossref_primary_10_1088_1748_9326_aaa4fe
crossref_primary_10_1002_hyp_11396
crossref_primary_10_1016_j_jhydrol_2020_124966
crossref_primary_10_7717_peerj_7146
crossref_primary_10_1002_hyp_11158
crossref_primary_10_5194_hess_24_673_2020
crossref_primary_10_1002_2016WR020117
crossref_primary_10_1002_hyp_10740
crossref_primary_10_1002_2017WR020650
crossref_primary_10_1002_2016WR019804
crossref_primary_10_1002_vzj2_20022
crossref_primary_10_1186_s40562_021_00193_9
crossref_primary_10_5194_hess_23_1867_2019
crossref_primary_10_1002_hyp_14023
crossref_primary_10_1002_wat2_1260
crossref_primary_10_1016_j_jhydrol_2022_128926
crossref_primary_10_5194_bg_18_3015_2021
crossref_primary_10_3389_frwa_2023_1243114
crossref_primary_10_1016_j_jhydrol_2021_126054
crossref_primary_10_1002_wat2_1311
crossref_primary_10_1016_j_jhydrol_2016_01_079
crossref_primary_10_1002_hyp_13627
crossref_primary_10_1002_hyp_13746
crossref_primary_10_1002_hyp_10515
crossref_primary_10_1002_hyp_10516
crossref_primary_10_1139_as_2022_0038
crossref_primary_10_1002_hyp_13584
crossref_primary_10_1002_hyp_14278
crossref_primary_10_1016_j_jhydrol_2024_131020
crossref_primary_10_1146_annurev_environ_012220_125703
crossref_primary_10_1016_j_scitotenv_2018_04_059
crossref_primary_10_3390_hydrology7010006
crossref_primary_10_1002_ppp_1865
crossref_primary_10_1016_j_watres_2022_118860
crossref_primary_10_3389_frwa_2021_740044
crossref_primary_10_1029_2019WR025093
crossref_primary_10_1002_hyp_13914
crossref_primary_10_1016_j_jhydrol_2024_131632
crossref_primary_10_1134_S0097807821040187
crossref_primary_10_1016_j_jhydrol_2019_03_050
crossref_primary_10_1002_hyp_11213
crossref_primary_10_1002_hyp_13238
crossref_primary_10_1029_2022WR033101
crossref_primary_10_1002_hyp_10883
crossref_primary_10_1002_hyp_14845
crossref_primary_10_2136_vzj2016_01_0010
crossref_primary_10_2134_jeq2018_07_0280
crossref_primary_10_1029_2018WR023894
crossref_primary_10_5194_hess_23_2507_2019
crossref_primary_10_1002_2015JG003131
crossref_primary_10_3390_hydrology10030055
crossref_primary_10_1016_j_jhydrol_2020_124834
crossref_primary_10_1029_2020GB006671
crossref_primary_10_5194_hess_25_735_2021
crossref_primary_10_2166_nh_2018_086
crossref_primary_10_1016_j_catena_2023_107765
crossref_primary_10_3390_hydrology3030028
crossref_primary_10_3390_hydrology9020024
crossref_primary_10_1029_2023GL104147
crossref_primary_10_1016_j_jhydrol_2023_129134
crossref_primary_10_3390_atmos12020150
crossref_primary_10_1002_2015WR017888
crossref_primary_10_1016_j_earscirev_2016_06_014
crossref_primary_10_1029_2020WR027714
crossref_primary_10_1016_j_geoderma_2022_116277
crossref_primary_10_1016_j_jhydrol_2017_09_053
crossref_primary_10_1002_hyp_13135
crossref_primary_10_1002_hyp_11351
crossref_primary_10_1029_2023WR034752
crossref_primary_10_1029_2023WR036412
crossref_primary_10_1002_2015WR018463
crossref_primary_10_5194_hess_25_2169_2021
crossref_primary_10_1002_2017WR021718
crossref_primary_10_1002_hyp_10300
crossref_primary_10_1016_j_foreco_2022_120468
crossref_primary_10_1002_hyp_11194
crossref_primary_10_1029_2019WR025828
crossref_primary_10_1029_2017WR022403
crossref_primary_10_1029_2019WR024908
crossref_primary_10_5194_hess_23_2041_2019
crossref_primary_10_1016_j_jhydrol_2023_130478
crossref_primary_10_1002_2017GL075067
crossref_primary_10_1051_e3sconf_202016305015
crossref_primary_10_1002_hyp_10710
crossref_primary_10_1029_2017WR022362
crossref_primary_10_1007_s10661_020_08414_y
crossref_primary_10_1002_hyp_14516
crossref_primary_10_1016_j_jhydrol_2023_129881
crossref_primary_10_1016_j_jhydrol_2024_131621
crossref_primary_10_1002_hyp_10835
crossref_primary_10_1016_j_jhydrol_2017_11_024
crossref_primary_10_1029_2019WR026010
crossref_primary_10_1029_2020WR028479
crossref_primary_10_3390_w9060418
crossref_primary_10_1002_2017WR021689
crossref_primary_10_1002_hyp_13146
crossref_primary_10_1002_hyp_13664
crossref_primary_10_1002_2016WR019437
crossref_primary_10_1029_2019WR025677
crossref_primary_10_1002_hyp_10434
crossref_primary_10_1016_j_jhydrol_2020_125226
crossref_primary_10_1029_2018GB006030
crossref_primary_10_1016_j_jhydrol_2021_126685
crossref_primary_10_1002_2016JG003387
crossref_primary_10_1016_j_ejrh_2015_12_062
crossref_primary_10_1002_wat2_1727
crossref_primary_10_1016_j_ejrh_2023_101398
crossref_primary_10_1016_j_jhydrol_2017_07_022
crossref_primary_10_3389_fenvs_2023_1304347
crossref_primary_10_1002_hyp_10566
crossref_primary_10_1016_j_jhydrol_2015_05_019
crossref_primary_10_5194_hess_21_5089_2017
crossref_primary_10_1029_2021JG006281
crossref_primary_10_5194_hess_21_2595_2017
crossref_primary_10_1016_j_jhydrol_2018_04_022
crossref_primary_10_1002_hyp_11491
crossref_primary_10_1016_j_scitotenv_2023_168561
crossref_primary_10_1080_07011784_2023_2224280
crossref_primary_10_1016_j_jhydrol_2016_01_055
crossref_primary_10_1016_j_jhydrol_2022_128236
crossref_primary_10_1080_10256016_2021_1877701
crossref_primary_10_1002_hyp_13609
crossref_primary_10_5194_hess_20_1069_2016
crossref_primary_10_1016_j_envsoft_2018_01_001
crossref_primary_10_1016_j_scitotenv_2020_144799
crossref_primary_10_3390_w13182529
crossref_primary_10_1002_hyp_14775
crossref_primary_10_2343_geochemj_2_0469
crossref_primary_10_1016_j_scitotenv_2023_167999
crossref_primary_10_1002_hyp_14811
crossref_primary_10_1029_2020GB006871
crossref_primary_10_1002_eco_2208
crossref_primary_10_5194_hess_25_2133_2021
crossref_primary_10_1016_j_jhydrol_2022_128878
crossref_primary_10_1002_hyp_13280
crossref_primary_10_1002_hyp_13440
Cites_doi 10.1002/hyp.7577
10.1016/j.jhydrol.2005.09.016
10.1002/hyp.262
10.1016/j.jhydrol.2008.03.013
10.1029/97WR01033
10.1029/2011WR011293
10.1002/hyp.7763
10.1002/hyp.5132
10.1080/07055900.1986.9649248
10.1023/A:1013039830323
10.2166/nh.2010.146
10.1029/2009WR008818
10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-HYP879>3.0.CO;2-G
10.1002/hyp.6117
10.1002/hyp.7049
10.1002/hyp.3360090206
10.1029/2003WR002765
10.1029/WR006i005p01296
10.5194/hess-17-533-2013
10.1890/11-1498.1
10.1080/10889379909377670
10.2151/jmsj.84.821
10.1029/2008WR006912
10.1029/2002WR001510
10.1016/j.jhydrol.2013.09.006
10.1017/S0022143000007140
10.1029/2003WR002455
10.1007/s10040-012-0920-9
10.2166/nh.1998.0022
10.1002/hyp.7692
10.1007/s11269-012-0016-2
10.1029/2011WR011595
10.1002/hyp.1130
10.1016/j.jhydrol.2012.11.021
10.1002/wrcr.20469
10.1016/0022-1694(91)90181-G
10.1002/hyp.7318
10.1002/hyp.7796
10.1016/j.jhydrol.2010.07.049
10.1002/hyp.7326
10.1016/j.jhydrol.2006.04.020
10.1002/2013WR014147
10.1029/2011WR011543
10.1016/j.jhydrol.2009.03.031
10.1002/hyp.8324
10.1016/0022-1694(83)90193-2
10.2166/nh.1981.0002
10.1029/2001GB001839
10.1023/A:1013036803050
10.1002/(SICI)1099-1085(19980615)12:7<1111::AID-HYP633>3.0.CO;2-2
10.1002/hyp.3360080406
10.1002/hyp.1033
10.1016/0022-1694(79)90164-1
10.1002/hyp.9700
10.2166/nh.1993.0023
10.1029/WR026i012p02959
10.1017/CBO9780511535666.040
10.1016/B978-0-444-81546-0.50019-7
10.1029/2011GL047666
10.1007/BF00279517
10.1002/hyp.5881
10.2166/nh.1986.0024
10.1038/nature04141
10.1002/hyp.8201
10.1029/WR022i010p01444
10.1002/hyp.5008
10.1016/S0022-1694(97)00030-9
10.1002/rra.2740
10.1016/j.jhydrol.2005.10.024
10.1016/j.jhydrol.2003.12.042
10.1029/WR006i001p00110
10.1016/j.jhydrol.2006.08.016
10.1002/hyp.9817
10.1002/hyp.7501
10.1002/hyp.5956
10.1002/hyp.3360010104
10.1002/hyp.6073
10.1029/2000WR900030
10.1002/hyp.6519
10.1029/2006WR005286
10.1002/hyp.8396
10.1080/02626667909491834
10.1023/A:1007997422237
10.1002/2013GL058716
10.1139/e84-073
10.1016/S0022-1694(01)00487-5
10.1002/hyp.1232
10.1080/04353676.1980.11879998
10.1007/s13157-010-0123-x
10.1002/hyp.7164
10.1029/2003WR002331
10.1016/j.geoderma.2014.02.017
10.1002/hyp.7478
10.1002/hyp.7068
10.1029/95WR01806
10.1002/hyp.9695
10.1002/hyp.7576
10.1002/2013WR014925
10.1016/0309-1708(93)90036-F
10.1002/hyp.8113
10.1002/hyp.1180
10.1002/hyp.6205
10.1002/hyp.5764
10.1016/S0022-1694(03)00175-6
10.5194/hess-14-729-2010
10.2166/nh.2004.0023
10.1038/35000537
10.1029/2010WR009547
10.1016/j.jhydrol.2009.01.001
10.1029/94WR03286
10.1029/91WR02518
10.1002/hyp.7676
10.1002/hyp.7718
10.1029/2008WR006983
10.1016/S0022-1694(02)00287-1
10.2307/1551821
10.1016/j.jhydrol.2007.07.010
10.1016/j.jhydrol.2005.07.046
10.1029/2010WR009148
10.1016/0022-1694(89)90185-6
10.1016/S0022-1694(99)00059-1
10.1002/(SICI)1099-1085(199705)11:6<557::AID-HYP477>3.0.CO;2-Y
10.1111/j.1749-8198.2010.00390.x
10.1007/BF00482751
10.1002/(SICI)1099-1085(199911)13:16<2563::AID-HYP942>3.0.CO;2-D
10.1029/91WR01243
10.1002/hyp.312
10.1029/WR026i003p00455
10.1046/j.1440-1703.2002.00506.x
10.1002/hyp.9686
10.1016/0022-1694(90)90114-D
10.1002/hyp.7201
10.1177/030913339401800102
10.1029/1999WR900296
10.1002/(SICI)1099-1085(199909)13:12/13<1827::AID-HYP896>3.0.CO;2-D
10.1016/0022-1694(92)90080-F
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright © 2015 John Wiley & Sons, Ltd.
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID BSCLL
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7U6
ADTPV
AOWAS
DOI 10.1002/hyp.10412
DatabaseName Istex
CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Sustainability Science Abstracts
SwePub
SwePub Articles
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Sustainability Science Abstracts
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Civil Engineering Abstracts
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 3490
ExternalDocumentID oai_slubar_slu_se_68470
3747930931
10_1002_hyp_10412
HYP10412
ark_67375_WNG_4N528J9Z_X
Genre article
GeographicLocations North America
ANE, Europe
GeographicLocations_xml – name: North America
– name: ANE, Europe
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7U6
.Y3
31~
ABEML
ABTAH
ACSCC
ADTPV
AI.
AOWAS
ASPBG
AVWKF
AZFZN
BDRZF
DDYGU
FEDTE
HF~
HVGLF
M62
RIWAO
RJQFR
SAMSI
VH1
ZY4
ID FETCH-LOGICAL-c5402-a71ab95c9e8c98348620ec457051f3b9b53d7bfd76fddf9e93f31c5f96f16a383
IEDL.DBID DR2
ISSN 0885-6087
1099-1085
IngestDate Sat Aug 24 00:48:10 EDT 2024
Fri Aug 16 01:00:39 EDT 2024
Sat Aug 17 00:20:06 EDT 2024
Thu Oct 10 22:57:19 EDT 2024
Fri Aug 23 01:53:21 EDT 2024
Sat Aug 24 00:53:06 EDT 2024
Wed Oct 30 09:49:51 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5402-a71ab95c9e8c98348620ec457051f3b9b53d7bfd76fddf9e93f31c5f96f16a383
Notes ArticleID:HYP10412
istex:B7EAF23D4056D6DD7AB055862914396FB6DBC615
ark:/67375/WNG-4N528J9Z-X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aura.abdn.ac.uk/bitstream/2164/6285/1/Tetzlaff_revision2_Northern_paper_final.pdf
PQID 1697339987
PQPubID 2034139
PageCount 16
ParticipantIDs swepub_primary_oai_slubar_slu_se_68470
proquest_miscellaneous_1718972492
proquest_miscellaneous_1705091317
proquest_journals_1697339987
crossref_primary_10_1002_hyp_10412
wiley_primary_10_1002_hyp_10412_HYP10412
istex_primary_ark_67375_WNG_4N528J9Z_X
PublicationCentury 2000
PublicationDate 30 July 2015
PublicationDateYYYYMMDD 2015-07-30
PublicationDate_xml – month: 07
  year: 2015
  text: 30 July 2015
  day: 30
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Buttle JM. 1994. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Progress in Physical Geography 18: 16-41.
Buttle JM, Hazlett PW, Murray CD, Creed IF, Jeffries DS, Semkin R. 2001. Prediction of groundwater characteristics in forested and harvested basins during spring snowmelt using a topographic index. Hydrological Processes 15: 3389-3407.
Davies J, Beven K, Nyberg L, Rodhe A. 2011. A discrete particle representation of hillslope hydrology: hypothesis testing reproducing a tracer experiment at Gardsjon, Sweden, Hydrological. Processes 25: 3602-3612.
Hubbard DE, Linder RL. 1986. Spring runoff retention in prairie pothole wetlands. Journal of Soil and Water Conservation 41: 122-125.
Ali GA, Roy AG, Turmel M-C, Courchesne F. 2010. Source-to-stream connectivity assessment through end-member mixing analysis. Journal of Hydrology DOI: 10.1016/j.jhydrol.2010.07.049
Carey SK, Boucher JL, Duarte CM. 2013b. Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost environment (Yukon, Canada). Hydrogeology Journal 21: 67-77.
Surfleet CG, Tullos D. 2013. Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate. Journal of Hydrology 479: 24-34.
Laudon H, Tetzlaff D, Soulsby C, Carey S, Seibert J, Buttle J, Shanley J, McDonnell J, McGuire K. 2013. Change in winter climate will affect dissolved organic carbon and water fluxes in mid-to-high latitude catchments. Hydrological Processes 27: 700-709.
Birkel C, Soulsby C, Tetzlaff D. 2011b. Modelling catchment-scale water storage dynamics: reconciling dynamic storage with tracer-inferred passive storage. Hydrological Processes 25: 3924-3936.
Soulsby C, Neal C, Laudon H, Burns DA, Merot P, Bonell M, Dunn SM, Tetzlaff D. 2008. Catchment data for process conceptualization: simply not enough? Hydrological Processes 22: 2057-2061.
Cooper LW, Olsen CR, Solomon DK, Larsen IL, Cook RB, Grebmeier JM. 1991. Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an Arctic watershed. Water Resources Research 27: 2171-2179.
Lyon SW, Desilet SLW, Troch PA. 2009. A tale of two isotopes: differences in hydrograph separation for a runoff event when using δD versus δ18O. Hydrological Processes 23: 2095-2101.
Hrachowitz M, Soulsby C, Tetzlaff D, Dawson JJC, Dunn SM, Malcolm IA. 2009. Using long-term data sets to understand transit times in contrasting headwater catchments. Journal of Hydrology 367: 237-248.
Shanley JB, Chalmers A. 1999. The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont. Hydrological Processes 13: 1843-1857.
Burns DA. 2002. Stormflow-hydrograph separation based on isotopes: the thrill is gone - what's next? Hydrological Processes 16: 1515-1517.
Soulsby C, Chen M, Ferrier RC, Jenkins A, Harriman R. 1998. Hydrogeochemistry of shallow groundwater in a Scottish catchment. Hydrological Processes 12: 1111-1127.
Soulsby C, Birkel C, Tetzlaff D. 2014. Assessing urbanization impacts on catchment transit times. Geophysical Research Letters 41. DOI: 10.1002/2013GL058716
McDonnell JJ. 2003. Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrological Processes 17: 1869-1875.
McDonnell JJ, Bonell M, Stewart MK, Pearce AJ. 1990. Deuterium variations in storm rainfall: implications for stream separation. Water Resources Research 26: 455-458.
Buttle J. 2006. Mapping first-order controls on streamflow from drainage basins: the T3 template. Hydrological Processes 20: 3415-3422.
Maloszewski P, Zuber A. 1993. Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers. Advances in Water Resources 16: 173-190.
Kendall KA, Shanley JB, McDonnell JJ. 1999. A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt. Journal of Hydrology 219: 188-205.
Soulsby C, Tetzlaff D, Hrachowitz M. 2009. Tracers and transit times: windows for viewing catchment scale storage? Hydrological Processes 23 : 3503-3507. DOI: 10.1002/hyp.7501
Bishop KH, Laudon H, Köhler S. 2000. Separating the natural and anthropogenic components of spring flood pH decline: a method for areas that are not chronically acidified. Water Resources Research 36: 1873-1884.
Bishop KH, Buffam I, Erlandsson M, Fölster J, Laudon H, Seibert J, Temnerud J. 2008. Aqua Incognita: the unknown headwaters. Hydrological Processes 22: 1239-1242.
Carey SK, Woo MK. 1998. Snowmelt hydrology of two subarctic slopes, southern Yukon, Canada. Nordic Hydrology 29: 331-346.
Buttle JM, Sami K. 1992. Testing the groundwater ridging hypothesis of streamflow generation during snowmelt in a forested catchment. Journal of Hydrology 135: 53-72.
Buttle JM, Peters DL. 1997. Inferring hydrological processes in a temperate basin using isotopic and geochemical hydrograph separation: a re-evaluation. Hydrological Processes 11: 557-573.
Siegel DI, Glaser PH, So J, Janecky DR. 2006. The dynamic balance between organic acids and circumneutral groundwater in a large boreal peat basin. Journal of Hydrology 320: 421-431.
Jencso KG, McGlynn BL, Gooseff MN, Bencala KE, Wondzell SM. 2010. Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources. Water Resources Research 46: W10524. DOI: 10.1029/2009WR008818
McEachern P, Prepas EE, Chanasyk DS. 2006. Landscape control of water chemistry in northern boreal streams of Alberta. Journal of Hydrology 323: 303-324.
Birkel C, Tetzlaff D, Dunn SM, Soulsby C. 2011a. Using time domain and geographic source tracers to conceptualise streamflow generation processes in lumped rainfall-runoff models. Water Resources Research 47: W02515. DOI: 10.1029/2010WR009547
Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J. 1999. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography 23: 132-154. DOI: 10.1080/10889379909377670
Adam JC, Hamlet A, Lettenmaier DP. 2009. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological Processes 23: 962-972.
Metcalfe RA, Buttle JM. 2001. Soil partitioning and surface store controls on spring runoff from a boreal forest peatland basin in north-central Manitoba, Canada. Hydrological Processes 15: 2305-2324.
Moore RD. 1989. Tracing runoff sources with deuterium and oxygen-18 during spring melt in a headwater catchment, southern Laurentians, Quebec. Journal of Hydrology 112: 135-148.
Bowden WB. 2010. Climate change in the Arctic - Permafrost, thermokarst, and why they matter to the non-Arctic world. Geography Compass 4: 1553-1566.
Tetzlaff D, Birkel C, Dick J, Soulsby C. 2014. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation and the evolution of catchment transit time distributions. Water Resources Research. DOI: 10.1002/2013WR014147
Klaus J, McDonnell JJ. 2013. Hydrograph separation using stable isotopes: review and evaluation. Journal of Hydrology 505: 47-64.
Carey SK, Quinton WL. 2005. Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment. Hydrological Processes 19: 95-114.
Tetzlaff D, Soulsby C, Buttle J, Capell R, Carey SK, Kruitbos L, Laudon H, McDonnell J, McGuire K, Seibert S, Shanley J. 2013. Catchments on the Cusp? Structural and functional change in northern ecohydrological systems. Hydrological Processes 27: 766-774.
Monteith SS, Buttle JM, Hazlett PW, Beall FD, Semkin RG, Jeffries DS. 2006b. Paired-basin comparison of hydrological response in harvested and undisturbed hardwood forests during snowmelt in central Ontario: II. Streamflow sources and groundwater residence times. Hydrological Processes 20: 1117-1136.
Soulsby C, Rogers P, Petry J, Hannah D, Dunn SM, Malcolm IA. 2004. Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland. Journal of Hydrology 291: 172-294.
Soulsby C, Tetzlaff D, van den Bedem N, Malcolm IA, Bason PJ, Youngson AF. 2007. Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters. Journal of Hydrology 333: 199-213.
Kirchner JW, Feng X, Neal C. 2000. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403: 524-527. DOI: 10.1038/35000537
Woo M-k, Thorne R. 2006. Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrological Processes 20: 2129-2139.
Botter G, Bertuzzo E, Rinaldo A. 2011. Catchment residence and travel time distributions: The master equation. Geophysical Research Letters 38. DOI: 10.1029/2011GL047666
Jenkins A, Ferrier RC, Ogunkoya RO. 1994. A case study in hydrochemistry: conflicting interpretations from hydrological and chemical observations. Hydrological Processes 8: 335-349.
Lyon SW, Laudon H, Seibert J, Mörth M, Tetzlaff D, Bishop KH. 2010. Controls on snowmelt water mean transit times in northern boreal catchments. Hydrological Processes 24: 1672-1684.
Dunne T, Moore T, Taylor CH. 1975. Recognition and prediction of runoff-producing zones in humid regions Hydrological Sciences Bulletin 20: 305-327.
McNamara JP, Tetzlaff D, Bishop K, Soulsby C, Seyfried M, Peters N, Hooper R. 2011. Storage as a metric of catchment comparison. Hydrological Processes 25: 3364-3371.
Soulsby C, Piegat K, Seibert J, Tezlaff D. 2011. Catchment scale estimates of flow path partitioning and water storage based on transit time and runoff modelling. Hydrological Processes. DOI: 10.1002/hyp.8324
Stadnyk TA, Kouwen N, Edwards TWD. 2013. Mesoscale model validation and calibration using stable water isotopes: the isoWATFLOOD model. Hydrological Processes. DOI: 10.1002/hyp.9695
Devito K, Creek I, Gan T, Me
2002; 16
1995; 31
1993; 25
2002; 17
1993; 24
2007; 344
2006b; 20
2010; 14
1989; 112
2003; 270
2006; 330
2003; 279
2001; 254
1986; 1
2007; 333
1979; 24
2006; 20
2010; 24
1990
2004; 291
1990; 49
2000; 403
2013; 479
2004; 35
1987
2008; 22
2008; 357
2012; 26
2006; 325
2001; 56
2010; 2
2010; 4
2009; 367
1998; 12
2006; 320
2006; 323
1999; 219
1995; 9
2004; 40
2013; 505
2011b; 25
1998
1980; 62A
1986; 17
1999; 23
2003; 39
2013a
2014; 41
2010; 41
1997; 201
1990; 116
2005; 19
2010; 46
1990; 26
1997; 33
2010a; 24
1986; 22
1992; 135
1986; 24
1992; 28
1975; 20
2008; 44
1994; 18
2012; 48
1981; 12
2009; 45
1970; 6
2013; 27
2013; 23
1984; 21
1988; 34
2003; 17
1996; 32
2013; 17
1997; 11
1986; 41
1999; 13
1997; 18
2001; 15
2011; 25
2006a; 20
1983; 66
2009; 23
2002; 38
1998; 29
2011
2010
2011; 31
2005; 438
2005
2009; 373
2011; 38
1994; 8
1991; 27
2006; 84
1993; 16
1991; 122
2000; 36
2013b; 21
2015
2014
2013
2007; 42
1992; 65
2007; 43
1979; 43
2010b; 24
2011a; 47
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
Kirchner JW (e_1_2_9_62_1) 2007; 42
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Verry ES (e_1_2_9_133_1) 2011
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
Sklash MG (e_1_2_9_109_1) 1990
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
Davies J (e_1_2_9_37_1) 2011; 25
e_1_2_9_136_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
Woo M‐K (e_1_2_9_140_1) 1980; 62
Hubbard DE (e_1_2_9_58_1) 1986; 41
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
Dunne T (e_1_2_9_42_1) 1975; 20
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 42
  year: 2007
  article-title: Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology
  publication-title: Water Resources Research
– volume: 11
  start-page: 557
  year: 1997
  end-page: 573
  article-title: Inferring hydrological processes in a temperate basin using isotopic and geochemical hydrograph separation: a re‐evaluation
  publication-title: Hydrological Processes
– volume: 27
  start-page: 700
  year: 2013
  end-page: 709
  article-title: Change in winter climate will affect dissolved organic carbon and water fluxes in mid‐to‐high latitude catchments
  publication-title: Hydrological Processes
– volume: 27
  start-page: 2691
  year: 2013
  end-page: 2698
  article-title: Is ‘Centre of Volume’ a robust indicator of changes in snowmelt timing?
  publication-title: Hydrological Processes
– volume: 19
  start-page: 1705
  year: 2005
  end-page: 1714
  article-title: A framework for broad‐scale classification of hydrologic response units on the Boreal Plain: is topography the last thing to consider?
  publication-title: Hydrological Processes
– volume: 122
  start-page: 253
  year: 1991
  end-page: 274
  article-title: Hydrograph separation: a comparison of geochemical and isotopic tracers
  publication-title: Journal of Hydrology
– year: 2013
  article-title: Mesoscale model validation and calibration using stable water isotopes: the isoWATFLOOD model
  publication-title: Hydrological Processes
– volume: 479
  start-page: 24
  year: 2013
  end-page: 34
  article-title: Variability in effect of climate change on rain‐on‐snow peak flow events in a temperate climate
  publication-title: Journal of Hydrology
– start-page: 193
  year: 2011
  end-page: 213
– volume: 34
  start-page: 358
  year: 1988
  end-page: 362
  article-title: Measurement of outflow from a snowbank with basal ice
  publication-title: Journal of Glaciology
– volume: 27
  start-page: 2171
  year: 1991
  end-page: 2179
  article-title: Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an Arctic watershed
  publication-title: Water Resources Research
– volume: 62A
  start-page: 37
  year: 1980
  end-page: 56
  article-title: Channel development in snow‐filled valleys, Resolute, N.W.T., Canada
  publication-title: Geografiska Annaler
– volume: 24
  start-page: 260
  year: 2010b
  end-page: 275
  article-title: Towards a simple dynamic process conceptualization in rainfall‐runoff models using multi‐criteria calibration and tracers in temperate, upland catchments
  publication-title: Hydrological Processes
– volume: 18
  start-page: 16
  year: 1994
  end-page: 41
  article-title: Isotope hydrograph separations and rapid delivery of pre‐event water from drainage basins
  publication-title: Progress in Physical Geography
– volume: 219
  start-page: 188
  year: 1999
  end-page: 205
  article-title: A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt
  publication-title: Journal of Hydrology
– volume: 325
  start-page: 197
  year: 2006
  end-page: 221
  article-title: Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: an initial evaluation
  publication-title: Journal of Hydrology
– volume: 12
  start-page: 21
  year: 1981
  end-page: 30
  article-title: Spring flood: meltwater or groundwater?
  publication-title: Nordic Hydrology
– year: 2011
  article-title: Catchment scale estimates of flow path partitioning and water storage based on transit time and runoff modelling
  publication-title: Hydrological Processes
– volume: 26
  start-page: 455
  year: 1990
  end-page: 458
  article-title: Deuterium variations in storm rainfall: implications for stream separation
  publication-title: Water Resources Research
– volume: 17
  start-page: 379
  year: 2003
  end-page: 390
  article-title: Simulating interactions between saturated and unsaturated storage in a conceptual runoff model
  publication-title: Hydrological Processes
– volume: 15
  start-page: 3389
  year: 2001
  end-page: 3407
  article-title: Prediction of groundwater characteristics in forested and harvested basins during spring snowmelt using a topographic index
  publication-title: Hydrological Processes
– volume: 26
  start-page: 2959
  year: 1990
  end-page: 2970
  article-title: Hydrologic flow path definition and partitioning of spring meltwater
  publication-title: Water Resources Research
– year: 2014
  article-title: Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment
  publication-title: Geoderma
– volume: 330
  start-page: 543
  year: 2006
  end-page: 563
  article-title: A review and evaluation of catchment transit time modeling
  publication-title: Journal of Hydrology
– volume: 18
  start-page: 283
  year: 1997
  end-page: 291
  article-title: Hydrologic control on the oxygen‐isotope relation between sediment cellulose and lake water, western Taimyr Peninsula, Russia: implications for the use of surface‐sediment calibrations in paleolimnology
  publication-title: Journal of Paleolimnology
– volume: 29
  start-page: 331
  year: 1998
  end-page: 346
  article-title: Snowmelt hydrology of two subarctic slopes, southern Yukon, Canada
  publication-title: Nordic Hydrology
– volume: 41
  start-page: 506
  year: 2010
  end-page: 519
  article-title: Exploring runoff processes using chemical, isotopic and hydrometric data in a discontinuous permafrost catchment
  publication-title: Hydrology Research
– volume: 135
  start-page: 53
  year: 1992
  end-page: 72
  article-title: Testing the groundwater ridging hypothesis of streamflow generation during snowmelt in a forested catchment
  publication-title: Journal of Hydrology
– volume: 25
  start-page: 247
  year: 1993
  end-page: 255
  article-title: Application of oxygen‐18 tracer techniques to Arctic hydrological processes
  publication-title: Arctic Alpine Research
– volume: 47
  year: 2011a
  article-title: Using time domain and geographic source tracers to conceptualise streamflow generation processes in lumped rainfall‐runoff models
  publication-title: Water Resources Research
– volume: 48
  year: 2012
  article-title: The master transit time distribution of variable flow systems
  publication-title: Water Resources Research
– volume: 43
  start-page: 45
  year: 1979
  end-page: 65
  article-title: The role of groundwater in storm runoff
  publication-title: Journal of Hydrology
– year: 2010
  article-title: Source‐to‐stream connectivity assessment through end‐member mixing analysis
  publication-title: Journal of Hydrology
– year: 2013a
  article-title: Use of color maps and wavelet coherence to discern short and longer‐term climate influences on streamflow variability in northern catchments
  publication-title: Water Resources Research
– volume: 24
  start-page: 43
  year: 1979
  end-page: 69
  article-title: A physically based, variable contributing area model of basin hydrology
  publication-title: Hydrological Sciences Bulletin
– volume: 19
  start-page: 95
  year: 2005
  end-page: 114
  article-title: Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment
  publication-title: Hydrological Processes
– volume: 25
  start-page: 3364
  year: 2011
  end-page: 3371
  article-title: Storage as a metric of catchment comparison
  publication-title: Hydrological Processes
– volume: 17
  start-page: 1073
  year: 2003
  end-page: 1092
  article-title: Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water
  publication-title: Hydrological Processes
– volume: 270
  start-page: 214
  year: 2003
  end-page: 229
  article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 2563
  year: 1999
  end-page: 2581
  article-title: A conceptual framework for runo€ generation in a permafrost environment
  publication-title: Hydrological Processes
– volume: 31
  start-page: 1291
  year: 1995
  end-page: 1304
  article-title: Runoff production in a forested, shallow soil, Canadian Shield basin
  publication-title: Water Resources Research
– volume: 24
  start-page: 1745
  year: 2010
  end-page: 1754
  article-title: How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis
  publication-title: Hydrological Processes
– year: 2014
  article-title: Developing a consistent process‐based conceptualization of catchment functioning using measurements of internal state variables
  publication-title: Water Resources Research
– volume: 44
  year: 2008
  article-title: Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest
  publication-title: Water Resources Research
– volume: 20
  start-page: 987
  year: 2006
  end-page: 1000
  article-title: Snowmelt runoff processes in a headwater lake and its catchment, subarctic Canadian Shield
  publication-title: Hydrological Processes
– volume: 39
  issue: 11
  year: 2003
  article-title: How does rainfall become runoff? A combined tracer and runoff transfer function approach
  publication-title: Water Resources Research
– volume: 36
  start-page: 1873
  year: 2000
  end-page: 1884
  article-title: Separating the natural and anthropogenic components of spring flood pH decline: a method for areas that are not chronically acidified
  publication-title: Water Resources Research
– year: 1987
– volume: 367
  start-page: 237
  year: 2009
  end-page: 248
  article-title: Using long‐term data sets to understand transit times in contrasting headwater catchments
  publication-title: Journal of Hydrology
– volume: 201
  start-page: 82
  year: 1997
  end-page: 101
  article-title: Hydrograph separation using stable isotopes, silica and electrical conductivity: an alpine example
  publication-title: Journal of Hydrology
– volume: 41
  year: 2014
  article-title: Assessing urbanization impacts on catchment transit times
  publication-title: Geophysical Research Letters
– volume: 35
  start-page: 309
  year: 2004
  end-page: 324
  article-title: Evaluating snowmelt runoff generation in a discontinuous permafrost catchment using stable isotope, hydrochemical and hydrometric data
  publication-title: Nordic Hydrology
– volume: 22
  start-page: 1444
  year: 1986
  end-page: 1454
  article-title: A comparison of chemical and isotopic hydrograph separation
  publication-title: Water Resources Research
– volume: 279
  start-page: 151
  year: 2003
  end-page: 166
  article-title: Hydrology of subarctic Canadian shield: soil‐filled valleys
  publication-title: Journal of Hydrology
– volume: 24
  start-page: 1672
  year: 2010
  end-page: 1684
  article-title: Controls on snowmelt water mean transit times in northern boreal catchments
  publication-title: Hydrological Processes
– volume: 22
  start-page: 2057
  year: 2008
  end-page: 2061
  article-title: Catchment data for process conceptualization: simply not enough?
  publication-title: Hydrological Processes
– volume: 112
  start-page: 135
  year: 1989
  end-page: 148
  article-title: Tracing runoff sources with deuterium and oxygen‐18 during spring melt in a headwater catchment, southern Laurentians, Quebec
  publication-title: Journal of Hydrology
– volume: 16
  year: 2002
  article-title: Regional surface water balance and evaporation‐transpiration partitioning from a stable isotope survey of lakes in northern Canada
  publication-title: Global Biogeochemical Cycles
– volume: 20
  start-page: 305
  year: 1975
  end-page: 327
  article-title: Recognition and prediction of runoff‐producing zones in humid regions
  publication-title: Hydrological Sciences Bulletin
– volume: 17
  start-page: 1869
  year: 2003
  end-page: 1875
  article-title: Where does water go when it rains? Moving beyond the variable source area concept of rainfall‐runoff response
  publication-title: Hydrological Processes
– volume: 403
  start-page: 524
  year: 2000
  end-page: 527
  article-title: Fractal stream chemistry and its implications for contaminant transport in catchments
  publication-title: Nature
– volume: 4
  start-page: 1553
  year: 2010
  end-page: 1566
  article-title: Climate change in the Arctic – Permafrost, thermokarst, and why they matter to the non‐Arctic world
  publication-title: Geography Compass
– volume: 40
  year: 2004
  article-title: Solute transport through the integrated groundwater‐stream system of a catchment
  publication-title: Water Resources Research
– volume: 21
  start-page: 669
  year: 1984
  end-page: 677
  article-title: Snowmelt infiltration to frozen prairie soils
  publication-title: Canadian Journal of Earth Sciences
– volume: 12
  start-page: 1111
  year: 1998
  end-page: 1127
  article-title: Hydrogeochemistry of shallow groundwater in a Scottish catchment
  publication-title: Hydrological Processes
– volume: 15
  start-page: 2305
  year: 2001
  end-page: 2324
  article-title: Soil partitioning and surface store controls on spring runoff from a boreal forest peatland basin in north‐central Manitoba, Canada
  publication-title: Hydrological Processes
– start-page: 401
  year: 1990
  end-page: 435
– volume: 84
  start-page: 821
  year: 2006
  end-page: 833
  article-title: Decreasing soil‐frost depth and its relation to climate change in Tokachi, Hokkaido, Japan
  publication-title: Journal of the Meteorological Society of Japan
– volume: 23
  start-page: 1837
  year: 2013
  end-page: 1868
  article-title: Trajectory of the Arctic as an integrated system
  publication-title: Ecological Applications
– volume: 291
  start-page: 172
  year: 2004
  end-page: 294
  article-title: Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland
  publication-title: Journal of Hydrology
– volume: 45
  year: 2009
  article-title: Catchments as simple dynamical systems: catchment characterization, rainfall‐runoff modeling, and doing hydrology backward
  publication-title: Water Resources Research
– volume: 438
  start-page: 303
  issue: 7066
  year: 2005
  end-page: 309
  article-title: Potential impacts of a warming climate on water availability in snow‐dominated regions
  publication-title: Nature
– volume: 66
  start-page: 319
  year: 1983
  end-page: 330
  article-title: Application of flow models in an alpine catchment area using tritium and deuterium data
  publication-title: Journal of Hydrology
– volume: 40
  year: 2004
  article-title: Hydrological flow paths during the spring flood: congruence between hydrometric measurements and oxygen‐18 in snow melt, soil water, and runoff
  publication-title: Water Resources Research
– volume: 46
  year: 2010
  article-title: Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources
  publication-title: Water Resources Research
– volume: 20
  start-page: 1095
  year: 2006a
  end-page: 1116
  article-title: Paired‐basin comparison of hydrological response in harvested and undisturbed hardwood forests during snowmelt in central Ontario: I. Streamflow, groundwater and flow path behaviour
  publication-title: Hydrological Processes
– volume: 323
  start-page: 303
  year: 2006
  end-page: 324
  article-title: Landscape control of water chemistry in northern boreal streams of Alberta
  publication-title: Journal of Hydrology
– volume: 2
  start-page: 1646
  year: 2010
  end-page: 1659
  article-title: Truncation of stream residence time: how the use of stable isotopes has skewed our concept of streamwater age and origin
  publication-title: Hydrological Processes
– volume: 8
  start-page: 335
  year: 1994
  end-page: 349
  article-title: A case study in hydrochemistry: conflicting interpretations from hydrological and chemical observations
  publication-title: Hydrological Processes
– volume: 357
  start-page: 11
  issue: 1–2
  year: 2008
  end-page: 28
  article-title: Tracing biogeochemical processes in stream water and groundwater using non‐linear statistics
  publication-title: Journal of Hydrology
– volume: 333
  start-page: 199
  year: 2007
  end-page: 213
  article-title: Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters
  publication-title: Journal of Hydrology
– volume: 116
  start-page: 35
  year: 1990
  end-page: 61
  article-title: The origins of acid runoff in a hillslope during storm events
  publication-title: Journal of Hydrology
– volume: 36
  start-page: 63
  year: 2000
  end-page: 75
  article-title: Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain National Park, Colorado
  publication-title: Water Resources Research
– volume: 20
  start-page: 3415
  year: 2006
  end-page: 3422
  article-title: Mapping first‐order controls on streamflow from drainage basins: the T3 template
  publication-title: Hydrological Processes
– volume: 6
  start-page: 110
  year: 1970
  end-page: 124
  article-title: Snowmelt runoff from measurements of tritium and oxygen‐18
  publication-title: Water Resources Research
– volume: 23
  start-page: 132
  year: 1999
  end-page: 154
  article-title: Statistics and characteristics of permafrost and ground‐ice distribution in the Northern Hemisphere
  publication-title: Polar Geography
– volume: 31
  start-page: 75
  year: 2011
  end-page: 85
  article-title: The hydrological functions of a boreal wetland
  publication-title: Wetlands
– volume: 23
  start-page: 2095
  year: 2009
  end-page: 2101
  article-title: A tale of two isotopes: differences in hydrograph separation for a runoff event when using δD δ O
  publication-title: Hydrological Processes
– volume: 13
  start-page: 1843
  year: 1999
  end-page: 1857
  article-title: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont
  publication-title: Hydrological Processes
– volume: 27
  start-page: 766
  year: 2013
  end-page: 774
  article-title: Catchments on the Cusp? Structural and functional change in northern ecohydrological systems
  publication-title: Hydrological Processes
– volume: 22
  start-page: 1239
  year: 2008
  end-page: 1242
  article-title: Aqua Incognita: the unknown headwaters
  publication-title: Hydrological Processes
– volume: 9
  start-page: 197
  year: 1995
  end-page: 211
  article-title: Applicability of isotopic hydrograph separation in a suburban basin during snowmelt
  publication-title: Hydrological Processes
– volume: 6
  start-page: 1296
  year: 1970
  end-page: 1311
  article-title: Partial area contributions to storm runoff in a small New England watershed
  publication-title: Water Resources Research
– volume: 254
  start-page: 82
  year: 2001
  end-page: 101
  article-title: Catchment‐scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations
  publication-title: Journal of Hydrology
– volume: 33
  start-page: 1707
  year: 1997
  end-page: 1719
  article-title: Hydrograph separations in an Arctic watershed using mixing model and graphical techniques
  publication-title: Water Resources Research
– volume: 24
  start-page: 1985
  year: 2010
  end-page: 1993
  article-title: The contribution of rain‐on‐snow events to nitrate export in the forested landscape of south‐central Canada
  publication-title: Hydrological Processes
– volume: 17
  start-page: 493
  year: 2002
  end-page: 503
  article-title: Importance of permafrost as a source of water for plants in east Siberian taiga
  publication-title: Ecological Research
– volume: 17
  start-page: 325
  year: 1986
  end-page: 334
  article-title: Modelling water exchange and transit times in till basins using oxygen‐18
  publication-title: Nordic Hydrology
– year: 2014
  article-title: Storage dynamics in hydropedological units control hillslope connectivity, runoff generation and the evolution of catchment transit time distributions
  publication-title: Water Resources Research
– volume: 24
  start-page: 201
  year: 1986
  end-page: 234
  article-title: Permafrost hydrology in North America
  publication-title: Atmosphere – Ocean
– volume: 1
  start-page: 15
  year: 1986
  end-page: 30
  article-title: An isotopic and geochemical student of snowmelt runoff in a small arctic watershed
  publication-title: Hydrological Processes
– volume: 25
  start-page: 3831
  year: 2011
  end-page: 3835
  article-title: Measurements and modelling of storage dynamics across scales
  publication-title: Hydrological Processes
– volume: 24
  start-page: 213
  year: 1993
  end-page: 224
  article-title: Runoff generation in a high boreal wetland in northern Canada
  publication-title: Nordic Hydrology
– volume: 56
  start-page: 135
  year: 2001
  end-page: 150
  article-title: Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem
  publication-title: Biogeochemistry
– volume: 24
  start-page: 2335
  year: 2010a
  end-page: 2348
  article-title: Assessing the value of high‐resolution isotope tracer data in the stepwise development of a lumped conceptual rainfall‐runoff model
  publication-title: Hydrological Processes
– volume: 20
  start-page: 2129
  year: 2006
  end-page: 2139
  article-title: Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada
  publication-title: Hydrological Processes
– volume: 28
  start-page: 99
  year: 1992
  end-page: 107
  article-title: Multivariate analysis of stream water chemical data: the use of principal components analysis for the end‐member mixing problem
  publication-title: Water Resources Research
– volume: 26
  start-page: 3053
  year: 2012
  end-page: 3076
  article-title: Modelling the potential impacts of climate change on snowpack in the North Saskatchewan River Watershed, Alberta
  publication-title: Water Resources Management
– volume: 20
  start-page: 1117
  year: 2006b
  end-page: 1136
  article-title: Paired‐basin comparison of hydrological response in harvested and undisturbed hardwood forests during snowmelt in central Ontario: II. Streamflow sources and groundwater residence times
  publication-title: Hydrological Processes
– volume: 48
  year: 2012
  article-title: Influence of permafrost distribution on groundwater flow in the context of climate‐driven permafrost thaw: example from Yukon Flats Basin, Alaska, United States
  publication-title: Water Resources Research
– volume: 16
  start-page: 1515
  year: 2002
  end-page: 1517
  article-title: Stormflow‐hydrograph separation based on isotopes: the thrill is gone – what's next?
  publication-title: Hydrological Processes
– volume: 320
  start-page: 421
  year: 2006
  end-page: 431
  article-title: The dynamic balance between organic acids and circumneutral groundwater in a large boreal peat basin
  publication-title: Journal of Hydrology
– volume: 505
  start-page: 47
  year: 2013
  end-page: 64
  article-title: Hydrograph separation using stable isotopes: review and evaluation
  publication-title: Journal of Hydrology
– volume: 43
  issue: 6
  year: 2007
  article-title: Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach
  publication-title: Water Resources Research
– volume: 23
  start-page: 3503
  year: 2009
  end-page: 3507
  article-title: Tracers and transit times: windows for viewing catchment scale storage?
  publication-title: Hydrological Processes
– volume: 21
  start-page: 67
  year: 2013b
  end-page: 77
  article-title: Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost environment (Yukon, Canada)
  publication-title: Hydrogeology Journal
– volume: 24
  start-page: 1537
  year: 2010
  end-page: 1547
  article-title: Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological process models
  publication-title: Hydrological Processes
– volume: 22
  start-page: 4949
  year: 2008
  end-page: 4653
  article-title: Towards an energy based runoff generation theory for tundra landscapes
  publication-title: Hydrological Processes
– volume: 16
  start-page: 589
  year: 2002
  end-page: 609
  article-title: Controls on old and new water contributions to stream flow at some nested catchments in Vermont, U.S.A
  publication-title: Hydrological Processes
– volume: 23
  start-page: 1874
  year: 2009
  end-page: 1886
  article-title: Inter‐catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province; the Cairngorm mountains, Scotland
  publication-title: Hydrological Processes
– volume: 16
  start-page: 173
  year: 1993
  end-page: 190
  article-title: Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers
  publication-title: Advances in Water Resources
– volume: 24
  start-page: 1631
  year: 2010
  end-page: 1645
  article-title: Comparing chloride and water isotopes as hydrological tracers in two Scottish catchments
  publication-title: Hydrological Processes
– volume: 38
  start-page: 40–1
  year: 2002
  end-page: 40–10
  article-title: Oxygen 18 fractionation during snowmelt: implications for spring flood hydrograph separation
  publication-title: Water Resources Research
– volume: 49
  start-page: 139
  year: 1990
  end-page: 158
  article-title: Urban storm water transport and wash‐off of caesium‐137 after the Chernobyl accident
  publication-title: Water, Air, and Soil Pollution
– volume: 14
  start-page: 729
  year: 2010
  end-page: 750
  article-title: Comparison of algorithms and parameterisations for infiltration into organic‐covered permafrost soils
  publication-title: Hydrology and Earth Systems Science
– volume: 13
  start-page: 1827
  year: 1999
  end-page: 1842
  article-title: Estimating snowmelt infiltration into frozen soils
  publication-title: Hydrological Processes
– volume: 46
  year: 2010
  article-title: Gamma distribution models for transit time estimation in catchments: physical interpretation of parameters and implications for time‐variant transit time assessment
  publication-title: Water Resources Research
– volume: 17
  start-page: 533
  year: 2013
  end-page: 564
  article-title: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?
  publication-title: Hydrology and Earth Systems Science
– volume: 41
  start-page: 122
  year: 1986
  end-page: 125
  article-title: Spring runoff retention in prairie pothole wetlands
  publication-title: Journal of Soil and Water Conservation
– year: 2015
  article-title: The isotope hydrology of a large river system regulated for hydropower
  publication-title: Rivers Research Applications
– start-page: 770
  year: 2005
  end-page: 789
– volume: 25
  start-page: 3602
  year: 2011
  end-page: 3612
  article-title: A discrete particle representation of hillslope hydrology: hypothesis testing reproducing a tracer experiment at Gardsjon, Sweden, Hydrological
  publication-title: Processes
– volume: 25
  start-page: 3924
  year: 2011b
  end-page: 3936
  article-title: Modelling catchment‐scale water storage dynamics: reconciling dynamic storage with tracer‐inferred passive storage
  publication-title: Hydrological Processes
– volume: 373
  start-page: 15
  year: 2009
  end-page: 23
  article-title: Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model
  publication-title: Journal of Hydrology
– volume: 65
  start-page: 83
  year: 1992
  end-page: 100
  article-title: Transit times of water in soil lysimeters from modelling of oxygen‐18
  publication-title: Water, Air and Soil Polllution
– volume: 32
  start-page: 3497
  year: 1996
  end-page: 3511
  article-title: Transit times for water in a small till catchment from a step shift in oxygen‐18 content of the water input
  publication-title: Water Resources Research
– volume: 23
  start-page: 962
  year: 2009
  end-page: 972
  article-title: Implications of global climate change for snowmelt hydrology in the twenty‐first century
  publication-title: Hydrological Processes
– volume: 38
  year: 2011
  article-title: Catchment residence and travel time distributions: The master equation
  publication-title: Geophysical Research Letters
– volume: 16
  start-page: 3683
  year: 2002
  end-page: 3690
  article-title: How isotopic fractionation of snowmelt affects hydrograph separation
  publication-title: Hydrological Processes
– volume: 344
  start-page: 198
  year: 2007
  end-page: 209
  article-title: The role of catchment scale and landscape characteristics for runoff generation of boreal streams
  publication-title: Journal of Hydrology
– volume: 56
  start-page: 151
  year: 2001
  end-page: 174
  article-title: Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest
  publication-title: Biogeochemistry
– volume: 48
  year: 2012
  article-title: Can time domain and source area tracers reduce uncertainty in rainfall‐runoff models in larger heterogeneous catchments?
  publication-title: Water Resources Research
– start-page: 391
  year: 1998
  end-page: 434
– ident: e_1_2_9_78_1
  doi: 10.1002/hyp.7577
– ident: e_1_2_9_86_1
  doi: 10.1016/j.jhydrol.2005.09.016
– ident: e_1_2_9_90_1
  doi: 10.1002/hyp.262
– ident: e_1_2_9_76_1
  doi: 10.1016/j.jhydrol.2008.03.013
– ident: e_1_2_9_88_1
  doi: 10.1029/97WR01033
– ident: e_1_2_9_51_1
  doi: 10.1029/2011WR011293
– ident: e_1_2_9_8_1
  doi: 10.1002/hyp.7763
– ident: e_1_2_9_83_1
  doi: 10.1002/hyp.5132
– ident: e_1_2_9_139_1
  doi: 10.1080/07055900.1986.9649248
– ident: e_1_2_9_47_1
  doi: 10.1023/A:1013039830323
– ident: e_1_2_9_17_1
  doi: 10.2166/nh.2010.146
– ident: e_1_2_9_59_1
  doi: 10.1029/2009WR008818
– ident: e_1_2_9_106_1
  doi: 10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-HYP879>3.0.CO;2-G
– ident: e_1_2_9_91_1
  doi: 10.1002/hyp.6117
– volume: 25
  start-page: 3602
  year: 2011
  ident: e_1_2_9_37_1
  article-title: A discrete particle representation of hillslope hydrology: hypothesis testing reproducing a tracer experiment at Gardsjon, Sweden, Hydrological
  publication-title: Processes
  contributor:
    fullname: Davies J
– ident: e_1_2_9_13_1
  doi: 10.1002/hyp.7049
– ident: e_1_2_9_26_1
  doi: 10.1002/hyp.3360090206
– ident: e_1_2_9_73_1
  doi: 10.1029/2003WR002765
– ident: e_1_2_9_41_1
  doi: 10.1029/WR006i005p01296
– ident: e_1_2_9_55_1
  doi: 10.5194/hess-17-533-2013
– ident: e_1_2_9_52_1
  doi: 10.1890/11-1498.1
– ident: e_1_2_9_143_1
  doi: 10.1080/10889379909377670
– ident: e_1_2_9_53_1
  doi: 10.2151/jmsj.84.821
– ident: e_1_2_9_63_1
  doi: 10.1029/2008WR006912
– ident: e_1_2_9_68_1
  doi: 10.1029/2002WR001510
– ident: e_1_2_9_67_1
  doi: 10.1016/j.jhydrol.2013.09.006
– ident: e_1_2_9_142_1
  doi: 10.1017/S0022143000007140
– ident: e_1_2_9_69_1
  doi: 10.1029/2003WR002455
– ident: e_1_2_9_28_1
  doi: 10.1007/s10040-012-0920-9
– ident: e_1_2_9_32_1
  doi: 10.2166/nh.1998.0022
– ident: e_1_2_9_33_1
  doi: 10.1002/hyp.7692
– ident: e_1_2_9_79_1
  doi: 10.1007/s11269-012-0016-2
– ident: e_1_2_9_134_1
  doi: 10.1029/2011WR011595
– ident: e_1_2_9_105_1
  doi: 10.1002/hyp.1130
– ident: e_1_2_9_127_1
  doi: 10.1016/j.jhydrol.2012.11.021
– start-page: 401
  volume-title: Process Studies in Hillslope Hydrology
  year: 1990
  ident: e_1_2_9_109_1
  contributor:
    fullname: Sklash MG
– ident: e_1_2_9_31_1
  doi: 10.1002/wrcr.20469
– volume: 42
  year: 2007
  ident: e_1_2_9_62_1
  article-title: Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology
  publication-title: Water Resources Research
  contributor:
    fullname: Kirchner JW
– ident: e_1_2_9_136_1
  doi: 10.1016/0022-1694(91)90181-G
– ident: e_1_2_9_131_1
  doi: 10.1002/hyp.7318
– ident: e_1_2_9_85_1
  doi: 10.1002/hyp.7796
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jhydrol.2010.07.049
– ident: e_1_2_9_77_1
  doi: 10.1002/hyp.7326
– ident: e_1_2_9_87_1
  doi: 10.1016/j.jhydrol.2006.04.020
– ident: e_1_2_9_129_1
  doi: 10.1002/2013WR014147
– ident: e_1_2_9_27_1
  doi: 10.1029/2011WR011543
– start-page: 193
  volume-title: Watershed Hydrology
  year: 2011
  ident: e_1_2_9_133_1
  contributor:
    fullname: Verry ES
– ident: e_1_2_9_45_1
  doi: 10.1016/j.jhydrol.2009.03.031
– ident: e_1_2_9_115_1
  doi: 10.1002/hyp.8324
– ident: e_1_2_9_80_1
  doi: 10.1016/0022-1694(83)90193-2
– ident: e_1_2_9_100_1
  doi: 10.2166/nh.1981.0002
– ident: e_1_2_9_43_1
  doi: 10.1029/2001GB001839
– ident: e_1_2_9_49_1
  doi: 10.1023/A:1013036803050
– ident: e_1_2_9_113_1
  doi: 10.1002/(SICI)1099-1085(19980615)12:7<1111::AID-HYP633>3.0.CO;2-2
– ident: e_1_2_9_60_1
  doi: 10.1002/hyp.3360080406
– ident: e_1_2_9_22_1
  doi: 10.1002/hyp.1033
– ident: e_1_2_9_110_1
  doi: 10.1016/0022-1694(79)90164-1
– ident: e_1_2_9_132_1
  doi: 10.1002/hyp.9700
– ident: e_1_2_9_44_1
  doi: 10.2166/nh.1993.0023
– ident: e_1_2_9_82_1
  doi: 10.1029/WR026i012p02959
– ident: e_1_2_9_23_1
  doi: 10.1017/CBO9780511535666.040
– ident: e_1_2_9_102_1
  doi: 10.1016/B978-0-444-81546-0.50019-7
– ident: e_1_2_9_16_1
  doi: 10.1029/2011GL047666
– ident: e_1_2_9_48_1
  doi: 10.1007/BF00279517
– ident: e_1_2_9_38_1
  doi: 10.1002/hyp.5881
– ident: e_1_2_9_74_1
  doi: 10.2166/nh.1986.0024
– ident: e_1_2_9_5_1
  doi: 10.1038/nature04141
– ident: e_1_2_9_9_1
  doi: 10.1002/hyp.8201
– ident: e_1_2_9_54_1
  doi: 10.1029/WR022i010p01444
– ident: e_1_2_9_19_1
  doi: 10.1002/hyp.5008
– ident: e_1_2_9_101_1
– ident: e_1_2_9_71_1
  doi: 10.1016/S0022-1694(97)00030-9
– ident: e_1_2_9_111_1
  doi: 10.1002/rra.2740
– ident: e_1_2_9_118_1
  doi: 10.1016/j.jhydrol.2005.10.024
– ident: e_1_2_9_116_1
  doi: 10.1016/j.jhydrol.2003.12.042
– ident: e_1_2_9_40_1
  doi: 10.1029/WR006i001p00110
– ident: e_1_2_9_119_1
  doi: 10.1016/j.jhydrol.2006.08.016
– ident: e_1_2_9_137_1
  doi: 10.1002/hyp.9817
– ident: e_1_2_9_117_1
  doi: 10.1002/hyp.7501
– ident: e_1_2_9_92_1
  doi: 10.1002/hyp.5956
– ident: e_1_2_9_95_1
  doi: 10.1002/hyp.3360010104
– ident: e_1_2_9_93_1
  doi: 10.1002/hyp.6073
– ident: e_1_2_9_15_1
  doi: 10.1029/2000WR900030
– ident: e_1_2_9_21_1
  doi: 10.1002/hyp.6519
– ident: e_1_2_9_97_1
  doi: 10.1029/2006WR005286
– ident: e_1_2_9_130_1
  doi: 10.1002/hyp.8396
– ident: e_1_2_9_7_1
  doi: 10.1080/02626667909491834
– ident: e_1_2_9_138_1
  doi: 10.1023/A:1007997422237
– ident: e_1_2_9_112_1
  doi: 10.1002/2013GL058716
– ident: e_1_2_9_46_1
  doi: 10.1139/e84-073
– ident: e_1_2_9_65_1
  doi: 10.1016/S0022-1694(01)00487-5
– ident: e_1_2_9_128_1
  doi: 10.1002/hyp.1232
– volume: 62
  start-page: 37
  year: 1980
  ident: e_1_2_9_140_1
  article-title: Channel development in snow‐filled valleys, Resolute, N.W.T., Canada
  publication-title: Geografiska Annaler
  doi: 10.1080/04353676.1980.11879998
  contributor:
    fullname: Woo M‐K
– ident: e_1_2_9_120_1
  doi: 10.1007/s13157-010-0123-x
– ident: e_1_2_9_98_1
  doi: 10.1002/hyp.7164
– ident: e_1_2_9_135_1
  doi: 10.1029/2003WR002331
– ident: e_1_2_9_4_1
  doi: 10.1016/j.geoderma.2014.02.017
– ident: e_1_2_9_11_1
  doi: 10.1002/hyp.7478
– ident: e_1_2_9_39_1
  doi: 10.1029/WR006i001p00110
– ident: e_1_2_9_114_1
  doi: 10.1002/hyp.7068
– ident: e_1_2_9_103_1
  doi: 10.1029/95WR01806
– ident: e_1_2_9_122_1
  doi: 10.1002/hyp.9695
– ident: e_1_2_9_123_1
  doi: 10.1002/hyp.7576
– ident: e_1_2_9_10_1
  doi: 10.1002/2013WR014925
– volume: 20
  start-page: 305
  year: 1975
  ident: e_1_2_9_42_1
  article-title: Recognition and prediction of runoff‐producing zones in humid regions
  publication-title: Hydrological Sciences Bulletin
  contributor:
    fullname: Dunne T
– ident: e_1_2_9_81_1
  doi: 10.1016/0309-1708(93)90036-F
– ident: e_1_2_9_89_1
  doi: 10.1002/hyp.8113
– ident: e_1_2_9_126_1
  doi: 10.1002/hyp.1180
– ident: e_1_2_9_141_1
  doi: 10.1002/hyp.6205
– ident: e_1_2_9_30_1
  doi: 10.1002/hyp.5764
– ident: e_1_2_9_121_1
  doi: 10.1016/S0022-1694(03)00175-6
– ident: e_1_2_9_144_1
  doi: 10.5194/hess-14-729-2010
– ident: e_1_2_9_29_1
  doi: 10.2166/nh.2004.0023
– volume: 41
  start-page: 122
  year: 1986
  ident: e_1_2_9_58_1
  article-title: Spring runoff retention in prairie pothole wetlands
  publication-title: Journal of Soil and Water Conservation
  contributor:
    fullname: Hubbard DE
– ident: e_1_2_9_64_1
  doi: 10.1038/35000537
– ident: e_1_2_9_12_1
  doi: 10.1029/2010WR009547
– ident: e_1_2_9_56_1
  doi: 10.1016/j.jhydrol.2009.01.001
– ident: e_1_2_9_96_1
  doi: 10.1029/94WR03286
– ident: e_1_2_9_34_1
  doi: 10.1029/91WR02518
– ident: e_1_2_9_66_1
  doi: 10.1002/hyp.7676
– ident: e_1_2_9_6_1
  doi: 10.1002/hyp.7718
– ident: e_1_2_9_104_1
  doi: 10.1029/2008WR006983
– ident: e_1_2_9_50_1
  doi: 10.1016/S0022-1694(02)00287-1
– ident: e_1_2_9_36_1
  doi: 10.2307/1551821
– ident: e_1_2_9_70_1
  doi: 10.1016/j.jhydrol.2007.07.010
– ident: e_1_2_9_108_1
  doi: 10.1016/j.jhydrol.2005.07.046
– ident: e_1_2_9_57_1
  doi: 10.1029/2010WR009148
– ident: e_1_2_9_94_1
  doi: 10.1016/0022-1694(89)90185-6
– ident: e_1_2_9_61_1
  doi: 10.1016/S0022-1694(99)00059-1
– ident: e_1_2_9_24_1
  doi: 10.1002/(SICI)1099-1085(199705)11:6<557::AID-HYP477>3.0.CO;2-Y
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1749-8198.2010.00390.x
– ident: e_1_2_9_75_1
  doi: 10.1007/BF00482751
– ident: e_1_2_9_99_1
  doi: 10.1002/(SICI)1099-1085(199911)13:16<2563::AID-HYP942>3.0.CO;2-D
– ident: e_1_2_9_35_1
  doi: 10.1029/91WR01243
– ident: e_1_2_9_107_1
  doi: 10.1002/hyp.312
– ident: e_1_2_9_84_1
  doi: 10.1029/WR026i003p00455
– ident: e_1_2_9_125_1
  doi: 10.1046/j.1440-1703.2002.00506.x
– ident: e_1_2_9_72_1
  doi: 10.1002/hyp.9686
– ident: e_1_2_9_14_1
  doi: 10.1016/0022-1694(90)90114-D
– ident: e_1_2_9_2_1
  doi: 10.1002/hyp.7201
– ident: e_1_2_9_20_1
  doi: 10.1177/030913339401800102
– ident: e_1_2_9_124_1
  doi: 10.1029/1999WR900296
– ident: e_1_2_9_145_1
  doi: 10.1002/(SICI)1099-1085(199909)13:12/13<1827::AID-HYP896>3.0.CO;2-D
– ident: e_1_2_9_25_1
  doi: 10.1016/0022-1694(92)90080-F
SSID ssj0004080
Score 2.5517464
Snippet We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We define...
Abstract We examine how tracer studies have enhanced our understanding of flow paths, residence times and sources of stream flow in northern catchments. We...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 3475
SubjectTerms Assessments
Catchments
Empirical analysis
Flow paths
Forest Science
Hydrology
isotopes
north
Permafrost
Policies
runoff processes
Skogsvetenskap
snowmelt
Tracers
Title Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review
URI https://api.istex.fr/ark:/67375/WNG-4N528J9Z-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.10412
https://www.proquest.com/docview/1697339987
https://search.proquest.com/docview/1705091317
https://search.proquest.com/docview/1718972492
https://res.slu.se/id/publ/68470
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFA9je9AX3fyDdXNEEfHBbk3bJI0-iTovAy8iDq8ihCRNdsdGO9pbdD75EfyMfhJP0tuOKyjiU0t7CklOTs_vJCe_g9BDoplWKtFxbnQOAQrxSQAJjW1ZZM4Sokng6X4zZZOj_HBGZ2vo2XAWpueHGBfcvGWE_7U3cKXb_UvS0PnFud-gDBWGScZ9OtfLd5fUUXkSqqaBEdGYJQUfWIWSdH_8csUXbfhh_boKNHvy0FXcGhzPwXX0eWhyn29yutct9J759hub43_2aRNdWwJS_LyfQVtozVY30JVlbfT5xU10DO7M2Obn9x_e45VYjVyeuHbYndVfsC9r3D7BPtESfk9YVSVuuqp2Dh8HVmuvfHxS4cpvEtmmwgYcwDwcrnuKFe6Pz9xCRwev3r-YxMvyDLEBmJfGihOlBTXCFkYUWQ6xUWJNTjnYucu00DQruXYlZ64snbAicxkx1AnmCFMQGd9G61Vd2TsIg7pcXhhFla-F7WO61FFdwlPGuEtIhB4MipLnPQuH7PmWUwljJsOYRehRUOEooZpTn7bGqfwwfS3zKU2LQ_FJziK0M-hYLi22lYQJngFaK3iE7o-vwdb8BoqqbN2BDPdsOQQg199kSCG452GE9vTzZ2yQp_JuzzqtGn-RrZUMwEESocdhUvy5a3Ly8W24ufvvotvoKoA7Gtahkx20vmg6ew8A1ELvBkv5BfLxGD8
link.rule.ids 230,315,783,787,888,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq9lAufCMCBQxCiANp4yS2E8QFAWUp7QqhVmyRkGUndhe1SqrsRlBO_AR-I7-EGWeTapFAiFOixJFsj1_mjT_eEPKQGWG0jkyYFiaFAIXhJoCIh7bMEmcZM8zrdO-Nxegg3ZnwyQp51p-F6fQhhgk3RIb_XyPAcUJ661w1dHp2iiuUmGJ4DeCeICxfvj8Xj0ojnzcNYMRDEWWy1xWK4q3h0yVvtIYd-3WZanbyocvM1bue7UvkU1_pbsfJ8WY7N5vFt9_0HP-3VZfJxQUnpc-7QXSFrNjqKllfpEefnl0jR-DRCtv8_P4DnV5J9SDnSWtH3Un9hWJm49kTinst4Q9FdVXSpq1q5-iRF7ZG-9PPFa1wncg2FS3AB0z9-bqnVNPuBM11crD9av_FKFxkaAgLYHpxqCXTJudFbrMiz5IUwqPIFimXAHWXmNzwpJTGlVK4snS5zROXsIK7XDgmNATHN8hqVVf2JqFgL5dmheYa02FjWBc7bkp4KoR0EQvIg95S6rQT4lCd5HKsoM-U77OAPPI2HEro5hh3rkmuPoxfq3TM42wn_6gmAdnojawWoJ0pJnKZAGHLZEDuD68BbriGoitbt1BGomAOA9b1tzIsyyVKMUJ9ugE0VAjVvGcnrdENXtTMKgH8IArIYz8q_tw0NTp8529u_XvRe2R9tL-3q3bfjN_eJheA63E_LR1tkNV509o7wKfm5q6HzS9SixxY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqVgIu_CNSChiEEAfSxklsx3BCwLIUWFWIii1CsmzH7latklV2IygnHoFn5EkYO7upFgmEOCVKJpLtmcl8459vEHpANNNKJTrOjc4hQSF-E0BCY1sWmbOEaBJ4ut-N2HA_3x3T8Rp6ujwL0_FD9BNu3jPC_9o7-LR0O2ekoZPTqV-g9BWGN3IGpuoR0fsz7qg8CWXTwItozJKCL2mFknSn_3QlGG34cf26ijQ79tBV4Boiz-AS-rxsc7fh5Hi7nett8-03Osf_7NRldHGBSPGzzoSuoDVbXUXnF8XRJ6fX0CHEM2Obn99_-JBXYtWTeeLaYXdSf8G-rvHsMfY7LeH_hFVV4qataufwYaC19trHRxWu_CqRbSpsIAJMwum6J1jh7vzMdbQ_ePnh-TBe1GeIDeC8NFacKC2oEbYwoshySI4Sa3LKwdFdpoWmWcm1KzlzZemEFZnLiKFOMEeYgtT4Blqv6sreRBjU5fLCKKp8MWyf1KWO6hKeMsZdQiJ0f6koOe1oOGRHuJxKGDMZxixCD4MKewnVHPt9a5zKj6NXMh_RtNgVn-Q4QltLHcuFy84kYYJnANcKHqF7_WtwNr-CoipbtyDDPV0OAcz1NxlSCO6JGKE9nf30DfJc3rOTVqvGX-TMSgboIInQo2AUf-6aHB7shZvNfxe9i87tvRjIt69Hb26hCwD0aJiTTrbQ-rxp7W0AU3N9JzjNL_E9Gwc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracer-based+assessment+of+flow+paths%2C+storage+and+runoff+generation+in+northern+catchments%3A+a+review&rft.jtitle=Hydrological+processes&rft.au=Tetzlaff%2C+Doerthe&rft.au=Buttle%2C+Jim&rft.au=Carey%2C+Sean+K&rft.au=McGuire%2C+Kevin&rft.date=2015-07-30&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=29&rft.issue=16&rft.spage=3475&rft.epage=3490&rft_id=info:doi/10.1002%2Fhyp.10412&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon